
Data Science
VERSION 3: AN INTRODUCTION TO

Jeffrey Stanton, Syracuse University
(With A Contribution By Robert W. De Graaf)

© 2012, 2013 By Jeffrey Stanton,  
Portions © 2013, By Robert De Graaf

This book is distributed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 license. You are free to copy, dis-
tribute, and transmit this work. You are free to add or adapt the
work. You must attribute the work to the author(s) listed above.
You may not use this work or derivative works for commercial pur-
poses. If you alter, transform, or build upon this work you may dis-
tribute the resulting work only under the same or similar license.

For additional details, please see:
http://creativecommons.org/licenses/by-nc-sa/3.0/

This book was developed for the Certificate of Data Science pro-
gram at Syracuse University’s School of Information Studies. If
you find errors or omissions, please contact the author, Jeffrey Stan-
ton, at jmstanto@syr.edu. A PDF version of this book and code ex-
amples used in the book are available at:

http://jsresearch.net/wiki/projects/teachdatascience

The material provided in this book is provided "as is" with no war-
ranty or guarantees with respect to its accuracy or suitability for
any purpose.

Thanks to Ashish Verma for help with revisions to Chapter 10!

i

INTRODUCTION TO DATA SCIENCE

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:jmstanto@syr.edu
mailto:jmstanto@syr.edu
http://jsresearch.net/groups/teachdatascience
http://jsresearch.net/groups/teachdatascience

ii

Data Science: Many Skills

Data Science refers to an emerging area of work concerned with the collection, preparation, analysis,
visualization, management, and preservation of large collections of information. Although the name
Data Science seems to connect most strongly with areas such as databases and computer science,
many different kinds of skills - including non-mathematical skills - are needed.

SECTION 1

For some, the term "Data Science" evokes images
of statisticians in white lab coats staring fixedly
at blinking computer screens filled with scrolling
numbers. Nothing could be further from the
truth. First of all, statisticians do not wear lab
coats: this fashion statement is reserved for biolo-
gists, doctors, and others who have to keep their

clothes clean in environments filled with unusual
fluids. Second, much of the data in the world is
non-numeric and unstructured. In this context,
unstructured means that the data are not ar-
ranged in neat rows and columns. Think of a
web page full of photographs and short mes-
sages among friends: very few numbers to work

Overview

1. Data science includes data
analysis as an important
component of the skill set
required for many jobs in
this area, but is not the only
necessary skill.

2. A brief case study of a
supermarket point of sale
system illustrates the many
challenges involved in data
science work.

3. Data scientists play active
roles in the design and
implementation work of
four related areas: data
architecture, data
acquisition, data analysis,
and data archiving.

4. Key skills highlighted by the
brief case study include
communication skills, data
analysis skills, and ethical
reasoning skills.

Word frequencies from the definitions in a Shakespeare glossary. While professional data scientists do need
skills with mathematics and statistics, much of the data in the world is unstructured and non-numeric.

Data Science: Many Skills

3

with there. While it is certainly true that companies, schools, and
governments use plenty of numeric information - sales of prod-
ucts, grade point averages, and tax assessments are a few examples
- there is lots of other information in the world that mathemati-
cians and statisticians look at and cringe. So, while it is always use-
ful to have great math skills, there is much to be accomplished in
the world of data science for those of us who are presently more
comfortable working with words, lists, photographs, sounds, and
other kinds of information.

In addition, data science is much more than simply analyzing data.
There are many people who enjoy analyzing data and who could
happily spend all day looking at histograms and averages, but for
those who prefer other activities, data science offers a range of
roles and requires a range of skills. Let’s consider this idea by think-
ing about some of the data involved in buying a box of cereal.

Whatever your cereal preferences - fruity, chocolaty, fibrous, or
nutty - you prepare for the purchase by writing "cereal" on your
grocery list. Already your planned purchase is a piece of data, al-
beit a pencil scribble on the back on an envelope that only you can
read. When you get to the grocery store, you use your data as a re-
minder to grab that jumbo box of FruityChocoBoms off the shelf
and put it in your cart. At the checkout line the cashier scans the
barcode on your box and the cash register logs the price. Back in
the warehouse, a computer tells the stock manager that it is time to
request another order from the distributor, as your purchase was
one of the last boxes in the store. You also have a coupon for your
big box and the cashier scans that, giving you a predetermined dis-
count. At the end of the week, a report of all the scanned manufac-
turer coupons gets uploaded to the cereal company so that they

can issue a reimbursement to the grocery store for all of the coupon
discounts they have handed out to customers. Finally, at the end of
the month, a store manager looks at a colorful collection of pie
charts showing all of the different kinds of cereal that were sold,
and on the basis of strong sales of fruity cereals, decides to offer
more varieties of these on the store’s limited shelf space next
month.

So the small piece of information that began as a scribble on your
grocery list ended up in many different places, but most notably on
the desk of a manager as an aid to decision making. On the trip
from your pencil to manager’s desk, the data went through many
transformations. In addition to the computers where the data may
have stopped by or stayed on for the long term, lots of other pieces
of hardware - such as the barcode scanner - were involved in col-
lecting, manipulating, transmitting, and storing the data. In addi-
tion, many different pieces of software were used to organize, ag-
gregate, visualize, and present the data. Finally, many different "hu-
man systems" were involved in working with the data. People de-
cided which systems to buy and install, who should get access to
what kinds of data, and what would happen to the data after its im-
mediate purpose was fulfilled. The personnel of the grocery chain
and its partners made a thousand other detailed decisions and ne-
gotiations before the scenario described above could become real-
ity.

Obviously data scientists are not involved in all of these steps.
Data scientists don’t design and build computers or barcode read-
ers, for instance. So where would the data scientists play the most
valuable role? Generally speaking, data scientists play the most ac-
tive roles in the four A’s of data: data architecture, data acquisition,

4

data analysis, and data archiving. Using our cereal example, let’s
look at them one by one. First, with respect to architecture, it was
important in the design of the "point of sale" system (what retailers
call their cash registers and related gear) to think through in ad-
vance how different people would make use of the data coming
through the system. The system architect, for example, had a keen
appreciation that both the stock manager and the store manager
would need to use the data scanned at the registers, albeit for some-
what different purposes. A data scientist would help the system ar-
chitect by providing input on how the data would need to be
routed and organized to support the analysis, visualization, and
presentation of the data to the appropriate people.

Next, acquisition focuses on how the data are collected, and, impor-
tantly, how the data are represented prior to analysis and presenta-
tion. For example, each barcode represents a number that, by itself,
is not very descriptive of the product it represents. At what point
after the barcode scanner does its job should the number be associ-
ated with a text description of the product or its price or its net
weight or its packaging type? Different barcodes are used for the
same product (for example, for different sized boxes of cereal).
When should we make note that purchase X and purchase Y are
the same product, just in different packages? Representing, trans-
forming, grouping, and linking the data are all tasks that need to
occur before the data can be profitably analyzed, and these are all
tasks in which the data scientist is actively involved.

 The analysis phase is where data scientists are most heavily in-
volved. In this context we are using analysis to include summariza-
tion of the data, using portions of data (samples) to make infer-
ences about the larger context, and visualization of the data by pre-

senting it in tables, graphs, and even animations. Although there
are many technical, mathematical, and statistical aspects to these
activities, keep in mind that the ultimate audience for data analysis
is always a person or people. These people are the "data users" and
fulfilling their needs is the primary job of a data scientist. This
point highlights the need for excellent communication skills in
data science. The most sophisticated statistical analysis ever devel-
oped will be useless unless the results can be effectively communi-
cated to the data user.

Finally, the data scientist must become involved in the archiving of
the data. Preservation of collected data in a form that makes it
highly reusable - what you might think of as "data curation" - is a
difficult challenge because it is so hard to anticipate all of the fu-
ture uses of the data. For example, when the developers of Twitter
were working on how to store tweets, they probably never antici-
pated that tweets would be used to pinpoint earthquakes and tsu-
namis, but they had enough foresight to realize that "geocodes" -
data that shows the geographical location from which a tweet was
sent - could be a useful element to store with the data.

All in all, our cereal box and grocery store example helps to high-
light where data scientists get involved and the skills they need.
Here are some of the skills that the example suggested:

• Learning the application domain - The data scientist must
quickly learn how the data will be used in a particular context.

• Communicating with data users - A data scientist must possess
strong skills for learning the needs and preferences of users.
Translating back and forth between the technical terms of com-

5

puting and statistics and the vocabulary of the application do-
main is a critical skill.

• Seeing the big picture of a complex system - After developing an
understanding of the application domain, the data scientist must
imagine how data will move around among all of the relevant
systems and people.

• Knowing how data can be represented - Data scientists must
have a clear understanding about how data can be stored and
linked, as well as about "metadata" (data that describes how
other data are arranged).

• Data transformation and analysis - When data become available
for the use of decision makers, data scientists must know how to
transform, summarize, and make inferences from the data. As
noted above, being able to communicate the results of analyses
to users is also a critical skill here.

• Visualization and presentation - Although numbers often have
the edge in precision and detail, a good data display (e.g., a bar
chart) can often be a more effective means of communicating re-
sults to data users.

• Attention to quality - No matter how good a set of data may be,
there is no such thing as perfect data. Data scientists must know
the limitations of the data they work with, know how to quan-
tify its accuracy, and be able to make suggestions for improving
the quality of the data in the future.

• Ethical reasoning - If data are important enough to collect, they
are often important enough to affect people’s lives. Data scien-
tists must understand important ethical issues such as privacy,

and must be able to communicate the limitations of data to try to
prevent misuse of data or analytical results.

The skills and capabilities noted above are just the tip of the ice-
berg, of course, but notice what a wide range is represented here.
While a keen understanding of numbers and mathematics is impor-
tant, particularly for data analysis, the data scientist also needs to
have excellent communication skills, be a great systems thinker,
have a good eye for visual displays, and be highly capable of think-
ing critically about how data will be used to make decisions and
affect people’s lives. Of course there are very few people who are
good at all of these things, so some of the people interested in data
will specialize in one area, while others will become experts in an-
other area. This highlights the importance of teamwork, as well.

In this Introduction to Data Science eBook, a series of data prob-
lems of increasing complexity is used to illustrate the skills and ca-
pabilities needed by data scientists. The open source data analysis
program known as "R" and its graphical user interface companion
"R-Studio" are used to work with real data examples to illustrate
both the challenges of data science and some of the techniques
used to address those challenges. To the greatest extent possible,
real datasets reflecting important contemporary issues are used as
the basis of the discussions.

No one book can cover the wide range of activities and capabilities
involved in a field as diverse and broad as data science. Through-
out the book references to other guides and resources provide the
interested reader with access to additional information. In the open
source spirit of "R" and "R Studio" these are, wherever possible,
web-based and free. In fact, one of guides that appears most fre-

6

quently in these pages is "Wikipedia," the free, online, user sourced
encyclopedia. Although some teachers and librarians have legiti-
mate complaints and concerns about Wikipedia, and it is admit-
tedly not perfect, it is a very useful learning resource. Because it is
free, because it covers about 50 times more topics than a printed en-
cyclopedia, and because it keeps up with fast moving topics (like
data science) better than printed encyclopedias, Wikipedia is very
useful for getting a quick introduction to a topic. You can’t become
an expert on a topic by only consulting Wikipedia, but you can cer-
tainly become smarter by starting there.

Another very useful resource is Khan Academy. Most people think
of Khan Academy as a set of videos that explain math concepts to
middle and high school students, but thousands of adults around
the world use Khan Academy as a refresher course for a range of
topics or as a quick introduction to a topic that they never studied
before. All of the lessons at Khan Academy are free, and if you log
in with a Google or Facebook account you can do exercises and
keep track of your progress.

At the end of each chapter of this book, a list of Wikipedia sources
and Khan Academy lessons (and other resources too!) shows the
key topics relevant to the chapter. These sources provide a great
place to start if you want to learn more about any of the topics that
chapter does not explain in detail.

Obviously if you are reading this book you probably have access to
an appropriate reader app, probably on an iPad or other Apple de-
vice. You can also access this book as a PDF on the book’s website:
http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data
_Science.html. It is valuable to have access to the Internet while

you are reading, so that you can follow some of the many links this
book provides. Also, as you move into the sections in the book
where open source software such as the R data analysis system is
used, you will sometimes need to have access to a desktop or lap-
top computer where you can run these programs.

One last thing: The book presents topics in an order that should
work well for people with little or no experience in computer sci-
ence or statistics. If you already have knowledge, training, or expe-
rience in one or both of these areas, you should feel free to skip
over some of the introductory material and move right into the top-
ics and chapters that interest you most. There’s something here for
everyone and, after all, you can’t beat the price!

Sources

http://en.wikipedia.org/wiki/E-Science

http://en.wikipedia.org/wiki/E-Science_librarianship

http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons

http://en.wikipedia.org/wiki/Statistician

http://en.wikipedia.org/wiki/Visualization_(computer_graphics)

http://www.khanacademy.org/

http://www.r-project.org/

http://www.readwriteweb.com/hack/2011/09/unlocking-big-dat
a-with-r.php

http://rstudio.org/

7

http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html
http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html
http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html
http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html
http://en.wikipedia.org/wiki/E-Science
http://en.wikipedia.org/wiki/E-Science
http://en.wikipedia.org/wiki/E-Science_librarianship
http://en.wikipedia.org/wiki/E-Science_librarianship
http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Visualization_(computer_graphics
http://en.wikipedia.org/wiki/Visualization_(computer_graphics
http://www.khanacademy.org
http://www.khanacademy.org
http://www.r-project.org
http://www.r-project.org
http://www.readwriteweb.com/hack/2011/09/unlocking-big-data-with-r.php
http://www.readwriteweb.com/hack/2011/09/unlocking-big-data-with-r.php
http://www.readwriteweb.com/hack/2011/09/unlocking-big-data-with-r.php
http://www.readwriteweb.com/hack/2011/09/unlocking-big-data-with-r.php
http://rstudio.org
http://rstudio.org

Data comes from the Latin word, "datum," meaning a "thing given." Although the term "data" has
been used since as early as the 1500s, modern usage started in the 1940s and 1950s as practical
electronic computers began to input, process, and output data. This chapter discusses the nature of
data and introduces key concepts for newcomers without computer science experience.

CHAPTER 1

8

About Data

The inventor of the World Wide Web, Tim Berners-Lee, is often
quoted as having said, "Data is not information, information is not
knowledge, knowledge is not understanding, understanding is not
wisdom." This quote suggests a kind of pyramid, where data are
the raw materials that make up the foundation at the bottom of the
pile, and information, knowledge, understanding and wisdom rep-
resent higher and higher levels of the pyramid. In one sense, the
major goal of a data scientist is to help people to turn data into in-
formation and onwards up the pyramid. Before getting started on
this goal, though, it is important to have a solid sense of what data
actually are. (Notice that this book treats the word "data" as a plu-
ral noun - in common usage you may often hear it referred to as
singular instead.) If you have studied computer science or mathe-
matics, you may find the discussion in this chapter a bit redun-
dant, so feel free to skip it. Otherwise, read on for an introduction
to the most basic ingredient to the data scientist’s efforts: data.

A substantial amount of what we know and say about data in the
present day comes from work by a U.S. mathematician named
Claude Shannon. Shannon worked before, during, and after World
War II on a variety of mathematical and engineering problems re-
lated to data and information. Not to go crazy with quotes, or any-
thing, but Shannon is quoted as having said, "The fundamental
problem of communication is that of reproducing at one point ei-
ther exactly or approximately a message selected at another point."
This quote helpfully captures key ideas about data that are impor-
tant in this book by focusing on the idea of data as a message that
moves from a source to a recipient. Think about the simplest possi-
ble message that you could send to another person over the phone,
via a text message, or even in person. Let’s say that a friend had
asked you a question, for example whether you wanted to come to

their house for dinner the next day. You can answer yes or no. You
can call the person on the phone, and say yes or no. You might
have a bad connection, though, and your friend might not be able
to hear you. Likewise, you could send them a text message with
your answer, yes or no, and hope that they have their phone
turned on so that they can receive the message. Or you could tell
your friend face to face, hoping that she did not have her earbuds
turned up so loud that she couldn’t hear you. In all three cases you
have a one "bit" message that you want to send to your friend, yes
or no, with the goal of "reducing her uncertainty" about whether
you will appear at her house for dinner the next day. Assuming
that message gets through without being garbled or lost, you will
have successfully transmitted one bit of information from you to
her. Claude Shannon developed some mathematics, now often re-
ferred to as "Information Theory," that carefully quantified how
bits of data transmitted accurately from a source to a recipient can
reduce uncertainty by providing information. A great deal of the
computer networking equipment and software in the world today
- and especially the huge linked worldwide network we call the
Internet - is primarily concerned with this one basic task of getting
bits of information from a source to a destination.

Once we are comfortable with the idea of a "bit" as the most basic
unit of information, either "yes" or "no," we can combine bits to-
gether to make more complicated structures. First, let’s switch la-
bels just slightly. Instead of "no" we will start using zero, and in-
stead of "yes" we will start using one. So we now have a single
digit, albeit one that has only two possible states: zero or one
(we’re temporarily making a rule against allowing any of the big-
ger digits like three or seven). This is in fact the origin of the word
"bit," which is a squashed down version of the phrase "Binary

9

digIT." A single binary digit can be 0 or 1, but there is nothing stop-
ping us from using more than one binary digit in our messages.
Have a look at the example in the table below:

Here we have started to use two binary digits - two bits - to create
a "code book" for four different messages that we might want to
transmit to our friend about her dinner party. If we were certain
that we would not attend, we would send her the message 0 0. If
we definitely planned to attend we would send her 1 1. But we
have two additional possibilities, "Maybe" which is represented by
0 1, and "Probably" which is represented by 1 0. It is interesting to
compare our original yes/no message of one bit with this new
four-option message with two bits. In fact, every time you add a
new bit you double the number of possible messages you can send.
So three bits would give eight options and four bits would give 16
options. How many options would there be for five bits?

When we get up to eight bits - which provides 256 different combi-
nations - we finally have something of a reasonably useful size to
work with. Eight bits is commonly referred to as a "byte" - this
term probably started out as a play on words with the word bit.
(Try looking up the word "nybble" online!) A byte offers enough dif-

ferent combinations to encode all of the letters of the alphabet, in-
cluding capital and small letters. There is an old rulebook called
"ASCII" - the American Standard Code for Information Interchange
- which matches up patterns of eight bits with the letters of the al-
phabet, punctuation, and a few other odds and ends. For example
the bit pattern 0100 0001 represents the capital letter A and the next
higher pattern, 0100 0010, represents capital B. Try looking up an
ASCII table online (for example, http://www.asciitable.com/) and
you can find all of the combinations. Note that the codes may not
actually be shown in binary because it is so difficult for people to
read long strings of ones and zeroes. Instead you may see the
equivalent codes shown in hexadecimal (base 16), octal (base 8), or
the most familiar form that we all use everyday, base 10. Although
you might remember base conversions from high school math
class, it would be a good idea to practice this a little bit - particu-
larly the conversions between binary, hexadecimal, and decimal
(base 10). You might also enjoy Vi Hart’s "Binary Hand Dance"
video at Khan Academy (search for this at
http://www.khanacademy.org or follow the link at the end of the
chapter). Most of the work we do in this book will be in decimal,
but more complex work with data often requires understanding
hexadecimal and being able to know how a hexadecimal number,
like 0xA3, translates into a bit pattern. Try searching online for "bi-
nary conversion tutorial" and you will find lots of useful sites.

Combining Bytes into Larger Structures

Now that we have the idea of a byte as a small collection of bits
(usually eight) that can be used to store and transmit things like let-
ters and punctuation marks, we can start to build up to bigger and
better things. First, it is very easy to see that we can put bytes to-

10

MEANING 2ND DIGIT 1ST DIGIT

No 0 0

Maybe 0 1

Probably 1 0

Definitely 1 1

http://www.asciitable.com
http://www.asciitable.com
http://www.khanacademy.org
http://www.khanacademy.org

gether into lists in order to make a "string" of letters, what is often
referred to as a "character string." If we have a piece of text, like
"this is a piece of text" we can use a collection of bytes to represent
it like this:

011101000110100001101001011100110010000001101001011100110010
000001100001001000000111000001101001011001010110001101100101
001000000110111101100110001000000111010001100101011110000111
0100

Now nobody wants to look at that, let alone encode or decode it by
hand, but fortunately, the computers and software we use these
days takes care of the conversion and storage automatically. For ex-
ample, when we tell the open source data language "R" to store
"this is a piece of text" for us like this:

myText <- "this is a piece of text"

...we can be certain that inside the computer there is a long list of
zeroes and ones that represent the text that we just stored. By the
way, in order to be able to get our piece of text back later on, we
have made a kind of storage label for it (the word "myText" above).
Anytime that we want to remember our piece of text or use it for
something else, we can use the label "myText" to open up the
chunk of computer memory where we have put that long list of bi-
nary digits that represent our text. The left-pointing arrow made
up out of the less-than character ("<") and the dash character ("-")
gives R the command to take what is on the right hand side (the
quoted text) and put it into what is on the left hand side (the stor-
age area we have labeled "myText"). Some people call this the as-
signment arrow and it is used in some computer languages to

make it clear to the human who writes or reads it which direction
the information is flowing.

From the computer’s standpoint, it is even simpler to store, remem-
ber, and manipulate numbers instead of text. Remember that an
eight bit byte can hold 256 combinations, so just using that very
small amount we could store the numbers from 0 to 255. (Of
course, we could have also done 1 to 256, but much of the counting
and numbering that goes on in computers starts with zero instead
of one.) Really, though, 255 is not much to work with. We couldn’t
count the number of houses in most towns or the number of cars in
a large parking garage unless we can count higher than 255. If we
put together two bytes to make 16 bits we can count from zero up
to 65,535, but that is still not enough for some of the really big num-
bers in the world today (for example, there are more than 200 mil-
lion cars in the U.S. alone). Most of the time, if we want to be flexi-
ble in representing an integer (a number with no decimals), we use
four bytes stuck together. Four bytes stuck together is a total of 32
bits, and that allows us to store an integer as high as 4,294,967,295.

Things get slightly more complicated when we want to store a
negative number or a number that has digits after the decimal
point. If you are curious, try looking up "two's complement" for
more information about how signed numbers are stored and "float-
ing point" for information about how numbers with digits after the
decimal point are stored. For our purposes in this book, the most
important thing to remember is that text is stored differently than
numbers, and among numbers integers are stored differently than
floating point. Later we will find that it is sometimes necessary to
convert between these different representations, so it is always im-
portant to know how it is represented.

11

So far we have mainly looked at how to store one thing at a time,
like one number or one letter, but when we are solving problems
with data we often need to store a group of related things together.
The simplest place to start is with a list of things that are all stored
in the same way. For example, we could have a list of integers,
where each thing in the list is the age of a person in your family.
The list might look like this: 43, 42, 12, 8, 5. The first two numbers
are the ages of the parents and the last three numbers are the ages
of the kids. Naturally, inside the computer each number is stored
in binary, but fortunately we don’t have to type them in that way
or look at them that way. Because there are no decimal points,
these are just plain integers and a 32 bit integer (4 bytes) is more
than enough to store each one. This list contains items that are all
the same "type" or "mode." The open source data program "R" re-
fers to a list where all of the items are of the same mode as a "vec-
tor." We can create a vector with R very easily by listing the num-
bers, separated by commas and inside parentheses:

c(43, 42, 12, 8, 5)

The letter "c" in front of the opening parenthesis stands for concate-
nate, which means to join things together. Slightly obscure, but
easy enough to get used to with some practice. We can also put in
some of what we learned a above to store our vector in a named lo-
cation (remember that a vector is list of items of the same mode/
type):

myFamilyAges <- c(43, 42, 12, 8, 5)

We have just created our first "data set." It is very small, for sure,
only five items, but also very useful for illustrating several major
concepts about data. Here’s a recap:

• In the heart of the computer, all data are represented in binary.
One binary digit, or bit, is the smallest chunk of data that we can
send from one place to another.

• Although all data are at heart binary, computers and software
help to represent data in more convenient forms for people to
see. Three important representations are: "character" for repre-
senting text, "integer" for representing numbers with no digits
after the decimal point, and "floating point" for numbers that
may have digits after the decimal point. The list of numbers in
our tiny data set just above are integers.

• Numbers and text can be collected into lists, which the open
source program "R" calls vectors. A vector has a length, which is
the number of items in it, and a "mode" which is the type of data
stored in the vector. The vector we were just working on has a
length of 5 and a mode of integer.

• In order to be able to remember where we stored a piece of data,
most computer programs, including R, give us a way of labeling
a chunk of computer memory. We chose to give the 5-item vector
up above the name "myFamilyAges." Some people might refer to
this named list as a "variable," because the value of it varies, de-
pending upon which member of the list you are examining.

• If we gather together one or more variables into a sensible
group, we can refer to them together as a "data set." Usually, it
doesn’t make sense to refer to something with just one variable
as a data set, so usually we need at least two variables. Techni-
cally, though, even our very simple "myFamilyAges" counts as a
data set, albeit a very tiny one.

12

Later in the book we will install and run the open source "R" data
program and learn more about how to create data sets, summarize
the information in those data sets, and perform some simple calcu-
lations and transformations on those data sets.

Chapter Challenge

Discover the meaning of "Boolean Logic" and the rules for "and",
"or", "not", and "exclusive or". Once you have studied this for a
while, write down on a piece of paper, without looking, all of the
binary operations that demonstrate these rules.

Sources

http://en.wikipedia.org/wiki/Claude_Shannon

http://en.wikipedia.org/wiki/Information_theory

http://cran.r-project.org/doc/manuals/R-intro.pdf

http://www.khanacademy.org/math/vi-hart/v/binary-hand-dan
ce

http://www.khanacademy.org/science/computer-science/v/intr
oduction-to-programs-data-types-and-variables

http://www.asciitable.com/

Test Yourself

13

Review 1.1 About Data

Check Answer

Question 1 of 3
The smallest unit of information com-
monly in use in today’s computers is
called:

A. A Bit

B. A Byte

C. A Nybble

D. An Integer

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Information_theory
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.khanacademy.org/math/vi-hart/v/binary-hand-dance
http://www.khanacademy.org/math/vi-hart/v/binary-hand-dance
http://www.khanacademy.org/math/vi-hart/v/binary-hand-dance
http://www.khanacademy.org/math/vi-hart/v/binary-hand-dance
http://www.khanacademy.org/science/computer-science/v/introduction-to-programs-data-types-and-variables
http://www.khanacademy.org/science/computer-science/v/introduction-to-programs-data-types-and-variables
http://www.khanacademy.org/science/computer-science/v/introduction-to-programs-data-types-and-variables
http://www.khanacademy.org/science/computer-science/v/introduction-to-programs-data-types-and-variables
http://www.asciitable.com
http://www.asciitable.com

Data Science is different from other areas such as mathematics or statistics. Data Science is an applied
activity and data scientists serve the needs and solve the problems of data users. Before you can solve
a problem, you need to identify it and this process is not always as obvious as it might seem. In this
chapter, we discuss the identification of data problems.

CHAPTER 2

14

Identifying Data Problems

Apple farmers live in constant fear, first for their blossoms and
later for their fruit. A late spring frost can kill the blossoms. Hail or
extreme wind in the summer can damage the fruit. More generally,
farming is an activity that is first and foremost in the physical
world, with complex natural processes and forces, like weather,
that are beyond the control of humankind.

In this highly physical world of unpredictable natural forces, is
there any role for data science? On the surface there does not seem
to be. But how can we know for sure? Having a nose for identify-
ing data problems requires openness, curiosity, creativity, and a
willingness to ask a lot of questions. In fact, if you took away from
the first chapter the impression that a data scientist sits in front a of
computer all day and works a crazy program like R, that is a mis-
take. Every data scientist must (eventually) become immersed in
the problem domain where she is working. The data scientist may
never actually become a farmer, but if you are going to identify a
data problem that a farmer has, you have to learn to think like a
farmer, to some degree.

To get this domain knowledge you can read or watch videos, but
the best way is to ask "subject matter experts" (in this case farmers)
about what they do. The whole process of asking questions de-
serves its own treatment, but for now there are three things to
think about when asking questions. First, you want the subject mat-
ter experts, or SMEs, as they are sometimes called, to tell stories of
what they do. Then you want to ask them about anomalies: the un-
usual things that happen for better or for worse. Finally, you want
to ask about risks and uncertainty: what are the situations where it
is hard to tell what will happen next - and what happens next
could have a profound effect on whether the situation ends badly

or well. Each of these three areas of questioning reflects an ap-
proach to identifying data problems that may turn up something
good that could be accomplished with data, information, and the
right decision at the right time.

The purpose of asking about stories is that people mainly think in
stories. From farmers to teachers to managers to CEOs, people
know and tell stories about success and failure in their particular
domain. Stories are powerful ways of communicating wisdom be-
tween different members of the same profession and they are ways
of collecting a sense of identity that sets one profession apart from
another profession. The only problem is that stories can be wrong.

If you can get a professional to tell the main stories that guide how
she conducts her work, you can then consider how to verify those
stories. Without questioning the veracity of the person that tells the
story, you can imagine ways of measuring the different aspects of
how things happen in the story with an eye towards eventually
verifying (or sometimes debunking) the stories that guide profes-
sional work.

For example, the farmer might say that in the deep spring frost
that occurred five years ago, the trees in the hollow were spared
frost damage while the trees around the ridge of the hill had more
damage. For this reason, on a cold night the farmer places most of
the smudgepots (containers that hold a fuel that creates a smoky
fire) around the ridge. The farmer strongly believes that this strat-
egy works, but does it? It would be possible to collect time-series
temperature data from multiple locations within the orchard on
cold and warm nights, and on nights with and without smudge-
pots. The data could be used to create a model of temperature

15

changes in the different areas of the orchard and this model could
support, improve, or debunk the story.

A second strategy for problem identification is to look for the excep-
tion cases, both good and bad. A little later in the book we will
learn about how the core of classic methods of statistical inference
is to characterize "the center" - the most typical cases that occur -
and then examine the extreme cases that are far from the center for
information that could help us understand an intervention or an
unusual combination of circumstances. Identifying unusual cases
is a powerful way of understanding how things work, but it is nec-
essary first to define the central or most typical occurrences in or-
der to have an accurate idea of what constitutes an unusual case.

Coming back to our farmer friend, in advance of a thunderstorm
late last summer, a powerful wind came through the orchard, tear-
ing the fruit off the trees. Most of the trees lost a small amount of
fruit: the dropped apples could be seen near the base of the tree.
One small grouping of trees seemed to lose a much larger amount
of fruit, however, and the drops were apparently scattered much
further from the trees. Is it possible that some strange wind condi-
tions made the situation worse in this one spot? Or is it just a mat-
ter of chance that a few trees in the same area all lost a bit more
fruit than would be typical.

A systematic count of lost fruit underneath a random sample of
trees would help to answer this question. The bulk of the trees
would probably have each lost about the same amount, but more
importantly, that "typical" group would give us a yardstick against
which we could determine what would really count as unusual.
When we found an unusual set of cases that was truly beyond the

limits of typical, we could rightly focus our attention on these to
try to understand the anomaly.

A third strategy for identifying data problems is to find out about
risk and uncertainty. If you read the previous chapter you may re-
member that a basic function of information is to reduce uncer-
tainty. It is often valuable to reduce uncertainty because of how
risk affects the things we all do. At work, at school, at home, life is
full of risks: making a decision or failing to do so sets off a chain of
events that may lead to something good or something not so good.
It is difficult to say, but in general we would like to narrow things
down in a way that maximizes the chances of a good outcome and
minimizes the chance of a bad one. To do this, we need to make bet-
ter decisions and to make better decisions we need to reduce uncer-
tainty. By asking questions about risks and uncertainty (and deci-
sions) a data scientist can zero in on the problems that matter. You
can even look at the previous two strategies - asking about the sto-
ries that comprise professional wisdom and asking about
anomalies/unusual cases - in terms of the potential for reducing
uncertainty and risk.

In the case of the farmer, much of the risk comes from the weather,
and the uncertainty revolves around which countermeasures will
be cost effective under prevailing conditions. Consuming lots of ex-
pensive oil in smudgepots on a night that turns out to be quite
warm is a waste of resources that could make the difference be-
tween a profitable or an unprofitable year. So more precise and
timely information about local weather conditions might be a key
focus area for problem solving with data. What if a live stream of
national weather service doppler radar could appear on the
farmer’s smart phone? Let’s build an app for that...

16

"R" is an open source software program, developed by volunteers as a service to the community of
scientists, researchers, and data analysts who use it. R is free to download and use. Lots of advice and
guidance is available online to help users learn R, which is good because it is a powerful and complex
program, in reality a full featured programming language dedicated to data.

CHAPTER 3

17

Getting Started with R

If you are new to computers, programming, and/or data science
welcome to an exciting chapter that will open the door to the most
powerful free data analytics tool ever created anywhere in the uni-
verse, no joke. On the other hand, if you are experienced with
spreadsheets, statistical analysis, or accounting software you are
probably thinking that this book has now gone off the deep end,
never to return to sanity and all that is good and right in user inter-
face design. Both perspectives are reasonable. The "R" open source
data analysis program is immensely powerful, flexible, and espe-
cially "extensible" (meaning that people can create new capabilities
for it quite easily). At the same time, R is "command line" oriented,
meaning that most of the work that one needs to perform is done
through carefully crafted text instructions, many of which have
tricky syntax (the punctuation and related rules for making a com-
mand that works). In addition, R is not especially good at giving
feedback or error messages that help the user to repair mistakes or
figure out what is wrong when results look funny.

But there is a method to the madness here. One of the virtues of R
as a teaching tool is that it hides very little. The successful user
must fully understand what the "data situation" is or else the R
commands will not work. With a spreadsheet, it is easy to type in a
lot of numbers and a formula like =FORECAST() and a result pops
into a cell like magic, whether it makes any sense or not. With R
you have to know your data, know what you can do with it, know
how it has to be transformed, and know how to check for prob-
lems. Because R is a programming language, it also forces users to
think about problems in terms of data objects, methods that can be
applied to those objects, and procedures for applying those meth-
ods. These are important metaphors used in modern programming
languages, and no data scientist can succeed without having at

least a rudimentary understanding of how software is pro-
grammed, tested, and integrated into working systems. The extensi-
bility of R means that new modules are being added all the time by
volunteers: R was among the first analysis programs to integrate
capabilities for drawing data directly from the Twitter(r) social me-
dia platform. So you can be sure that whatever the next big devel-
opment is in the world of data, that someone in the R community
will start to develop a new "package" for R that will make use of it.
Finally, the lessons one learns in working with R are almost univer-
sally applicable to other programs and environments. If one has
mastered R, it is a relatively small step to get the hang of the SAS(r)
statistical programming language and an even smaller step to be-
ing able to follow SPSS(r) syntax. (SAS and SPSS are two of the
most widely used commercial statistical analysis programs). So
with no need for any licensing fees paid by school, student, or
teacher it is possible to learn the most powerful data analysis sys-
tem in the universe and take those lessons with you no matter
where you go. It will take a bit of patience though, so please hang
in there!

Let’s get started. Obviously you will need a computer. If you are
working on a tablet device or smartphone, you may want to skip
forward to the chapter on R-Studio, because regular old R has not
yet been reconfigured to work on tablet devices (but there is a
workaround for this that uses R-studio). There are a few experi-
ments with web-based interfaces to R, like this one -
http://dssm.unipa.it/R-php/R-php-1/R/ - but they are still in a
very early stage. If your computer has the Windows(r), Mac-OS-
X(r) or a Linux operating system, there is a version of R waiting for
you at http://cran.r-project.org/. Download and install your own
copy. If you sometimes have difficulties with installing new soft-

18

http://dssm.unipa.it/R-php/R-php-1/R/
http://dssm.unipa.it/R-php/R-php-1/R/
http://cran.r-project.org
http://cran.r-project.org

ware and you need some help, there is a wonderful little book by
Thomas P. Hogan called, Bare Bones R: A Brief Introductory Guide
that you might want to buy or borrow from your library. There are
lots of sites online that also give help with installing R, although
many of them are not oriented towards the inexperienced user. I
searched online using the term "help installing R" and I got a few
good hits. One site that was quite informative for installing R on
Windows was at "readthedocs.org," and you can try to access it at
this TinyUrl: http://tinyurl.com/872ngtt. For Mac users there is a

video by Jeremy Taylor at Vimeo.com,
http://vimeo.com/36697971, that outlines both the initial installa-
tion on a Mac and a number of other optional steps for getting
started. YouTube also had four videos that provide brief tutorials
for installing R. Try searching for "install R" in the YouTube search
box. The rest of this chapter assumes that you have installed R and
can run it on your computer as shown in the screenshot above.
(Note that this screenshot is from the Mac version of R: if you are
running Windows or Linux your R screen may appear slightly dif-
ferent from this.) Just for fun, one of the first things you can do
when you have R running is to click on the color wheel and cus-
tomize the appearance of R. This screen shot uses Syracuse orange
as a background color. The screenshot also shows a simple com-
mand to type that shows the most basic method of interaction with
R. Notice near the bottom of the screenshot a greater than (">")
symbol. This is the command prompt: When R is running and it is
the active application on your desktop, if you type a command it
appears after the ">" symbol. If you press the "enter" or "return"
key, the command is sent to R for processing. When the processing
is done, a result may appear just under the ">." When R is done
processing, another command prompt (">") appears and R is ready
for your next command. In the screen shot, the user has typed
"1+1" and pressed the enter key. The formula 1+1 is used by ele-
mentary school students everywhere to insult each other’s math
skills, but R dutifully reports the result as 2. If you are a careful ob-
server, you will notice that just before the 2 there is a "1" in brack-
ets, like this: [1]. That [1] is a line number that helps to keep track
of the results that R displays. Pretty pointless when only showing
one line of results, but R likes to be consistent, so we will see quite
a lot of those numbers in brackets as we dig deeper.

19

http://tinyurl.com/872ngtt
http://tinyurl.com/872ngtt
http://vimeo.com/36697971
http://vimeo.com/36697971

Remember the list of ages of family members from the About Data
chapter? No? Well, here it is again: 43, 42, 12, 8, 5, for dad, mom,
sis, bro, and the dog, respectively. We mentioned that this was a list
of items, all of the same mode, namely "integer." Remember that

you can tell that they are OK to be integers because there are no
decimal points and therefore nothing after the decimal point. We
can create a vector of integers in r using the "c()" command. Take a
look at the screen shot just above.

This is just about the last time that the whole screenshot from the R
console will appear in the book. From here on out we will just look
at commands and output so we don’t waste so much space on the
page. The first command line in the screen shot is exactly what ap-
peared in an earlier chapter:

c(43, 42, 12, 8, 5)

You may notice that on the following line, R dutifully reports the
vector that you just typed. After the line number "[1]", we see the
list 43, 42, 12, 8, and 5. R "echoes" this list back to us, because we
didn’t ask it to store the vector anywhere. In contrast, the next com-
mand line (also the same as in the previous chapter), says:

myFamilyAges <- c(43, 42, 12, 8, 5)

We have typed in the same list of numbers, but this time we have
assigned it, using the left pointing arrow, into a storage area that
we have named "myFamilyAges." This time, R responds just with
an empty command prompt. That’s why the third command line
requests a report of what myFamilyAges contains (Look after the
yellow ">". The text in blue is what you should type.) This is a sim-
ple but very important tool. Any time you want to know what is in
a data object in R, just type the name of the object and R will report
it back to you. In the next command we begin to see the power of
R:

sum(myFamilyAges)

This command asks R to add together all of the numbers in
myFamilyAges, which turns out to be 110 (you can check it your-
self with a calculator if you want). This is perhaps a bit of a weird
thing to do with the ages of family members, but it shows how

20

with a very short and simple command you can unleash quite a bit
of processing on your data. In the next line we ask for the "mean"
(what non-data people call the average) of all of the ages and this
turns out to be 22 years. The command right afterwards, called
"range," shows the lowest and highest ages in the list. Finally, just
for fun, we tried to issue the command "fish(myFamilyAges)."
Pretty much as you might expect, R does not contain a "fish()" func-
tion and so we received an error message to that effect. This shows
another important principle for working with R: You can freely try
things out at anytime without fear of breaking anything. If R can’t
understand what you want to accomplish, or you haven’t quite fig-
ured out how to do something, R will calmly respond with an error
message and will not make any other changes until you give it a
new command. The error messages from R are not always super
helpful, but with some strategies that the book will discuss in fu-
ture chapters you can break down the problem and figure out how
to get R to do what you want.

Let’s take stock for a moment. First, you should definitely try all of
the commands noted above on your own computer. You can read
about the commands in this book all you want, but you will learn a
lot more if you actually try things out. Second, if you try a com-
mand that is shown in these pages and it does not work for some
reason, you should try to figure out why. Begin by checking your
spelling and punctuation, because R is very persnickety about how
commands are typed. Remember that capitalization matters in R:
myFamilyAges is not the same as myfamilyages. If you verify that
you have typed a command just as you see in the book and it still
does not work, try to go online and look for some help. There’s lots
of help at http://stackoverflow.com, at https://stat.ethz.ch, and
also at http://www.statmethods.net/. If you can figure out what

went wrong on your own you will probably learn something very
valuable about working with R. Third, you should take a moment
to experiment a bit with each new set of commands that you learn.
For example, just using the commands discussed earlier in the
chapter you could do this totally new thing:

myRange <- range(myFamilyAges)

What would happen if you did that command, and then typed
"myRange" (without the double quotes) on the next command line
to report back what is stored there ? What would you see? Then
think about how that worked and try to imagine some other experi-
ments that you could try. The more you experiment on your own,
the more you will learn. Some of the best stuff ever invented for
computers was the result of just experimenting to see what was
possible. At this point, with just the few commands that you have
already tried, you already know the following things about R (and
about data):

• How to install R on your computer and run it.

• How to type commands on the R console.

• The use of the "c()" function. Remember that "c" stands for con-
catenate, which just means to join things together. You can put a
list of items inside the parentheses, separated by commas.

• That a vector is pretty much the most basic form of data storage
in R, and that it consists of a list of items of the same mode.

• That a vector can be stored in a named location using the assign-
ment arrow (a left pointing arrow made of a dash and a less than
symbol, like this: "<-").

21

http://stackoverflow.com
http://stackoverflow.com
https://stat.ethz.ch
https://stat.ethz.ch
http://www.statmethods.net
http://www.statmethods.net

• That you can get a report of the data object that is in any named
location just by typing that name at the command line.

• That you can "run" a function, such as mean(), on a vector of
numbers to transform them into something else. (The mean()
function calculates the average, which is one of the most basic
numeric summaries there is.)

• That sum(), mean(), and range() are all legal functions in R
whereas fish() is not.

In the next chapter we will move forward a step or two by starting
to work with text and by combining our list of family ages with the
names of the family members and some other information about
them.

Chapter Challenge

Using logic and online resources to get help if you need it, learn
how to use the c() function to add another family member’s age on
the end of the myFamilyAges vector.

Sources

http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/
en/latest/src/installr.html

http://cran.r-project.org/

http://dssm.unipa.it/R-php/R-php-1/R/ (UNIPA experimental
web interface to R)

http://en.wikibooks.org/wiki/R_Programming

https://plus.google.com/u/0/104922476697914343874/posts (Jer-
emy Taylor’s blog: Stats Make Me Cry)

http://stackoverflow.com

https://stat.ethz.ch

http://www.statmethods.net/

22

http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/en/latest/src/installr.html
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/en/latest/src/installr.html
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/en/latest/src/installr.html
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/en/latest/src/installr.html
http://cran.r-project.org
http://cran.r-project.org
http://dssm.unipa.it/R-php/R-php-1/R/
http://dssm.unipa.it/R-php/R-php-1/R/
http://en.wikibooks.org/wiki/R_Programming
http://en.wikibooks.org/wiki/R_Programming
https://plus.google.com/u/0/104922476697914343874/posts
https://plus.google.com/u/0/104922476697914343874/posts
http://stackoverflow.com
http://stackoverflow.com
https://stat.ethz.ch
https://stat.ethz.ch
http://www.statmethods.net
http://www.statmethods.net

Test Yourself

R Functions Used in This Chapter

c()! ! Concatenates data elements together

<- ! ! Assignment arrow

sum()! Adds data elements

range()! Min value and max value

mean()! The average

Review 3.1 Getting Started with R

Check Answer

Question 1 of 3
What is the cost of each software license for the R open
source data analysis program?

A. R is free

B. 99 cents in the iTunes store

C. $10

D. $100

23

An old adage in detective work is to, "follow the money." In data science, one key to success is to
"follow the data." In most cases, a data scientist will not help to design an information system from
scratch. Instead, there will be several or many legacy systems where data resides; a big part of the
challenge to the data scientist lies in integrating those systems.

CHAPTER 4

24

Follow the Data

Hate to nag, but have you had a checkup lately? If you have been
to the doctor for any reason you may recall that the doctor’s office
is awash with data. First off, the doctor has loads of digital sensors,
everything from blood pressure monitors to ultrasound machines,
and all of these produce mountains of data. Perhaps of greater con-
cern in this era of debate about health insurance, the doctors office
is one of the big jumping off points for financial and insurance
data. One of the notable "features" of the U.S. healthcare system is
our most common method of healthcare delivery: paying by the
procedure. When you experience a "procedure" at the doctor’s of-
fice, whether it is a consultation, an examination, a test, or some-
thing else, this initiates a chain of data events with far reaching con-
sequences.

If your doctor is typical, the starting point of these events is a pa-
per form. Have you ever looked at one of these in detail? Most of
the form will be covered by a large matrix of procedures and
codes. Although some of the better equipped places may use this
form digitally on a tablet or other computer, paper forms are still
ubiquitous. Somewhere either in the doctor’s office or at an out-
sourced service company, the data on the paper form are entered
into a system that begins the insurance reimbursement and/or bill-
ing process.

Where do these procedure data go? What other kinds of data (such
as patient account information) may get attached to them in a sub-
sequent step? What kinds of networks do these linked data travel
over, and what kind of security do they have? How many steps are
there in processing the data before they get to the insurance com-
pany? How does the insurance company process and analyze the
data before issuing the reimbursement? How is the money "trans-

mitted" once the insurance company’s systems have given ap-
proval to the reimbursement? These questions barely scratch the
surface: there are dozens or hundreds of processing steps that we
haven’t yet imagined.

It is easy to see from this example, that the likelihood of being able
to throw it all out and start designing a better or at least more stan-
dardized system from scratch is nil. But what if you had the job of
improving the efficiency of the system, or auditing the insurance
reimbursements to make sure they were compliant with insurance
records, or using the data to detect and predict outbreaks and epi-
demics, or providing feedback to consumers about how much they
can expect to pay out of pocket for various procedures?

The critical starting point for your project would be to follow the
data. You would need to be like a detective, finding out in a sub-
stantial degree of detail the content, format, senders, receivers,
transmission methods, repositories, and users of data at each step
in the process and at each organization where the data are proc-
essed or housed.

Fortunately there is an extensive area of study and practice called
"data modeling" that provides theories, strategies, and tools to help
with the data scientist’s goal of following the data. These ideas
started in earnest in the 1970s with the introduction by computer
scientist Ed Yourdon of a methodology called Data Flow Diagrams.
A more contemporary approach, that is strongly linked with the
practice of creating relational databases, is called the entity-
relationship model. Professionals using this model develop Entity-
Relationship Diagrams (ERDs) that describe the structure and
movement of data in a system.

25

Entity-relationship modeling occurs at different levels ranging
from an abstract conceptual level to a physical storage level. At the
conceptual level an entity is an object or thing, usually something
in the real world. In the doctor’s office example, one important "ob-
ject" is the patient. Another entity is the doctor. The patient and the
doctor are linked by a relationship: in modern health care lingo
this is the "provider" relationship. If the patient is Mr. X and the
doctor is Dr. Y, the provider relationship provides a bidirectional
link:

• Dr. Y is the provider for Mr. X

• Mr. X’s provider is Dr. Y

Naturally there is a range of data that can represent Mr. X: name
address, age, etc. Likewise, there are data that represent Dr. Y:
years of experience as a doctor, specialty areas, certifications, li-
censes. Importantly, there is also a chunk of data that represents
the linkage between X and Y, and this is the relationship.

Creating an ERD requires investigating and enumerating all of the
entities, such as patients and doctors, as well as all of the relation-
ships that may exist among them. As the beginning of the chapter
suggested, this may have to occur across multiple organizations
(e.g., the doctor’s office and the insurance company) depending
upon the purpose of the information system that is being designed.
Eventually, the ERDs must become detailed enough that they can
serve as a specification for the physical storage in a database.

In an application area like health care, there are so many choices
for different ways of designing the data that it requires some expe-
rience and possibly some "art" to create a workable system. Part of

the art lies in understanding the users’ current information needs
and anticipating how those needs may change in the future. If an
organization is redesigning a system, adding to a system, or creat-
ing brand new systems, they are doing so in the expectation of a
future benefit. This benefit may arise from greater efficiency, reduc-
tion of errors/inaccuracies, or the hope of providing a new product
or service with the enhanced information capabilities.

Whatever the goal, the data scientist has an important and difficult
challenge of taking the methods of today - including paper forms
and manual data entry - and imagining the methods of tomorrow.
Follow the data!

In the next chapter we look at one of the most common and most
useful ways of organizing data, namely in a rectangular structure
that has rows and columns. This rectangular arrangement of data
appears in spreadsheets and databases that are used for a variety
of applications. Understanding how these rows and columns are
organized is critical to most tasks in data science.

Sources

http://en.wikipedia.org/wiki/Data_modeling

http://en.wikipedia.org/wiki/Entity-relationship_diagram

26

http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Entity-relationship_diagram
http://en.wikipedia.org/wiki/Entity-relationship_diagram

One of the most basic and widely used methods of representing data is to use rows and columns,
where each row is a case or instance and each column is a variable and attribute. Most spreadsheets
arrange their data in rows and columns, although spreadsheets don’t usually refer to these as cases or
variables. R represents rows and columns in an object called a data frame.

CHAPTER 5

27

Rows and Columns

Although we live in a three dimensional world, where a box of ce-
real has height, width, and depth, it is a sad fact of modern life that
pieces of paper, chalkboards, whiteboards, and computer screens
are still only two dimensional. As a result, most of the statisticians,
accountants, computer scientists, and engineers who work with
lots of numbers tend to organize them in rows and columns.
There’s really no good reason for this other than it makes it easy to
fill a rectangular piece of paper with numbers. Rows and columns
can be organized any way that you want, but the most common
way is to have the rows be "cases" or "instances" and the columns
be "attributes" or "variables." Take a look at this nice, two dimen-
sional representation of rows and columns:

Pretty obvious what’s going on, right? The top line, in bold, is not
really part of the data. Instead, the top line contains the attribute or
variable names. Note that computer scientists tend to call them at-
tributes while statisticians call them variables. Either term is OK.
For example, age is an attribute that every living thing has, and
you could count it in minutes, hours, days, months, years, or other
units of time. Here we have the Age attribute calibrated in years.
Technically speaking, the variable names in the top line are "meta-

data" or what you could think of as data about data. Imagine how
much more difficult it would be to understand what was going on
in that table without the metadata. There’s lot of different kinds of
metadata: variable names are just one simple type of metadata.

So if you ignore the top row, which contains the variable names,
each of the remaining rows is an instance or a case. Again, com-
puter scientists may call them instances, and statisticians may call
them cases, but either term is fine. The important thing is that each
row refers to an actual thing. In this case all of our things are living
creatures in a family. You could think of the Name column as "case
labels" in that each one of these labels refers to one and only one
row in our data. Most of the time when you are working with a
large dataset, there is a number used for the case label, and that
number is unique for each case (in other words, the same number
would never appear in more than one row). Computer scientists
sometimes refer to this column of unique numbers as a "key." A key
is very useful particularly for matching things up from different
data sources, and we will run into this idea again a bit later. For
now, though, just take note that the "Dad" row can be distin-
guished from the "Bro" row, even though they are both Male. Even
if we added an "Uncle" row that had the same Age, Gender, and
Weight as "Dad" we would still be able to tell the two rows apart
because one would have the name "Dad" and the other would have
the name "Uncle."

One other important note: Look how each column contains the
same kind of data all the way down. For example, the Age column
is all numbers. There’s nothing in the Age column like "Old" or
"Young." This is a really valuable way of keeping things organized.
After all, we could not run the mean() function on the Age column

28

NAME AGE GENDER WEIGHT

Dad 43 Male 188

Mom 42 Female 136

Sis 12 Female 83

Bro 8 Male 61

Dog 5 Female 44

if it contained a little piece of text, like "Old" or "Young." On a re-
lated note, every cell (that is an intersection of a row and a column,
for example, Sis’s Age) contains just one piece of information. Al-
though a spreadsheet or a word processing program might allow
us to put more than one thing in a cell, a real data handling pro-
gram will not. Finally, see that every column has the same number
of entries, so that the whole forms a nice rectangle. When statisti-
cians and other people who work with databases work with a data-
set, they expect this rectangular arrangement.

Now let’s figure out how to get these rows and columns into R.
One thing you will quickly learn about R is that there is almost al-
ways more than one way to accomplish a goal. Sometimes the
quickest or most efficient way is not the easiest to understand. In
this case we will build each column one by one and then join them
together into a single data frame. This is a bit labor intensive, and
not the usual way that we would work with a data set, but it is
easy to understand. First, run this command to make the column
of names:

myFamilyNames <- c("Dad","Mom","Sis","Bro","Dog")

One thing you might notice is that every name is placed within
double quotes. This is how you signal to R that you want it to treat
something as a string of characters rather than the name of a stor-
age location. If we had asked R to use Dad instead of "Dad" it
would have looked for a storage location (a data object) named
Dad. Another thing to notice is that the commas separating the dif-
ferent values are outside of the double quotes. If you were writing
a regular sentence this is not how things would look, but for com-
puter programming the comma can only do its job of separating
the different values if it is not included inside the quotes. Once you

have typed the line above, remember that you can check the con-
tents of myFamilyNames by typing it on the next command line:

myFamilyNames

The output should look like this:

[1] "Dad" "Mom" "Sis" "Bro" "Dog"

Next, you can create a vector of the ages of the family members,
like this:

myFamilyAges <- c(43, 42, 12, 8, 5)

Note that this is exactly the same command we used in the last
chapter, so if you have kept R running between then and now you
would not even have to retype this command because
myFamilyAges would still be there. Actually, if you closed R since
working the examples from the last chapter you will have been
prompted to "save the workspace" and if you did so, then R re-
stored all of the data objects you were using in the last session. You
can always check by typing myFamilyAges on a blank command
line. The output should look like this:

[1] 43 42 12 8 5

Hey, now you have used the c() function and the assignment arrow
to make myFamilyNames and myFamilyAges. If you look at the
data table earlier in the chapter you should be able to figure out the
commands for creating myFamilyGenders and myFamilyWeights.
In case you run into trouble, these commands also appear on the
next page, but you should try to figure them out for yourself before
you turn the page. In each case after you type the command to cre-
ate the new data object, you should also type the name of the data

29

object at the command line to make sure that it looks the way it
should. Four variables, each one with five values in it. Two of the
variables are character data and two of the variables are integer
data. Here are those two extra commands in case you need them:

myFamilyGenders <- c("Male","Female","Female","Male","Female")

myFamilyWeights <- c(188,136,83,61,44)

Now we are ready to tackle the dataframe. In R, a dataframe is a
list (of columns), where each element in the list is a vector. Each
vector is the same length, which is how we get our nice rectangular
row and column setup, and generally each vector also has its own
name. The command to make a data frame is very simple:

myFamily <- data.frame(myFamilyNames, +
myFamilyAges, myFamilyGenders, myFamilyWeights)

Look out! We’re starting to get commands that are long enough
that they break onto more than one line. The + at the end of the
first line tells R to wait for more input on the next line before trying
to process the command. If you want to, you can type the whole
thing as one line in R, but if you do, just leave out the plus sign.
Anyway, the data.frame() function makes a dataframe from the
four vectors that we previously typed in. Notice that we have also
used the assignment arrow to make a new stored location where R
puts the data frame. This new data object, called myFamily, is our
dataframe. Once you have gotten that command to work, type
myFamily at the command line to get a report back of what the
data frame contains. Here’s the output you should see:
 myFamilyNames myFamilyAges myFamilyGenders myFamilyWeights

1 Dad 43 Male 188

2 Mom 42 Female 136

3 Sis 12 Female 83

4 Bro 8 Male 61

5 Dog 5 Female 44

This looks great. Notice that R has put row numbers in front of
each row of our data. These are different from the output line num-
bers we saw in brackets before, because these are actual "indices"
into the data frame. In other words, they are the row numbers that
R uses to keep track of which row a particular piece of data is in.

With a small data set like this one, only five rows, it is pretty easy
just to take a look at all of the data. But when we get to a bigger
data set this won’t be practical. We need to have other ways of sum-
marizing what we have. The first method reveals the type of "struc-
ture" that R has used to store a data object.

> str(myFamily)

'data.frame':	 5 obs. of 4 variables:

 $ myFamilyNames : Factor w/ 5 levels

	 	 "Bro","Dad","Dog",..: 2 4 5 1 3

 $ myFamilyAges : num 43 42 12 8 5

 $ myFamilyGenders: Factor w/ 2 levels

	 	 "Female","Male": 2 1 1 2 1

 $ myFamilyWeights: num 188 136 83 61 44

Take note that for the first time, the example shows the command
prompt ">" in order to differentiate the command from the output
that follows. You don’t need to type this: R provides it whenever it
is ready to receive new input. From now on in the book, there will

30

be examples of R commands and output that are mixed together,
so always be on the lookout for ">" because the command after
that is what you have to type.

OK, so the function "str()" reveals the structure of the data object
that you name between the parentheses. In this case we pretty well
knew that myFamily was a data frame because we just set that up
in a previous command. In the future, however, we will run into
many situations where we are not sure how R has created a data
object, so it is important to know str() so that you can ask R to re-
port what an object is at any time.

In the first line of output we have the confirmation that myFamily
is a data frame as well as an indication that there are five observa-
tions ("obs." which is another word that statisticians use instead of
cases or instances) and four variables. After that first line of output,
we have four sections that each begin with "$". For each of the four
variables, these sections describe the component columns of the
myFamily dataframe object.

Each of the four variables has a "mode" or type that is reported by
R right after the colon on the line that names the variable:

$ myFamilyGenders: Factor w/ 2 levels

For example, myFamilyGenders is shown as a "Factor." In the termi-
nology that R uses, Factor refers to a special type of label that can
be used to identify and organize groups of cases. R has organized
these labels alphabetically and then listed out the first few cases
(because our dataframe is so small it actually is showing us all of
the cases). For myFamilyGenders we see that there are two "lev-
els," meaning that there are two different options: female and male.

R assigns a number, starting with one, to each of these levels, so
every case that is "Female" gets assigned a 1 and every case that is
"Male" gets assigned a 2 (because Female comes before Male in the
alphabet, so Female is the first Factor label, so it gets a 1). If you
have your thinking cap on, you may be wondering why we started
out by typing in small strings of text, like "Male," but then R has
gone ahead and converted these small pieces of text into numbers
that it calls "Factors." The reason for this lies in the statistical ori-
gins of R. For years, researchers have done things like calling an ex-
perimental group "Exp" and a control, group "Ctl" without intend-
ing to use these small strings of text for anything other than labels.
So R assumes, unless you tell it otherwise, that when you type in a
short string like "Male" that you are referring to the label of a
group, and that R should prepare for the use of Male as a "Level" of
a "Factor." When you don’t want this to happen you can instruct R
to stop doing this with an option on the data.frame() function:
stringsAsFactors=FALSE. We will look with more detail at options
and defaults a little later on.

Phew, that was complicated! By contrast, our two numeric vari-
ables, myFamilyAges and myFamilyWeights, are very simple. You
can see that after the colon the mode is shown as "num" (which
stands for numeric) and that the first few values are reported:

$ myFamilyAges : num 43 42 12 8 5

Putting it all together, we have pretty complete information about
the myFamily dataframe and we are just about ready to do some
more work with it. We have seen firsthand that R has some pretty
cryptic labels for things as well as some obscure strategies for con-
verting this to that. R was designed for experts, rather than nov-

31

ices, so we will just have to take our lumps so that one day we can
be experts too.

Next, we will examine another very useful function called sum-
mary(). Summary() provides some overlapping information to str()
but also goes a little bit further, particularly with numeric vari-
ables. Here’s what we get:

> summary(myFamily)

 myFamilyNames myFamilyAges

 Bro: 1		 	 Min.	 : 5

 Dad: 1		 	 1st Qu.	: 8

 Dog: 1		 	 Median	 : 12

 Mom: 1		 	 Mean	 : 22	 	 	

 Sis: 1 3rd Qu.	: 42

myFamilyGenders myFamilyWeights

 Female : 3		 Min.	 : 44

 Male	 : 2 	 1st Qu. : 61.0

	 	 	 	 Median	 : 83.0

	 	 	 	 Mean	 : 102.4

	 	 	 	 3rd Qu.	: 136.0

	 	 	 	 Max		 : 188.0		

In order to fit on the page properly, these columns have been reor-
ganized a bit. The name of a column/variable, sits up above the in-
formation that pertains to it, and each block of information is inde-
pendent of the others (so it is meaningless, for instance, that "Bro:
1" and "Min." happen to be on the same line of output). Notice, as
with str(), that the output is quite different depending upon
whether we are talking about a Factor, like myFamilyNames or
myFamilyGenders, versus a numeric variable like myFamilyAges
and myFamilyWeights. The columns for the Factors list out a few
of the Factor names along with the number of occurrences of cases
that are coded with that factor. So for instance, under
myFamilyGenders it shows three females and two males. In con-
trast, for the numeric variables we get five different calculated
quantities that help to summarize the variable. There’s no time like
the present to start to learn about what these are, so here goes:

• "Min." refers to the minimum or lowest value among all the
cases. For this dataframe, 5 is the age of the dog and it is the low-
est age of all of the family members.

• "1st Qu." refers to the dividing line at the top of the first quartile.
If we took all the cases and lined them up side by side in order
of age (or weight) we could then divide up the whole into four
groups, where each group had the same number of observations.

32

1ST
QUARTILE

2ND
QUARTILE

3RD
QUARTILE

4TH
QUARTILE

25% of cases
with the
smallest

values here

25% of cases
just below
the median

here

25% of cases
just above
the mean

here

25% of cases
with the
largest

values here

Just like a number line, the smallest cases would be on the left
with the largest on the right. If we’re looking at myFamilyAges,
the leftmost group, which contains one quarter of all the cases,
would start with five on the low end (the dog) and would have
eight on the high end (Bro). So the "first quartile" is the value of
age (or another variable) that divides the first quarter of the
cases from the other three quarters. Note that if we don’t have a
number of cases that divides evenly by four, the value is an ap-
proximation.

• Median refers to the value of the case that splits the whole group
in half, with half of the cases having higher values and half hav-
ing lower values. If you think about it a little bit, the median is
also the dividing line that separates the second quartile from the
third quartile.

• Mean, as we have learned before, is the numeric average of all of
the values. For instance, the average age in the family is reported
as 22.

• "3rd Qu." is the third quartile. If you remember back to the first
quartile and the median, this is the third and final dividing line
that splits up all of the cases into four equal sized parts. You may
be wondering about these quartiles and what they are useful for.
Statisticians like them because they give a quick sense of the
shape of the distribution. Everyone has the experience of sorting
and dividing things up - pieces of pizza, playing cards into
hands, a bunch of players into teams - and it is easy for most peo-
ple to visualize four equal sized groups and useful to know how
high you need to go in age or weight (or another variable) to get
to the next dividing line between the groups.

• Finally, "Max" is the maximum value and as you might expect
displays the highest value among all of the available cases. For
example, in this dataframe Dad has the highest weight: 188.
Seems like a pretty trim guy.

Just one more topic to pack in before ending this chapter: How to
access the stored variables in our new dataframe. R stores the data-
frame as a list of vectors and we can use the name of the dataframe
together with the name of a vector to refer to each one using the "$"
to connect the two labels like this:

> myFamily$myFamilyAges

[1] 43 42 12 8 5

If you’re alert you might wonder why we went to the trouble of
typing out that big long thing with the $ in the middle, when we
could have just referred to "myFamilyAges" as we did earlier when
we were setting up the data. Well, this is a very important point.
When we created the myFamily dataframe, we copied all of the in-
formation from the individual vectors that we had before into a
brand new storage space. So now that we have created the my-
Family dataframe, myFamily$myFamilyAges actually refers to a
completely separate (but so far identical) vector of values. You can
prove this to yourself very easily, and you should, by adding some
data to the original vector, myFamilyAges:

> myFamilyAges <- c(myFamilyAges, 11)

> myFamilyAges

[1] 43 42 12 8 5 11

> myFamily$myFamilyAges

33

[1] 43 42 12 8 5

Look very closely at the five lines above. In the first line, we use
the c() command to add the value 11 to the original list of ages that
we had stored in myFamilyAges (perhaps we have adopted an
older cat into the family). In the second line we ask R to report
what the vector myFamilyAges now contains. Dutifully, on the
third line above, R reports that myFamilyAges now contains the
original five values and the new value of 11 on the end of the list.
When we ask R to report myFamily$myFamilyAges, however, we
still have the original list of five values only. This shows that the da-
taframe and its component columns/vectors is now a completely
independent piece of data. We must be very careful, if we estab-
lished a dataframe that we want to use for subsequent analysis,
that we don’t make a mistake and keep using some of the original
data from which we assembled the dataframe.

Here’s a puzzle that follows on from this question. We have a nice
dataframe with five observations and four variables. This is a rec-
tangular shaped data set, as we discussed at the beginning of the
chapter. What if we tried to add on a new piece of data on the end
of one of the variables? In other words, what if we tried something
like this command:

myFamily$myFamilyAges<-c(myFamily$myFamilyAges, 11)

If this worked, we would have a pretty weird situation: The vari-
able in the dataframe that contained the family members’ ages
would all of a sudden have one more observation than the other
variables: no more perfect rectangle! Try it out and see what hap-
pens. The result helps to illuminate how R approaches situations
like this.

So what new skills and knowledge do we have at this point? Here
are a few of the key points from this chapter:

• In R, as in other programs, a vector is a list of elements/things
that are all of the same kind, or what R refers to as a mode. For
example, a vector of mode "numeric" would contain only num-
bers.

• Statisticians, database experts and others like to work with rec-
tangular datasets where the rows are cases or instances and the
columns are variables or attributes.

• In R, one of the typical ways of storing these rectangular struc-
tures is in an object known as a dataframe. Technically speaking
a dataframe is a list of vectors where each vector has the exact
same number of elements as the others (making a nice rectan-
gle).

• In R, the data.frame() function organizes a set of vectors into a
dataframe. A dataframe is a conventional, rectangular shaped
data object where each column is a vector of uniform mode and
having the same number of elements as the other columns in the
dataframe. Data are copied from the original source vectors into
new storage space. The variables/columns of the dataframe can
be accessed using "$" to connect the name of the dataframe to the
name of the variable/column.

• The str() and summary() functions can be used to reveal the
structure and contents of a dataframe (as well as of other data ob-
jects stored by R). The str() function shows the structure of a data
object, while summary() provides numerical summaries of nu-
meric variables and overviews of non-numeric variables.

34

• A factor is a labeling system often used to organize groups of
cases or observations. In R, as well as in many other software
programs, a factor is represented internally with a numeric ID
number, but factors also typically have labels like "Male" and
"Female" or "Experiment" and "Control." Factors always have

"levels," and these are the different groups that the factor signi-
fies. For example, if a factor variable called Gender codes all
cases as either "Male" or "Female" then that factor has exactly
two levels.

• Quartiles are a division of a sorted vector into four evenly sized
groups. The first quartile contains the lowest-valued elements,
for example the lightest weights, whereas the fourth quartile con-
tains the highest-valued items. Because there are four groups,
there are three dividing lines that separate them. The middle di-
viding line that splits the vector exactly in half is the median.
The term "first quartile" often refers to the dividing line to the
left of the median that splits up the lower two quarters and the
value of the first quartile is the value of the element of the vector
that sits right at that dividing line. Third quartile is the same
idea, but to the right of the median and splitting up the two
higher quarters.

• Min and max are often used as abbreviations for minimum and
maximum and these are the terms used for the highest and low-
est values in a vector. Bonus: The "range" of a set of numbers is
the maximum minus the minimum.

• The mean is the same thing that most people think of as the aver-
age. Bonus: The mean and the median are both measures of
what statisticians call "central tendency."

Chapter Challenge

Create another variable containing information about family mem-
bers (for example, each family member’s estimated IQ; you can
make up the data). Take that new variable and put it in the existing

35

Review 5.1 Rows and columns

Check Answer

Question 1 of 7
What is the name of the data object that R uses to store a rec-
tangular dataset of cases and variables?

A. A list

B. A mode

C. A vector

D. A dataframe

myFamily dataframe. Rerun the summary() function on myFamily
to get descriptive information on your new variable.

Sources

http://en.wikipedia.org/wiki/Central_tendency

http://en.wikipedia.org/wiki/Median

http://en.wikipedia.org/wiki/Relational_model

http://msenux.redwoods.edu/math/R/dataframe.php

http://stat.ethz.ch/R-manual/R-devel/library/base/html/data.fr
ame.html

http://www.burns-stat.com/pages/Tutor/hints_R_begin.html

http://www.khanacademy.org/math/statistics/v/mean-median-
and-mode

R Functions Used in This Chapter

c()! ! ! Concatenates data elements together

<-! ! ! Assignment arrow

data.frame()! Makes a dataframe from separate vectors

str()! ! ! Reports the structure of a data object

summary()! Reports data modes/types and a data overview

36

http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Relational_model
http://msenux.redwoods.edu/math/R/dataframe.php
http://msenux.redwoods.edu/math/R/dataframe.php
http://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
http://www.burns-stat.com/pages/Tutor/hints_R_begin.html
http://www.burns-stat.com/pages/Tutor/hints_R_begin.html
http://www.khanacademy.org/math/statistics/v/mean-median-and-mode
http://www.khanacademy.org/math/statistics/v/mean-median-and-mode
http://www.khanacademy.org/math/statistics/v/mean-median-and-mode
http://www.khanacademy.org/math/statistics/v/mean-median-and-mode

Many of the simplest and most practical methods for summarizing collections of numbers come to us
from four guys who were born in the 1800s at the start of the industrial revolution. A considerable
amount of the work they did was focused on solving real world problems in manufacturing and
agriculture by using data to describe and draw inferences from what they observed.

CHAPTER 6

37

Beer, Farms, and Peas

The end of the 1800s and the early 1900s were a time of astonishing
progress in mathematics and science. Given enough time, paper,
and pencils, scientists and mathematicians of that age imagined
that just about any problem facing humankind - including the limi-
tations of people themselves - could be measured, broken down,
analyzed, and rebuilt to become more efficient. Four Englishmen
who epitomized both this scientific progress and these idealistic be-
liefs were Francis Galton, Karl Pearson, William Sealy Gosset, and
Ronald Fisher.

First on the scene was Francis Galton, a half-cousin to the more
widely known Charles Darwin, but quite the intellectual force him-
self. Galton was an English gentleman of independent means who
studied Latin, Greek, medicine, and mathematics, and who made a
name for himself as an African explorer. He is most widely known
as a proponent of "eugenics" and is credited with coining the term.
Eugenics is the idea that the human race could be improved
through selective breeding. Galton studied heredity in peas, rab-
bits, and people and concluded that certain people should be paid
to get married and have children because their offspring would im-
prove the human race. These ideas were later horribly misused in
the 20th century, most notably by the Nazis as a justification for kill-
ing people because they belonged to supposedly inferior races. Set-
ting eugenics aside, however, Galton made several notable and
valuable contributions to mathematics and statistics, in particular
illuminating two basic techniques that are widely used today: corre-
lation and regression.

For all his studying and theorizing, Galton was not an outstanding
mathematician, but he had a junior partner, Karl Pearson, who is
often credited with founding the field of mathematical statistics.

Pearson refined the math behind correlation and regression and
did a lot else besides to contribute to our modern abilities to man-
age numbers. Like Galton, Pearson was a proponent of eugenics,
but he also is credited with inspiring some of Einstein’s thoughts
about relativity and was an early advocate of women’s rights.

Next to the statistical party was William Sealy Gosset, a wizard at
both math and chemistry. It was probably the latter expertise that
led the Guinness Brewery in Dublin Ireland to hire Gosset after col-
lege. As a forward looking business, the Guinness brewery was on
the lookout for ways of making batches of beer more consistent in
quality. Gosset stepped in and developed what we now refer to as
small sample statistical techniques - ways of generalizing from the
results of a relatively few observations. Of course, brewing a batch
of beer is a time consuming and expensive process, so in order to
draw conclusions from experimental methods applied to just a few
batches, Gosset had to figure out the role of chance in determining
how a batch of beer had turned out. Guinness frowned upon aca-
demic publications, so Gosset had to publish his results under the
modest pseudonym, "Student." If you ever hear someone discuss-
ing the "Student’s t-Test," that is where the name came from.

Last but not least among the born-in-the-1800s bunch was Ronald
Fisher, another mathematician who also studied the natural sci-
ences, in his case biology and genetics. Unlike Galton, Fisher was
not a gentleman of independent means, in fact, during his early
married life he and his wife struggled as subsistence farmers. One
of Fisher’s professional postings was to an agricultural research
farm called Rothhamsted Experimental Station. Here, he had ac-
cess to data about variations in crop yield that led to his develop-
ment of an essential statistical technique known as the analysis of

38

variance. Fisher also pioneered the area of experimental design,
which includes matters of factors, levels, experimental groups, and
control groups that we noted in the previous chapter.

Of course, these four are certainly not the only 19th and 20th cen-
tury mathematicians to have made substantial contributions to
practical statistics, but they are notable with respect to the applica-
tions of mathematics and statistics to the other sciences (and "Beer,
Farms, and Peas" makes a good chapter title as well).

One of the critical distinctions woven throughout the work of these
four is between the "sample" of data that you have available to ana-
lyze and the larger "population" of possible cases that may or do
exist. When Gosset ran batches of beer at the brewery, he knew
that it was impractical to run every possible batch of beer with
every possible variation in recipe and preparation. Gosset knew
that he had to run a few batches, describe what he had found and
then generalize or infer what might happen in future batches. This
is a fundamental aspect of working with all types and amounts of
data: Whatever data you have, there’s always more out there.
There’s data that you might have collected by changing the way
things are done or the way things are measured. There’s future
data that hasn’t been collected yet and might never be collected.
There’s even data that we might have gotten using the exact same
strategies we did use, but that would have come out subtly differ-
ent just due to randomness. Whatever data you have, it is just a
snapshot or "sample" of what might be out there. This leads us to
the conclusion that we can never, ever 100% trust the data we have.
We must always hold back and keep in mind that there is always
uncertainty in data. A lot of the power and goodness in statistics
comes from the capabilities that people like Fisher developed to

help us characterize and quantify that uncertainty and for us to
know when to guard against putting too much stock in what a sam-
ple of data have to say. So remember that while we can always de-
scribe the sample of data we have, the real trick is to infer what
the data may mean when generalized to the larger population of
data that we don’t have. This is the key distinction between de-
scriptive and inferential statistics.

We have already encountered several descriptive statistics in previ-
ous chapters, but for the sake of practice here they are again, this
time with the more detailed definitions:

• The mean (technically the arithmetic mean), a measure of central
tendency that is calculated by adding together all of the observa-
tions and dividing by the number of observations.

• The median, another measure of central tendency, but one that
cannot be directly calculated. Instead, you make a sorted list of
all of the observations in the sample, then go halfway up that
list. Whatever the value of the observation is at the halfway
point, that is the median.

• The range, which is a measure of "dispersion" - how spread out a
bunch of numbers in a sample are - calculated by subtracting the
lowest value from the highest value.

To this list we should add three more that you will run into in a va-
riety of situations:

• The mode, another measure of central tendency. The mode is the
value that occurs most often in a sample of data. Like the me-
dian, the mode cannot be directly calculated. You just have to

39

count up how many of each number there are and then pick the
category that has the most.

• The variance, a measure of dispersion. Like the range, the vari-
ance describes how spread out a sample of numbers is. Unlike
the range, though, which just uses two numbers to calculate dis-
persion, the variance is obtained from all of the numbers
through a simple calculation that compares each number to the
mean. If you remember the ages of the family members from the
previous chapter and the mean age of 22, you will be able to
make sense out of the following table:

This table shows the calculation of the variance, which begins by
obtaining the "deviations" from the mean and then "squares" them
(multiply each times itself) to take care of the negative deviations
(for example, -14 from the mean for Bro). We add up all of the
squared deviations and then divide by the number of observations
to get a kind of "average squared deviation." Note that it was not a

mistake to divide by 4 instead of 5 - the reasons for this will be-
come clear later in the book when we examine the concept of de-
grees of freedom. This result is the variance, a very useful mathe-
matical concept that appears all over the place in statistics. While it
is mathematically useful, it is not too nice too look at. For instance,
in this example we are looking at the 356.5 squared-years of devia-
tion from the mean. Who measures anything in squared years?
Squared feet maybe, but that’s a different discussion. So, to address
this weirdness, statisticians have also provided us with:

• The standard deviation, another measure of dispersion, and a
cousin to the variance. The standard deviation is simply the
square root of the variance, which puts us back in regular units
like "years." In the example above, the standard deviation would
be about 18.88 years (rounding to two decimal places, which is
plenty in this case).

Now let’s have R calculate some statistics for us:

> var(myFamily$myFamilyAges)

[1] 356.5

> sd(myFamily$myFamilyAges)

[1] 18.88121

Note that these commands carry on using the data used in the pre-
vious chapter, including the use of the $ to address variables
within a dataframe. If you do not have the data from the previous
chapter you can also do this:

> var(c(43,42,12,8,5))

[1] 356.5

40

WHO AGE
AGE -
MEAN

(AGE-
MEAN)2

Dad 43 43-22 = 21 21*21=441

Mom 42 42-22=20 20*20=400

Sis 12 12-22=-10 -10*-10=100

Bro 8 8-22=-14 -14*-14=196

Dog 5 5-22=-17 -17*-17=289

Total: 1426

Total/4: 356.5

> sd(c(43,42,12,8,5))

[1] 18.88121

This is a pretty boring example, though, and not very useful for the
rest of the chapter, so here’s the next step up in looking at data. We
will use the Windows or Mac clipboard to cut and paste a larger
data set into R. Go to the U.S. Census website where they have
stored population data:

http://www.census.gov/popest/data/national/totals/2011/inde
x.html

Assuming you have a spreadsheet program available, click on the
XLS link for "Annual Estimates of the Resident Population for the
United States." When the spreadsheet is open, select the population
estimates for the fifty states. The first few looked like this in the
2011 data:

.Alabama 4,779,736

.Alaska 710,231

.Arizona 6,392,017

.Arkansas 2,915,918

To make use of the next R command, make sure to choose just the
numbers and not the text. Before you copy the numbers, take out
the commas by switching the cell type to "General." This can usu-
ally be accomplished under the Format menu, but you might also
have a toolbar button to do the job. Copy the numbers to the clip-
board with ctrl+C (Windows) or command+C (Mac). On a Win-
dows machine use the following command:

read.DIF("clipboard",transpose=TRUE)

On a Mac, this command does the same thing:

read.table(pipe("pbpaste"))

It is very annoying that there are two different commands for the
two types of computers, but this is an inevitable side effect of the
different ways that the designers at Microsoft and Apple set up the
clipboard, plus the fact that R was designed to work across many
platforms. Anyway, you should have found that the long string of
population numbers appeared on the R output. The numbers are
not much use to us just streamed to the output, so let’s assign the
numbers to a new vector.

Windows, using read.DIF:

> USstatePops <- +
read.DIF("clipboard",transpose=TRUE)

> USstatePops

 V1

1 4779736

2 710231

3 6392017

...

Or Mac, using read.table:

> USstatePops <- read.table(pipe("pbpaste"))

> USstatePops

41

http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.census.gov/popest/data/national/totals/2011/index.html

 V1

1 4779736

2 710231

3 6392017

...

Only the first three observations are shown in order to save space
on this page. Your output R should show the whole list. Note that
the only thing new here over and above what we have done with R
in previous chapters is the use of the read.DIF() or read.table() func-
tions to get a bigger set of data that we don’t have to type our-
selves. Functions like read.table() are quite important as we move
forward with using R because they provide the usual way of get-
ting data stored in external files into R’s storage areas for use in
data analysis. If you had trouble getting this to work, you can cut
and paste the commands at the end of the chapter under "If All
Else Fails" to get the same data going in your copy of R.

Note that we have used the left pointing assignment arrow ("<-") to
take the results of the read.DIF() or read.table() function and place
it in a data object. This would be a great moment to practice your
skills from the previous chapter by using the str() and summary()
functions on our new data object called USstatePops. Did you no-
tice anything interesting from the results of these functions? One
thing you might have noticed is that there are 51 observations in-
stead of 50. Can you guess why? If not, go back and look at your
original data from the spreadsheet or the U.S. Census site. The
other thing you may have noticed is that USstatePops is a data-
frame, and not a plain vector of numbers. You can actually see this

in the output above: In the second command line where we request
that R reveal what is stored in USstatePops, it responds with a col-
umn topped by the designation "V1". Because we did not give R
any information about the numbers it read in from the clipboard, it
called them "V1", short for Variable One, by default. So anytime we
want to refer to our list of population numbers we actually have to
use the name USstatePops$V1. If this sounds unfamiliar, take an-
other look at the previous "Rows and Columns" chapter for more
information on addressing the columns in a dataframe.

Now we’re ready to have some fun with a good sized list of num-
bers. Here are the basic descriptive statistics on the population of
the states:

> mean(USstatePops$V1)

[1] 6053834

> median(USstatePops$V1)

[1] 4339367

> mode(USstatePops$V1)

[1] "numeric"

> var(USstatePops$V1)

[1] 4.656676e+13

> sd(USstatePops$V1)

[1] 6823984

Some great summary information there, but wait, a couple things
have gone awry:

42

• The mode() function has returned the data type of our vector of
numbers instead of the statistical mode. This is weird but true:
the basic R package does not have a statistical mode function!
This is partly due to the fact that the mode is only useful in a
very limited set of situations, but we will find out in later chap-
ters how add-on packages can be used to get new functions in R
including one that calculates the statistical mode.

• The variance is reported as 4.656676e+13. This is the first time
that we have seen the use of scientific notation in R. If you
haven’t seen this notation before, the way you interpret it is to
imagine 4.656676 multiplied by 10,000,000,000,000 (also known
as 10 raised to the 13th power). You can see that this is ten tril-
lion, a huge and unwieldy number, and that is why scientific no-
tation is used. If you would prefer not to type all of that into a
calculator, another trick to see what number you are dealing
with is just to move the decimal point 13 digits to the right.

Other than these two issues, we now know that the average popula-
tion of a U.S. state is 6,053,834 with a standard deviation of
6,823,984. You may be wondering, though, what does it mean to
have a standard deviation of almost seven million? The mean and
standard deviation are OK, and they certainly are mighty precise,
but for most of us, it would make much more sense to have a pic-
ture that shows the central tendency and the dispersion of a large
set of numbers. So here we go. Run this command:

hist(USstatePops$V1)

Here’s the output you should get:

Histogram of USstatePops$V1

USstatePops$V1

Fr
eq
ue
nc
y

0e+00 1e+07 2e+07 3e+07 4e+07

0
5

10
15

20
25

30

A histogram is a specialized type of bar graph designed to show
"frequencies." Frequencies means how often a particular value or
range of values occurs in a dataset. This histogram shows a very
interesting picture. There are nearly 30 states with populations un-
der five million, another 10 states with populations under 10 mil-
lion, and then a very small number of states with populations
greater than 10 million. Having said all that, how do we glean this
kind of information from the graph? First, look along the Y-axis
(the vertical axis on the left) for an indication of how often the data

43

occur. The tallest bar is just to the right of this and it is nearly up to
the 30 mark. To know what this tall bar represents, look along the
X-axis (the horizontal axis at the bottom) and see that there is a tick
mark for every two bars. We see scientific notation under each tick
mark. The first tick mark is 1e+07, which translates to 10,000,000.
So each new bar (or an empty space where a bar would go) goes
up by five million in population. With these points in mind it
should now be easy to see that there are nearly 30 states with popu-
lations under five million.

If you think about presidential elections, or the locations of schools
and businesses, or how a single U.S. state might compare with
other countries in the world, it is interesting to know that there are
two really giant states and then lots of much smaller states. Once
you have some practice reading histograms, all of the knowledge is
available at a glance.

On the other hand there is something unsatisfying about this dia-
gram. With over forty of the states clustered into the first couple of
bars, there might be some more details hiding in there that we
would like to know about. This concern translates into the number
of bars shown in the histogram. There are eight shown here, so
why did R pick eight?

The answer is that the hist() function has an algorithm or recipe for
deciding on the number of categories/bars to use by default. The
number of observations and the spread of the data and the amount
of empty space there would be are all taken into account. Fortu-
nately it is possible and easy to ask R to use more or fewer
categories/bars with the "breaks" parameter, like this:

hist(USstatePops$V1, breaks=20)

Histogram of USstatePops$V1

USstatePops$V1

Fr
eq
ue
nc
y

0e+00 1e+07 2e+07 3e+07

0
5

10
15

This gives us five bars per tick mark or about two million for each
bar. So the new histogram above shows very much the same pat-
tern as before: 15 states with populations under two million. The
pattern that you see here is referred to as a distribution. This is a
distribution that starts off tall on the left and swoops downward
quickly as it moves to the right. You might call this a "reverse-J" dis-
tribution because it looks a little like the shape a J makes, although
flipped around vertically. More technically this could be referred to
as a Pareto distribution (named after the economist Vilfredo Pa-

44

reto). We don’t have to worry about why it may be a Pareto distri-
bution at this stage, but we can speculate on why the distribution
looks the way it does. First, you can’t have a state with no people
in it, or worse yet negative population. It just doesn’t make any
sense. So a state has to have at least a few people in it, and if you
look through U.S. history every state began as a colony or a terri-
tory that had at least a few people in it. On the other hand, what
does it take to grow really large in population? You need a lot of
land, first of all, and then a good reason for lots of people to move
there or lots of people to be born there. So there are lots of limits to
growth: Rhode Island is too small too have a bazillion people in it
and Alaska, although it has tons of land, is too cold for lots of peo-
ple to want to move there. So all states probably started small and
grew, but it is really difficult to grow really huge. As a result we
have a distribution where most of the cases are clustered near the
bottom of the scale and just a few push up higher and higher. But
as you go higher, there are fewer and fewer states that can get that
big, and by the time you are out at the end, just shy of 40 million
people, there’s only one state that has managed to get that big. By
the way, do you know or can you guess what that humongous
state is?

There are lots of other distribution shapes. The most common one
that almost everyone has heard of is sometimes called the "bell"
curve because it is shaped like a bell. The technical name for this is
the normal distribution. The term "normal" was first introduced by
Carl Friedrich Gauss (1777-1855), who supposedly called it that in
a belief that it was the most typical distribution of data that one
might find in natural phenomena. The following histogram depicts
the typical bell shape of the normal distribution.

Histogram of rnorm(51, 6053834, 6823984)

rnorm(51, 6053834, 6823984)

Fr
eq
ue
nc
y

-1e+07 0e+00 1e+07 2e+07 3e+07

0
5

10
15

If you are curious, you might be wondering how R generated the
histogram above, and, if you are alert, you might notice that the his-
togram that appears above has the word "rnorm" in a couple of
places. Here’s another of the cool features in R: it is incredibly easy
to generate "fake" data to work with when solving problems or giv-

45

ing demonstrations. The data in this histogram were generated by
R’s rnorm() function, which generates a random data set that fits
the normal distribution (more closely if you generate a lot of data,
less closely if you only have a little. Some further explanation of
the rnorm() command will make sense if you remember that the
state population data we were using had a mean of 6,053,834 and a
standard deviation of 6,823,984. The command used to generate
this histogram was:

hist(rnorm(51, 6043834, 6823984))

There are two very important new concepts introduced here. The
first is a nested function call: The hist() function that generates the
graph "surrounds" the rnorm() function that generates the new
fake data. (Pay close attention to the parentheses!) The inside func-
tion, rnorm(), is run by R first, with the results of that sent directly
and immediately into the hist() function.

The other important thing is the "arguments that" were "passed" to
the rnorm() function. We actually already ran into arguments a lit-
tle while ago with the read.DIF() and read.table() functions but we
did not talk about them then. "Argument" is a term used by com-
puter scientists to refer to some extra information that is sent to a
function to help it know how to do its job. In this case we passed
three arguments to rnorm() that it was expecting in this order: the
number of observations to generate in the fake dataset, the mean of
the distribution, and the standard deviation of the distribution.
The rnorm() function used these three numbers to generate 51 ran-
dom data points that, roughly speaking, fit the normal distribu-
tion. So the data shown in the histogram above are an approxima-
tion of what the distribution of state populations might look like if,

instead of being reverse-J-shaped (Pareto distribution), they were
normally distributed.

The normal distribution is used extensively through applied statis-
tics as a tool for making comparisons. For example, look at the
rightmost bar in the previous histogram. The label just to the right
of that bar is 3e+07, or 30,000,000. We already know from our real
state population data that there is only one actual state with a
population in excess of 30 million (if you didn’t look it up, it is Cali-
fornia). So if all of a sudden, someone mentioned to you that he or
she lived in a state, other than California, that had 30 million peo-
ple, you would automatically think to yourself, "Wow, that’s un-
usual and I’m not sure I believe it." And the reason that you found
it hard to believe was that you had a distribution to compare it to.
Not only did that distribution have a characteristic shape (for exam-
ple, J-shaped, or bell shaped, or some other shape), it also had a
center point, which was the mean, and a "spread," which in this
case was the standard deviation. Armed with those three pieces of
information - the type/shape of distribution, an anchoring point,
and a spread (also known as the amount of variability), you have a
powerful tool for making comparisons.

In the next chapter we will conduct some of these comparisons to
see what we can infer about the ways things are in general, based
on just a subset of available data, or what statisticians call a sam-
ple.

Chapter Challenge

In this chapter, we used rnorm() to generate random numbers that
closely fit a normal distribution. We also learned that the state
population data was a "Pareto" distribution. Do some research to

46

find out what R function generates random numbers using the Pa-
reto distribution. Then run that function with the correct parame-
ters to generate 51 random numbers (hint: experiment with differ-
ent probability values). Create a histogram of these random num-
bers and describe the shape of the distribution.

Sources

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

http://en.wikipedia.org/wiki/Francis_Galton

http://en.wikipedia.org/wiki/Pareto_distribution

http://en.wikipedia.org/wiki/Karl_Pearson

http://en.wikipedia.org/wiki/Ronald_Fisher

http://en.wikipedia.org/wiki/William_Sealy_Gosset

http://en.wikipedia.org/wiki/Normal_distribution

http://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.t
able.html

http://www.census.gov/popest/data/national/totals/2011/inde
x.html

http://www.r-tutor.com/elementary-statistics/numerical-measur
es/standard-deviation

47

Review 6.1 Beer, Farms, and Peas

Check Answer

A bar graph that displays the frequencies of occurrence for a
numeric variable is called a

A. Histogram

B. Pictogram

C. Bar Graph

D. Bar Chart

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Francis_Galton
http://en.wikipedia.org/wiki/Francis_Galton
http://en.wikipedia.org/wiki/Francis_Galton
http://en.wikipedia.org/wiki/Francis_Galton
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/William_Sealy_Gosset
http://en.wikipedia.org/wiki/William_Sealy_Gosset
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.census.gov/popest/data/national/totals/2011/index.html
http://www.r-tutor.com/elementary-statistics/numerical-measures/standard-deviation
http://www.r-tutor.com/elementary-statistics/numerical-measures/standard-deviation
http://www.r-tutor.com/elementary-statistics/numerical-measures/standard-deviation
http://www.r-tutor.com/elementary-statistics/numerical-measures/standard-deviation

R Functions Used in This Chapter

read.DIF()!! Reads data in interchange format

read.table()! Reads data table from external source

mean()! ! Calculate arithmetic mean

median()! ! Locate the median

mode()! ! Tells the data type/mode of a data object  
! ! ! Note: This is NOT the statistical mode

var()!! ! Calculate the sample variance

sd()! ! ! Calculate the sample standard deviation

hist()!! ! Produces a histogram graphic

Test Yourself

If All Else Fails

In case you have difficulty with the read.DIF() or read.table() func-
tions, the code shown below can be copied and pasted (or, in the
worst case scenario, typed) into the R console to create the data set
used in this chapter.

V1 <- c(4779736,710231,6392017,2915918,37253956,  
5029196,3574097,897934,601723,18801310,9687653,  
1360301,1567582,12830632,6483802,3046355,2853118,
4339367,4533372,1328361,5773552,6547629,9883640,  
5303925,2967297,5988927,989415,1826341,2700551,  
1316470,8791894,2059179,19378102,9535483,672591,  
11536504,3751351,3831074,12702379,1052567,  
4625364,814180,6346105,25145561,2763885,625741,  
8001024,6724540,1852994,5686986,563626)

USstatePops <- data.frame(V1)

48

Sampling distributions are the conceptual key to statistical inference. Many approaches to
understanding sampling distributions use examples of drawing marbles or gumballs from a large jar
to illustrate the influences of randomness on sampling. Using the list of U.S. states illustrates how a
non-normal distribution nonetheless has a normal sampling distribution of means.

CHAPTER 7

49

Sample in a Jar

Imagine a gum ball jar full of gumballs of two different colors, red
and blue. The jar was filled from a source that provided 100 red
gum balls and 100 blue gum balls, but when these were poured
into the jar they got all mixed up. If you drew eight gumballs from
the jar at random, what colors would you get? If things worked out
perfectly, which they never do, you would get four red and four
blue. This is half and half, the same ratio of red and blue that is in
the jar as a whole. Of course, it rarely works out this way, does it?
Instead of getting four red and four blue you might get three red
and five blue or any other mix you can think of. In fact, it would be
possible, though perhaps not likely, to get eight red gumballs. The
basic situation, though, is that we really don’t know what mix of
red and blue we will get with one draw of eight gumballs. That’s
uncertainty for you, the forces of randomness affecting our sample
of eight gumballs in unpredictable ways.

Here’s an interesting idea, though, that is no help at all in predict-
ing what will happen in any one sample, but is great at showing
what will occur in the long run. Pull eight gumballs from the jar,
count the number of red ones and then throw them back. We do
not have to count the number of blue because 8 - #red = #blue. Mix
up the jar again and then draw eight more gumballs and count the
number of red. Keeping doing this many times. Here’s an example
of what you might get:

Notice that the left column is just counting up the number of sam-
ple draws we have done. The right column is the interesting one
because it is the count of the number of red gumballs in each par-
ticular sample draw. In this example, things are all over the place.
In sample draw 4 we only have two red gumballs, but in sample
draw 3 we have 6 red gumballs. But the most interesting part of
this example is that if you average the number of red gumballs over
all of the draws, the average comes out to exactly four red gumballs
per draw, which is what we would expect in a jar that is half and
half. Now this is a contrived example and we won’t always get
such a perfect result so quickly, but if you did four thousand draws
instead of four, you would get pretty close to the perfect result.

This process of repeatedly drawing a subset from a "population" is
called "sampling," and the end result of doing lots of sampling is a
sampling distribution. Note that we are using the word population
in the previous sentence in its statistical sense to refer to the total-
ity of units from which a sample can be drawn. It is just a coinci-
dence that our dataset contains the number of people in each state
and that this value is also referred to as "population." Next we will
get R to help us draw lots of samples from our U.S. state dataset.

Conveniently, R has a function called sample(), that will draw a ran-
dom sample from a data set with just a single call. We can try it
now with our state data:

> sample(USstatePops$V1,size=16,replace=TRUE)

[1] 4533372 19378102 897934 1052567 672591
18801310 2967297

[8] 5029196

50

DRAW # RED

1 5

2 3

3 6

4 2

As a matter of practice, note that we called the sample() function
with three arguments. The first argument was the data source. For
the second and third arguments, rather than rely on the order in
which we specify the arguments, we have used "named argu-
ments" to make sure that R does what we wanted. The size=16 ar-
gument asks R to draw a sample of 16 state data values. The repla-
ce=TRUE argument specifies a style of sampling which statisticians
use very often to simplify the mathematics of their proofs. For us,
sampling with or without replacement does not usually have any
practical effects, so we will just go with what the statisticians typi-
cally do.

When we’re working with numbers such as these state values, in-
stead of counting gumball colors, we’re more interested in finding
out the average, or what you now know as the mean. So we could
also ask R to calculate a mean() of the sample for us:

> mean(sample(USstatePops$V1,size=16, +  
replace=TRUE))

[1] 8198359

There’s the nested function call again. The output no longer shows
the 16 values that R sampled from the list of 51. Instead it used
those 16 values to calculate the mean and display that for us. If you
have a good memory, or merely took the time to look in the last
chapter, you will remember that the actual mean of our 51 observa-
tions is 6,053,834. So the mean that we got from this one sample of
16 states is really not even close to the true mean value of our 51
observations. Are we worried? Definitely not! We know that when
we draw a sample, whether it is gumballs or states, we will never
hit the true population mean right on the head. We’re interested

not in any one sample, but in what happens over the long haul. So
now we’ve got to get R to repeat this process for us, not once, not
four times, but four hundred times or four thousand times. Like
most programming languages, R has a variety of ways of repeating
an activity. One of the easiest ones to use is the replicate() function.
To start, let’s just try four replications:

> replicate(4, mean(sample(USstatePops$V1,+
size=16,replace=TRUE)),simplify=TRUE)

[1] 10300486 11909337 8536523 5798488

Couldn’t be any easier. We took the exact same command as be-
fore, which was a nested function to calculate the mean() of a ran-
dom sample of 16 states (shown above in bold). This time, we put
that command inside the replicate() function so we could run it
over and over again. The simplify=TRUE argument asks R to re-
turn the results as a simple vector of means, perfect for what we
are trying to do. We only ran it four times, so that we would not
have a big screen full of numbers. From here, though, it is easy to
ramp up to repeating the process four hundred times. You can try
that and see the output, but for here in the book we will encapsu-
late the whole replicate function inside another mean(), so that we
can get the average of all 400 of the sample means. Here we go:

> mean(replicate(400, mean(+  
sample(USstatePops$V1,size=16,replace=TRUE)),+ 
simplify=TRUE))

[1] 5958336

In the command above, the outermost mean() command is bolded
to show what is different from the previous command. So, put into

51

words, this deeply nested command accomplishes the following: a)
Draw 400 samples of size n=8 from our full data set of 51 states; b)
Calculate the mean from each sample and keep it in a list; c) When
finished with the list of 400 of these means, calculate the mean of
that list of means. You can see that the mean of four hundred sam-
ple means is 5,958,336. Now that is still not the exact value of the
whole data set, but it is getting close. We’re off by about 95,000,
which is roughly an error of about 1.6% (more precisely, 95,498/
6,053,834 = 1.58%. You may have also noticed that it took a little
while to run that command, even if you have a fast computer.
There’s a lot of work going on there! Let’s push it a bit further and
see if we can get closer to the true mean for all of our data:

> mean(replicate(4000, mean(+  
sample(USstatePops$V1,size=16,replace=TRUE)),+ 
simplify=TRUE))

[1] 6000972

Now we are even closer! We are now less than 1% away from the
true population mean value. Note that the results you get may be a
bit different, because when you run the commands, each of the 400
or 4000 samples that is drawn will be slightly different than the
ones that were drawn for the commands above. What will not be
much different is the overall level of accuracy.

We’re ready to take the next step. Instead of summarizing our
whole sampling distribution in a single average, let’s look at the
distribution of means using a histogram.

The histogram displays the complete list of 4000 means as frequen-
cies. Take a close look so that you can get more practice reading fre-
quency histograms. This one shows a very typical configuration

that is almost bell-shaped, but still has a bit of "skewness" off to the
right. The tallest, and therefore most frequent range of values is
right near the true mean of 6,053,834.

Histogram of replicate(4000, mean(sample(USstatePops$V1, size = 16, replace = TRUE)), simplify = TRUE)

replicate(4000, mean(sample(USstatePops$V1, size = 16, replace = TRUE)), simplify = TRUE)

Fr
eq
ue
nc
y

2.0e+06 4.0e+06 6.0e+06 8.0e+06 1.0e+07 1.2e+07 1.4e+07

0
20
0

40
0

60
0

80
0

10
00

By the way, were you able to figure out the command to generate
this histogram on your own? All you had to do was substitute
hist() for the outermost mean() in the previous command. In case
you struggled, here it is:

52

hist(replicate(4000, mean(+  
sample(USstatePops$V1,size=16,replace=TRUE)), + 
simplify=TRUE))

This is a great moment to take a deep breath. We’ve just covered a
couple hundred years of statistical thinking in just a few pages. In
fact, there are two big ideas, "the law of large numbers" and  
the central limit theorem" that we have just partially demonstrated.
These two ideas literally took mathematicians like Gerolamo Car-
dano (1501-1576) and Jacob Bernoulli (1654-1705) several centuries
to figure out. If you look these ideas up, you may find a lot of be-
wildering mathematical details, but for our purposes, there are two
really important take-away messages. First, if you run a statistical
process a large number of times, it will converge on a stable result.
For us, we knew what the average population was of the 50 states
plus the District of Columbia. These 51 observations were our
population, and we wanted to know how many smaller subsets, or
samples, of size n=16 we would have to draw before we could get
a good approximation of that true value. We learned that drawing
one sample provided a poor result. Drawing 400 samples gave us a
mean that was off by 1.5%. Drawing 4000 samples gave us a mean
that was off by less than 1%. If we had kept going to 40,000 or
400,000 repetitions of our sampling process, we would have come
extremely close to the actual average of 6,053,384.

Second, when we are looking at sample means, and we take the
law of large numbers into account, we find that the distribution of
sampling means starts to create a bell-shaped or normal distribu-
tion, and the center of that distribution, the mean of all of those
sample means gets really close to the actual population mean. It
gets closer faster for larger samples, and in contrast, for smaller

samples you have to draw lots and lots of them to get really close.
Just for fun, lets illustrate this with a sample size that is larger than
16. Here’s a run that only repeats 100 times, but each time draws a
sample of n=51 (equal in size to the population):

> mean(replicate(100, mean(+  
sample(USstatePops$V1,size=51,replace=TRUE)),+ 
simplify=TRUE))

[1] 6114231

Now, we’re only off from the true value of the population mean by
about one tenth of one percent. You might be scratching your head
now, saying, "Wait a minute, isn’t a sample of 51 the same thing as
the whole list of 51 observations?" This is confusing, but it goes
back to the question of sampling with replacement that we exam-
ined a couple of pages ago (and that appears in the command
above as replace=TRUE). Sampling with replacement means that
as you draw out one value to include in your random sample, you
immediately chuck it back into the list so that, potentially, it could
get drawn again either immediately or later. As mentioned before,
this practice simplifies the underlying proofs, and it does not cause
any practical problems, other than head scratching. In fact, we
could go even higher in our sample size with no trouble:

> mean(replicate(100, mean(+ 
sample(USstatePops$V1,size=120,replace=TRUE)), + 
simplify=TRUE))

[1] 6054718

That command runs 100 replications using samples of size n=120.
Look how close the mean of the sampling distribution is to the

53

population mean now! Remember that this result will change a lit-
tle bit every time you run the procedure, because different random
samples are being drawn for each run. But the rule of thumb is that
the bigger your sample size, what statisticians call n, the closer
your estimate will be to the true value. Likewise, the more trials
you run, the closer your population estimate will be.

So, if you’ve had a chance to catch your breath, let’s move on to
making use of the sampling distribution. First, let’s save one distri-
bution of sample means so that we have a fixed set of numbers to
work with:

SampleMeans <- replicate(10000, mean(sample(US-
statePops$V1,size=5,+  
replace=TRUE)),simplify=TRUE)

The bolded part is new. We’re saving a distribution of sample
means to a new vector called "SampleMeans". We should have
10,000 of them:

> length(SampleMeans)

[1] 10000

And the mean of all of these means should be pretty close to our
population mean of 6,053,384:

> mean(SampleMeans)

[1] 6065380

You might also want to run a histogram on SampleMeans and see
what the frequency distribution looks like. Right now, all we need
to look at is a summary of the list of sample means:

> summary(SampleMeans)

Min. 1st Qu. Median Mean 3rd Qu. Max.
799100 3853000 5370000 6065000 7622000 25030000

If you need a refresher on the median and quartiles, take a look
back at Chapter 3 - Rows and Columns.

This summary is full of useful information. First, take a look at the
max and the min. The minimum sample mean in the list was
799,100. Think about that for a moment. How could a sample have
a mean that small when we know that the true mean is much
higher? Rhode Island must have been drawn several times in that
sample! The answer comes from the randomness involved in sam-
pling. If you run a process 10,000 times you are definitely going to
end up with a few weird examples. Its almost like buying a lottery
ticket. The vast majority of tickets are the usual - not a winner.
Once in a great while, though, there is a very unusual ticket - a win-
ner. Sampling is the same: The extreme events are unusual, but
they do happen if you run the process enough times. The same
goes for the maximum: at 25,030,000 the maximum sample mean is
much higher than the true mean.

At 5,370,000 the median is quite close to the mean, but not exactly
the same because we still have a little bit of rightward skew (the
"tail" on the high side is slightly longer than it should be because of
the reverse J-shape of the original distribution). The median is very
useful because it divides the sample exactly in half: 50%, or exactly
5000 of the sample means are larger than 5,370,000 and the other
50% are lower. So, if we were to draw one more sample from the
population it would have a fifty-fifty chance of being above the me-
dian. The quartiles help us to cut things up even more finely. The

54

third quartile divides up the bottom 75% from the top 25%. So only
25% of the sample means are higher than 7,622,000. That means if
we drew a new sample from the population that there is only a
25% chance that it will be larger than that. Likewise, in the other
direction, the first quartile tells us that there is only a 25% chance
that a new sample would be less than 3,853,000.

There is a slightly different way of getting the same information
from R that will prove more flexible for us in the long run. The
quantile() function can show us the same information as the me-
dian and the quartiles, like this:

 > quantile(SampleMeans, probs=c(0.25,0.50,0.75))

 25% 50% 75%

3853167 5370314 7621871

You will notice that the values are just slightly different, by less
than one tenth of one percent, than those produced by the sum-
mary() function. These are actually more precise, although the less
precise ones from summary() are fine for most purposes. One rea-
son to use quantile() is that it lets us control exactly where we
make the cuts. To get quartiles, we cut at 25% (0.25 in the com-
mand just above), at 50%, and at 75%. But what if we wanted in-
stead to cut at 2.5% and 97.5%? Easy to do with quantile():

> quantile(SampleMeans, probs=c(0.025,0.975))

 2.5% 97.5%

 2014580 13537085

So this result shows that, if we drew a new sample, there is only a
2.5% chance that the mean would be lower than 2,014,580. Like-

wise, there is only a 2.5% chance that the new sample mean would
be higher than 13,537,085 (because 97.5% of the means in the sam-
pling distribution are lower than that value).

Now let’s put this knowledge to work. Here is a sample of the num-
ber of people in a certain area, where each of these areas is some
kind of a unit associated with the U.S.:

3,706,690 
159,358 
106,405 
55,519 
53,883

We can easily get these into R and calculate the sample mean:

> MysterySample <- c(3706690, 159358, 106405, + 
 55519, 53883)

> mean(MysterySample)

[1] 816371

The mean of our mystery sample is 816,371. The question is, is this
a sample of U.S. states or is it something else? Just on its own it
would be hard to tell. The first observation in our sample has more
people in it than Kansas, Utah, Nebraska, and several other states.
We also know from looking at the distribution of raw population
data from our previous example that there are many, many states
that are quite small in the number of people. Thanks to the work
we’ve done earlier in this chapter, however, we have an excellent
basis for comparison. We have the sampling distribution of means,
and it is fair to say that if we get a new mean to look at, and the
new mean is way out in the extreme areas of the sample distribu-

55

tion, say, below the 2.5% mark or above the 97.5% mark, then it
seems much less likely that our MysterySample is a sample of
states.

In this case, we can see quite clearly that 816,371 is on the extreme
low end of the sampling distribution. Recall that when we ran the
quantile() command we found that only 2.5% of the sample means
in the distribution were smaller than 2,014,580.

In fact, we could even play around with a more stringent criterion:

> quantile(SampleMeans, probs=c(0.005,0.995))

 0.5% 99.5%

 1410883 16792211

This quantile() command shows that only 0.5% of all the sample
means are lower than 1,410,883. So our MysterySample mean of
816,371 would definitely be a very rare event, if it were truly a sam-
ple of states. From this we can infer, tentatively but based on good
statistical evidence, that our MysterySample is not a sample of
states. The mean of MysterySample is just too small to be very
likely to be a sample of states.

And this is in fact correct: MysterySample contains the number of
people in five different U.S. territories, including Puerto Rico in the
Caribbean and Guam in the Pacific. These territories are land
masses and groups of people associated with the U.S., but they are
not states and they are different in many ways than states. For one
thing they are all islands, so they are limited in land mass. Among
the U.S. states, only Hawaii is an island, and it is actually bigger
than 10 of the states in the continental U.S. The important thing to
take away is that the characteristics of this group of data points, no-

tably the mean of this sample, was sufficiently different from a
known distribution of means that we could make an inference that
the sample was not drawn from the original population of data.

This reasoning is the basis for virtually all statistical inference. You
construct a comparison distribution, you mark off a zone of ex-
treme values, and you compare any new sample of data you get to
the distribution to see if it falls in the extreme zone. If it does, you
tentatively conclude that the new sample was obtained from some
other source than what you used to create the comparison distribu-
tion.

If you feel a bit confused, take heart. There’s 400-500 years of
mathematical developments represented in that one preceding
paragraph. Also, before we had cool programs like R that could be
used to create and analyze actual sample distributions, most of the
material above was taught as a set of formulas and proofs. Yuck!
Later in the book we will come back to specific statistical proce-
dures that use the reasoning described above. For now, we just
need to take note of three additional pieces of information.

First, we looked at the mean of the sampling distribution with
mean() and we looked at its shaped with hist(), but we never quan-
tified the spread of the distribution:

> sd(SampleMeans)

[1] 3037318

This shows us the standard deviation of the distribution of sam-
pling means. Statisticians call this the "standard error of the mean."
This chewy phrase would have been clearer, although longer, if it
had been something like this: "the standard deviation of the distri-

56

bution of sample means for samples drawn from a population." Un-
fortunately, statisticians are not known for giving things clear la-
bels. Suffice to say that when we are looking at a distribution and
each data point in that distribution is itself a representation of a
sample (for example, a mean), then the standard deviation is re-
ferred to as the standard error.

Second, there is a shortcut to finding out the standard error that
does not require actually constructing an empirical distribution of
10,000 (or any other number) of sampling means. It turns out that
the standard deviation of the original raw data and the standard
error are closely related by a simple bit of algebra:

> sd(USstatePops$V1)/sqrt(5)

[1] 3051779

The formula in this command takes the standard deviation of the
original state data and divides it by the square root of the sample
size. Remember three of four pages ago when we created the Sam-
pleMeans vector by using the replicate() and sample() commands,
that we used a sample size of n=5. That’s what you see in the for-
mula above, inside of the sqrt() function. In R, and other software
sqrt() is the abbreviation for "square root" and not for "squirt" as
you might expect. So if you have a set of observations and you cal-
culate their standard deviation, you can also calculate the standard
error for a distribution of means (each of which has the same sam-
ple size), just by dividing by the square root of the sample size. You
may notice that the number we got with the shortcut was slightly
larger than the number that came from the distribution itself, but
the difference is not meaningful (and only arrises because of ran-
domness in the distribution). Another thing you may have noticed

is that the larger the sample size, the smaller the standard error.
This leads to an important rule for working with samples: the big-
ger the better.

The last thing is another shortcut. We found out the 97.5% cut
point by constructing the sampling distribution and then using
quantile to tell us the actual cuts. You can also cut points just using
the mean and the standard error. Two standard errors down from
the mean is the 2.5% cut point and two standard errors up from the
mean is the 97.5% cut point.

> StdError<-sd(USstatePops$V1)/sqrt(5)

> CutPoint975<-mean(USstatePops$V1)+(2 * StdEr-
ror)

> CutPoint975

[1] 12157391

You will notice again that this value is different from what we cal-
culated with the quantile() function using the empirical distribu-
tion. The differences arise because of the randomness in the distri-
bution that we constructed. The value above is an estimate that is
based on statistical proofs, whereas the empirical SampleMeans list
that we constructed is just one of a nearly infinite range of such
lists that we could create. We could easily reduce the discrepancy
between the two methods by using a larger sample size and by hav-
ing more replications included in the sampling distribution.

To summarize, with a data set that includes 51 data points with the
numbers of people in states, and a bit of work using R to construct
a distribution of sampling means, we have learned the following:

57

• Run a statistical process a large number of times and you get a
consistent pattern of results.

• Taking the means of a large number of samples and plotting
them on a histogram shows that the sample means are fairly
well normally distributed and that the center of the distribution
is very, very close to the mean of the original raw data.

• This resulting distribution of sample means can be used as a ba-
sis for comparisons. By making cut points at the extreme low
and high ends of the distribution, for example 2.5% and 97.5%,
we have a way of comparing any new information we get.

• If we get a new sample mean, and we find that it is in the ex-
treme zone defined by our cut points, we can tentatively con-
clude that the sample that made that mean is a different kind of
thing than the samples that made the sampling distribution.

• A shortcut and more accurate way of figuring the cut points in-
volves calculating the "standard error" based on the standard de-
viation of the original raw data.

We’re not statisticians at this point, but the process of reasoning
based on sampling distributions is at the heart of inferential statis-
tics, so if you have followed the logic presented in this chapter, you
have made excellent progress towards being a competent user of
applied statistics.

Chapter Challenge

Collect a sample consisting of at least 20 data points and construct
a sampling distribution. Calculate the standard error and use this

to calculate the 2.5% and 97.5% distribution cut points. The data
points you collect should represent instances of the same phenome-
non. For instance, you could collect the prices of 20 textbooks, or
count the number of words in each of 20 paragraphs.

Sources

http://en.wikipedia.org/wiki/Central_limit_theorem

http://en.wikipedia.org/wiki/Gerolamo_Cardano

http://en.wikipedia.org/wiki/Jacob_Bernoulli

http://en.wikipedia.org/wiki/Law_of_large_numbers

http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories
_by_population

http://www.khanacademy.org/math/statistics/v/central-limit-th
eorem

R Commands Used in This Chapter

length() - The number of elements in a vector

mean() - The arithmetic mean or average of a set of values

quantile() - Calculates cut points based on percents/proportions

replicate() - Runs an expression/calculation many times

sample() - Chooses elements at random from a vector

sd() - Calculates standard deviation

58

http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Gerolamo_Cardano
http://en.wikipedia.org/wiki/Gerolamo_Cardano
http://en.wikipedia.org/wiki/Jacob_Bernoulli
http://en.wikipedia.org/wiki/Jacob_Bernoulli
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
http://www.khanacademy.org/math/statistics/v/central-limit-theorem
http://www.khanacademy.org/math/statistics/v/central-limit-theorem
http://www.khanacademy.org/math/statistics/v/central-limit-theorem
http://www.khanacademy.org/math/statistics/v/central-limit-theorem

sqrt() - Calculates square root

summary() - Summarizes contents of a vector

59

In 2012 the technology press contained many headlines about big data. What makes data big, and
why is this bigness important? In this chapter, we discuss some of the real issues behind these
questions. Armed with information from the previous chapter concerning sampling, we can give
more thought to how the size of a data set affects what we do with the data.

CHAPTER 8

60

Big Data? Big Deal!

MarketWatch (a Wall Street Journal Service) recently published an
article with the title, "Big Data Equals Big Business Opportunity
Say Global IT and Business Professionals," and the subtitle, "70 Per-
cent of Organizations Now Considering, Planning or Running Big
Data Projects According to New Global Survey." The technology
news has been full of similar articles for several years. Given the
number of such articles it is hard to resist the idea that "big data"
represents some kind of revolution that has turned the whole
world of information and technology topsy-turvy. But is this really
true? Does "big data" change everything?

Business analyst Doug Laney suggested that three characteristics
make "big data" different from what came before: volume, velocity,
and variety. Volume refers to the sheer amount of data. Velocity fo-
cuses on how quickly data arrives as well as how quickly those
data become "stale." Finally, Variety reflects the fact that there may
be many different kinds of data. Together, these three characteris-
tics are often referred to as the "three Vs" model of big data. Note,
however, that even before the dawn of the computer age we’ve had
a variety of data, some of which arrives quite quickly, and that can
add up to quite a lot of total storage over time (think, for example,
of the large variety and volume of data that has arrived annually at
Library of Congress since the 1800s!). So it is difficult to tell, just
based on someone saying that they have a high volume, high veloc-
ity, and high variety data problem, that big data is fundamentally a
brand new thing.

With that said, there are certainly many changes afoot that make
data problems qualitatively different today as compared with a
few years ago. Let’s list a few things which are pretty accurate:

1. The decline in the price of sensors (like barcode readers) and
other technology over recent decades has made it cheaper and
easier to collect a lot more data.

2. Similarly, the declining cost of storage has made it practical to
keep lots of data hanging around, regardless of its quality or use-
fulness.

3. Many people’s attitudes about privacy seem to have accommo-
dated the use of Facebook and other platforms where we reveal
lots of information about ourselves.

4. Researchers have made significant advances in the "machine
learning" algorithms that form the basis of many data mining
techniques.

5. When a data set gets to a certain size (into the range of thou-
sands of rows), conventional tests of statistical significance are
meaningless, because even the most tiny and trivial results (or
effect sizes, as statisticians call them) are statistically significant.

Keeping these points in mind, there are also a number of things
that have not changed throughout the years:

A. Garbage in, garbage out: The usefulness of data depends heav-
ily upon how carefully and well it was collected. After data were
collected, the quality depends upon how much attention was paid
to suitable pre-processing: data cleaning and data screening.

B. Bigger equals weirder: If you are looking for anomalies - rare
events that break the rules - then larger is better. Low frequency
events often do not appear until a data collection goes on for a long

61

time and/or encompasses a large enough group of instances to con-
tain one of the bizarre cases.

C. Linking adds potential: Standalone datasets are inherently lim-
ited by whatever variables are available. But if those data can be
linked to some other data, all of a sudden new vistas may open up.
No guarantees, but the more you can connect records here to other
records over there, the more potential findings you have.

Items on both of the lists above are considered pretty common-
place and uncontroversial. Taken together, however, they do shed
some light on the question of how important "big data" might be.
We have had lots of historical success using conventional statistics
to examine modestly sized (i.e., 1000 rows or less) datasets for sta-
tistical regularities. Everyone’s favorite basic statistic, the Student’s
t-test, is essential a test for differences in the central tendency of
two groups. If the data contain regularities such that one group is
notably different from another group, a t-test shows it to be so.

Big data does not help us with these kinds of tests. We don’t even
need a thousand records for many conventional statistical compari-
sons, and having a million or a hundred million records won’t
make our job any easier (it will just take more computer memory
and storage). Think about what you read in the previous chapter:
We were able to start using a basic form of statistical inference with
a data set that contained a population with only 51 elements. In
fact, many of the most commonly used statistical techniques, like
the Student’s t-test, were designed specifically to work with very
small samples.

On the other hand, if we are looking for needles in haystacks, it
makes sense to look (as efficiently as possible) through the biggest

possible haystack we can find, because it is much more likely that a
big haystack will contain at least one needle and maybe more.
Keeping in mind the advances in machine learning that have oc-
curred over recent years, we begin to have an idea that good tools
together with big data and interesting questions about unusual pat-
terns could indeed provide some powerful new insights.

Let’s couple this optimism with three very important cautions. The
first caution is that the more complex our data are, the more diffi-
cult it will be to ensure that the data are "clean" and suitable for the
purpose we plan for them. A dirty data set is worse in some ways
than no data at all because we may put a lot of time and effort into
finding an insight and find nothing. Even more problematic, we
may put a lot of time and effort and find a result that is simply
wrong! Many analysts believe that cleaning data - getting it ready
for analysis, weeding out the anomalies, organizing the data into a
suitable configuration - actually takes up most of the time and ef-
fort of the analysis process.

The second caution is that rare and unusual events or patterns are
almost always by their nature highly unpredictable. Even with the
best data we can imagine and plenty of variables, we will almost
always have a lot of trouble accurately enumerating all of the
causes of an event. The data mining tools may show us a pattern,
and we may even be able to replicate the pattern in some new data,
but we may never be confident that we have understood the pat-
tern to the point where we believe we can isolate, control, or under-
stand the causes. Predicting the path of hurricanes provides a great
example here: despite decades of advances in weather instrumenta-
tion, forecasting, and number crunching, meteorologists still have
great difficulty predicting where a hurricane will make landfall or

62

how hard the winds will blow when it gets there. The complexity
and unpredictability of the forces at work make the task exceed-
ingly difficult.

The third caution is about linking data sets. Item C above suggests
that linkages may provide additional value. With every linkage to
a new data set, however, we also increase the complexity of the
data and the likelihood of dirty data and resulting spurious pat-
terns. In addition, although many companies seem less and less
concerned about the idea, the more we link data about living peo-
ple (e.g., consumers, patients, voters, etc.) the more likely we are to
cause a catastrophic loss of privacy. Even if you are not a big fan of
the importance of privacy on principle, it is clear that security and
privacy failures have cost companies dearly both in money and
reputation. Today’s data innovations for valuable and acceptable
purposes maybe tomorrow’s crimes and scams. The greater the
amount of linkage between data sets, the easier it is for those peo-
ple with malevolent intentions to exploit it.

Putting this altogether, we can take a sensible position that high
quality data, in abundance, together with tools used by intelligent
analysts in a secure environment, may provide worthwhile bene-
fits in the commercial sector, in education, in government, and in
other areas. The focus of our efforts as data scientists, however,
should not be on achieving the largest possible data sets, but rather
on getting the right data and the right amount of data for the pur-
pose we intend. There is no special virtue in having a lot of data if
those data are unsuitable to the conclusions that we want to draw.
Likewise, simply getting data more quickly does not guarantee
that what we get will be highly relevant to our problems. Finally,
although it is said that variety is the spice of life, complexity is of-

ten a danger to reliability and trustworthiness: the more complex
the linkages among our data the more likely it is that problems
may crop up in making use of those data or keeping them safe.

The Tools of Data Science

Over the past few chapters, we’ve gotten a pretty quick jump start
on an analytical tool used by thousands of data analysts world-
wide - the open source R system for data analysis and visualiza-
tion. Despite the many capabilities of R, however, there are hun-
dreds of other tools used by data scientists, depending on the par-
ticular aspects of the data problem they focus on.

The single most popular and powerful tool, outside of R, is a pro-
prietary statistical system called SAS (pronounced "sass"). SAS con-
tains a powerful programming language that provides access to
many data types, functions, and language features. Learning SAS
is arguably as difficult (or as easy, depending upon your perspec-
tive) as learning R, but SAS is used by many large corporations be-
cause, unlike R, there is extensive technical and product support
on offer. Of course, this support does not come cheap, so most SAS
users work in large organizations that have sufficient resources to
purchase the necessary licenses and support plans.

Next in line in the statistics realm is SPSS, a package used by many
scientists (the acronym used to stand for Statistical Package for the
Social Sciences). SPSS is much friendlier than SAS, in the opinion
of many analysts, but not quite as flexible and powerful.

R, SPSS, and SAS grew up as statistics packages, but there are also
many general purpose programming languages that incorporate
features valuable to data scientists. One very exciting development

63

in programming languages has the odd name of "Processing." Proc-
essing is a programming language specifically geared toward creat-
ing data visualizations. Like R, Processing is an open source pro-
ject, so it is freely available at http://processing.org/. Also like R,
Processing is a cross-platform program, so it will run happily on
Mac, Windows, and Linux. There are lots of books available for
learning Processing (unfortunately, no open source books yet) and
the website contains lots of examples for getting started. Besides R,
Processing might be one of the most important tools in the data sci-
entist’s toolbox, at least for those who need to use data to draw con-
clusions and communicate with others.

Chapter Challenge

Look over the various websites connected with "Data.gov" to find
the largest and/or most complex data set that you can. Think
about (and perhaps write about) one or more of the ways that
those data could potentially be misused by analysts. Download a
data set that you find interesting and read it into R to see what you
can do with it.

For a super extra challenge, go to this website:
http://teamwpc.co.uk/products/wps

and download a trial version of the "World Programming System"
(WPS). WPS can read SAS code, so you could easily look up the
code that you would need in order to read in your Data.gov data-
set.

Sources

http://aqua.nasa.gov/doc/pubs/Wx_Forecasting.pdf

http://en.wikipedia.org/wiki/Big_data

http://en.wikipedia.org/wiki/Data.gov

http://www.marketwatch.com/story/big-data-equals-big-busines
s-opportunity-say-global-it-and-business-professionals-2012-05-14

64

http://processing.org
http://processing.org
http://teamwpc.co.uk/products/wps
http://teamwpc.co.uk/products/wps
http://aqua.nasa.gov/doc/pubs/Wx_Forecasting.pdf
http://aqua.nasa.gov/doc/pubs/Wx_Forecasting.pdf
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Data.gov
http://en.wikipedia.org/wiki/Data.gov
http://www.marketwatch.com/story/big-data-equals-big-business-opportunity-say-global-it-and-business-professionals-2012-05-14
http://www.marketwatch.com/story/big-data-equals-big-business-opportunity-say-global-it-and-business-professionals-2012-05-14
http://www.marketwatch.com/story/big-data-equals-big-business-opportunity-say-global-it-and-business-professionals-2012-05-14
http://www.marketwatch.com/story/big-data-equals-big-business-opportunity-say-global-it-and-business-professionals-2012-05-14

As an open source program with an active user community, R enjoys constant innovation thanks to
the dedicated developers who work on it. One useful innovation was the development of R-Studio, a
beautiful frame to hold your copy of R. This chapter walks through the installation of R-Studio and
introduces "packages," the key to the extensibility of R.

CHAPTER 9

65

Onward with R-Studio

Joseph J. Allaire is a serial entrepreneur, software engineer, and the
originator of some remarkable software products including "Cold-
Fusion," which was later sold to the web media tools giant Mac-
romedia and Windows Live Writer, a Microsoft blogging tool. Start-
ing in 2009, Allaire began working with a small team to develop an
open source program that enhances the usability and power of R.

As mentioned in previous chapters, R is an open source program,
meaning that the source code that is used to create a copy of R to
run on a Mac, Windows, or Linux computer is available for all to
inspect and modify. As with many open source projects, there is an
active community of developers who work on R, both on the basic
program itself and the many pieces and parts that can be added
onto the basic program. One of these add-ons is R-Studio. R-Studio
is an Integrated Development Environment, abbreviated as IDE.
Every software engineer knows that if you want to get serious
about building something out of code, you must use an IDE. If you
think of R as a piece of canvas rolled up and laying on the floor, R-
Studio is like an elegant picture frame. R hangs in the middle of R
studio, and like any good picture frame, enhances our appreciation
of what is inside it.

The website for R-studio is http://www.rstudio.org/ and you can
inspect the information there at any time. For most of the rest of
this chapter, if you want to follow along with the installation and
use of R-Studio, you will need to work on a Mac, Windows, or
Linux computer.

Before we start that, let’s consider why we need an IDE to work
with R. In the previous chapters, we have typed a variety of com-
mands into R, using what is known as the "R console." Console is

an old technology term that dates back to the days when comput-
ers were so big that they each occupied their own air conditioned
room. Within that room there was often one "master control sta-
tion" where a computer operator could do just about anything to
control the giant computer by typing in commands. That station
was known as the console. The term console is now used in many
cases to refer to any interface where you can directly type in com-
mands. We’ve typed commands into the R console in an effort to
learn about the R language as well as to illustrate some basic princi-
ples about data structures and statistics.

If we really want to "do" data science, though, we can’t sit around
typing commands every day. First of all, it will become boring very
fast. Second of all, whoever is paying us to be a data scientist will
get suspicious when he or she notices that we are retyping some of
the commands we typed yesterday. Third, and perhaps most impor-
tant, it is way too easy to make a mistake - to create what computer
scientists refer to as a bug - if you are doing every little task by
hand. For these reasons, one of our big goals within this book is to
create something that is reusable: where we can do a few clicks or
type a couple of things and unleash the power of many processing
steps. Using an IDE, we can build these kinds of reusable pieces.
The IDE gives us the capability to open up the process of creation,
to peer into the component parts when we need to, and to close the
hood and hide them when we don’t. Because we are working with
data, we also need a way of closely inspecting the data, both its con-
tents and its structure. As you probably noticed, it gets pretty tedi-
ous doing this at the R console, where almost every piece of output
is a chunk of text and longer chunks scroll off the screen before you
can see them. As an IDE for R, R-Studio allows us to control and

66

http://www.rstudio.org
http://www.rstudio.org

monitor both our code and our text in a way that supports the crea-
tion of reusable elements.

Before we can get there, though, we have to have R-Studio in-
stalled on a computer. Perhaps the most challenging aspect of in-
stalling R-Studio is having to install R first, but if you’ve already
done that in chapter 2, then R-Studio should be a piece of cake.
Make sure that you have the latest version of R installed before
you begin with the installation of R-studio. There is ample docu-
mentation on the R-studio website,
http://www.rstudio.org/, so if you follow the instructions
there, you should have minimal difficulty. If you reach a
page where you are asked to choose between installing R-
studio server and installing R-studio as a desktop applica-
tion on your computer, choose the latter. We will look into R-
studio server a little later, but for now you want the
desktop/single user version. If you run into any difficulties
or you just want some additional guidance about R-studio,
you may want to have a look at the book entitled, Getting
Started with R-studio, by John Verzani (2011, Sebastopol, CA:
O’Reilly Media). The first chapter of that book has a general
orientation to R and R-studio as well as a guide to installing
and updating R-studio. There is also a YouTube video that
introduces R-studio here:  
http://www.youtube.com/watch?v=7sAmqkZ3Be8  
Be aware if you search for other YouTube videos that there is
a disk recovery program as well a music group that share the
R-Studio name: You will get a number of these videos if you
search on "R-Studio" without any other search terms.

Once you have installed R-Studio, you can run it immedi-

ately in order to get started with the activities in the later parts of
this chapter. Unlike other introductory materials, we will not walk
through all of the different elements of the R-Studio screen. Rather,
as we need each feature we will highlight the new aspect of the ap-
plication. When you run R-Studio, you will see three or four sub-
windows. Use the File menu to click "New" and in the sub-menu
for "New" click "R Script." This should give you a screen that looks
something like this:

67

http://www.rstudio.org
http://www.rstudio.org
http://www.youtube.com/watch?v=7sAmqkZ3Be8
http://www.youtube.com/watch?v=7sAmqkZ3Be8

The upper left hand "pane" (another name for a sub-window) dis-
plays a blank space under the tab title "Untitled1." Click in that
pane and type the following:

MyMode <- function(myVector)

{

 return(myVector)

}

You have just created your first "function" in R. A function is a bun-
dle of R code that can be used over and over again without having
to retype it. Other programming languages also have functions.
Other words for function are "procedure" and "subroutine," al-
though these terms can have a slightly different meaning in other
languages. We have called our function "MyMode." You may re-
member from a couple of chapters that the basic setup of R does
not have a statistical mode function in it, even though it does have
functions for the two other other common central tendency statis-
tics, mean() and median(). We’re going to fix that problem by creat-
ing our own mode function. Recall that the mode function should
count up how many of each value is in a list and then return the
value that occurs most frequently. That is the definition of the statis-
tical mode: the most frequently occurring item in a vector of num-
bers.

A couple of other things to note: The first is the "myVector" in pa-
rentheses on the first line of our function. This is the "argument" or
input to the function. We have seen arguments before when we
called functions like mean() and median(). Next, note the curly
braces that are used on the second and final lines. These curly

braces hold together all of the code that goes in our function. Fi-
nally, look at the return() right near the end of our function. This
return() is where we send back the result of what our function ac-
complished. Later on when we "call" our new function from the R
console, the result that we get back will be whatever is in the paren-
theses in the return().

Based on that explanation, can you figure out what MyMode()
does in this primitive initial form? All it does is return whatever
we give it in myVector, completely unchanged. By the way, this is a
common way to write code, by building up bit by bit. We can test
out what we have each step of the way. Let’s test out what we have
accomplished so far. First, let’s make a very small vector of data to
work with. In the lower left hand pane of R-studio you will notice
that we have a regular R console running. You can type commands
into this console, just like we did in previous chapters just using R:

> tinyData <- c(1,2,1,2,3,3,3,4,5,4,5)

> tinyData

 [1] 1 2 1 2 3 3 3 4 5 4 5

Then we can try out our new MyMode() function:

> MyMode(tinyData)

Error: could not find function "MyMode"

Oops! R doesn’t know about our new function yet. We typed our
MyMode() function into the code window, but we didn’t tell R
about it. If you look in the upper left pane, you will see the code
for MyMode() and just above that a few small buttons on a tool
bar. One of the buttons looks like a little right pointing arrow with

68

the word "Run" next to it. First, use your mouse to select all of the
code for MyMode(), from the first M all the way to the last curly
brace. Then click the Run button. You will immediately see the
same code appear in the R console window just below. If you have
typed everything correctly, there should be no errors or warnings.
Now R knows about our MyMode() function and is ready to use it.
Now we can type:

> MyMode(tinyData)

 [1] 1 2 1 2 3 3 3 4 5 4 5

This did exactly what we expected: it just echoed back the contents
of tinyData. You can see from this example how parameters work,
too. in the command just above, we passed in tinyData as the input
to the function. While the function was working, it took what was
in tinyData and copied it into myVector for use inside the function.
Now we are ready to add the next command to our function:

MyMode <- function(myVector)

{

 uniqueValues <- unique(myVector)

 return(uniqueValues)

}

Because we made a few changes, the whole function appears again
above. Later, when the code gets a little more complicated, we will
just provide one or two lines to add. Let’s see what this code does.
First, don’t forget to select the code and click on the Run button.
Then, in the R console, try the MyMode() command again:

> MyMode(tinyData)

[1] 1 2 3 4 5

Pretty easy to see what the new code does, right? We called the
unique() function, and that returned a list of unique values that ap-
peared in tinyData. Basically, unique() took out all of the redundan-
cies in the vector that we passed to it. Now let’s build a little more:

MyMode <- function(myVector)

{

 uniqueValues <- unique(myVector)

 uniqueCounts <- tabulate(myVector)

 return(uniqueCounts)

}

Don’t forget to select all of this code and Run it before testing it
out. This time when we pass tinyData to our function we get back
another list of five elements, but this time it is the count of how
many times each value occurred:

> MyMode(tinyData)

[1] 2 2 3 2 2

Now we’re basically ready to finish our MyMode() function, but
let’s make sure we understand the two pieces of data we have in
uniqueValues and uniqueCounts:

In the table below we have lined up a row of the elements of
uniqueValues just above a row of the counts of how many of each
of those values we have. Just for illustration purposes, in the top/

69

label row we have also shown the "index" number. This index num-
ber is the way that we can "address" the elements in either of the
variables that are shown in the rows. For instance, element number
4 (index 4) for uniqueValues contains the number four, whereas ele-
ment number four for uniqueCounts contains the number two. So
if we’re looking for the most frequently occurring item, we should
look along the bottom row for the largest number. When we get
there, we should look at the index of that cell. Whatever that index
is, if we look in the same cell in uniqueValues, we will have the
value that occurs most frequently in the original list. In R, it is easy
to accomplish what was described in the last sentence with a single
line of code:

uniqueValues[which.max(uniqueCounts)]

The which.max() function finds the index of the element of unique-
Counts that is the largest. Then we use that index to address
uniqueValues with square braces. The square braces let us get at
any of the elements of a vector. For example, if we asked for
uniqueValues[5] we would get the number 5. If we add this one list
of code to our return statement, our function will be finished:

MyMode <- function(myVector)

{

 uniqueValues <- unique(myVector)

 uniqueCounts <- tabulate(myVector)

 return(uniqueValues[which.max(uniqueCounts)])

}

We’re now ready to test out our function. Don’t forget to select the
whole thing and run it! Otherwise R will still be remembering our
old one. Let’s ask R what tinyData contains, just to remind our-
selves, and then we will send tinyData to our MyMode() function:

> tinyData

 [1] 1 2 1 2 3 3 3 4 5 4 5

> MyMode(tinyData)

[1] 3

Hooray! It works. Three is the most frequently occurring value in
tinyData. Let’s keep testing and see what happens:

> tinyData<-c(tinyData,5,5,5)

> tinyData

 [1] 1 2 1 2 3 3 3 4 5 4 5 5 5 5

> MyMode(tinyData)

[1] 5

70

INDEX 1 2 3 4 5

uniqueValues 1 2 3 4 5

uniqueCounts 2 2 3 2 2

It still works! We added three more fives to the end of the tinyData
vector. Now tinyData contains five fives. MyMode() properly re-
ports the mode as five. Hmm, now let’s try to break it:

> tinyData

 [1] 1 2 1 2 3 3 3 4 5 4 5 5 5 5 1 1 1

> MyMode(tinyData)

[1] 1

This is interesting: Now tinyData contains five ones and five fives.
MyMode() now reports the mode as one. This turns out to be no
surprise. In the documentation for which.max() it says that this
function will return the first maximum it finds. So this behavior is
to be expected. Actually, this is always a problem with the statisti-
cal mode: there can be more than one mode in a data set. Our My-
Mode() function is not smart enough to realize this, not does it give
us any kind of warning that there are multiple modes in our data.
It just reports the first mode that it finds.

Here’s another problem:

> tinyData<-c(tinyData,9,9,9,9,9,9,9)

> MyMode(tinyData)

[1] NA

> tabulate(tinyData)

 [1] 5 2 3 2 5 0 0 0 7

In the first line, we stuck a bunch of nines on the end of tinyData.
Remember that we had no sixes, sevens, or eights. Now when we

run MyMode() it says "NA," which is R’s way of saying that some-
thing went wrong and you are getting back an empty value. It is
probably not obvious why things went whacky until we look at the
last command above, tabulate(tinyData). Here we can see what
happened: when it was run inside of the MyMode() function, tabu-
late() generated a longer list than we were expecting, because it
added zeroes to cover the sixes, sevens, and eights that were not
there. The maximum value, out at the end is 7, and this refers to
the number of nines in tinyData. But look at what the unique()
function produces:

> unique(tinyData)

[1] 1 2 3 4 5 9

There are only six elements in this list, so it doesn’t match up as it
should (take another look at the table on the previous page and
imagine if the bottom row stuck out further than the row just
above it). We can fix this with the addition of the match() function
to our code:

MyMode <- function(myVector)

{

 uniqueValues <- unique(myVector)

 uniqueCounts <- tabulate(+  
 match(myVector,uniqueValues))

 return(uniqueValues[which.max(uniqueCounts)])

}

71

The new part of the code is in bold. Now instead of tabulating
every possible value, including the ones for which we have no
data, we only tabulate those items where there is a "match" be-
tween the list of unique values and what is in myVector. Now
when we ask MyMode() for the mode of tinyData we get the cor-
rect result:

> MyMode(tinyData)

[1] 9

Aha, now it works the way it should. After our last addi-
tion of seven nines to the data set, the mode of this vector is
correctly reported as nine.

Before we leave this activity, make sure to save your work.
Click anywhere in the code window and then click on the
File menu and then on Save. You will be prompted to
choose a location and provide a filename. You can call the
file MyMode, if you like. Note that R adds the "R" extension
to the filename so that it is saved as MyMode.R. You can
open this file at any time and rerun the MyMode() function
in order to define the function in your current working ver-
sion of R.

A couple of other points deserve attention. First, notice that
when we created our own function, we had to do some test-
ing and repairs to make sure it ran the way we wanted it to.
This is a common situation when working on anything re-
lated to computers, including spreadsheets, macros, and pretty
much anything else that requires precision and accuracy. Second,
we introduced at least four new functions in this exercise, includ-
ing unique(), tabulate(), match(), and which.max(). Where did

these come from and how did we know? R has so many functions
that it is very difficult to memorize them all. There’s almost always
more than one way to do something, as well. So it can be quite con-
fusing to create a new function, if you don’t know all of the ingredi-
ents and there’s no one way to solve a particular problem. This is
where the community comes in. Search online and you will find

dozens of instances where people have tried to solve similar prob-
lems to the one you are solving, and you will also find that they
have posted the R code for their solutions. These code fragments
are free to borrow and test. In fact, learning from other people’s ex-

72

amples is a great way to expand your horizons and learn new tech-
niques.

The last point leads into the next key topic. We had to do quite a
bit of work to create our MyMode function, and we are still not
sure that it works perfectly on every variation of data it might en-
counter. Maybe someone else has already solved the same prob-
lem. If they did, we might be able to find an existing "package" to
add onto our copy of R to extend its functions. In fact, for the statis-
tical mode, there is an existing package that does just about every-
thing you could imagine doing with the mode. The package is
called modeest, a not very good abbreviation for mode-estimator.
To install this package look in the lower right hand pane of R-
studio. There are several tabs there, and one of them is "Packages."
Click on this and you will get a list of every package that you al-
ready have available in your copy of R (it may be a short list) with
checkmarks for the ones that are ready to use. It is unlikely that
modeest is already on this list, so click on the button that says "In-
stall Packages. This will give a dialog that looks like what you see
on the screenshot above. Type the beginning of the package name
in the appropriate area, and R-studio will start to prompt you with
matching choices. Finish typing modeest or choose it off of the list.
There may be a check box for "Install Dependencies," and if so
leave this checked. In some cases an R package will depend on
other packages and R will install all of the necessary packages in
the correct order if it can. Once you click the "Install" button in this
dialog, you will see some commands running on the R console (the
lower left pane). Generally, this works without a hitch and you
should not see any warning messages. Once the installation is com-
plete you will see modeest added to the list in the lower right pane
(assuming you have clicked the "Packages" tab). One last step is to

click the check box next to it. This runs the library() function on the
package, which prepares it for further use.

Let’s try out the mfv() function. This function returns the "most fre-
quent value" in a vector, which is generally what we want in a
mode function:

> mfv(tinyData)

[1] 9

So far so good! This seems to do exactly what our MyMode() func-
tion did, though it probably uses a different method. In fact, it is
easy to see what strategy the authors of this package used just by
typing the name of the function at the R command line:

> mfv

function (x, ...)

{

 f <- factor(x)

 tf <- tabulate(f)

 return(as.numeric(levels(f)[tf == max(tf)]))

}

<environment: namespace:modeest>

This is one of the great things about an open source program: you
can easily look under the hood to see how things work. Notice that
this is quite different from how we built MyMode(), although it too
uses the tabulate() function. The final line, that begins with the
word "environment" has importance for more complex feats of pro-

73

gramming, as it indicates which variable names mfv() can refer to
when it is working. The other aspect of this function which is
probably not so obvious is that it will correctly return a list of multi-
ple modes when one exists in the data you send to it:

> multiData <- c(1,5,7,7,9,9,10)

> mfv(multiData)

[1] 7 9

> MyMode(multiData)

[1] 7

In the first command line above, we made a small new vector that
contains two modes, 7 and 9. Each of these numbers occurs twice,
while the other numbers occur only once. When we run mfv() on
this vector it correctly reports both 7 and 9 as modes. When we use
our function, MyMode(), it only reports the first of the two modes.

To recap, this chapter provided a basic introduction to R-studio, an
integrated development environment (IDE) for R. An IDE is useful
for helping to build reusable components for handling data and
conducting data analysis. From this point forward, we will use R-
studio, rather than plain old R, in order to save and be able to re-
use our work. Among other things, R-studio makes it easy to man-
age "packages" in R, and packages are the key to R’s extensibility.
In future chapters we will be routinely using R packages to get ac-
cess to specialized capabilities.

These specialized capabilities come in the form of extra functions
that are created by developers in the R community. By creating our
own function, we learn that functions take "arguments" as their in-

puts and provide a return value. A return value is a data object, so
it could be a single number (technically a vector of length one) or it
could be a list of values (a vector) or even a more complex data ob-
ject. We can write and reuse our own functions, which we will do
quite frequently later in the book, or we can use other people’s
functions by installing their packages and using the library() func-
tion to make the contents of the package available. Once we have
used library() we can inspect how a function works by typing its
name at the R command line. (Note that this works for many func-
tions, but there are a few that were created in a different computer
language, like C, and for those we will not be able to inspect the
code as easily.)

Chapter Challenge

Write and test a new function called MySamplingDistribution()
that creates a sampling distribution of means from a numeric input
vector. You will need to integrate your knowledge of creating new
functions from this chapter with your knowledge of creating sam-
pling distributions from the previous chapter in order to create a
working function. Make sure to give careful thought about the pa-
rameters you will need to pass to your function and what kind of
data object your function will return.

Sources

http://en.wikipedia.org/wiki/R_(programming_language)

http://en.wikipedia.org/wiki/Joseph_J._Allaire

http://stats.lse.ac.uk/penzer/ST419materials/CSchpt3.pdf

74

http://en.wikipedia.org/wiki/R_(programming_language
http://en.wikipedia.org/wiki/R_(programming_language
http://en.wikipedia.org/wiki/Joseph_J._Allaire
http://en.wikipedia.org/wiki/Joseph_J._Allaire
http://stats.lse.ac.uk/penzer/ST419materials/CSchpt3.pdf
http://stats.lse.ac.uk/penzer/ST419materials/CSchpt3.pdf

http://www.use-r.org/downloads/Getting_Started_with_RStudio
.pdf

http://www.statmethods.net/interface/packages.html

http://www.youtube.com/watch?v=7sAmqkZ3Be8

R Commands Used in this Chapter

function() - Creates a new function

return() - Completes a function by returning a value

tabulate() - Counts occurrences of integer-valued data in a vector

unique() - Creates a list of unique values in a vector

match() - Takes two lists and returns values that are in each

mfv() - Most frequent value (from the modeest package)

75

Review 9.1 Onward with R-Studio

Check Answer

Question 1 of 5
One common definition for the statistical mode is:

A. The sum of all values divided by the
number of values.

B. The most frequently occurring value
in the data.

C. The halfway point through the data.

D. The distance between the smallest
value and the largest value.

http://www.use-r.org/downloads/Getting_Started_with_RStudio.pdf
http://www.use-r.org/downloads/Getting_Started_with_RStudio.pdf
http://www.use-r.org/downloads/Getting_Started_with_RStudio.pdf
http://www.use-r.org/downloads/Getting_Started_with_RStudio.pdf
http://www.statmethods.net/interface/packages.html
http://www.statmethods.net/interface/packages.html
http://www.youtube.com/watch?v=7sAmqkZ3Be8
http://www.youtube.com/watch?v=7sAmqkZ3Be8

We’ve come a long way already: Basic skills in controlling R, some exposure to R-studio, knowledge
of how to manage add-on packages, experience creating a function, essential descriptive statistics, and
a start on sampling distributions and inferential statistics. In this chapter, we use the social media
service Twitter to grab some up-to-the minute data and begin manipulating it.

CHAPTER 10

76

Tweet, Tweet!

Prior to this chapter we only worked with toy data sets: some
made up data about a fictional family and the census head
counts for the 50 states plus the District of Columbia. At this
point we have practiced a sufficient range of skills to work
with some real data. There are data sets everywhere, thou-
sands of them, many free for the taking, covering a range of
interesting topics from psychology experiments to film actors.
For sheer immediacy, though, you can’t beat the Twitter so-
cial media service. As you may know from direct experience,
Twitter is a micro-blogging service that allows people all over
the world to broadcast brief thoughts (140 characters or less)
that can then be read by their "followers" (other Twitter users
who signed up to receive the sender’s messages). The devel-
opers of Twitter, in a stroke of genius, decided to make these
postings, called tweets, available to the general public
through a web page on the Twitter.com site, and additional
through what is known as an application programming inter-
face or API.

Here’s where the natural extensibility of R comes in. An indi-
vidual named Jeff Gentry who, at this writing, seems to be a
data professional in the financial services industry, created an
add-on package for R called twitteR (not sure how it is pro-
nounced, but "twit-are" seems pretty close). The twitteR pack-
age provides an extremely simple interface for downloading
a list of tweets directly from the Twitter service into R. Using
the interface functions in twitteR, it is possible to search
through Twitter to obtain a list of tweets on a specific topic.
Every tweet contains the text of the posting that the author
wrote as well as lots of other useful information such as the
time of day when a tweet was posted. Put it all together and

it makes a fun way of getting up-to-the-minute data on what
people are thinking about a wide variety of topics.

The other great thing about working with twitteR is that we
will use many, if not all of the skills that we have developed
earlier in the book to put the interface to use.

A Token of Your Esteem: Using OAuth

Before we move forward with creating some code in R-
studio, there’s an important set of steps we need to accom-
plish at the Twitter website.

In 2013, Twitter completed a transition to a new version of
their application programming interface, or API. This new
API requires the use of a technique for authorization - a way
of proving to Twitter that you are who you are when you
search for (or post) tweets from a software application. The
folks at Twitter adopted an industry standard for this process
known as OAuth. OAuth provides a method for obtaining
two pieces of information - a "secret" and a "key" - without
which it will be difficult if not downright impossible to work
with Twitter (as well as twitteR). Here are the steps:

1.!Get a Twitter account at Twitter.com if you don’t already
have one.

2.!Go to the development page at Twitter
(https://dev.twitter.com) and sign in with your Twitter cre-
dentials.

77

https://dev.twitter.com
https://dev.twitter.com

3.!Click on "My Applications." The location of this may vary
over time, but look for in a drop down list that is under
your profile picture on the top right corner of the screen.

4.!Click on "Create a New Application." Fill in the blanks
with some sensible answers. Where it asks for a “website”
you can give your own home page. This is a required re-
sponse, so you will have to have some kind of web page to
point to. In contrast, the “Callback URL” can be left blank.
Click submit.

5.!Check the checkbox specified in the image below under set-
tings. Your application should be set so that it can be used
to sign in with Twitter.

6.!You will get a screen containing a whole bunch of data.
Make sure to save it all, but the part that you will really
need is the "Consumer key" and the "Consumer Secret,"
both of which are long strings of letters and numbers.
These strings will be used later to get your application run-
ning in R. The reason these are such long strings of gibber-
ish is that they are encrypted.

7.!Also take note of the Request Token URL and the Author-
ize URL. For the most part these are exactly the same
across all uses of Twitter, but they may change over time,
so you should make sure to stash them away for later. You
do not need to click on the “Create my Access Token” but-
ton.

8.!Go to the Settings tab and make sure that "Read, Write and
Access direct messages" is set.

You may notice on the Home->My applications screen in the
dev.twitter.com interface that there are additional tabs along
the top for different activities and tasks related to OAuth.
There is a tab called "OAuth tool" where you can always
come back to get your Consumer key and Consumer secret
information. Later in the chapter we will come back to the us-
age of your Consumer key and your Consumer secret but be-
fore we get there we have to get the twitteR package ready to
go.

Working with twitteR

To begin working with twitteR, launch your copy of R-studio.
The first order of business is to create a new R-studio "pro-
ject". A project in R-studio helps to keep all of the different
pieces and parts of an activity together including the datasets
and variables that you establish as well as the functions that
you write. For professional uses of R and R-studio, it is impor-
tant to have one project for each major activity: this keeps dif-
ferent data sets and variable names from interfering with
each other. Click on the "Project" menu in R-studio and then
click on "New Project." You will usually have a choice of three
kinds of new projects, a brand new "clean" project, an existing
directory of files that will get turned into a project folder, or a
project that comes out of a version control system. (Later in
the book we will look at version control, which is great for
projects involving more than one person.) Choose "New Di-
rectory" to start a brand new project. You can call your project

78

whatever you want, but because this project uses the twitteR
package, you might want to just call the project "twitter". You
also have a choice in the dialog box about where on your com-
puter R-studio will create the new directory.

R-studio will respond by showing a clean console screen and
most importantly an R "workspace" that does not contain any
of the old variables and data that we created in previous chap-
ters. In order to use twitteR, we need to load several packages
that it depends upon. These are called, in order "bitops",
"RCurl", "RJSONIO", and once these are all in place "twitteR"
itself. Rather than doing all of this by hand with the menus,
let’s create some functions that will assist us and make the ac-
tivity more repeatable. First, here is a function that takes as
input the name of a package. It tests whether the package has
been downloaded - "installed" - from the R code repository. If
it has not yet been downloaded/installed, the function takes
care of this. Then we use a new function, called require(), to
prepare the package for further use. Let’s call our function
"EnsurePackage" because it ensures that a package is ready
for us to use. If you don’t recall this step from the previous
chapter, you should click the "File" menu and then click
"New" to create a new file of R script. Then, type or copy/
paste the following code:

EnsurePackage<-function(x)

{

 x <- as.character(x)

 if (!require(x,character.only=TRUE))

 {

 install.packages(pkgs=x, 
 repos="http://cran.r-project.org")

 require(x,character.only=TRUE)

 }

}

On Windows machines, the folder where new R packages are
stored has to be configured to allow R to put new files there
(“write” permissions). In Windows Explorer, you can right
click on the folder and choose “Properties->Security” then
choose your username and user group, click Edit, enable all
permissions, and click OK. If you run into trouble, check out
the Windows FAQ at CRAN by searching or using this web
address:
http://cran.r-project.org/bin/windows/base/rw-FAQ.html .

The require() function on the fourth line above does the same
thing as library(), which we learned in the previous chapter,
but it also returns the value "FALSE" if the package you re-
quested in the argument "x" has not yet been downloaded.
That same line of code also contains another new feature, the
"if" statement. This is what computer scientists call a condi-
tional. It tests the stuff inside the parentheses to see if it evalu-
ates to TRUE or FALSE. If TRUE, the program continues to
run the script in between the curly braces (lines 4 and 8). If
FALSE, all the stuff in the curly braces is skipped. Also in the
third line, in case you are curious, the arguments to the re-
quire() function include "x," which is the name of the package
that was passed into the function, and "character.only=TRUE"
which tells the require() function to expect x to be a character

79

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org/bin/windows/base/rw-FAQ.html
http://cran.r-project.org/bin/windows/base/rw-FAQ.html

string. Last thing to notice about this third line: there is a "!"
character that reverses the results of the logical test. Techni-
cally, it is the Boolean function NOT. It requires a bit of men-
tal gyration that when require() returns FALSE, the "!" inverts
it to TRUE, and that is when the code in the curly braces
runs.

Once you have this code in a script window, make sure to se-
lect the whole function and click Run in the toolbar to make R
aware of the function. There is also a checkbox on that same
toolbar called, "Source on Save," that will keep us from hav-
ing to click on the Run button all the time. If you click the
checkmark, then every time you save the source code file, R-
studio will rerun the code. If you get in the habit of saving af-
ter every code change you will always be running the latest
version of your function.

Now we are ready to put EnsurePackage() to work on the
packages we need for twitteR. We’ll make a new function,
"PrepareTwitter," that will load up all of our packages for us.
Here’s the code:

PrepareTwitter<-function()

{

 EnsurePackage("bitops")

 EnsurePackage("RCurl")

 EnsurePackage("RJSONIO")

 EnsurePackage("twitteR")

 EnsurePackage("ROAuth")

}

This code is quite straightforward: it calls the EnsurePack-
age() function we created before five times, once to load each
of the packages we need. You may get some warning mes-
sages and these generally won’t cause any harm. If you are
on Windows and you get errors about being able to write to
your library remember to check the Windows FAQ as noted
above.

Make sure to save your script file once you have typed this
new function in. You can give it any file name that make
sense to you, such as "twitterSupport." Now is also a good
time to start the habit of commenting: Comments are human
readable messages that software developers leave for them-
selves and for others, so that everyone can remember what a
piece of code is supposed to do. All computer languages have
at least one "comment character" that sets off the human read-
able stuff from the rest of the code. In R, the comment charac-
ter is #. For now, just put one comment line above each func-
tion you created, briefly describing it, like this:

EnsurePackage(x) - Installs and loads a package

if necessary

and this:

PrepareTwitter() - Load packages for working

with twitteR

Later on we will do a better job a commenting, but this gives
us the bare minimum we need to keep going with this pro-
ject. Before we move on, you should run the PrepareTwitter()

80

function on the console command line to actually load the
packages we need:

> PrepareTwitter()

Note the parentheses after the function name, even though
there is no argument to this function. What would happen if
you left out the parentheses? Try it later to remind yourself of
some basic R syntax rules.

You may get a lot of output from running PrepareTwitter(),
because your computer may need to download some or all of
these packages. You may notice the warning message above,
for example,, about objects being "masked." Generally speak-
ing, this message refers to a variable or function that has be-
come invisible because another variable or function with the
same name has been loaded. Usually this is fine: the newer
thing works the same as the older thing with the same name.

Take a look at the four panes in R-Studio, each of which con-
tains something of interest. The upper left pane is the code/
script window, where we should have the code for our two
new functions. The lower left pane shows our R console with
the results of the most recently run commands. The upper
right pane contains our workspace and history of prior com-
mands, with the tab currently set to workspace. As a re-
minder, in R parlance, workspace represents all of the cur-
rently available data objects include functions. Our two new
functions which we have defined should be listed there, indi-
cating that they have each run at least once and R is now
aware of them. In the lower right pane, we have files, plots,
packages, and help, with the tab currently set to packages.

This window is scrolled to the bottom to show that RCurl,
RJSONIO, and twitteR are all loaded and "libraryed" meaning
that they are ready to use from the command line or from
functions.

Getting New SSL Tokens on Windows

For Windows users, depending upon which version of operat-
ing system software you are using as well as your upgrade
history, it may be necessary to provide new SSL certificates.
Certificates help to maintain secure communications across
the Internet, and most computers keep an up-to-date copy on
file, but not all of them do. If you encounter any problems us-
ing R to access the Internet, you may need new tokens.

download.file(url="http://curl.haxx.se/ca/cacert.pem",+

destfile="cacert.pem")

This statement needs to be run before the R tries to contact
Twitter for authentication. This is because twitteR uses RCurl
which in turn employs SSL security whenever “https” ap-
pears in a URL. The command above downloads new certifi-
cates and saves them within the current working directory
for R. You may need to use cacert.pem for many or most of
the function calls to twitteR by adding the argument
cainfo="cacert.pem".

Using Your OAuth Tokens

Remember at the beginning of the chapter that we went
through some rigamarole to get a Consumer key and a Con-
sumer secret from Twitter. Before we can get started in retriev-

81

http://curl.haxx.se/ca/cacert.pem
http://curl.haxx.se/ca/cacert.pem

ing data from Twitter we need to put those long strings of
numbers and letters to use.

Begin this process by getting a credential from ROAuth. Re-
member that in the command below where I have put "letter-
sAndNumbers" you have to substitute in your ConsumerKey
and your ConsumerSecret that you got from Twitter. The Con-
sumerKey is a string of upper and lowercase letters and dig-
its about 22 characters long. The ConsumerSecret is also let-
ters and digits and it is about twice as long as the Con-
sumerKey. Make sure to keep these private, especially the
ConsumerSecret, and don’t share them with others. Here’s
the command:

> credential <-
OAuthFactory$new(consumerKey="lettersAndNumbers", 
+cons

umerSecret="lettersAndNumbers",  
+requestURL="https://api.twitter.com/oauth/request_t
oken",  
+accessURL="https://api.twitter.com/oauth/access_tok
en",  
+authURL="https://api.twitter.com/oauth/authorize")

This looks messy but is really very simple. If you now type:

> credential

You will find that the credential data object is just a conglom-
eration of the various fields that you specified in the argu-
ments to the OAuthFactory$new method. We have to put that
data structure to work now with the following function call:

> credential$handshake()

Or, on Windows machines, if you have downloaded new cer-
tificates:

> credential$handshake(cainfo="cacert.pem")

You will get a response back that looks like this:

When complete, record the PIN given to you and provide it
here:

To enable the connection, please direct your web browser to:

https://api.twitter.com/oauth/authorize?oauth_token=...

When complete, record the PIN given to you and provide it here:

This will be followed by a long string of numbers. Weirdly,
you have to go to a web browser and type in exactly what
you see in the R-Studio output window (the URL and the
long string of numbers). While typing the URL to be redi-
rected to twitter, be sure that you type http:// instead of
https:// otherwise Twitter will not entertain the request be-
cause the Twitter server invokes SSL security itself. If you
type the URL correctly, Twitter will respond in your browser
window with a big button that says "Authorize App." Go
ahead and click on that and you will receive a new screen
with a PIN on it (my PIN had seven digits). Take those seven
digits and type them into the R-Studio console window (the
credential$handshake() function will be waiting for them).
Type the digits in front of “When complete, record the PIN
given to you and provide it here:” Hit Enter and, assuming
you get no errors, you are fully authorized! Hooray! What a
crazy process! Thankfully, you should not have to do any of

82

https://api.twitter.com/oauth/re
https://api.twitter.com/oauth/re
https://api.twitter.com/oauth/re
https://api.twitter.com/oauth/re
https://api.twitter.com/oauth/access_token
https://api.twitter.com/oauth/access_token
https://api.twitter.com/oauth/access_token
https://api.twitter.com/oauth/access_token
https://api.twitter.com/oauth/authorize
https://api.twitter.com/oauth/authorize
https://api.twitter.com/oauth/authorize?oauth_token=
https://api.twitter.com/oauth/authorize?oauth_token=

this again as long as you save the credential data object and
restore it into future sessions. The credential object, and all of
the other active data, will be stored in the default workspace
when you exit R or R-Studio. Make sure you know which
workspace it was saved in so you can get it back later.

Ready, Set, Go!

Now let’s get some data from Twitter. First, tell the twitteR
package that you want to use your shiny new credentials:

> registerTwitterOAuth(credential)

[1] TRUE

The return value of TRUE shows that the credential is work-
ing and ready to help you get data from Twitter. Subsequent
commands using the twitteR package will pass through the
authorized application interface.

The twitteR package provides a function called searchTwit-
ter() that allows us to retrieve some recent tweets based on a
search term. Twitter users have invented a scheme for organ-
izing their tweets based on subject matter. This system is
called "hashtags" and is based on the use of the hashmark
character (#) followed by a brief text tag. For example, fans of
Oprah Winfrey use the tag #oprah to identify their tweets
about her. We will use the searchTwitter() function to search
for hashtags about global climate change. The website
hashtags.org lists a variety of hashtags covering a range of
contemporary topics. You can pick any hashtag you like, as
long as there are a reasonable number of tweets that can be
retrieved. The searchTwitter() function also requires specify-

ing the maximum number of tweets that the call will return.
For now we will use 500, although you may find that your re-
quest does not return that many. Here’s the command:

tweetList <- searchTwitter("#climate", n=500)

As above, if you are on Windows, and you had to get new cer-
tificates, you may have to use this command:

tweetList <- searchTwitter("#climate", n=500,
cainfo="cacert.pem")

Depending upon the speed of your Internet connection and
the amount of traffic on Twitter’s servers, this command may
take a short while for R to process. Now we have a new data
object, tweetList, that presumably contains the tweets we re-
quested. But what is this data object? Let’s use our R diagnos-
tics to explore what we have gotten:

> mode(tweetList)

[1] "list"

Hmm, this is a type of object that we have not encountered
before. In R, a list is an object that contains other data objects,
and those objects may be a variety of different modes/types.
Contrast this definition with a vector: A vector is also a kind
of list, but with the requirement that all of the elements in the
vector must be in the same mode/type. Actually, if you dig
deeply into the definitions of R data objects, you may realize
that we have already encountered one type of list: the data-
frame. Remember that the dataframe is a list of vectors,
where each vector is exactly the same length. So a dataframe
is a particular kind of list, but in general lists do not have

83

those two restrictions that dataframes have (i.e., that each ele-
ment is a vector and that each vector is the same length).

So we know that tweetList is a list, but what does that list con-
tain? Let’s try using the str() function to uncover the structure
of the list:

str(tweetList)

Whoa! That output scrolled right off the screen. A quick
glance shows that it is pretty repetitive, with each 20 line
block being quite similar. So let’s use the head() function to
just examine the first element of the list. The head() function
allows you to just look at the first few elements of a data ob-
ject. In this case we will look just at the first list element of the
tweetList list. The command, also shown on the screen shot
below is:

str(head(tweetList,1))

Looks pretty messy, but is simpler than it may first appear.
Following the line "List of 1," there is a line that begins "$:Ref-
erence class" and then the word ‘status’ in single quotes. In
Twitter terminology a "status" is a single tweet posting (it sup-
posedly tells us the "status" of the person who posted it). So
the author of the R twitteR package has created a new kind of
data object, called a ‘status’ that itself contains 10 fields. The
fields are then listed out. For each line that begins with "..$"
there is a field name and then a mode or data type and then a
taste of the data that that field contains.

So, for example, the first field, called "text" is of type "chr"
(which means character/text data) and the field contains the

string that starts with, "Get the real facts on gas prices." You
can look through the other fields and see if you can make
sense of them. There are two other data types in there: "logi"
stands for logical and that is the same as TRUE/FALSE; "PO-
SIXct" is a format for storing the calendar date and time. (If
you’re curious, POSIX is an old unix style operating system,
where the current date and time were stored as the number of
seconds elapsed since 12 midnight on January 1, 1970.) You
can see in the "created" field that this particular tweet was cre-
ated on April 5, 2012 one second after 2:10 PM. It does not

84

show what time zone, but a little detective work shows that
all Twitter postings are coded with "coordinated universal
time" or what is usually abbreviated with UTC.

One last thing to peek at in this data structure is about seven
lines from the end, where it says, "and 33 methods..." In com-
puter science lingo a "method" is an operation/activity/
procedure that works on a particular data object. The idea of
a method is at the heart of so called "object oriented program-
ming." One way to think of it is that the data object is the
noun, and the methods are all of the verbs that work with
that noun. For example you can see the method "getCreated"
in the list: If you use the method getCreated on an reference
object of class ‘status’, the method will return the creation
time of the tweet.

If you try running the command:

str(head(tweetList,2))

you will find that the second item in the tweetList list is struc-
tured exactly like the first time, with the only difference being
the specific contents of the fields. You can also run:

length(tweetList)

to find out how many items are in your list. The list obtained
for this exercise was a full 500 items long. Se we have 500
complex items in our list, but every item had exactly the same
structure, with 10 fields in it and a bunch of other stuff too.
That raises a thought: tweetList could be thought of as a 500
row structure with 10 columns! That means that we could
treat it as a dataframe if we wanted to (and we do, because

this makes handling these data much more convenient as you
found in the "Rows and Columns" chapter).

Happily, we can get some help from R in converting this list
into a dataframe. Here we will introduce four powerful new
R functions: as(), lapply(), rbind(), and do.call(). The first of
these, as(), performs a type coercion: in other words it
changes one type to another type. The second of these, lap-
ply(), applies a function onto all of the elements of a list. In
the command below, lapply(tweetList, as.data.frame), applies
the as.data.frame() coercion to each element in tweetList.
Next, the rbind() function "binds" together the elements that
are supplied to it into a row-by-row structure. Finally, the
do.call() function executes a function call, but unlike just run-
ning the function from the console, allows for a variable num-
ber of arguments to be supplied to the function. The whole
command we will use looks like this:

tweetDF <- do.call("rbind", lapply(tweetList,

+  
 as.data.frame))

You might wonder a few things about this command. One
thing that looks weird is "rbind" in double quotes. This is the
required method of supplying the name of the function to
do.call(). You might also wonder why we needed do.call() at
all. Couldn’t we have just called rbind() directly from the com-
mand line? You can try it if you want, and you will find that
it does provide a result, but not the one you want. The differ-
ence is in how the arguments to rbind() are supplied to it: if
you call it directly, lapply() is evaluated first, and it forms a
single list that is then supplied to rbind(). In contrast, by us-

85

ing do.call(), all 500 of the results of lapply() are supplied to
rbind() as individual arguments, and this allows rbind() to
create the nice rectangular dataset that we will need. The ad-
vantage of do.call() is that it will set up a function call with a
variable number of arguments in cases where we don’t know
how many arguments will be supplied at the time when we
write the code.

If you run the command above, you should see in the upper
right hand pane of R-studio a new entry in the workspace un-
der the heading of "Data." For the example we are running
here, the entry says, "500 obs. of 10 variables." This is just
what we wanted, a nice rectangular data set, ready to ana-
lyze. Later on, we may need more than one of these data sets,
so let’s create a function to accomplish the commands we just
ran:

TweetFrame() - Return a dataframe based on
a  
search of Twitter

TweetFrame<-function(searchTerm, maxTweets)

{

 twtList<-
searchTwitter(searchTerm,n=maxTweets)

 return(do.call("rbind",+  

lapply(twtList,as.data.frame)))

}

There are three good things about putting this code in a func-
tion. First, because we put a comment at the top of the func-

tion, we will remember in the future what this code does. Sec-
ond, if you test this function you will find out that the vari-
able twtList that is created in the code above does not stick
around after the function is finished running. This is the re-
sult of what computer scientists call "variable scoping." The
variable twtList only exists while the TweetFrame() function
is running. Once the function is done, twtList evaporates as if
it never existed. This helps us to keep our workspace clean
and avoid collecting lots of intermediate variables that are
not reused.

The last and best thing about this function is that we no
longer have to remember the details of the method for using
do.call(), rbind(), lapply(), and as.data.frame() because we
will not have to retype these commands again: we can just
call the function whenever we need it. And we can always go
back and look at the code later. In fact, this would be a good
reason to put in a comment just above the return() function.
Something like this:

as.data.frame() coerces each list element into a row  
lapply() applies this to all of the elements in twtList  
rbind() takes all of the rows and puts them together  
do.call() gives rbind() all the rows as individual elements

Now, whenever we want to create a new data set of tweets,
we can just call TweetFrame from the R console command
line like this:

lgData <- TweetFrame("#ladygaga", 250)

86

This command would give us a new dataframe "lgData" all
ready to analyze, based on the supplied search term and maxi-
mum number of tweets.

Let’s start to play with the tweetDF dataset that we created
before. First, as a matter of convenience, let’s learn the at-
tach() function. The attach() function saves us some typing by
giving one particular dataframe priority over any others that
have the same variable names. Normally, if we wanted to ac-
cess the variables in our dataframe, we would have to use the
$ notation, like this:

tweetDF$created

But if we run attach(tweetDF) first, we can then refer to cre-
ated directly, without having to type the tweetDF$ before it:

> attach(tweetDF)

> head(created,4)

[1] "2012-04-05 14:10:01 UTC" "2012-04-05 14:09:21
UTC"

[3] "2012-04-05 14:08:15 UTC" "2012-04-05 14:07:12
UTC"

Let’s visualize the creation time of the 500 tweets in our data-
set. When working with time codes, the hist() function re-
quires us to specify the approximate number of categories we
want to see in the histogram:

hist(created, breaks=15, freq=TRUE)

This command yields the histogram that appears below. If we
look along the x-axis (the horizontal), this string of tweets

starts at about 4:20 AM and goes until about 10:10 AM, a span
of roughly six hours. There are 22 different bars so each bar
represents about 16 minutes - for casual purposes we’ll call it
a quarter of an hour. It looks like there are something like 20
tweets per bar, so we are looking at roughly 80 tweets per
hour with the hashtag "#climate." This is obviously a pretty
popular topic. This distribution does not really have a dis-
cernible shape, although it seems like there might be a bit of a
growth trend as time goes on, particularly starting at about
7:40 AM.

87

Take note of something very important about these data: It
doesn’t make much sense to work with a measure of central
tendency. Remember a couple of chapters ago when we were
looking at the number of people who resided in different U.S.
states? In that case it made sense to say that if State A had one
million people and State B had three million people, then the
average of these two states was two million people. When
you’re working with time stamps, it doesn’t make a whole lot
of sense to say that one tweet arrived at 7 AM and another ar-
rived at 9 AM so the average is 8 AM. Fortunately, there’s a
whole area of statistics concerned with "arrival" times and
similar phenomena, dating back to a famous study by Ladis-
laus von Bortkiewicz of horsemen who died after being
kicked by their horses. von Bortkiewicz studied each of 14
cavalry corps over a period of 20 years, noting when horse-
men died each year. The distribution of the "arrival" of kick-
deaths turns out to have many similarities to other arrival
time data, such as the arrival of buses or subway cars at a sta-
tion, the arrival of customers at a cash register, or the occur-
rence of telephone calls at a particular exchange. All of these
kinds of events fit what is known as a "Poisson Distribution"
(named after Simeon Denis Poisson, who published it about
half a century before von Bortkiewicz found a use for it).
Let’s find out if the arrival times of tweets comprise a Poisson
distribution.

Right now we have the actual times when the tweets were
posted, coded as a POSIX date and time variable. Another
way to think about these data is to think of each new tweet as
arriving a certain amount of time after the previous tweet. To
figure that out, we’re going to have to "look back" a row in or-

der to subtract the creation time of the previous tweet from
the creation time of the current tweet. In order to be able to
make this calculation, we have to make sure that our data are
sorted in ascending order of arrival - in other words the earli-
est one first and the latest one last. To accomplish this, we
will use the order() function together with R’s built-in square
bracket notation.

As mentioned briefly in the previous chapter, in R, square
brackets allow "indexing" into a list, vector, or data frame. For
example, myList[3] would give us the third element of myL-
ist. Keeping in mind that a a dataframe is a rectangular struc-
ture, really a two dimensional structure, we can address any
element of a dataframe with both a row and column designa-
tor: myFrame[4,1] would give the fourth row and the first col-
umn. A shorthand for taking the whole column of a data-
frame is to leave the row index empty: myFrame[, 6] would
give every row in the sixth column. Likewise, a shorthand for
taking a whole row of a dataframe is to leave the column in-
dex empty: myFrame[10,] would give every column in the
tenth row. We can also supply a list of rows instead of just
one row, like this: myFrame[c(1,3,5),] would return rows 1,
3, 5 (including the data for all columns, because we left the
column index blank). We can use this feature to reorder the
rows, using the order() function. We tell order() which vari-
able we want to sort on, and it will give back a list of row indi-
ces in the order we requested. Putting it all together yields
this command:

 tweetDF[order(as.integer(created)),]

88

Working our way from the inside to the outside of the expres-
sion above, we want to sort in the order that the tweets were
created. We first coerce the variable "created" to integer - it
will then truly be expressed in the number of seconds since
1970 - just in case there are operating system differences in
how POSIX dates are sorted. We wrap this inside the order()
function. The order() function will provide a list of row indi-
ces that reflects the time ordering we want. We use the square
brackets notation to address the rows in tweetDF, taking all of
the columns by leaving the index after the comma empty.

We have a choice of what to do with the dataframe that is re-
turned from this command. We could assign it back to
tweetDF, which would overwrite our original dataframe with
the sorted version. Or we could create a new sorted data-
frame and leave the original data alone, like so:

sortweetDF<-tweetDF[order(as.integer(created)),]

If you choose this method, make sure to detach() tweetDF
and attach() sortweetDF so that later commands will work
smoothly with the sorted dataframe:

> detach(tweetDF)

> attach(sortweetDF)

Another option, which seems better than creating a new data-
frame, would be to build the sorting into the TweetFrame()
function that we developed at the beginning of the chapter.
Let’s leave that to the chapter challenge. For now, we can
keep working with sortweetDF.

Technically, what we have with our created variable now is a
time series, and because statisticians like to have convenient
methods for dealing with time series, R has a built-in func-
tion, called diff(), that allows us to easily calculate the differ-
ence in seconds between each pair of neighboring values. Try
it:

diff(created)

You should get a list of time differences, in seconds, between
neighboring tweets. The list will show quite a wide range of
intervals, perhaps as long as several minutes, but with many
intervals near or at zero. You might notice that there are only
499 values and not 500: This is because you cannot calculate a
time difference for the very first tweet, because we have no
data on the prior tweet. Let’s visualize these data and see
what we’ve got:

hist(as.integer(diff(created)))

89

As with earlier commands, we use as.integer() to coerce the
time differences into plain numbers, otherwise hist() does not
know how to handle the time differences. This histogram
shows that the majority of tweets in this group come within
50 seconds or less of the previous tweets. A much smaller
number of tweets arrive within somewhere between 50 and
100 seconds, and so on down the line. This is typical of a Pois-
son arrival time distribution. Unlike the raw arrival time
data, we could calculate a mean on the time differences:

> mean(as.integer(diff(created)))

[1] 41.12826

We have to be careful though, in using measures of central
tendency on this positively skewed distribution, that the
value we get from the mean() is a sensible representation of
central tendency. Remembering back to the previous chapter,
and our discussion of the statistical mode (the most fre-
quently occurring value), we learn that the mean and the
mode are very different:

> library("modeest")

> mfv(as.integer(diff(created)))

[1] 0

We use the library() function to make sure that the add on
package with the mfv() function is ready to use. The results of
the mfv() function show that the most commonly occurring
time interval between neighboring tweets is zero!

Likewise the median shows that half of the tweets have arri-
val times of under half a minute:

> median(as.integer(diff(created)))

[1] 28

In the next chapter we will delve more deeply into what it
means when a set of data are shaped like a Poisson distribu-
tion and what that implies about making use of the mean.

One last way of looking at these data before we close this
chapter. If we choose a time interval, such as 10 seconds, or
30 seconds, or 60 seconds, we can ask the question of how

90

many of our tweet arrivals occurred within that time interval.
Here’s code that counts the number of arrivals that occur
within certain time intervals:

> sum((as.integer(diff(created)))<60)

[1] 375

> sum((as.integer(diff(created)))<30)

[1] 257

> sum((as.integer(diff(created)))<10)

[1] 145

You could also think of these as ratios, for example 145/500 =
0.29. And where we have a ratio, we often can think about it
as a probability: There is a 29% probability that the next tweet
will arrive in 10 seconds or less. You could make a function to
create a whole list of these probabilities. Some sample code
for such a function appears at the end of the chapter. Some
new scripting skills that we have not yet covered (for exam-
ple, the "for loop") appear in this function, but try making
sense out of it to stretch your brain. Output from this function
created the plot that appears below.

This is a classic Poisson distribution of arrival probabilities.
The x-axis contains 10 second intervals (so by the time you
see the number 5 on the x-axis, we are already up to 50 sec-
onds). This is called a cumulative probability plot and you
read it by talking about the probability that the next tweet
will arrive in the amount of time indicated on the x-axis or
less. For example, the number five on the x-axis corresponds
to about a 60% probability on the y-axis, so there is a 60%
probability that the next tweet will arrive in 50 seconds or
less. Remember that this estimate applies only to the data in
this sample!

91

In the next chapter we will reexamine sampling in the context
of Poisson and learn how to compare two Poisson distribu-
tions to find out which hashtag is more popular.

Let’s recap what we learned from this chapter. First, we have
begun to use the project features of R-studio to establish a
clean environment for each R project that we build. Second,
we used the source code window of R-studio to build two or
three very useful functions, ones that we will reuse in future
chapters. Third, we practiced the skill of installing packages
to extend the capabilities of R. Specifically, we loaded Jeff
Gentry’s twitteR package and the other three packages it de-
pends upon. Fourth, we put the twitteR package to work to
obtain our own fresh data right from the web. Fifth, we
started to condition that data, for example by creating a
sorted list of tweet arrival times. And finally, we started to
analyze and visualize those data, by conjecturing that this
sample of arrival times fitted the classic Poisson distribution.

Chapter Challenge

Modify the TweetFrame() function created at the beginning of
this chapter to sort the dataframe based on the creation time
of the tweets. This will require taking the line of code from a
few pages ago that has the order() function in it and adding
this to the TweetFrame() function with a few minor modifica-
tions. Here’s a hint: Create a temporary dataframe inside the
function and don’t attach it while you’re working with it.
You’ll need to use the $ notation to access the variable you
want to use to order the rows.

Sources

http://cran.r-project.org/web/packages/twitteR/twitteR.pdf

http://cran.r-project.org/web/packages/twitteR/vignettes/twitte
R.pdf

http://en.wikipedia.org/wiki/Ladislaus_Bortkiewicz

http://en.wikipedia.org/wiki/Poisson_distribution

http://hashtags.org/

http://www.inside-r.org/packages/cran/twitteR/docs/example
Oauth

http://www.khanacademy.org/math/probability/v/poisson-proc
ess-1

http://www.khanacademy.org/math/probability/v/poisson-proc
ess-2

https://support.twitter.com/articles/49309 (hashtags explained)

http://www.rdatamining.com/examples/text-mining

92

http://cran.r-project.org/web/packages/twitteR/twitteR.pdf
http://cran.r-project.org/web/packages/twitteR/twitteR.pdf
http://cran.r-project.org/web/packages/twitteR/twitteR.pdf
http://cran.r-project.org/web/packages/twitteR/twitteR.pdf
http://cran.r-project.org/web/packages/twitteR/twitteR.pdf
http://cran.r-project.org/web/packages/twitteR/twitteR.pdf
http://en.wikipedia.org/wiki/Ladislaus_Bortkiewicz
http://en.wikipedia.org/wiki/Ladislaus_Bortkiewicz
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
http://hashtags.org
http://hashtags.org
http://www.inside-r.org/packages/cran/twitteR/docs/exampleOauth
http://www.inside-r.org/packages/cran/twitteR/docs/exampleOauth
http://www.inside-r.org/packages/cran/twitteR/docs/exampleOauth
http://www.inside-r.org/packages/cran/twitteR/docs/exampleOauth
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://www.khanacademy.org/math/probability/v/poisson-process-2
https://support.twitter.com/articles/49309
https://support.twitter.com/articles/49309
http://www.rdatamining.com/examples/text-mining
http://www.rdatamining.com/examples/text-mining

R Script - Create Vector of Probabilities From Arrival Times

ArrivalProbability - Given a list of arrival times

calculates the delays between them using lagged differences

then computes a list of cumulative probabilities of arrival

for the sequential list of time increments

times - A sorted, ascending list of arrival times in POSIXct

increment - the time increment for each new slot, e.g. 10 sec

max - the highest time increment, e.g., 240 sec

#

Returns - an ordered list of probabilities in a numeric vector

suitable for plotting with plot()

ArrivalProbability<-function(times, increment, max)

{

 # Initialize an empty vector

 plist <- NULL

 # Probability is defined over the size of this sample

 # of arrival times

 timeLen <- length(times)

 # May not be necessary, but checks for input mistake

 if (increment>max) {return(NULL)}

 for (i in seq(increment, max, by=increment))

 {

 # diff() requires a sorted list of times

 # diff() calculates the delays between neighboring times

 # the logical test <i provides a list of TRUEs and FALSEs

 # of length = timeLen, then sum() counts the TRUEs.

 # Divide by timeLen to calculate a proportion

 plist<-c(plist,(sum(as.integer(diff(times))<i))/timeLen)

 }

 return(plist)

}

R Functions Used in This Chapter

attach() - Makes the variables of a dataset available without $

as.integer() - Coerces data into integers

detach() - Undoes an attach function

diff() - Calculates differences between neighboring rows

do.call() - Calls a function with a variable number of arguments

function() - Defines a function for later use

hist() - Plots a histogram from a list of data

install.packages() - Downloads and prepares a package for use

lapply() - Applies a function to a list

library() - Loads a package for use; like require()

mean() - Calculates the arithmetic mean of a vector

median() - Finds the statistical center point of a list of numbers

93

mfv() - Most frequent value; part of the modeest() package

mode() - Shows the basic data type of an object

order() - Returns a sorted list of index numbers

rbind() - Binds rows into a dataframe object

require() - Tests if a package is loaded and loads it if needed

searchTwitter() - Part of the twitteR package

str() - Describes the structure of a data object

sum() - Adds up a list of numbers

94

In the previous chapter we found that arrival times of tweets on a given topic seem to fit a Poisson
distribution. Armed with that knowledge we can now develop a test to compare two different Twitter
topics to see which one is more popular (or at least which one has a higher posting rate). We will use
our knowledge of sampling distributions to understand the logic of the test.

CHAPTER 11

95

Popularity Contest

Which topic on Twitter is more popular, Lady Gaga or Oprah Win-
frey? This may not seem like an important question, depending
upon your view of popular culture, but if we can make the com-
parison for these two topics, we can make it for any two topics. Cer-
tainly in the case of presidential elections, or a corruption scandal
in the local news, or an international crisis, it could be a worth-
while goal to be able to analyze social media in a systematic way.
And on the surface, the answer to the question seems trivial: Just
add up who has more tweets. Surprisingly, in order to answer the
question in an accurate and reliable way, this won’t work, at least
not very well. Instead, one must consider many of the vexing ques-
tions that made inferential statistics necessary.

Let’s say we retrieved one hour’s worth of Lady Gaga tweets and a
similar amount of Oprah Winfrey tweets and just counted them
up. What if it just happened to be a slow news day for Oprah? It
really wouldn’t be a fair comparison. What if most of Lady Gaga’s
tweets happen at midnight or on Saturdays? We could expand our
sampling time, maybe to a day or a week. This could certainly
help: Generally speaking, the bigger the sample, the more represen-
tative it is of the whole population, assuming it is not collected in a
biased way. This approach defines popularity as the number of
tweets over a fixed period of time. Its success depends upon the
choice of a sufficiently large period of time, that the tweets are col-
lected for the two topics at the same time, and that the span of time
chosen happens to be equally favorable for both two topics.

Another approach to the popularity comparison would build upon
what we learned in the previous chapter about how arrival times
(and the delays between them) fit into the Poisson distribution. In
this alternative definition of the popularity of a topic, we could sug-

gest that if the arrival curve is "steeper" for the first topic in con-
trast to the second topic, then the first topic is more active and
therefore more popular. Another way of saying the same thing is
that for the more popular topic, the likely delay until the arrival of
the next tweet is shorter than for the less popular topic. You could
also say that for a given interval of time, say ten minutes, the num-
ber of arrivals for the first topic would be higher than for the sec-
ond topic. Assuming that the arrival delays fit a Poisson distribu-
tion, these are all equivalent ways of capturing the comparison be-
tween the two topics.

Just as we did in the chapter entitled, "Sample in a Jar," we can use
a random number generator in R to illustrate these kinds of differ-
ences more concretely. The relevant function for the Poisson distri-
bution is rpois(), "random poisson." The rpois() function will gener-
ate a stream of random numbers that roughly fit the Poisson distri-
bution. The fit gets better as you ask for a larger and larger sample.
The first argument to rpois() is how many random numbers you
want to generate and the second number is the average delay be-
tween arrivals that you want the random number generator to try
to come close to. We can look at a few of these numbers and then
use a histogram function to visualize the results:

> rpois(10,3)

 [1] 5 4 4 2 0 3 6 2 3 3

> mean(rpois(100,3))

[1] 2.99

> var(rpois(100,3))

[1] 3.028182

96

> hist(rpois(1000,3))

In the first command above, we generate a small sample of n=10
arrival delays, with a hoped for mean of 3 seconds of delay, just to
see what kind of numbers we get. You can see that all of the num-
bers are small integers, ranging from 0 to 6. In the second com-
mand we double check these results with a slightly larger sample
of n=100 to see if rpois() will hit the mean we asked for. In that run
it came out to 2.99, which was pretty darned close. If you run this
command yourself you will find that your result will vary a bit
each time: it will sometimes be slightly larger than three and occa-
sionally a little less than three (or whatever mean you specify).

This is normal, because of the random number generator. In the
third command we run yet another sample of 100 random data
points, this time analyzing them with the var() function (which cal-
culates the variance; see the chapter entitled "Beer, Farms, and
Peas"). It is a curious fact of Poission distributions that the mean
and the variance of the "ideal" (i.e., the theoretical) distribution are
the same. In practice, for a small sample, they may be different.

In the final command, we ask for a histogram of an even larger
sample of n=1000. The histogram shows the most common value
hanging right around three seconds of delay with a nice tail that
points rightwards and out to about 10 seconds of delay. You can
think of this as one possible example of what you might observe of
the average delay time between tweets was about three seconds.
Note how similar the shape of this histogram is to what we ob-
served with real tweets in the last chapter.

Compare the histogram on the previous page to the one on the
next page that was generated with this command:

hist(rpois(1000,10))

It is pretty easy to see the different shape and position of this histo-
gram, which has a mean arrival delay of about ten seconds. First of
all, there are not nearly as many zero length delays. Secondly, the
most frequent value is now about 10 (as opposed to two in the pre-
vious histogram). Finally, the longest delay is now over 20 seconds
(instead of 10 for the previous histogram). One other thing to try is
this:

> sum(rpois(1000,10)<=10)

[1] 597

97

This command generated 1000 new random numbers, following
the Poisson distribution and also with a hoped-for mean of 10, just
like in the histogram on the next page. Using the "<=" inequality
test and the sum() function, we then counted up how many events
were less than or equal to 12, and this turned out to be 597 events.
As a fraction of the total of n=1000 data points that rpois() gener-
ated, that is 0.597, or 59.7%.

98

Review 11.1 Popularity Contest (Mid-Chapter Review)

Check Answer

Question 1 of 4
The Poisson distribution has a characteristic shape that
would be described as:

A. Negatively (left) skewed

B. Positively (right) skewed

C. Symmetric (not skewed)

D. None of the above

We can look at the same kind of data in terms of the probability of
arrival within a certain amount of time. Because rpois() generates
delay times directly (rather than us having to calculate them from
neighboring arrival times), we will need a slightly different func-
tion than the ArrivalProbabilities() that we wrote and used in the
previous chapter. We’ll call this function "DelayProbability" (the
code is at the end of this chapter):

> DelayProbability(rpois(100,10),1,20)

 [1] 0.00 0.00 0.00 0.03 0.06 0.09 0.21 0.33 0.48
0.61 0.73 0.82 0.92

[14] 0.96 0.97 0.98 0.99 1.00 1.00 1.00

At the heart of that command is the rpois() function, requesting
100 points with a mean of 10. The other two parameters are the in-
crement, in this case one second, and the maximum delay time, in
this case 20 seconds. The output from this function is a sorted list
of cumulative probabilities for the times ranging from 1 second to
20 seconds. Of course, what we would really like to do is compare
these probabilities to those we would get if the average delay was
three seconds instead of ten seconds. We’re going to use two cool
tricks for creating this next plot. First, we will use the points() com-
mand to add points to an existing plot. Second, we will use the
col= parameter to specify two different colors for the points that
we plot. Here’s the code that creates a plot and then adds more
points to it:

> plot(DelayProbability(rpois(100,10),1,20), col=2)

> points(DelayProbability(rpois(100,3),1,20), col=3)

Again, the heart of each of these lines of code is the rpois() function
that is generating random Poisson arrival delays for us. Our pa-
rameters for increment (1 second) and maximum (20 seconds) are
the same for both lines. The first line uses col=2, which gives us red
points, and the second gives us col=3, which yields green points:

This plot clearly shows that the green points have a "steeper" pro-
file. We are more likely to have earlier arrivals for the 3-second de-
lay data than we are for the 10-second data. If these were real
tweets, the green tweets would be piling in much faster than the
red tweets. Here’s a reminder on how to read this plot: Look at a
value on the X-axis, for example "5." Then look where the dot is

99

and trace leftward to the Y-axis. For the red dot, the probability
value at time (x) equal 4 is about 0.10. So for the red data there is
about a 10% chance that the next event will occur within five time
units (we’ve been calling them seconds, but they could really be
anything, as long as you use the units consistently throughout the
whole example). For the green data there is about a 85% chance
that the next event will occur within four time units. The fact that
the green curve rises more steeply than the red curve means that
for these two samples only the green stuff is arriving much more often
than the red stuff.

These reason we emphasized the point "for these samples only" is
that we know from prior chapters that every sample of data you
collect varies by at least a little bit and sometimes by quite a lot. A
sample is just a snapshot, after all, and things can and do change
from sample to sample. We can illustrate this by running and plot-
ting multiple samples, much as we did in the earlier chapter:

> plot(DelayProbability(rpois(100,10),1,20))

> for (i in 1:15) {points(DelayProbability(r-
pois(100,10),1,20))}

This is the first time we have used the "for loop" in R, so let’s walk
through it. A "for loop" is one of the basic constructions that com-
puter scientists use to "iterate" or repeatedly run a chunk of code.
In R, a for loop runs the code that is between the curly braces a cer-
tain number of times. The number of times R runs the code de-
pends on the expression inside the parentheses that immediately
follow the "for."

In the example above, the expression "i in 1:15" creates a new data
object, called i, and then puts the number 1 in it. Then, the for loop

keeps adding one to the value of i, until i reaches 15. Each time that
it does this, it runs the code between the curly braces. The expres-
sion "in 1:15" tells R to start with one and count up to 15. The data
object i, which is just a plain old integer, could also have been used
within the curly braces if we had needed it, but it doesn’t have to
be used within the curly braces if it is not needed. In this case we
didn’t need it. The code inside the curly braces just runs a new ran-
dom sample of 100 Poisson points with a hoped for mean of 10.

When you consider the two command lines on the previous page
together you can see that we initiate a plot() on the first line of

100

code, using similar parameters to before (random poisson numbers
with a mean of 10, fed into our probability calculator, which goes
in increments of 1 second up to 20 seconds). In the second line we
add more points to the same plot, by running exactly 15 additional
copies of the same code. Using rpois() ensures that we have new
random numbers each time:

Now instead of just one smooth curve we have a bunch of curves,
and that these curves vary quite a lot. In fact, if we take the exam-
ple of 10 seconds (on the X-axis), we can see that in one case the
probability of a new event in 10 seconds could be as low as 0.50,
while in another case the probability is as high as about 0.70.

This shows why we can’t just rely on one sample for making our
judgments. We need to know something about the uncertainty that
surrounds a given sample. Fortunately, R gives us additional tools
to help us figure this situation out. First of all, even though we had
loads of fun programming the DelayProbability() function, there is
a quicker way to get information about what we ideally expect
from a Poisson distribution. The function ppois() gives us the theo-
retical probability of observing a certain delay time, given a particu-
lar mean. For example:

> ppois(3, lambda=10)

[1] 0.01033605

So you can read this as: There is a 1% chance of observing a delay
of 3 or less in a Poisson distribution with mean equal to 10. Note
that in statistical terminology, "lambda" is the term used for the
mean of a Poisson distribution. We’ve provided the named parame-
ter "lambda=10" in the example above just to make sure that R
does not get confused about what parameter we are controlling

when we say "10." The ppois() function does have other parame-
ters that we have not used here. Now, using a for loop, we could
get a list of several of these theoretical probabilities:

> plot(1,20,xlim=c(0,20),ylim=c(0,1))

> for (i in 1:20) {points(i,ppois(i,lambda=10)) }

We are using a little code trick in the first command line above by
creating a nearly empty set of axes with the plot() function, and
then filling in the points in the second line using the points() func-
tion. This gives the following plot:

You may notice that this plot looks a lot like the ones earlier in this

101

chapter as well as somewhat similar to the probability plot in the
previous chapter. When we say the "theoretical distribution" we
are talking about the ideal Poisson distribution that would be gen-
erated by the complex equation that Mr. Poisson invented a couple
of centuries ago. Another way to think about it is this: Instead of
just having a small sample of points, which we know has a lot of
randomness in it, what if we had a truly humongous sample with
zillions of data points? The curve in the plot above is just about
what we would observe for a truly humongous sample (where
most of the biases up or down cancel themselves out because the
large number of points).

So this is the ideal, based on the mathematical theory of the Pois-
son distribution, or what we would be likely to observe if we cre-
ated a really large sample. We know that real samples, of reason-
able amounts of data, like 100 points or 1000 points or even 10,000
points, will not hit the ideal exactly, because some samples will
come out a little higher and others a little lower.

We also know, from the histograms and output earlier in the chap-
ter, that we can look at the mean of a sample, or the count of events
less than or equal to the mean, or the arrival probabilities in the
graph on this page, and in each case we are looking at different versions
of the same information. Check out these five commands:

> mean(rpois(100000,10))

[1] 10.01009

> var(rpois(100000,10))

[1] 10.02214

> sum(rpois(100000,10)<=10)/100000

[1] 0.58638

> ppois(10,lambda=10)

[1] 0.58303

> qpois(0.58303,lambda=10)

[1] 10

In the first command, we confirm that for a very large random sam-
ple of n=100,000 with a desired mean of 10, the actual mean of the
random sample is almost exactly 10. Likewise, for another large
random sample with a desired mean of 10, the variance is 10. In
the next command, we use the inequality test and the sum() func-
tion again to learn that the probability of observing a value of 10 or
less in a very large sample is about 0.59 (note that the sum() func-
tion yielded 58,638 and we divided by 100,000 to get the reported
value of 0.58638). Likewise, when we ask for the theoretical distri-
bution with ppois() of observing 10 or less in a sample with a mean
of 10, we get a probability of 0.58303, which is darned close to the
empirical result from the previous command. Finally, if we ask
qpois() what is the threshold value for a probability of 0.58303 is in a
Poisson sample with mean of 10, we get back the answer: 10. You
may see that qpois() does the reverse of what ppois() does. For fun,
try this formula on the R command line:  
! qpois(ppois(10, lambda=10), lambda=10)

Here’s one last point to cap off this thinking. Even with a sample of
100,000 there is some variation in samples. That’s why the 0.58638
from the sum() function above does not exactly match the theoreti-
cal 0.58303 from the ppois() function above. We can ask R to tell us
how much variation there is around one of these probabilities us-
ing the poisson.test() function like this:

102

> poisson.test(58638, 100000)

95 percent confidence interval:

 0.5816434 0.5911456

We’ve truncated a little of the output in the interests of space: What
you have left is the upper and lower bounds on a 95% confidence
interval. Here’s what a confidence interval is: For 95% of the sam-
ples that we could generate using rpois(), using a sample size of
100,000, and a desired mean of 10, we will get a result that lies be-
tween 0.5816434 and 0.5911456 (remember that this resulting pro-
portion is calculated as the total number of events whose delay
time is 10 or less). So we know what would happen for 95% of the
rpois() samples, but the assumption that statisticians also make is
that if a natural phenomenon, like the arrival time of tweets, also
fits the Poisson distribution, that this same confidence interval
would be operative. So while we know that we got 0.58638 in one
sample on the previous page, it is likely that future samples will
vary by a little bit (about 1%). Just to get a feel for what happens to
the confidence interval with smaller samples, look at these:

> poisson.test(5863, 10000)

95 percent confidence interval:

 0.5713874 0.6015033

> poisson.test(586, 1000)

95 percent confidence interval:

 0.5395084 0.6354261

> poisson.test(58, 100)

95 percent confidence interval:

 0.4404183 0.7497845

We’ve bolded the parameters that changed in each of the three com-
mands above, just to emphasize that in each case we’ve reduced
the sample size by a factor of 10. By the time we get to the bottom
look how wide the confidence interval gets. With a sample of 100
events, of which 58 had delays of 10 seconds or less, the confidence
interval around the proportion of 0.58 ranges from a low of 0.44 to
a high of 0.75! That’s huge! The confidence interval gets wider and
wider as we get less and less confident about the accuracy of our esti-
mate. In the case of a small sample of 100 events, the confidence in-
terval is very wide, showing that we have a lot of uncertainty
about our estimate that 58 events out of 100 will have arrival de-
lays of 10 or less. Note that you can filter out the rest of the stuff
that poisson.test() generates by asking specifically for the "conf.int"
in the output that is returned:

> poisson.test(58, 100)$conf.int

[1] 0.4404183 0.7497845

attr(,"conf.level")

[1] 0.95

The bolded part of the command line above shows how we used
the $ notation to get a report of just the bit of output that we
wanted from poisson.test(). This output reports the exact same con-
fidence interval that we saw on the previous page, along with a re-
minder in the final two lines that we are looking at a 95% confi-
dence interval.

103

At this point we have all of the knowledge and tools we need to
compare two sets of arrival rates. Let’s grab a couple of sets of
tweets and extract the information we need. First, we will use the
function we created in the last chapter to grab the first set of
tweets:

tweetDF <- TweetFrame("#ladygaga",500)

Next, we need to sort the tweets by arrival time, That is, of course,
unless you accepted the Chapter Challenge in the previous chapter
and built the sorting into your TweetFrame() function.

sortweetDF<-tweetDF[order(as.integer(+  
 tweetDF$created)),]

Now, we’ll extract a vector of the time differences. In the previous
chapter the use of the diff() function occurred within the Arrival-
Probability() function that we developed. Here we will use it di-
rectly and save the result in a vector:

eventDelays<- +  
 as.integer(diff(sortweetDF$created))

Now we can calculate a few of the things we need in order to get a
picture of the arrival delays for Lady Gaga’s tweets:

> mean(eventDelays)

[1] 30.53707

> sum(eventDelays<=31)

[1] 333

So, for Lady Gaga tweets, the mean arrival delay for the next tweet
is just short of 31 seconds. Another way of looking at that same sta-

tistic is that 333 out of 500 tweets (0.666, about two thirds) arrived
within 31 seconds of the previous tweet. We can also ask
poisson.test() to show us the confidence interval around that value:

> poisson.test(333,500)$conf.int

[1] 0.5963808 0.7415144

attr(,"conf.level")

[1] 0.95

So, this result suggests that for 95% of the Lady Gaga samples of
tweets that we might pull from the Twitter system, the proportion
arriving in 31 seconds or less would fall in this confidence band. In
other words, we’re not very likely to see a sample with a propor-
tion under 59.6% or over 74.1%. That’s a pretty wide band, so we
do not have a lot of exactitude here.

Now let’s get the same data for Oprah:

> tweetDF <- TweetFrame("#oprah",500)

> sortweetDF<-tweetDF[order(+  
 as.integer(tweetDF$created)),]

> eventDelays<- +  
 as.integer(diff(sortweetDF$created))

> mean(eventDelays)

[1] 423.01

Hmm, I guess we know who is boss here! Now let’s finish the job:

> sum(eventDelays<=31)

[1] 73

104

> poisson.test(73,500)$conf.int

[1] 0.1144407 0.1835731

attr(,"conf.level")

[1] 0.95

The sum() function, above, calculates that only 73 out of Oprah’s
sample of 500 tweets arrive in an interval of 31 or less. We use 31,
the mean of the Lady Gaga sample, because we need to have a com-
mon basis of comparison. So for Oprah, the proportion of events
that occur in the 31 second timeframe is, 73/500 = 0.146, or about
14.6%. That’s a lot lower than the 66.6% of Lady Gaga tweets, for
sure, but we need to look at the confidence interval around that
value. So the poisson.test() function just above for Oprah reports
that the 95% confidence interval runs from about 11.4% to 18.4%.
Note that this confidence interval does not overlap at all with the
confidence interval for Lady Gaga, so we have a very strong sense
that these two rates are statistically quite distinctive - in other
words, this is a difference that was not caused by the random influ-
ences that sampling always creates. We can make a bar graph to
summarize these differences. We’ll use the barplot2() function,
which is in a package called gplots(). If you created the EnsurePack-
age() function a couple of chapters ago, you can use that. Other-
wise make sure to load gplots manually:

> EnsurePackage("gplots")

> barplot2(c(0.666,0.146), +  
	 	 ci.l=c(0.596,0.114), +  
	 	 ci.u=c(0.742,0.184), +  

	 	 plot.ci=TRUE, +  
	 	 names.arg=c("Gaga","Oprah"))

This is not a particularly efficient way to use the barplots() func-
tion, because we are supplying our data by typing it in, using the
c() function to create short vectors of values on the command line.
On the first line,, we supply a list of the means from the two sam-
ples, expressed as proportions. On the next two lines we first pro-
vide the lower limits of the confidence intervals and then the up-
per limits. The plot.ci=TRUE parameter asks barplot2() to put confi-
dence interval whiskers on each bar. The final line provides labels
to put underneath the bars. Here’s what we get:

105

This is not an especially attractive bar plot, but it does represent
the information we wanted to display accurately. And with the as-
sistance of this plot, it is easy to see both the substantial difference
between the two bars and the fact that the confidence intervals do
not overlap.

For one final confirmation of our results, we can ask the
poisson.text() function to evaluate our two samples together. This
code provides the same information to poisson.test() as before, but
now provides the event counts as short lists describing the two
samples, with 333 events (under 31 seconds) for Lady Gaga and 73
events for Oprah, in both cases out of 500 events:

> poisson.test(c(333,73),c(500,500))

	 Comparison of Poisson rates

data: c(333, 73) time base: c(500, 500)

count1 = 333, expected count1 = 203, p-value <
2.2e-16

alternative hypothesis: true rate ratio is not
equal to 1

95 percent confidence interval:

 3.531401 5.960511

sample estimates:

rate ratio

 4.561644

Let’s walk through this output line by line. Right after the com-
mand, we get a brief confirmation from the function that we’re
comparing two event rates in this test rather than just evaluating a
single rate: "Comparison of Poisson rates." The next line confirms
the data we provided. The next line, that begins with "count1 =
333" confirms the basis of of the comparison and then shows a
"pooled" count that is the weighted average of 333 and 73. The p-
value on that same line represents the position of a probability tail
for "false positives." Together with the information on the next line,
"alternative hypothesis," this constitutes what statisticians call a
"null hypothesis significance test." Although this is widely used in
academic research, it contains less useful information than confi-
dence intervals and we will ignore it for now.

106

The next line, "95% confidence interval," is a label for the most im-
portant information, which is on the line that follows. The values
of 3.53 and 5.96 represent the upper and lower limits of the 95%
confidence interval around the observed rate ratio of 4.56 (reported on
the final line). So, for 95% of samples that we might draw from twit-
ter, the ratio of the Gaga/Oprah rates might be as low as 3.53 and
as high as 5.96. So we can be pretty sure (95% confidence) that
Lady Gaga gets tweets at least 3.5 times as fast as Oprah. Because
the confidence interval does not include 1, which would be the
same thing as saying that the two rates are identical, we can be
pretty certain that the observed rate ratio of 4.56 is not a statistical
fluke.

For this comparison, we chose two topics that had very distinctive
event rates. As the bar chart on the previous page attests, there was
a substantial difference between the two samples in the rates of arri-
val of new tweets. The statistical test confirmed this for us, and al-
though the ability to calculate and visualize the confidence inter-
vals was helpful, we probably could have guessed that such a large
difference over a total of 1000 tweets was not a result due to sam-
pling error.

With other topics and other comparisons, however, the results will
not be as clear cut. After completing the chapter challenge on the
next page, we compared the "#obama" hashtag to the "#romney"
hashtag. Over samples of 250 tweets each, Obama had 159 events
at or under the mean, while Romney had only 128, for a ratio of
1.24 in Obama’s favor. The confidence interval told a different
story, however: the lower bound of the confidence interval was
0.978, very close to, but slightly below one. This signifies that we
can’t rule out the possibility that the two rates are, in fact, equal

and that the slightly higher rate (1.24 to 1) that we observed for
Obama in this one sample might have come about due to sampling
error. When a confidence interval overlaps the point where we con-
sider something to be a "null result" (in this case a ratio of 1:1) we
have to take seriously the possibility that peculiarities of the sam-
ple(s) we drew created the observed difference, and that a new set
of samples might show the opposite of what we found this time.

Chapter Challenge

Write a function that takes two search strings as arguments and
that returns the results of a Poisson rate ratio test on the arrival
rates of tweets on the two topics. Your function should first run the
necessary Twitter searches, then sort the tweets by ascending time
of arrival and calculate the two vectors of time differentials. Use
the mean of one of these vectors as the basis for comparison and
for each vector, count how many events are at or below the mean.
Use this information and the numbers of tweets requested to run
the poisson.test() rate comparison.

Sources

Barplots

http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph
=54

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCo
urse/graphscourse.pdf

http://rgm2.lab.nig.ac.jp/RGM2/func.php?rd_id=gplots:barplot2

107

http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=54
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=54
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=54
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=54
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf
http://rgm2.lab.nig.ac.jp/RGM2/func.php?rd_id=gplots:barplot2
http://rgm2.lab.nig.ac.jp/RGM2/func.php?rd_id=gplots:barplot2

Poisson Distribution

http://books.google.com/books?id=ZKswvkqhygYC&printsec=fr
ontcover

http://www.khanacademy.org/math/probability/v/poisson-proc
ess-1

http://www.khanacademy.org/math/probability/v/poisson-proc
ess-2

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/Poi
sson.html

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/poi
sson.test.html

http://stats.stackexchange.com/questions/10926/how-to-calculat
e-confidence-interval-for-count-data-in-r

http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/
CA266_13_Poisson_Distribution.pdf

R Functions Used in this Chapter

as.integer() - Coerces another data type to integer if possible

barplot2() - Creates a bar graph

c() - Concatenates items to make a list

diff() - Calculates time difference on neighboring cases

EnsurePackage() - Custom function, install() and require() package

for() - Creates a loop, repeating execution of code

hist() - Creates a frequency histogram

mean() - Calculates the arithmetic mean

order() - Provides a list of indices reflecting a new sort order

plot() - Begins an X-Y plot

points() - Adds points to a plot started with plot()

poisson.test() - Confidence intervals for poisson events or ratios

ppois() - Returns a cumulative probability for particular threshold

qpois() - Does the inverse of ppois(): Probability into threshold

rpois() - Generates random numbers fitting a Poisson distribution

sum() - Adds together a list of numbers

TweetFrame() - Custom procedure yielding a dataset of tweets

var() - Calculates variance of a list of numbers

108

http://books.google.com/books?id=ZKswvkqhygYC&printsec=frontcover
http://books.google.com/books?id=ZKswvkqhygYC&printsec=frontcover
http://books.google.com/books?id=ZKswvkqhygYC&printsec=frontcover
http://books.google.com/books?id=ZKswvkqhygYC&printsec=frontcover
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-1
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://www.khanacademy.org/math/probability/v/poisson-process-2
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/Poisson.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/Poisson.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/Poisson.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/Poisson.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/poisson.test.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/poisson.test.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/poisson.test.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/poisson.test.html
http://stats.stackexchange.com/questions/10926/how-to-calculate-confidence-interval-for-count-data-in-r
http://stats.stackexchange.com/questions/10926/how-to-calculate-confidence-interval-for-count-data-in-r
http://stats.stackexchange.com/questions/10926/how-to-calculate-confidence-interval-for-count-data-in-r
http://stats.stackexchange.com/questions/10926/how-to-calculate-confidence-interval-for-count-data-in-r
http://stats.stackexchange.com/questions/10926/how-to-calculate-confidence-interval-for-count-data-in-r
http://stats.stackexchange.com/questions/10926/how-to-calculate-confidence-interval-for-count-data-in-r
http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/CA266_13_Poisson_Distribution.pdf
http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/CA266_13_Poisson_Distribution.pdf
http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/CA266_13_Poisson_Distribution.pdf
http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/CA266_13_Poisson_Distribution.pdf
http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/CA266_13_Poisson_Distribution.pdf
http://www.computing.dcu.ie/~mbezbradica/teaching/CA266/CA266_13_Poisson_Distribution.pdf

R Script - Create Vector of Probabilities From Delay Times

Like ArrivalProbability, but works with unsorted list

of delay times

DelayProbability<-function(delays, increment, max)

{

 # Initialize an empty vector

 plist <- NULL

 # Probability is defined over the size of this sample

 # of arrival times

 delayLen <- length(delays)

 # May not be necessary, but checks for input mistake

 if (increment>max) {return(NULL)}

 for (i in seq(increment, max, by=increment))

 {

 # logical test <=i provides list of TRUEs and FALSEs

 # of length = timeLen, then sum() counts the TRUEs

 plist<-c(plist,(sum(delays<=i)/delayLen))

 }

 return(plist)

}

109

Prior chapters focused on statistical analysis of tweet arrival times and built on earlier knowledge of
samples and distributions. This chapter switches gears to focus on manipulating so-called
"unstructured" data, which in most cases means natural language texts. Tweets are again a useful
source of data for this because tweets are mainly a short (140 characters or less) character strings.

CHAPTER 12

110

String Theory

Yoiks, that last chapter was very challenging! Lots of numbers, lots
of statistical concepts, lots of graphs. Let’s take a break from all
that (temporarily) and focus on a different kind of data for a while.
If you think about the Internet, and specifically about the World
Wide Web for a while, you will realize: 1) That there are zillions of
web pages; and 2) That most of the information on those web
pages is "unstructured," in the sense that it does not consist of nice
rows and columns of numeric data with measurements of time or
other attributes. Instead, most of the data spread out across the
Internet is text, digital photographs, or digital videos. These last
two categories are interesting, but we will have to postpone consid-
eration of them while we consider the question of text.

Text is, of course, one of the most common forms of human commu-
nication, hence the label that researchers use sometimes: natural
language. When we say natural language text we mean words cre-
ated by humans and for humans. With our cool computer technol-
ogy, we have collectively built lots of ways of dealing with natural
language text. At the most basic level, we have a great system for
representing individual characters of text inside of computers
called "Unicode." Among other things Unicode provides for a bi-
nary representation of characters in most of the world’s written lan-
guages, over 110,000 characters in all. Unicode supersedes ASCII
(the American Standard Code for Information Interchange), which
was one of the most popular standards (especially in the U.S.) for
representing characters from the dawn of the computer age.

With the help of Unicode, most computer operating systems, and
most application programs that handle text have a core strategy for
representing text as lists of binary codes. Such lists are commonly
referred to as "character strings" or in most cases just "strings." One

of the most striking things about strings from a computer program-
ming perspective is that they seem to be changing their length all
the time. You can’t perform the usual mathematical operations on
character strings the way you can with numbers - no multiplica-
tion or division - but it is very common to "split" strings into
smaller strings, and to "add" strings together to form longer
strings. So while we may start out with, "the quick brown fox," we
may end up with "the quick brown" in one string and "fox" in an-
other, or we may end up with something longer like, "the quick
brown fox jumped over the lazy dog."

Fortunately, R, like most other data handling applications, has a
wide range of functions for manipulating, keeping track of, search-
ing, and even analyzing string data. In this chapter, we will use our
budding skills working with tweet data to learn the essentials of
working with unstructured text data. The learning goal here is sim-
ply to become comfortable with examining and manipulating text
data. We need these basic skills before we can tackle a more inter-
esting problem.

Let’s begin by loading a new package, called "stringr". Although R
has quite a few string functions in its core, they tend to be a bit dis-
organized. So Hadley Wickham, a professor of statistics at Rice Uni-
versity, created this "stringr" package to make a set of string ma-
nipulation functions a bit easier to use and more comprehensive.
You can install() and library() this package using the point and
click features of R-Studio (look in the lower right hand pane under
the Packages tab), or if you created the EnsurePackage() function
from a couple of chapters back, you can use that:

EnsurePackage("stringr")

111

Now we can grab a new set of tweets with our custom function
TweetFrame() from a couple of chapters ago (if you need the code,
look in the chapter entitled "Tweet, Tweet"; we’ve also pasted the
enhanced function, that sorts the tweets into arrival order, into the
end of this chapter):

tweetDF <- TweetFrame("#solar",100)

This command should return a data frame containing about 100
tweets, mainly having to do with solar energy. You can choose any
topic you like - all of the string techniques we examine in this chap-

ter are widely applicable to any text strings. We should get ori-
ented by taking a look at what we retrieved. The head() function
can return the first entries in any vector or list:

We provide a screen shot from R-Studio here just to preserve the
formatting of this output. In the left hand margin, the number 97
represents R’s indexing of the original order in which the tweet

was received. The tweets were re-sorted into arrival order by our
enhanced TweetFrame() function (see the end of the chapter for
code). So this is the first element in our dataframe, but internally R
has numbered it as 97 out of the 100 tweets we obtained. On the
first line of the output, R has place the label "text" and this is the
field name of the column in the dataframe that contains the texts of
the tweets. Other dataframe fields that we will not be using in this
chapter include: "favorited," "replyToSN," and "truncated." You
may also recognize the field name "created" which contains the PO-
SIX format time and date stamp that we used in previous chapters.

Generally speaking, R has placed the example data
(from tweet 97) that goes with the field name just under-
neath it, but the text justification can be confusing, and
it makes this display very hard to read. For example,
there is a really long number that starts with "1908" that
is the unique numeric identifier (a kind of serial num-
ber) for this tweet. The field name "id" appears just
above it, but is right justified (probably because the
field is a number). The most important fact for us to
note is that if we want to work with the text string that
is the tweet itself, we need to use the field name "text."
Let’s see if we can get a somewhat better view if we use
the head() function just on the text field. This command
should provide just the first 2 entries in the "text" col-

umn of the dataframe:

head(tweetDF$text,2)

 [1] "If your energy needs increase after you in-
stall a #solar system can you upgrade? Our ex-
perts have the answer! http://t.co/ims8gDWW"

112

http://t.co/ims8gDWW
http://t.co/ims8gDWW

 [2] "#green New solar farms in West Tennessee
signal growth: Two new solar energy farms produc-
ing electricity ... http://t.co/37PKAF3N #solar"

A couple of things which will probably seem obvious, but are none-
theless important to point out: The [1] and [2] are not part of the
tweet, but are the typical line numbers that R uses in its output.
The actual tweet text is between the double quotes. You can see the
hashtag "#solar" appears in both tweets, which makes sense be-
cause this was our search term. There is also a second hashtag in
the first tweet "#green" so we will have to be on the lookout for
multiple hashtags. There is also a "shortened" URL in each of these
tweets. If a Twitter user pastes in the URL of a website to which
they want to refer people, the Twitter software automatically short-
ens the URL to something that begins with "http://t.co/" in order
to save space in the tweet.

An even better way to look at these data, including the text and the
other fields is to use the data browser that is built into R-Studio. If
you look in the upper right hand pane of R-Studio, and make sure

that the Workspace tab is clicked, you should see a list of available

dataframes, under the heading "Data." One of these should be
"tweetDF." If you click on tweetDF, the data browser will open in
the upper left hand pane of R-Studio and you should be able to see
the first field or two of the first dozen rows. Here’s a screen shot:

This screen shot confirms what we observed in the command line
output, but gives us a much more appealing and convenient way
of looking through our data. Before we start to manipulate our
strings, let’s attach() tweetDF so that we don’t have to keep using
the $ notation to access the text field. And before that, let’s check
what is already attached with the search() function:

> search()

 [1] ".GlobalEnv" "sortweetDF" "package:gplots"

 [4] "package:KernSmooth" "package:grid" "package:caTools"

We’ve truncated this list to save space, but you can see on the first
line "sortweetDF" left over from our work in a previous chapter.
The other entries are all function packages that we want to keep ac-
tive. So let’s detach() sortweetDF and attach tweetDF:

> detach(sortweetDF)

> attach(tweetDF)

These commands should yield no additional output. If
you get any messages about "The following object(s)
are masked from..." you should run search() again and
look for other dataframes that should be detached be-
fore proceeding. Once you can run attach("tweetDF")
without any warnings, you can be sure that the fields
in this dataframe are ready to use without interference.

113

http://t.co/37PKAF3N
http://t.co/37PKAF3N
http://t.co
http://t.co

The first and most basic thing to do with strings is to see how long
they are. The stringr package gives us the str_length() function to
accomplish this task:

> str_length(text)

 [1] 130 136 136 128 98 75 131 139 85 157 107 49 75 139 136 136

 [17] 136 72 73 136 157 123 160 142 142 122 122 122 122 134 82 87

 [33] 89 118 94 74 103 91 136 136 151 136 139 135 70 122 122 136

 [49] 123 111 83 136 137 85 154 114 117 98 125 138 107 92 140 119

 [65] 92 125 84 81 107 107 73 73 138 63 137 139 131 136 120 124

 [81] 124 114 78 118 138 138 116 112 101 94 153 79 79 125 125 102

 [97] 102 139 138 153

These are the string lengths of the texts as reported to the com-
mand line. It is interesting to find that there are a few of them (like
the very last one) that are longer than 140 characters:

> tail(text,1)

[1] "RT @SolarFred: Hey, #solar & wind people.
Tell @SpeakerBoehner and @Reuters that YOU have a
green job and proud to be providing energy Inde-
pendence to US"

As you can see, the tail() command works like the head() com-
mand except from the bottom up rather than the top down. So we
have learned that under certain circumstances Twitter apparently
does allow tweets longer than 140 characters. Perhaps the initial
phrase "RT @SolarFred" does not count against the total. By the
way "RT" stands for "retweet" and it indicates when the receiver of
a tweet has passed along the same message to his or her followers.

We can glue the string lengths onto the respective rows in the data-
frame by creating a new field/column:

tweetDF$textlen <- str_length(text)

After running this line of text, you should use the data browser in
R-studio to confirm that the tweetDF now has a new column of
data labeled "textlen". You will find the new column all the way on
the rightmost side of the dataframe structure. One peculiarity of
the way R treats attached data is that you will not be able to access
the new field without the $ notation unless you detach() and then
again attach() the data frame. One advantage of grafting this new
field onto our existing dataframe is that we can use it to probe the
dataframe structure:

> detach(tweetDF)

> attach(tweetDF)

> tweetDF[textlen>140, "text"]

[1] "RT @andyschonberger: Exciting (and tempting)
to see #EVs all over the #GLS12 show. Combine EVs
w #solar generation and we have a winner!
http://t.co/NVsfq4G3"

We’ve truncated the output to save space, but in the data we are us-
ing here, there were nine tweets with lengths greater than 140. Not
all of them had "RT" in them, though, so the mystery remains. An
important word about the final command line above, though:
We’re using the square brackets notation to access the elements of
tweetDF. In the first entry, "textlen>140", we’re using a conditional
expression to control which rows are reported. Only those rows
where our new field "textlen" contains a quantity larger than 140

114

http://t.co/NVsfq4G3
http://t.co/NVsfq4G3

will be reported to the output. In the second entry within square
brackets, "text" controls which columns are reported onto the out-
put. The square bracket notation is extremely powerful and some-
times a little unpredictable and confusing, so it is worth experi-
menting with. For example, how would you change that last com-
mand above to report all of the columns/fields for the matching
rows? Or how would you request the "screenName" column in-
stead of the "text" column? What would happen if you substituted
the number 1 in place of "text" on that command?

The next common task in working with strings is to count the num-
ber of words as well as the number of other interesting elements
within the text. Counting the words can be accomplished in several
ways. One of the simplest ways is to count the separators between
the words - these are generally spaces. We need to be careful not to
over count, if someone has mistakenly typed two spaces between a
word, so let’s make sure to take out doubles. The str_replace_all()
function from stringr can be used to accomplish this:

> tweetDF$modtext <- str_replace_all(text," "," ")

> tweetDF$textlen2 <- str_length(tweetDF$modtext)

> detach(tweetDF)

> attach(tweetDF)

> tweetDF[textlen != textlen2,]

The first line above uses the str_replace_all() function to substitute
the one string in place of another as many times as the matching
string appears in the input. Three arguments appear on the func-
tion above: the first is the input string, and that is tweetDF$text (al-
though we’ve referred to it just as "text because the dataframe is at-

tached). The second argument is the string to look for and the third
argument is the string to substitute in place of the first. Note that
here we are asking to substitute one space any time that two in a
row are found. Almost all computer languages have a function
similar to this, although many of them only supply a function that
replaces the first instance of the matching string.

In the second command we have calculated a new string length
variable based on the length of the strings where the substitutions
have occurred. We preserved this in a new variable/field/column
so that we can compare it to the original string length in the final
command. Note the use of the bracket notation in R to address a
certain subset of rows based on where the inequality is true. So
here we are looking for a report back of all of the strings whose
lengths changed. In the tweet data we are using here, the output
indicated that there were seven strings that had their length re-
duced by the elimination of duplicate spaces.

Now we are ready to count the number of words in each tweet us-
ing the str_count() function. If you give it some thought, it should
be clear that generally there is one more word than there are
spaces. For instance, in the sentence, "Go for it," there are two
spaces but three words. So if we want to have an accurate count,
we should add one to the total that we obtain from the str_count()
function:

> tweetDF$wordCount<-(str_count(modtext," ") + 1)

> detach(tweetDF)

> attach(tweetDF)

> mean(wordCount)

115

[1] 14.24

In this last command, we’ve asked R to report the mean value of
the vector of word counts, and we learn that on average a tweet in
our dataset has about 14 words in it.

Next, let’s do a bit of what computer scientists (and others) call
"parsing." Parsing is the process of dividing a larger unit, like a sen-
tence, into smaller units, like words, based on some kind of rule. In
many cases, parsing requires careful use of pattern matching. Most
computer languages accomplish pattern matching through the use
of a strategy called "regular expressions." A regular expression is a
set of symbols used to match patterns. For example, [a-z] is used to
match any lowercase letter and the asterisk is used to represent a
sequence of zero or more characters. So the regular expression "[a-
z]*" means, "match a sequence of zero or more lowercase charac-
ters.

If we wanted to parse the retweet sequence that appears at the be-
ginning of some of the tweets, we might use a regular expression
like this: "RT @[a-z,A-Z]*: ". Each character up to the square
bracket is a "literal" that has to match exactly. Then the "[a-z,A-Z]*"
lets us match any sequence of uppercase and lowercase characters.
Finally, the ": " is another literal that matches the end of the se-
quence. You can experiment with it freely before you commit to us-
ing a particular expression, by asking R to echo the results to the
command line, using the function str_match() like this:

str_match(modtext,"RT @[a-z,A-Z]*: ")

Once you are satisfied that this expression matches the retweet
phrases properly, you can commit the results to a new column/
field/variable in the dataframe:

> tweetDF$rt <- str_match(modtext,"RT @[a-z,A-Z]*: ")

> detach(tweetDF)

> attach(tweetDF)

Now you can review what you found by echoing the new variable
"rt" to the command line or by examining it in R-studio’s data
browser:

> head(rt, 10)

 [,1]

 [1,] NA

 [2,] NA

 [3,] NA

 [4,] NA

 [5,] NA

 [6,] NA

 [7,] NA

 [8,] "RT @SEIA: "

 [9,] NA

[10,] "RT @andyschonberger: "

This may be the first time we have seen the value "NA." In R, NA
means that there is no value available, in effect that the location is
empty. Statisticians also call this missing data. These NAs appear
in cases where there was no match to the regular expression that
we provided to the function str_match(). So there is nothing wrong

116

here, this is an expected outcome of the fact that not all tweets
were retweets. If you look carefully, though, you will see some-
thing else that is interesting.

R is trying to tell us something with the bracket notation. At the
top of the list there is a notation of [,1] which signifies that R is
showing us the first column of something. Then, each of the entries
looks like [#,] with a row number in place of # and an empty col-
umn designator, suggesting that R is showing us the contents of a
row, possibly across multiple columns. This seems a bit mysteri-
ous, but a check of the documentation for str_match() reveals that
it returns a matrix as its result. This means that tweetDF$rt could
potentially contain its own rectangular data object: In effect, the
variable rt could itself contain more than one column!

In our case, our regular expression is very simple and it contains
just one chunk to match, so there is only one column of new data
in tweetDF$rt that was generated form using str_match(). Yet the
full capability of regular expressions allows for matching a whole
sequence of chunks, not just one, and so str_match() has set up the
data that it returns to prepare for the eventuality that each row of
tweetDF$rt might actually have a whole list of results.

If, for some reason, we wanted to simplify the structure of
tweetDF$rt so that each element was simply a single string, we
could use this command:

tweetDF$rt <- tweetDF$rt[,1]

This assigns to each element of tweetDF$rt the contents of the first
column of the matrix. If you run that command and reexamine

tweetDF$rt with head() you will find the simplified structure: no
more column designator.

For us to be able to make some use of the retweet string we just iso-
lated, we probably should extract just the "screenname" of the indi-
vidual whose tweet got retweeted. A screenname in Twitter is like
a username, it provides a unique identifier for each person who
wants to post tweets. An individual who is frequently retweeted
by others may be more influential because their postings reach a
wider audience, so it could be useful for us to have a listing of all
of the screennames without the extraneous stuff. This is easy to do
with str_replace(). Note that we used str_replace_all() earlier in the
chapter, but we don’t need it here, because we know that we are
going to replace just one instance of each string:

tweetDF$rt<-str_replace(rt, "RT @","")

tweetDF$rt<-str_replace(rt,": ","")

> tail(rt, 1)

 [,1]

[100,] "SolarFred"

tweetDF$rt <- tweetDF$rt[,1]

In the first command, we substitute the empty string in place of the
four character prefix "RT @", while in the second command we sub-
stitute the empty string in place of the two character suffix ": ". In
each case we assign the resulting string back to tweetDF$rt. You
may be wondering why sometimes we create a new column or
field when we calculate some new data while other times we do
not. The golden rule with data columns is never to mess with the

117

original data that was supplied. When you are working ona "de-
rived" column, i.e., one that is calculated from other data, it may
require several intermediate steps to get the data looking the way
you want. In this case, rt is a derived column that we extracted
from the text field of the tweet and our goal was to reduce it to the
bare screenname of the individual whose post was retweeted. So
these commands, which successfully overwrite rt with closer and
closer versions of what we wanted, were fair game for modifica-
tion.

You may also have noticed
the very last command. It
seems that one of our steps,
probably the use of
str_match() must have
"matrix-ized" our data
again, so we use the column
trick that appeared earlier in
this chapter to flatten the ma-
trix back to a single column
of string data.

This would be a good point to visualize what we have obtained.
Here we introduce two new functions, one which should seem fa-
miliar and one that is quite new:

table(as.factor(rt))

The as.factor() function is a type/mode coercion and just a new
one in a family we have seen before. In previous chapters we used
as.integer() and as.character() to perform other conversions. In R a
factor is a collection of descriptive labels and corresponding

unique identifying numbers. The identifying numbers are not usu-
ally visible in outputs. Factors are often used for dividing up a data-
set into categories. In a survey, for instance, if you had a variable
containing the gender of a participant, the variable would fre-
quently be in the form of a factor with (at least) two distinct catego-
ries (or what statisticians call levels), male and female. Inside R,
each of these categories would be represented as a number, but the
corresponding label would usually be the only thing you would
see as output. As an experiment, try running this command:

str(as.factor(rt))

This will reveal the
"structure" of the data
object after coercion.

Returning to the earlier
table(as.factor(rt)) com-
mand, the table() func-
tion takes as input one
or more factors and re-
turns a so called contin-

gency table. This is easy to understand for use with just one factor:
The function returns a unique list of factor "levels" (unique: mean-
ing no duplicates) along with a count of how many rows/instances
there were of each level in the dataset as a whole.

The screen shot on this page shows the command and the output.
There are about 15 unique screennames of Twitter users who were
retweeted. The highest number of times that a screenname ap-
peared was three, in the case of SEIA. The table() function is used
more commonly to create two-way (two dimensional) contingency

118

tables. We could demonstrate that here if we had two factors, so
let’s create another factor.

Remember earlier in the chapter we noticed some tweets had texts
that were longer than 140 characters. We can make a new variable,
we’ll call it longtext, that will be TRUE if the original tweet was
longer than 140 characters and FALSE if it was not:

> tweetDF$longtext <- (textlen>140)

> detach(tweetDF)

> attach(tweetDF)

The first command above has an inequality expression on the right
hand side. This is tested for each row and the result, either TRUE
or FALSE, is assigned to the new variable longtext. Computer scien-
tists sometimes call this a "flag" variable because it flags whether or
not a certain attribute is present in the data. Now we can run the
table() function on the two factors:

> table(as.factor(rt),as.factor(longtext))

 FALSE TRUE

 EarthTechling 0 1

 FeedTheGrid 2 0

 FirstSolar 1 0

 GreenergyNews 1 0

 RayGil 0 1

 SEIA 3 0

 SolarFred 0 2

 SolarIndustry 1 0

 SolarNovus 1 0

 andyschonberger 0 2

 deepgreendesign 0 1

 gerdvdlogt 2 0

 seia 2 0

 solarfred 1 0

 thesolsolution 1 0

For a two-way contingency table, the first argument you supply to
table() is used to build up the rows and the second argument is
used to create the columns. The command and output above give
us a nice compact display of which retweets are longer than 140
characters (the TRUE column) and which are not (the FALSE col-
umn). It is easy to see at a glance that there are many in each cate-
gory. So, while doing a retweet may contribute to having an extra
long tweet, there are also many retweets that are 140 characters or
less. It seems a little cumbersome to look at the long list of retweet
screennames, so we will create another flag variable that indicates
whether a tweet text contains a retweet. This will just provide a
more compact way of reviewing which tweets have retweets and
which do not:

> tweetDF$hasrt <- !(is.na(rt))

> detach(tweetDF)

119

> attach(tweetDF)

> View(tweetDF)

The first command above uses a function we have not encountered
before: is.na(). A whole family of functions that start with "is" exists
in R (as well as in other programming languages) and these func-
tions provide a convenient way of testing the status or contents of
a data object or of a particular element of a data object. The is.na()
function tests whether an element of the input variable has the
value NA, which we know from earlier in the chapter is R’s way of
showing a missing value (when a particular data element is
empty). So the expression, is.na(rt) will return TRUE if a particular
cell of tweetDF$rt contains the empty value NA, and false if it con-
tains some real data. If you look at the name of our new variable,
however, which we have called "hasrt" you may see that we want
to reverse the sense of the TRUE and FALSE that is.na() returns. To
do that job we use the "!" character, which computers scientists
may either call "bang" or more accurately, "not." Using "not" is
more accurate because the "!" character provides the Boolean NOT
function, which changes a TRUE to a FALSE and vice versa. One
last little thing is that the View() command causes R-Studio to
freshen the display of the dataframe in its upper left hand pane.
Let’s look again at retweets and long tweet texts:

> table(hasrt,longtext)

 longtext

hasrt FALSE TRUE

 FALSE 76 2

 TRUE 15 7

There are more than twice as many extra long texts (7) when a
tweet contains a retweet than when it does not.

Let’s now follow the same general procedure for extracting the
URLs from the tweet texts. As before the goal is to create a new
string variable/column on the original dataframe that will contain
the URLs for all of those tweets that have them. Additionally, we
will create a flag variable that signifies whether or not each tweet
contains a URL. Here, as before, we follow a key principle: Don’t
mess with your original data. We will need to develop a new regu-
lar expression in order to locate an extract the URL string from in-
side of the tweet text. Actually, if you examine your tweet data in
the R-Studio data browser, you may note that some of the tweets
have more than one URL in them. So we will have to choose our
function call carefully and be equally careful looking at the results
to make sure that we have obtained what we need.

At the time when this was written, Twitter had imposed an excel-
lent degree of consistency on URLs, such that they all seem to start
with the string "http://t.co/". Additionally, it seems that the com-
pacted URLs all contain exactly 8 characters after that literal, com-
posed of upper and lower case letters and digits. We can use
str_match_all() to extract these URLs using the following code:

str_match_all(text,"http://t.co/[a-z,A-Z,0-9]{8}")

We feed the tweetDF$text field as input into this function call (we
don’t need to provide the tweetDF$ part because this dataframe is
attached). The regular expression begins with the 12 literal charac-
ters ending with a forward slash. Then we have a regular expres-
sion pattern to match. The material within the square brackets
matches any upper or lowercase letter and any digit. The numeral

120

http://t.co
http://t.co
http://livepage.apple.com/
http://livepage.apple.com/

8 between the curly braces at the end say to match the previous pat-
tern exactly eight times. This yields output that looks like this:

[[6]]

 [,1]

[1,] "http://t.co/w74X9jci"

[[7]]

 [,1]

[1,] "http://t.co/DZBUoz5L"

[2,] "http://t.co/gmtEdcQI"

This is just an excerpt of the output, but there are a couple of impor-
tant things to note. First, note that the first element is preceded by
the notation [[6]]. In the past when R has listed out multiple items
on the output, we have seen them with index numbers like [1] and
[2]. In this case, however, that could be confusing because each ele-
ment in the output could have multiple rows (as item [[7]] above
clearly shows). So R is using double bracket notation to indicate
the ordinal number of each chunk of data in the list, where a given
chunk may itself contain multiple elements.

Confusing? Let’s go at it from a different angle. Look at the output
under the [[7]] above. As we noted a few paragraphs ago, some of
those tweets have multiple URLs in them. The str_match_all() func-
tion handles this by creating, for every single row in the tweet data, a
data object that itself contains exactly one column but one or possi-
bly more than one row - one row for each URL that appears in the

tweet. So, just as we saw earlier in the chapter, we are getting back
from a string function a complex matrix-like data object that re-
quires careful handling if we are to make proper use of it.

The only other bit of complexity is this: What if a tweet contained
no URLs at all? Your output from running the str_match_all() func-
tion probably contains a few elements that look like this:

[[30]]

character(0)

[[31]]

character(0)

So elements [[30]] and [[31]] of the data returned from
str_match_all() each contain a zero length string. No rows, no col-
umns, just character(0), the so-called null character, which in many
computer programming languages is used to "terminate" a string.

Let’s go ahead and store the output from str_match_all() into a
new vector on tweetDF and then see what we can do to tally up
the URLs we have found:

> tweetDF$urlist<-str_match_all(text,+ 
 "http://t.co/[a-z,A-Z,0-9]{8}")

> detach(tweetDF)

> attach(tweetDF)

> head(tweetDF$urlist,2)

[[1]]

121

http://t.co/w74X9jci
http://t.co/w74X9jci
http://t.co/DZBUoz5L
http://t.co/DZBUoz5L
http://t.co/gmtEdcQI
http://t.co/gmtEdcQI
http://livepage.apple.com/
http://livepage.apple.com/

 [,1]

[1,] "http://t.co/ims8gDWW"

[[2]]

 [,1]

[1,] "http://t.co/37PKAF3N"

Now we are ready to wrestle with the problem of how to tally up
the results of our URL parsing. Unlike the situation with retweets,
where there either was or was not a single retweet indication in the
text, we have the possibility of zero, one or more URLs within the
text of each tweet. Our new object "urlist" is a multi-dimensional
object that contains a single null character, one row/column of
character data, or one column with more than one row of character
data. The key to summarizing this is the length() function, which
will happily count up the number of elements in an object that you
supply to it:

> length(urlist[[1]])

[1] 1

> length(urlist[[5]])

[1] 0

> length(urlist[[7]])

[1] 2

Here you see that double bracket notation again, used as an index
into each "chunk" of data, where the chunk itself may have some

internal complexity. In the case of element [[1]] above, there is one
row, and therefore one URL. For element [[5]] above, we see a zero,
which means that length() is telling us that this element has no
rows in it at all. Finally, for element [[7]] we see 2, meaning that
this element contains two rows, and therefore two URLs.

In previous work with R, we’ve gotten used to leaving the inside
of the square brackets empty when we want to work with a whole
list of items, but that won’t work with the double brackets:

> length(urlist[[]])

Error in urlist[[]] : invalid subscript type 'symbol'

The double brackets notation is designed to reference just a single
element or component in a list, so empty double brackets does not
work as a shorthand for every element in a list. So what we must
do if we want to apply the length() function to each element in url-
ist is to loop. We could accomplish this with a for loop, as we did
in the last chapter, using an index quantity such as "i" and substitut-
ing i into each expression like this: urlist[[i]]. But let’s take this op-
portunity to learn a new function in R, one that is generally more
efficient for looping. The rapply() function is part of the "apply"
family of functions, and it stands for "recursive apply." Recursive
in this case means that the function will dive down into the com-
plex, nested structure of urlist and repetitively run a function for
us, in this case the length() function:

> tweetDF$numurls<-rapply(urlist,length)

> detach(tweetDF)

> attach(tweetDF)

> head(numurls,10)

122

http://t.co/ims8gDWW
http://t.co/ims8gDWW
http://t.co/37PKAF3N
http://t.co/37PKAF3N

 [1] 1 1 1 1 0 1 2 1 1 1

Excellent! We now have a new field on tweetDF that counts up the
number of URLs. As a last step in examining our tweet data, let’s
look at a contingency table that looks at the number of URLs to-
gether with the flag indicating an extra long tweet. Earlier in the
chapter, we mentioned that the table() function takes factors as its
input. In the command below we have supplied the numurls field
to the table() function without coercing it to a factor. Fortunately,
the table() function has some built in intelligence that will coerce a
numeric variable into a factor. In this case because numurls only
takes on the values of 0, 1, or 2, it makes good sense to allow ta-
ble() to perform this coercion:

> table(numurls,longtext)

 longtext

numurls FALSE TRUE

 0 16 3

 1 72 6

 2 3 0

This table might be even more informative if we looked at it as pro-
portions, so here is a trick to view proportions instead of counts:

> prop.table(table(numurls,longtext))

 longtext

numurls FALSE TRUE

 0 0.16 0.03

 1 0.72 0.06

 2 0.03 0.00

That looks familiar! Now, of course, we remember that we had ex-
actly 100 tweets, so each of the counts could be considered a per-
centage with no further calculation. Still, prop.table() is a useful
function to have when you would rather view your contingency
tables as percentages rather than counts. We can see from these re-
sults that six percent of the tweets have one URL, but only three
percent have no URLS.

So, before we close out this chapter, let’s look at a three way contin-
gency table by putting together our two flag variables and the num-
ber of URLs:

> table(numurls,hasrt,longtext)

, , longtext = FALSE

 hasrt

numurls FALSE TRUE

 0 15 1

 1 58 14

 2 3 0

, , longtext = TRUE

 hasrt

numurls FALSE TRUE

 0 0 3

123

 1 2 4

 2 0 0

Not sure this entirely solves the mystery, but if we look at the sec-
ond two-way table above, where longtext = TRUE, it seems that ex-
tra long tweets either have a retweet (3 cases), or a single URL (2
cases) or both (4 cases).

When we said we would give statistics a little rest in this chapter,
we lied just a tiny bit. Check out these results:

> mean(textlen[hasrt&longtext])

[1] 155

> mean(textlen[!hasrt&longtext])

[1] 142

In both commands we have requested the mean of the variable
textlen, which contains the length of the original tweet (the one
without the space stripped out). In each command we have also
used the bracket notation to choose a particular subset of the cases.
Inside the brackets we have a logical expression. The only cases
that will be included in the calculation of the mean are those where
the expression inside the brackets evaluates to TRUE. In the first
command we ask for the mean tweet length for those tweets that
have a retweet AND are extra long (the ampersand is the Boolean
AND operator). In the second command we use the logical NOT
(the "!" character) to look at only those cases that have extra long
text but do not have a retweet. The results are instructive. The
really long tweets, with a mean length of 155 characters, are those
that have retweets. It seems that Twitter does not penalize an indi-
vidual who retweets by counting the number of characters in the

"RT @SCREENNAME:" string. If you have tried the web interface
for Twitter you will see why this makes sense: Retweeting is accom-
plished with a click, and the original tweet - which after all may al-
ready be 140 characters - appears underneath the screenname of
the originator of the tweet. The "RT @" string does not even appear
in the text of the tweet at that point.

Looking back over this chapter, we took a close look at some of the
string manipulation functions provided by the package "stringr".
These included some of the most commonly used actions such as
finding the length of a string, finding matching text within a string,
and doing search and replace operations on a string. We also be-
came aware of some additional complexity in nested data struc-
tures. Although statisticians like to work with nice, well-ordered
rectangular datasets, computer scientists often deal with much
more complex data structures - although these are built up out of
parts that we are familiar with such as lists, vectors, and matrices.

Twitter is an excellent source of string data, and although we have
not yet done much in analyzing the contents of tweets or their
meanings, we have looked at some of the basic features and regu-
larities of the text portion of a tweet. In the next chapter we will be-
come familiar with a few additional text tools and then be in a posi-
tion to manipulate and analyze text data

Chapter Challenges

Create a function that takes as input a dataframe of tweets and re-
turns as output a list of all of the retweet screennames. As an extra
challenge, see if you can reduce that list of screennames to a
unique set (i.e., no duplicates) while also generating a count of the
number of times that each retweet screenname appeared.

124

Once you have written that function, it should be a simple matter
to copy and modify it to create a new function that extracts a
unique list of hashtags from a dataframe of tweets. Recall that
hashtags begin with the "#" character and may contain any combi-
nation of upper and lowercase characters as well as digits. There is
no length limit on hashtags, so you will have to assume that a hash-
tag ends when there is a space or a punctuation mark such as a
comma, semicolon, or period.

Sources

http://cran.r-project.org/web/packages/stringr/index.html

http://en.wikipedia.org/wiki/ASCII

http://en.wikipedia.org/wiki/Regular_expression

http://en.wikipedia.org/wiki/Unicode

http://had.co.nz/ (Hadley Wickham)

http://mashable.com/2010/08/14/twitter-140-bug/

http://stat.ethz.ch/R-manual/R-devel/library/base/html/search
.html

http://stat.ethz.ch/R-manual/R-devel/library/base/html/table.h
tml

R Code for TweetFrame() Function

TweetFrame() - Return a dataframe based on a search of Twit-
ter

TweetFrame<-function(searchTerm, maxTweets)

{

 tweetList <- searchTwitter(searchTerm, n=maxTweets)

 # as.data.frame() coerces each list element into a row

 # lapply() applies this to all of the elements in twtList

 # rbind() takes all of the rows and puts them together

 # do.call() gives rbind() all rows as individual elements

 tweetDF<- do.call("rbind", lapply(tweetList,as.data.frame))

 # This last step sorts the tweets in arrival order

 return(tweetDF[order(as.integer(tweetDF$created)),])

}

125

http://cran.r-project.org/web/packages/stringr/index.html
http://cran.r-project.org/web/packages/stringr/index.html
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://had.co.nz
http://had.co.nz
http://mashable.com/2010/08/14/twitter-140-bug/
http://mashable.com/2010/08/14/twitter-140-bug/
http://stat.ethz.ch/R-manual/R-devel/library/base/html/search.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/search.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/search.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/search.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/table.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/table.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/table.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/table.html

In the previous chapter we mastered some of the most basic and important functions for examining
and manipulating text. Now we are in a position to analyze the actual words that appear in text
documents. Some of the most basic functions of the Internet, such as keyword search, are
accomplished by analyzing the "content" i.e., the words in a body of text.

CHAPTER 13

126

Word Perfect

The picture at the start of this chapter is a so called "word cloud"
that was generated by examining all of the words returned from a
Twitter search of the term "data science" (using a web application
at http://www.jasondavies.com) These colorful word clouds are
fun to look at, but they also do contain some useful information.
The geometric arrangement of words on the figure is partly ran-
dom and partly designed and organized to please the eye. Same
with the colors. The font size of each word, however, conveys some
measure of its importance in the "corpus" of words that was pre-
sented to the word cloud graphics program. Corpus, from the
Latin word meaning "body," is a word that text analysts use to refer
to a body of text material, often consisting of one or more docu-
ments. When thinking about a corpus of textual data, a set of docu-
ments could really be anything: web pages, word processing docu-
ments on your computer, a set of Tweets, or government reports. In
most cases, text analysts think of a collection of documents, each of
which contains some natural language text, as a corpus if they plan
to analyze all the documents together.

The word cloud on the previous page shows that "Data" and "Sci-
ence" are certainly important terms that came from the search of
Twitter, but there are dozens and dozens of less important, but per-
haps equally interesting, words that the search results contained.
We see words like algorithms, molecules, structures, and research,
all of which could make sense in the context of data science. We
also see other terms, like #christian, Facilitating, and Coordinator,
that don’t seem to have the same obvious connection to our origi-
nal search term "data science." This small example shows one of
the fundamental challenges of natural language processing and the
closely related area of search: ensuring that the analysis of text pro-
duces results that are relevant to the task that the user has in mind.

In this chapter we will use some new R packages to extend our
abilities to work with text and to build our own word cloud from
data retrieved from Twitter. If you have not worked on the chapter
"String Theory" that precedes this chapter, you should probably do
so before continuing, as we build on the skills developed there.

Depending upon where you left off after the previous chapter, you
will need to retrieve and pre-process a set of tweets, using some of
the code you already developed, as well as some new code. At the
end of the previous chapter, we have provided sample code for the
TweetFrame() function, that takes a search term and a maximum
tweet limit and returns a time-sorted dataframe containing tweets.
Although there are a number of comments in that code, there are
really only three lines of functional code thanks to the power of the
twitteR package to retrieve data from Twitter for us. For the activi-
ties below, we are still working with the dataframe that we re-
trieved in the previous chapter using this command:

tweetDF <- TweetFrame("#solar",100)

This yields a dataframe, tweetDF, that contains 100 tweets with the
hashtag #solar, presumably mostly about solar energy and related
"green" topics. Before beginning our work with the two new R
packages, we can improve the quality of our display by taking out
a lot of the junk that won’t make sense to show in the word cloud.
To accomplish this, we have authored another function that strips
out extra spaces, gets rid of all URL strings, takes out the retweet
header if one exists in the tweet, removes hashtags, and eliminates
references to other people’s tweet handles. For all of these transfor-
mations, we have used string replacement functions from the
stringr package that was introduced in the previous chapter. As an
example of one of these transformations, consider this command,

127

http://www.jasondavies.com
http://www.jasondavies.com

which appears as the second to last line of the CleanTweet() func-
tion:

tweets <- str_replace_all(tweets,"@[a-z,A-Z]*","")

You should feel pretty comfortable reading this line of code, but if
not, here’s a little more practice. The left hand side is easy: we use
the assignment arrow to assign the results of the right hand side
expression to a data object called "tweets." Note that when this
statement is used inside the function as shown at the end of the
chapter, "tweets" is a temporary data object, that is used just within
CleanTweets() after which it disappears automatically.

The right hand side of the expression uses the str_replace_all() func-
tion from the stringr package. We use the "all" function rather than
str_replace() because we are expecting multiple matches within
each individual tweet. There are three arguments to the str_re-
place_all() function. The first is the input, which is a vector of char-
acter strings (we are using the temporary data object "tweets" as
the source of the text data as well as its destination), the second is
the regular expression to match, and the third is the string to use to
replace the matches, in this case the empty string as signified by
two double quotes with nothing between them. The regular expres-
sion in this case is the at sign, "@", followed by zero or more upper
and lowercase letters. The asterisk, "*", after the stuff in the square
brackets is what indicates the zero or more. That regular expres-
sion will match any screenname referral that appears within a
tweet.

If you look at a few tweets you will find that people refer to each
other quite frequently by their screennames within a tweet, so @So-
larFred might occur from time to time within the text of a tweet.

Here’s something you could investigate on your own: Can screen-
names contain digits as well as letters? If so, how would you have
to change the regular expression in order to also match the digits
zero through nine as part of the screenname? On a related note,
why did we choose to strip these screen names out of our tweets?
What would the word cloud look like if you left these screennames
in the text data?

Whether you typed in the function at the end of this chapter or you
plan to enter each of the cleaning commands individually, let’s be-
gin by obtaining a separate vector of texts that is outside the origi-
nal dataframe:

> cleanText<-tweetDF$text

> head(cleanText, 10)

There’s no critical reason for doing this except that it will simplify
the rest of the presentation. You could easily copy the tweetDF$text
data into another column in the same dataframe if you wanted to.
We’ll keep it separate for this exercise so that we don’t have to
worry about messing around with the rest of the dataframe. The
head() command above will give you a preview of what you are
starting with. Now let’s run our custom cleaning function:

> cleanText<-CleanTweets(cleanText)

> head(cleanText, 10)

Note that we used our "cleanText" data object in the first command
above as both the source and the destination. This is an old com-
puter science trick for cutting down on the number of temporary
variables that need to be used. In this case it will do exactly what
we want, first evaluating the right hand side of the expression by

128

running our CleanTweets() function with the cleanText object as in-
put and then taking the result that is returned by CleanTweets()
and assigning it back into cleanText, thus overwriting the data that
was in there originally. Remember that we have license to do what-
ever we want to cleanText because it is a copy of our original data,
and we have left the original data intact (i.e., the text column inside
the tweetDF dataframe).

The head() command should now show a short list of tweets with
much of the extraneous junk filtered out. If you have followed
these steps, cleanText is now a vector of character strings (in this
example exactly 100 strings) ready for use in the rest of our work
below. We will now use the "tm" package to process our texts. The
"tm" in this case refers to "text mining," and is a popular choice
among the many text analysis packages available in R. By the way,
text mining refers to the practice of extracting useful analytic infor-
mation from corpora of text (corpora is the plural of corpus). Al-
though some people use text mining and natural language process-
ing interchangeably, there are probably a couple subtle differences
worth considering. First, the "mining" part of text mining refers to
an area of practice that looks for unexpected patterns in large data
sets, or what some people refer to as knowledge discovery in data-
bases. In contrast, natural language processing reflects a more gen-
eral interest in understanding how machines can be programmed
(or learn on their own) how to digest and make sense of human lan-
guage. In a similar vein, text mining often focuses on statistical ap-
proaches to analyzing text data, using strategies such as counting
word frequencies in a corpus. In natural language processing, one
is more likely to hear consideration given to linguistics, and there-
fore to the processes of breaking text into its component grammati-
cal pieces such as nouns and verbs. In the case of the "tm" add on

package for R, we are definitely in the statistical camp, where the
main process is to break down a corpus into sequences of words
and then to tally up the different words and sequences we have
found.

To begin, make sure that the tm package is installed and "library-
ed" in your copy of R and R-Studio. You can use the graphic inter-
face in R-Studio for this purpose or the EnsurePackage() function
that we wrote in a previous chapter. Once the tm package is ready
to use, you should be able to run these commands:

> tweetCorpus<-Corpus(VectorSource(cleanText))

> tweetCorpus

A corpus with 100 text documents

> tweetCorpus<-tm_map(tweetCorpus, tolower)

> tweetCorpus<-tm_map(tweetCorpus, removePunctuation)

> tweetCorpus<-tm_map(tweetCorpus,removeWords,+ 
 stopwords('english'))

In the first step above , we "coerce" our cleanText vector into a cus-
tom "Class" provided by the tm package and called a "Corpus,"
storing the result in a new data object called "tweetCorpus." This is
the first time we have directly encountered a "Class." The term
"class" comes from an area of computer science called "object ori-
ented programming." Although R is different in many ways from
object-oriented languages such as Java, it does contain many of the
most fundamental features that define an object oriented language.
For our purposes here, there are just a few things to know about a
class. First, a class is nothing more or less than a definition for the
structure of a data object. Second, classes use basic data types, such

129

as numbers, to build up more complex data structures. For exam-
ple, if we made up a new "Dashboard" class, it could contain one
number for "Miles Per Hour," another number for "RPM," and per-
haps a third one indicating the remaining "Fuel Level." That brings
up another point about Classes: users of R can build their own. In
this case, the author of the tm package, Ingo Feinerer, created a
new class, called Corpus, as the central data structure for text min-
ing functions. (Feinerer is a computer science professor who works
at the Vienna University of Technology in the Database and Artifi-
cial Intelligence Group.) Last, and most important for this discus-
sion, a Class not only contains definitions about the structure of
data, it also contains references to functions that can work on that
Class. In other words, a Class is a data object that carries with it in-
structions on how to do operations on it, from simple things like
add and subtract all the way up to complicated operations such as
graphing.

In the case of the tm package, the Corpus Class defines the most
fundamental object that text miners care about, a corpus contain-
ing a collection of documents. Once we have our texts stored in a
Corpus, the many functions that the tm package provides to us are
available. The last three commands in the group above show the
use of the tm_map() function, which is one of the powerful capabili-
ties provided by tm. In each case where we call the tm_map() func-
tion, we are providing tweetCorpus as the input data, and then we
are providing a command that undertakes a transformation on the
corpus. We have done three transformations here, first making all
of the letters lowercase, then removing the punctuation, and finally
taking out the so called "stop" words.

The stop words deserve a little explanation. Researchers who devel-
oped the early search engines for electronic databases found that
certain words interfered with how well their search algorithms
worked. Words such as "the," "a," and "at" appeared so commonly
in so many different parts of the text that they were useless for dif-
ferentiating between documents. The unique and unusual nouns,
verbs, and adjectives that appeared in a document did a much bet-
ter job of setting a document apart from other documents in a cor-
pus, such that researchers decided that they should filter out all of
the short, commonly used words. The term "stop words" seems to
have originated in the 1960s to signify words that a computer proc-
essing system would throw out or "stop using" because they had
little meaning in a data processing task. To simplify the removal of
stop words, the tm package contains lists of such words for differ-
ent languages. In the last command on the previous page we re-
quested the removal of all of the common stop words.

At this point we have processed our corpus into a nice uniform
"bag of words" that contains no capital letters, punctuation, or stop
words. We are now ready to conduct a kind of statistical analysis of
the corpus by creating what is known as a "term-document ma-
trix." The following command from the tm package creates the ma-
trix:

> tweetTDM<-TermDocumentMatrix(tweetCorpus)

> tweetTDM

A term-document matrix (375 terms, 100 documents)

Non-/sparse entries: 610/36890

Sparsity : 98%

130

Maximal term length: 21

Weighting : term frequency (tf)

A term-document matrix, also sometimes called a document-term
matrix, is a rectangular data structure with terms as the rows and
documents as the columns (in other uses you may also make the
terms as columns and documents as rows). A term may be a single
word, for example, "biology," or it could also be a compound word,
such as "data analysis." The process of determining whether words
go together in a compound word can be accomplished statistically
by seeing which words commonly go together, or it can be done
with a dictionary. The tm package supports the dictionary ap-
proach, but we have not used a dictionary in this example. So if a
term like "data" appears once in the first document, twice in the sec-
ond document, and not at all in the third document, then the col-
umn for the term data will contain 1, 2, 0.

The statistics reported when we ask for tweetTDM on the com-
mand line give us an overview of the results. The TermDocument-
Matrix() function extracted 375 different terms from the 100 tweets.
The resulting matrix mainly consists of zeros: Out of 37,500 cells in
the matrix, only 610 contain non-zero entries, while 36,890 contain
zeros. A zero in a cell means that that particular term did not ap-
pear in that particular document. The maximal term length was 21
words, which an inspection of the input tweets indicates is also the
maximum word length of the input tweets. Finally, the last line,
starting with "Weighting" indicates what kind of statistic was
stored in the term-document matrix. In this case we used the de-
fault, and simplest, option which simply records the count of the
number of times a term appears across all of the documents in the

corpus. You can peek at what the term-document matrix contains
by using the inspect function:

inspect(tweetTDM)

Be prepared for a large amount of output. Remember the term
"sparse" in the summary of the matrix? Sparse refers to the over-
whelming number of cells that contain zero - indicating that the
particular term does not appear in a given document. Most term
document matrices are quite sparse. This one is 98% sparse be-
cause 36890/37500 = 0.98. In most cases we will need to cull or fil-
ter the term-document matrix for purposes of presenting or visual-
izing it. The tm package provides several methods for filtering out
sparsely used terms, but in this example we are going to leave the
heavy lifting to the word cloud package.

As a first step we need to install and library() the "wordcloud"
package. As with other packages, either use the package interface
in R-Studio or the EnsurePackage() function that we wrote a few
chapters ago. The wordcloud package was written by freelance stat-
istician Ian Fellows, who also developed the "Deducer" user inter-
face for R. Deducer provides a graphical interface that allows users
who are more familiar with SPSS or SAS menu systems to be able
to use R without resorting to the command line.

Once the wordcloud package is loaded, we need to do a little
preparation to get our data ready to submit to the word cloud gen-
erator function. That function expects two vectors as input argu-
ments, the first a list of the terms, and the second a list of the fre-
quencies of occurrence of the terms. The list of terms and frequen-
cies must be sorted with the most frequent terms appearing first.
To accomplish this we first have to coerce our tweet data back into

131

a plain data matrix so that we can sort it by frequency. The first
command below accomplishes this:

> tdMatrix <- as.matrix(tweetTDM)

> sortedMatrix<-sort(rowSums(tdMatrix),+  
 decreasing=TRUE)

> cloudFrame<-data.frame(+  
 word=names(sortedMatrix),freq=sortedMatrix)

> wordcloud(cloudFrame$word,cloudFrame$freq)

In the next command above, we are accomplishing two things in
one command: We are calculating the sums across each row, which
gives us the total frequency of a term across all of the different
tweets/documents. We are also sorting the resulting values with
the highest frequencies first. The result is a named list: Each item of
the list has a frequency and the name of each item is the term to
which that frequency applies.

In the second to last command above, we are extracting the names
from the named list in the previous command and binding them
together into a dataframe with the frequencies. This dataframe,
"cloudFrame", contains exactly the same information as the named
list. "sortedMatrix," but cloudFrame has the names in a separate
column of data. This makes it easier to do the final command
above, which is the call to the wordcloud() function. The word-
cloud() function has lots of optional parameters for making the
word cloud more colorful, controlling its shape, and controlling
how frequent an item must be before it appears in the cloud, but
we have used the default settings for all of these parameters for the
sake of simplicity. We pass to the wordcloud() function the term

list and frequency list that we bound into the dataframe and word-
cloud() produces the nice graphic that you see below.

If you recall the Twitter search that we used to retrieve those
tweets (#solar) it makes perfect sense that "solar" is the most fre-
quent term (even though we filtered out all of the hashtags. The
next most popular term is "energy" and after that there are a vari-
ety of related words such as "independence," "green," "wind," and
"metering."

132

Chapter Challenge

Develop a function that builds upon previous functions we have
developed, such as TweetFrame() and CleanTweets(), to take a
search term, conduct a Twitter search, clean up the resulting texts,
formulate a term-document matrix, and submit resulting term fre-
quencies to the wordcloud() function. Basically this would be a
"turnkey" package that would take a Twitter search term and pro-
duce a word cloud from it, much like the Jason Davies site de-
scribed at the beginning of this chapter.

Sources Used in This Chapter

http://cran.r-project.org/web/packages/wordcloud/wordcloud.
pdf

http://www.dbai.tuwien.ac.at/staff/feinerer/

http://en.wikipedia.org/wiki/Document-term_matrix

http://en.wikipedia.org/wiki/Stop_words

http://en.wikipedia.org/wiki/Text_mining

http://stat.ethz.ch/R-manual/R-devel/library/base/html/colSu
ms.html

http://www.jasondavies.com/wordcloud/

R Code for CleanTweets() Function

CleanTweets() - Takes the junk out of a vector of

tweet texts

CleanTweets<-function(tweets)

{

 # Remove redundant spaces

 tweets <- str_replace_all(tweets," "," ")

 # Get rid of URLs

 tweets <- str_replace_all(tweets, +  
 "http://t.co/[a-z,A-Z,0-9]{8}","")

 # Take out retweet header, there is only one

 tweets <- str_replace(tweets,"RT @[a-z,A-Z]*: ","")

 # Get rid of hashtags

 tweets <- str_replace_all(tweets,"#[a-z,A-Z]*","")

 # Get rid of references to other screennames

 tweets <- str_replace_all(tweets,"@[a-z,A-Z]*","")

 return(tweets)

}

133

http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
http://www.dbai.tuwien.ac.at/staff/feinerer/
http://www.dbai.tuwien.ac.at/staff/feinerer/
http://en.wikipedia.org/wiki/Document-term_matrix
http://en.wikipedia.org/wiki/Document-term_matrix
http://en.wikipedia.org/wiki/Stop_words
http://en.wikipedia.org/wiki/Stop_words
http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Text_mining
http://stat.ethz.ch/R-manual/R-devel/library/base/html/colSums.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/colSums.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/colSums.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/colSums.html
http://www.jasondavies.com/wordcloud/
http://www.jasondavies.com/wordcloud/
http://livepage.apple.com/
http://livepage.apple.com/

Before now we have only used small amount of data that we typed in ourselves, or somewhat larger
amounts that we extracted from Twitter. The world is full of other sources of data, however, and we
need to examine how to get them into R, or at least how to make them accessible for manipulation in
R. In this chapter, we examine various ways that data are stored, and how to access them.

CHAPTER 14

134

Storage Wars

Most people who have watched the evolution of technology over
recent decades remember a time when storage was expensive and
it had to be hoarded like gold. Over the last few years, however,
the accelerating trend of Moore’s Law has made data storage al-
most "too cheap to meter" (as they used to predict about nuclear
power). Although this opens many opportunities, it also means
that people keep data around for a long time, since it doesn’t make
sense to delete anything, and they may keep data around in many
different formats. As a result, the world is full of different data for-
mats, some of which are proprietary - designed and owned by a
single company such as SAS - and some of which are open, such as
the lowly but infinitely useful "comma separated variable," or CSV
format.

In fact, one of the basic dividing lines in data formats is whether
data are human readable or not. Formats that are not human read-
able, often called binary formats, are very efficient in terms of how
much data they can pack in per kilobyte, but are also squirrelly in
the sense that it is hard to see what is going on inside of the format.
As you might expect, human readable formats are inefficient from
a storage standpoint, but easy to diagnose when something goes
wrong. For high volume applications, such as credit card process-
ing, the data that is exchanged between systems is almost univer-
sally in binary formats. When a data set is archived for later reuse,
for example in the case of government data sets available to the
public, they are usually available in multiple formats, at least one
of which is a human readable format.

Another dividing line, as mentioned above is between proprietary
and open formats. One of the most common ways of storing and
sharing small datasets is as Microsoft Excel spreadsheets. Although

this is a proprietary format, owned by Microsoft, it has also be-
come a kind of informal and ubiquitous standard. Dozens of differ-
ent software applications can read Excel formats (there are several
different formats that match different versions of Excel). In con-
trast, the OpenDocument format is an open format, managed by a
standards consortium, that anyone can use without worrying what
the owner might do. OpenDocument format is based on XML,
which stands for Extensible markup language. XML is a whole
topic in and of itself, but briefly it is a data exchange format de-
signed specifically to work on the Internet and is both human and
machine readable. XML is managed by the W3C consortium,
which is responsible for developing and maintaining the many
standards and protocols that support the web.

As an open source program with many contributors, R offers a
wide variety of methods of connecting with external data sources.
This is both a blessing and a curse. There is a solution to almost
any data access problem you can imagine with R, but there is also
a dizzying array of options available such that it is not always obvi-
ous what to choose. We’ll tackle this problem in two different
ways. In the first half of this chapter we will look at methods for
importing existing datasets. These may exist on a local computer
or on the Internet but the characteristic they share in common is
that they are contained (usually) within one single file. The main
trick here is to choose the right command to import that data into
R. In the second half of the chapter, we will consider a different
strategy, namely linking to a "source" of data that is not a file.
Many data sources, particularly databases, exist not as a single dis-
crete file, but rather as a system. The system provides methods or
calls to "query" data from the system, but from the perspective of
the user (and of R) the data never really take the form of a file.

135

The first and easiest strategy for getting data into R is to use the
data import dialog in R-Studio. In the upper right hand pane of R-
Studio, the "Workspace" tab gives views of currently available data
objects, but also has a set of buttons at the top for managing the
work space. One of the choices there is the "Import Dataset" but-
ton: This enables a drop down menu where one choice is to import,
"From Text File..." If you click this option and choose an appropri-
ate file you will get a screen like this:

The most important stuff is on the left side. Heading controls
whether or not the first line of the text file is treated as containing
variable names. The separator drop down gives a choice of differ-
ent characters that separate the fields/columns in the data. R-
Studio tries to guess the appropriate choice here based on a scan of

the data. In this case it guessed right by choosing "tab-delimited."
As mentioned above, tab-delimited and comma-delimited are the
two most common formats used for interchange between data
programs.The next drop down is for "Decimal" and this option ac-
counts for the fact the a dot is used in the U.S. while a comma may
be used for the decimal point in Europe and elsewhere. Finally, the
"Quote" drop down controls which character is used to contain
quoted string/text data. The most common method is double
quotes.

Of course, we skipped ahead a bit here because we assumed that
an appropriate file of data was available. It might be useful to see
some examples of human readable data:

Name, Age, Gender  
"Fred",22,"M"  
"Ginger",21,"F"

The above is a very simple example of a comma delimited file
where the first row contains a "header," i.e. the information about
the names of variables. The second and subsequent rows contain
actual data. Each field is separated by a comma, and the text
strings are enclosed in double quotes. The same file tab-delimited
might look like this:

Name! Age! Gender  
"Fred"! 22! "M"  
"Ginger"! 21! "F"

Of course you can’t see the tab characters on the screen, but there is
one tab character in between each pair of values. In each case, for
both comma- and tab-delimited, one line equals one row. The end

136

of a line is marked, invisibly, with a so called "newline" character.
On occasion you may run into differences between different operat-
ing systems on how this end of line designation is encoded.

Files containing comma or tab delimited data are ubiquitous across
the Internet, but sometimes we would like to gain direct access to
binary files in other formats. There are a variety of packages that
one might use to access binary data. A comprehensive access list
appears here:

http://cran.r-project.org/doc/manuals/R-data.html

This page shows a range of methods for obtaining data from a
wide variety of programs and formats. Because Excel is such a
widely used program for small, informal data sets, we will use it as
an example here to illustrate both the power and the pitfalls of ac-
cessing binary data with R. Down near the bottom of the page men-
tioned just above there are several paragraphs of discussion of how
to access Excel files with R. In fact, the first sentence mentions that
one of the most commonly asked data questions about R is how to
access Excel data.

Interestingly, this is one area where Mac and Linux users are at a
disadvantage relative to Windows users. This is perhaps because
Excel is a Microsoft product, originally written to be native to Win-
dows, and as a result it is easier to create tools that work with Win-
dows. One example noted here is the package called RODBC. The
acronym ODBC stands for Open Database Connection, and this is
a Windows facility for exchanging data among Windows pro-
grams. Although there is a proprietary ODBC driver available for
the Mac, most Mac users will want to try a different method for get-
ting access to Excel data.

Another Windows-only package for R is called xlsReadWrite. This
package provides convenient one-command calls for importing
data directly from Excel spreadsheets or exporting it directly to
spreadsheets. There are also more detailed commands that allow
manipulating individual cells.

Two additional packages, xlsx and XLConnect, supposedly will
work with the Mac, but at the time of this writing both of these
packages had version incompatibilities that made it impossible to
install the packages directly into R. Note that the vast majority of
packages provide the raw "source code" and so it is theoretically
possible, but generally highly time consuming, to "compile" your
own copies of these packages to create your own installation.

Fortunately, a general purpose data manipulation package called
gdata provides essential facilities for importing spreadsheet files.
In the example that follows, we will use a function from gdata to
read Excel data directly from a website. The gdata package is a
kind of "Swiss Army Knife" package containing many different
functions for accessing and manipulating data. For example, you
may recall that R uses the value "NA" to represent missing data.
Frequently, however, it is the case that data sets contain other val-
ues, such as 999, to represent missing data. The gdata package has
several functions that find and transform these values to be consis-
tent with R’s strategy for handling missing data.

Begin by using install.package() and library() functions to prepare
the gdata package for use:

> install.packages("gdata")

... lots of output here

137

http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html

> library("gdata")

gdata: read.xls support for 'XLS' (Excel 97-2004)
files

gdata: ENABLED.

gdata: read.xls support for 'XLSX' (Excel 2007+)
files ENABLED.

Of course, you could also use the EnsurePackage() function that
we developed in an earlier chapter, but it was important here to
see the output from the library() function. Note that the gdata pack-
age reported some diagnostics about the different versions of Excel
data that it supports. Note that this is one of the major drawbacks
of binary data formats, particularly proprietary ones: you have to
make sure that you have the right software to access the different
versions of data that you might encounter. In this case it looks like
we are covered for the early versions of Excel (97-2004) as well as
later versions of Excel (2007+). We must always be on the lookout,
however, for data that is stored in even newer versions of Excel
that may not be supported by gdata or other packages.

Now that gdata is installed, we can use the read.xls() function that
it provides. The documentation for the gdata package and the
read.xls() function is located here:

http://cran.r-project.org/web/packages/gdata/gdata.pdf

A review of the documentation reveals that the only required argu-
ment to this function is the location of the XLS file, and that this lo-
cation can be a pathname, a web location with http, or an Internet
location with ftp (file transfer protocol, a way of sending and re-
ceiving files without using a web browser). If you hearken back to

a very early chapter in this book, you may remember that we ac-
cessed some census data that had population counts for all the dif-
ferent U.S. states. For this example, we are going to read the Excel
file containing that data directly into a dataframe using the
read.xls() function:

> testFrame<-read.xls(+  
"http://www.census.gov/popest/data/state/totals/2011/
tables/NST-EST2011-01.xls")

trying URL
'http://www.census.gov/popest/data/state/totals/2011/
tables/NST-EST2011-01.xls'

Content type 'application/vnd.ms-excel' length 31232
bytes (30 Kb)

opened URL

==

downloaded 30 Kb

The command in the first three lines above provides the URL of the
Excel file to the read.xls() function. The subsequent lines of output
show the function attempting to open the URL, succeeding, and
downloading 30 kilobytes of data.

Next, let’s take a look at what we got back. In R-Studio we can
click on the name of the dataframe in the upper right hand data
pane or we can use this command:

> View(testFrame)

138

http://cran.r-project.org/web/packages/gdata/gdata.pdf
http://cran.r-project.org/web/packages/gdata/gdata.pdf
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls'
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls'
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls'
http://www.census.gov/popest/data/state/totals/2011/tables/NST-EST2011-01.xls'

Either method will show the contents of the dataframe in the up-
per left hand window of R-Studio. Alternatively, we could use the
str() function to create a summary of the structure of testFrame:

> str(testFrame)

'data.frame':	 65 obs. of 10 variables:

 $
table.with.row.headers.in.column.A.and.column.hea
ders.in.rows.3.through.4...leading.dots.indicate.
sub.parts.: Factor w/ 65 levels "",".Alabama",..:
62 53 1 64 55 54 60 65 2 3 ...

 $ X
: Factor w/ 60 levels "","1,052,567",..: 1 59 60
27 38 47 10 49 32 50 ...

 $ X.1
: Factor w/ 59 levels "","1,052,567",..: 1 1 59
27 38 47 10 49 32 50 ...

 $ X.2
: Factor w/ 60 levels "","1,052,528",..: 1 60 21
28 39 48 10 51 33 50 ...

 $ X.3
: Factor w/ 59 levels "","1,051,302",..: 1 1 21
28 38 48 10 50 33 51 ...

 $ X.4
: logi NA NA NA NA NA NA ...

 $ X.5
: logi NA NA NA NA NA NA ...

 $ X.6
: logi NA NA NA NA NA NA ...

 $ X.7
: logi NA NA NA NA NA NA ...

 $ X.8
: logi NA NA NA NA NA NA ...

The last few lines are reminiscent of that late 60s song entitled,
""Na Na Hey Hey Kiss Him Goodbye." Setting aside all the NA NA
NA NAs, however, the overall structure is 65 observations of 10
variables, signifying that the spreadsheet contained 65 rows and 10
columns of data. The variable names that follow are pretty bizarre.
The first variable name is:

"table.with.row.headers.in.column.A.and.column.headers.in.rows.
3.through.4...leading.dots.indicate.sub.parts."

What a mess! It is clear that read.xls() treated the upper leftmost
cell as a variable label, but was flummoxed by the fact that this was
really just a note to human users of the spreadsheet (the variable
labels, such as they are, came on lower rows of the spreadsheet).
Subsequent variable names include X, X.1, and X.2: clearly the
read.xls() function did not have an easy time getting the variable
names out of this file.

The other worrisome finding from str() is that all of our data are
"factors." This indicates that R did not see the incoming data as
numbers, but rather as character strings that it interpreted as factor
data. Again, this is a side effect of the fact that some of the first
cells that read.xls() encountered were text rather than numeric. The

139

numbers came much later in the sheet. This also underscores the
idea that it is much better to export a data set in a more regular,
structured format such as CSV rather than in the original spread-
sheet format. Clearly we have some work to do if we are to make
use of these data as numeric population values.

First, we will use an easy trick to get rid of stuff we don’t need. The
Census bureau put in three header rows that we can eliminate like
this:

> testFrame<-testFrame[-1:-3,]

The minus sign used inside the square brackets refers to the index
of rows that should be eliminated from the dataframe. So the nota-
tion -1:-3 gets rid of the first three rows. We also leave the column
designator empty so that we can keep all columns for now. So the
interpretation of all of the notation within the square brackets is
that rows 1 through 3 should be dropped, all other rows should be
included, and all columns should be included. We assign the result
back to the same data object thereby replacing the original with
our new, smaller, cleaner version.

Next, we know that of the ten variables we got from read.xls(),
only the first five are useful to us (the last five seem to be blank). So
this command keeps the first five columns of the dataframe:

> testFrame<-testFrame[,1:5]

In the same vein, the tail() function shows us that the last few rows
just contained some census bureau notes:

> tail(testFrame,5)

So we can safely eliminate those like this:

> testFrame<-testFrame[-58:-62,]

If you’re alert you will notice that we could have combined some
of these commands, but for the sake of clarity we have done each
operation individually. The result (which you can check in the up-
per right hand pane of R-Studio) is a dataframe with 57 rows and
five observations. Now we are ready to perform a couple of data
transformations. Before we start these, let’s give our first column a
more reasonable name:

> testFrame$region <- testFrame[,1]

We’ve used a little hack here to avoid typing out the ridiculously
long name of that first variable/column. We’ve used the column
notation in the square brackets on the right hand side of the expres-
sion to refer to the first column (the one with the ridiculous name)
and simply copied the data into a new column entitled "region."
Let’s also remove the offending column with the stupid name so
that it does not cause us problems later on:

> testFrame<-testFrame[,-1]

Next, we can change formats and data types as needed. We can re-
move the dots from in front of the state names very easily with
str_replace():

> testFrame$region <- str_replace(+ 
 testFrame$region,"\\.","")

Don’t forget that str_replace() is part of the stringr package, and
you will have to use install.packages() and library() to load it if it is
not already in place. The two backslashes in the string expression
above are called "escape characters" and they force the dot that fol-
lows to be treated as a literal dot rather than as a wildcard charac-

140

ter. The dot on its own is a wildcard that matches one instance of
any character.

Next, we can use str_replace_all() and as.numeric() to convert the
data contained in the population columns to usable numbers. Re-
member that those columns are now represented as R "factors" and
what we are doing is taking apart the factor labels (which are basi-
cally character strings that look like this: "308,745,538") and making
them into numbers. This is sufficiently repetitive that we could
probably benefit by created our own function call to do it:

Numberize() - Gets rid of commas and other junk and

converts to numbers

Assumes that the inputVector is a list of data that

can be treated as character strings

Numberize <- function(inputVector)

{

 # Get rid of commas

 inputVector<-str_replace_all(inputVector,",","")

 # Get rid of spaces

 inputVector<-str_replace_all(inputVector," ","")

 return(as.numeric(inputVector))

}

This function is flexible in that it will deal with both unwanted
commas and spaces, and will convert strings into numbers

whether they are integers or not (i.e., possibly with digits after the
decimal point). So we can now run this a few times to create new
vectors on the dataframe that contain the numeric values we
wanted:

testFrame$april10census <-Numberize(testFrame$X)

testFrame$april10base <-Numberize(testFrame$X.1)

testFrame$july10pop <-Numberize(testFrame$X.2)

testFrame$july11pop <-Numberize(testFrame$X.3)

By the way, the choice of variable names for the new columns in
the dataframe was based on an examination of the original data set
that was imported by read.xls(). You can (and should) confirm that
the new columns on the dataframe are numeric. You can use str()
to accomplish this.

We’ve spent half a chapter so far just looking at one method of im-
porting data from an external file (either on the web or local stor-
age). A lot of our time was spent conditioning the data we got in
order to make it usable for later analysis. Herein lies a very impor-
tant lesson (or perhaps two). An important, and sometimes time
consuming aspect of what data scientists do is to make sure that
data are "fit for the purpose" to which they are going to be put. We
had the convenience of importing a nice data set directly from the
web with one simple command, and yet getting those data actually
ready to analyze took several additional steps.

A related lesson is that it is important and valuable to try to auto-
mate as many of these steps as possible. So when we saw that num-
bers had gotten stored as factor labels, we moved immediately to
create a general function that would convert these to numbers. Not

141

only does this save a lot of future typing, it prevents mistakes from
creeping into our processes.

Now we are ready to consider the other strategy for getting access
to data: querying it from external databases. Depending upon your
familiarity with computer programming and databases, you may
notice that the abstraction is quite a bit different here. Earlier in the
chapter we had a file (a rather messy one) that contained a com-
plete copy of the data that we wanted, and we read that file into R
and stored it in our local computer’s memory (and possibly later
on the hard disk for safekeeping). This is a good and reasonable
strategy for small to medium sized datasets, let’s say just for the
sake of argument anything up to 100 megabytes.

But what if the data you want to work with is really large - too
large to represent in your computer’s memory all at once and too
large to store on your own hard drive. This situation could occur
even with smaller datasets if the data owner did not want people
making complete copies of their data, but rather wanted everyone
who was using it to work from one "official" version of the data.
Similarly, if data do need to be shared among multiple users, it is
much better to have them in a database that was designed for this
purpose: For the most part R is a poor choice for maintaining data
that must be used simultaneously by more than one user. For these
reasons, it becomes necessary to do one or both of the following
things:

1. Allow R to send messages to the large, remote database asking
for summaries, subsets, or samples of the data.

2. Allow R to send computation requests to a distributed data proc-
essing system asking for the results of calculations performed on
the large remote database.

Like most contemporary programming languages, R provides sev-
eral methods for performing these two tasks. The strategy is the
same across most of these methods: a package for R provides a "cli-
ent" that can connect up to the database server. The R client sup-
ports sending commands - mostly in SQL, structured query lan-
guage - to the database server. The database server returns a result
to the R client, which places it in an R data object (typically a data
frame) for use in further processing or visualization.

The R community has developed a range of client software to en-
able R to connect up with other databases. Here are the major data-
bases for which R has client software:

• RMySQL - Connects to MySQL, perhaps the most popular open
source database in the world. MySQL is the M in "LAMP" which
is the acronym for Linux, Apache, MySQL, and PHP. Together,
these four elements provide a complete solution for data driven
web applications.

• ROracle - Connects with the widely used Oracle commercial da-
tabase package. Oracle is probably the most widely used com-
mercial database package. Ironically, Oracle acquired Sun Micro-
systems a few years ago and Sun developers predominate in de-
velopment and control of the open source MySQL system,

• RPostgreSQL - Connects with the well-developed, full featured
PostgreSQL (sometimes just called Postgres) database system.
PostgreSQL is a much more venerable system than MySQL and

142

has a much larger developer community. Unlike MySQL, which
is effectively now controlled by Oracle, PostgreSQL has a devel-
oper community that is independent of any company and a li-
censing scheme that allows anybody to modify and reuse the
code.

• RSQlite - Connects with SQlite, another open source, independ-
ently developed database system. As the name suggests, SQlite
has a very light "code footprint" meaning that it is fast and com-
pact.

• RMongo - Connects with the MongoDB system, which is the
only system here that does not use SQL. Instead, MongoDB uses
JavaScript to access data. As such it is well suited for web devel-
opment applications.

• RODBC - Connects with ODBC compliant databases, which in-
clude Microsoft’s SQLserver, Microsoft Access, and Microsoft Ex-
cel, among others. Note that these applications are native to Win-
dows and Windows server, and as such the support for Linux
and Mac OS is limited.

For demonstration purposes, we will use RMySQL. This requires
installing a copy of MySQL on your computer. Use your web
browser to go to this page:

http://dev.mysql.com/downloads/

Then look for the "MySQL Community Server." The term commu-
nity in this context refers to the free, open source developer com-
munity version of MySQL. Note that there are also commercial ver-
sions of SQL developed and marketed by various companies in-
cluding Oracle. Download the version of MySQL Community

Server that is most appropriate for your computer’s operating sys-
tem and install it. Note that unlike user applications, such as a
word processor, there is no real user interface to server software
like the MySQL Community Server. Instead, this software runs in
the "background" providing services that other programs can use.
This is the essence of the client-server idea. In many cases the
server is on some remote computer to which we do not have physi-
cal access. In this case, we will run the server on our local com-
puter so that we can complete the demonstration.

On the Mac installation used in preparation of this chapter, after
installing the MySQL server software, it was also important to in-
stall the "MySQL Preference Pane," in order to provide a simple
graphical interface for turning the server on and off. Because we
are just doing a demonstration here, and we want to avoid future
security problems, it is probably sensible to turn MySQL server off
when we are done with the demonstration. In Windows, you can
use MySQL Workbench to control the server settings on your local
computer.

Returning to R, use install.packages() and library() to prepare the
RMySQL package for use. If everything is working the way it
should, you should be able to run the following command from
the command line:

> con <- dbConnect(dbDriver("MySQL"), dbname = "test")

The dbConnect() function establishes a linkage or "connection" be-
tween R and the database we want to use. This underscores the
point that we are connecting to an "external" resource and we must
therefore manage the connection. If there were security controls in-
volved, this is where we would provide the necessary information

143

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

to establish that we were authorized users of the database. In this
case, because we are on a "local server" of MySQL, we don’t need
to provide these. The dbDriver() function provided as an argument
to dbConnect specifies that we want to use a MySQL client. The da-
tabase name - specified as dbname="test" - is just a placeholder at
this point. We can use the dbListTables() function to see what ta-
bles are accessible to us (for our purposes, a table is just like a data-
frame, but it is stored inside the database system):

> dbListTables(con)

character(0)

The response "character(0)" means that there is an empty list, so no
tables are available to us. This is not surprising, because we just in-
stalled MySQL and have not used it for anything yet. Unless you
have another database available to import into MySQL, we can just
use the census data we obtained earlier in the chapter to create a
table in MySQL:

> dbWriteTable(con, "census", testFrame, +  
 overwrite = TRUE)

[1] TRUE

Take note of the arguments supplied to the dbWriteTable() func-
tion. The first argument provides the database connection that we
established with the dbConnect() function. The "census" argument
gives our new table in MySQL a name. We use testFrame as the
source of data - as noted above a dataframe and a relational data-
base table are very similar in structure. Finally, we provide the ar-
gument overwrite=TRUE, which was not really needed in this case
- because we know that there were no existing tables - but could be

important in other operations where we need to make sure to re-
place any old table that may have been left around from previous
work. The function returns the logical value TRUE to signal that it
was able to finish the request that we made. This is important in
programming new functions because we can use the signal of suc-
cess or failure to guide subsequent steps and provide error or suc-
cess messages.

Now if we run dbListTables() we should see our new table:

> dbListTables(con)

[1] "census"

Now we can run an SQL query on our table:

> dbGetQuery(con, "SELECT region, july11pop FROM  
census WHERE july11pop<1000000")

 region july11pop

1 Alaska 722718

2 Delaware 907135

3 District of Columbia 617996

4 Montana 998199

5 North Dakota 683932

6 South Dakota 824082

7 Vermont 626431

8 Wyoming 568158

Note that the dbGetQuery() call shown above breaks onto two
lines, but the string starting with SELECT has to be typed all on

144

one line. The capitalized words in that string are the SQL com-
mands. It is beyond the scope of this chapter to give an SQL tuto-
rial, but, briefly, SELECT chooses a subset of the table and the
fields named after select are the ones that will appear in the result.
The FROM command choose the table(s) where the data should
come from. The WHERE command specified a condition, in this
case that we only wanted rows where the July 2011 population was
less than one million. SQL is a powerful and flexible language and
this just scratches the surface.

In this case we did not assign the results of dbGetQuery() to an-
other data object, so the results were just echoed to the R console.
But it would be easy to assign the results to a dataframe and then
use that dataframe for subsequent calculations or visualizations.

To emphasize a point made above, the normal motivation for ac-
cessing data through MySQL or another database system is that a
large database exists on a remote server. Rather than having our
own complete copy of those data, we can use dbConnect(),
dbGetQuery() and other database functions to access the remote
data through SQL. We can also use SQL to specify subsets of the
data, to preprocess the data with sorts and other operations, and to
create summaries of the data. SQL is also particularly well suited
to "joining" data from multiple tables to make new combinations.
In the present example, we only used one table, it was a very small
table, and we had created it ourselves in R from an Excel source, so
none of these were very good motivations for storing our data in
MySQL, but this was only a demonstration.

The next step beyond remote databases is toward distributed com-
puting across a "cluster" of computers. This combines the remote

access to data that we just demonstrated with additional computa-
tional capabilities. At this writing, one of the most popular systems
for large scale distributed storage and computing is "Hadoop"
(named after the toy elephant of the young son of the developer).

Hadoop is not a single thing, but is rather a combination of pieces
of software called a library. Hadoop is developed and maintained
by the same people who maintain the Apache open source web
server. There are about a dozen different parts of the Hadoop
framework, but the Hadoop Distributed Files System (HDFS) and
Hadoop MapReduce framework are two of the most important
frameworks.

HDFS is easy to explain. Imagine your computer and several other
computers at your home or workplace. If we could get them all to
work together, we could call them a "cluster" and we could theoreti-
cally get more use out of them by taking advantage of all of the
storage and computing power they have as a group. Running
HDFS, we can treat this cluster of computers as one big hard drive.
If we have a really large file - too big to fit on any one of the com-
puters - HDFS can divide up the file and store its different parts in
different storage areas without us having to worry about the de-
tails. With a proper configuration of computer hardware, such as
an IT department could supply, HDFS can provide an enormous
amount of "throughput" (i.e., a very fast capability for reading and
writing data) as well as redundancy and failure tolerance.

MapReduce is a bit more complicated, but it follows the same logic
of trying to divide up work across multiple computers. The term
MapReduce is used because there are two big processes involved:
map and reduce. For the map operation, a big job is broken up into

145

lots of separate parts. For example, if we wanted to create a search
index for all of the files on a company’s intranet servers, we could
break up the whole indexing task into a bunch of separate jobs.
Each job might take care of indexing the files on one server.

In the end, though, we don’t want dozens or hundreds of different
search indices. We want one big one that covers all of the files our
company owns. This is where the reduce operation comes in. As all
of the individual indexing jobs finish up, a reduce operation com-
bines them into one big job. This combining process works on the
basis of a so called "key." In the search indexing example, some of
the small jobs might have found files that contained the word
"fish." As each small job finishes, it mentioned whether or not fish
appeared in a document and perhaps how many times fish ap-
peared. The reduce operation uses fish as a key to match up the re-
sults from all of the different jobs, thus creating an aggregated sum-
mary listing all of the documents that contained fish. Later, if any-
one searched on the word fish, this list could be used to direct
them to documents that contained the word.

In short, "map" takes a process that the user specifies and an indica-
tion of which data it applies to, and divides the processing into as
many separate chunks as possible. As the results of each chunk be-
come available, "reduce" combines them and eventually creates
and returns one aggregated result.

Recently, an organization called RevolutionAnalytics has devel-
oped an R interface or "wrapper" for Hadoop that they call RHa-
doop. This package is still a work in progress in the sense that it
does not appear in the standard CRAN package archive, not be-
cause there is anything wrong with it, but rather because Revolu-

tionAnalytics wants to continue to develop it without having to
provide stable versions for the R community. There is a nice tuto-
rial here:

https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutoria
l

We will break open the first example presented in the tutorial just
to provide further illustration of the use of MapReduce. As with
our MySQL example, this is a rather trivial activity that would not
normally require the use of a large cluster of computers, but it does
show how MapReduce can be put to use.

The tutorial example first demonstrates how a repetitive operation
is accomplished in R without the use of MapReduce. In prior chap-
ters we have used several variations of the apply() function. The
lapply() or list-apply is one of the simplest. You provide an input
vector of values and a function to apply to each element, and the
lapply() function does the heavy lifting. The example in the RHa-
doop tutorial squares each integer from one to 10. This first com-
mand fills a vector with the input data:

> small.ints <- 1:10

> small.ints

 [1] 1 2 3 4 5 6 7 8 9 10

Next we can apply the "squaring function" (basically just using the
^ operator) to each element of the list:

> out <- lapply(small.ints, function(x) x^2)

> out

146

https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial

[[1]]

[1] 1

[[2]]

[1] 4

... (shows all of the values up to [[10]] [1] 100)

In the first command above, we have used lapply() to perform a
function on the input vector small.ints. We have defined the func-
tion as taking the value x and returning the value x^2. The result is
a list of ten vectors (each with just one element) containing the
squares of the input values. Because this is such a small problem, R
was able to accomplish it in a tiny fraction of a second.

After installing both Hadoop and RHadoop - which, again, is not
an official package, and therefore has to be installed manually - we
can perform this same operation with two commands:

> small.ints <- to.dfs(1:10)

> out <- mapreduce(input = small.ints, +  
 map = function(k,v) keyval(v, v^2))

In the first command, we again create a list of integers from one to
ten. But rather than simply storing them in a vector, we are using
the "distributed file system" or dfs class that is provided by RHa-
doop. Note that in most cases we would not need to create this our-
selves because our large dataset would already exist on the HDFS
(Hadoop Distributed FIle System). We would have connected to

HDFS and selected the necessary data much as we did earlier in
this chapter with dbConnect().

In the second command, we are doing essentially the same thing as
we did with lapply(). We provide the input data structure (which,
again is a dfs class data object, a kind of pointer to the data stored
by Hadoop in the cluster). We also provide a "map function" which
is the process that we want to apply to each element in our data
set. Notice that the function takes two arguments, k and v. The k
refers to the "key" that we mentioned earlier in the chapter. We ac-
tually don’t need the key in this example because we are not sup-
plying a reduce function. There is in fact, no aggregation or combin-
ing activity that needs to occur because our input list (the integers)
and the output list (the squares of those integers) are lists of the
same size. If we had needed to aggregate the results of the map
function, say by creating a mean or a sum, we would have had to
provide a "reduce function" that would do the job.

The keyval() function, for which there is no documentation at this
writing, is characterized as a "helper" function in the tutorial. In
this case it is clear that the first argument to keyval, "v" is the intger
to which the process must be applied, and the second argument,
"v^2" is the squaring function that is applied to each argument.
The data returned by mapreduce() is functionally equivalent to
that returned by lapply(), i.e., a list of the squares of the integers
from 1 to 10.

Obviously there is no point in harnessing the power of a cluster of
computers to calculate something that could be done with a pencil
and a paper in a few seconds. If, however, the operation was more
complex and the list of input data had millions of elements, the use

147

of lapply() would be impractical as it would take your computer
quite a long time to finish the job. On the other hand, the second
strategy of using mapreduce() could run the job in a fraction of a
second, given a sufficient supply of computers and storage.

On a related note, Amazon, the giant online retailer, provides vir-
tual computer clusters that can be used for exactly this kind of
work. Amazon’s product is called the Elastic Compute Cloud or
EC2, and at this writing it is possible to create a small cluster of
Linux computers for as little as eight cents per hour.

To summarize this chapter, although there are many analytical
problems that require only a small amount of data, the wide avail-
ability of larger data sets has added new challenges to data science.
As a single user program running on a local computer, R is well
suited for work by a single analyst on a data set that is small
enough to fit into the computer’s memory. We can retrieve these
small datasets from individual files stored in human readable 9e.g.,
CSV) or binary (e.g., XLS) formats.

To be able to tackle the larger data sets, however, we need to be
able to connect R with either remote databases or remote computa-
tional resources or both. A variety of packages is available to con-
nect R to mature database technologies such as MySQL. In fact, we
demonstrated the use of MySQL by installing it on a local machine
and then using the RMySQL package to create a table and query it.
The more cutting edge technology of Hadoop is just becoming
available for R users. This technology, which provides the potential
for both massive storage and parallel computational power, prom-
ises to make very large datasets available for processing and analy-
sis in R.

Chapter Challenge

Hadoop is a software framework designed for use with Apache,
which is first and foremost a Linux server application. Yet there are
development versions of Hadoop available for Windows and Mac
as well. These are what are called single node instances, that is
they use a single computer to simulate the existence of a large clus-
ter of computers. See if you can install the appropriate version of
Hadoop for your computer’s operating system.

As a bonus activity, if you are successful in installing Hadoop, then
get a copy of the RHadoop package from RevolutionAnalytics and
install that. If you are successful with both, you should be able to
run the MapReduce code presented in this chapter.

Sources

http://cran.r-project.org/doc/manuals/R-data.html

http://cran.r-project.org/doc/manuals/R-data.pdf

http://cran.r-project.org/web/packages/gdata/gdata.pdf

http://dev.mysql.com/downloads/

http://en.wikipedia.org/wiki/Comparison_of_relational_databas
e_management_systems

http://en.wikipedia.org/wiki/Mapreduce

https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutoria
l

R Functions Used in this Chapter

148

http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/web/packages/gdata/gdata.pdf
http://cran.r-project.org/web/packages/gdata/gdata.pdf
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Mapreduce
http://en.wikipedia.org/wiki/Mapreduce
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial
https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial

as.numeric() - Convert another data type to a number

dbConnect() - Connect to an SQL database

dbGetQuery() - Run an SQL query and return the results

dbListTables() - Show the tables available in a connection

dbWriteTable() - Send a data table to an SQL systems

install.packages() - Get the code for an R package

lapply() - Apply a function to elements of a list

library() - Make an R package available for use

Numberize() - A custom function created in this chapter

read.xls() - Import data from a binary R file; part of the gdata pack-
age

return() - Used in functions to designate the data returned by the
function

str_replace() - Replace a character string with another

str_replace_all() - Replace multiple instances of a character string
with another

149

Much of what we have accomplished so far has focused on the standard rectangular dataset: one neat
table with rows and columns well defined. Yet much of the power of data science comes from
bringing together difference sources of data in complementary ways. In this chapter we combine
different sources of data to make a unique product that transcends any one source.

CHAPTER 15

150

Map MashUp

Mashup is a term that originated in the music business decades
ago related to the practice of overlaying one music recording on
top of another one. The term has entered general usage to mean
anything that brings together disparate influences or elements. In
the application development area, mashup often refers to bringing
together various sources of data to create a new product with
unique value. There’s even a non-profit group called the Open
Mashup Alliance that develops standards and methods for creating
new mashups.

One example of a mashup is http://www.housingmaps.com/ , a
web application that grabs apartment rental listings from the classi-
fied advertising service Craigslist and plots them on an interactive
map that shows the location of each listing. If you have ever used
Craigslist you know that it provides a very basic text-based inter-
face and that the capability to find listings on a map would be wel-
come.

In this chapter we tackle a similar problem. Using some address
data from government records, we call the Google geocoding API
over the web to find the latitude and longitude of each address.
Then we plot these latitudes and longitudes on a map of the U.S.
This activities reuses skills we learned in the previous chapter for
reading in data files, adds some new skills related to calling web
APIs, and introduces us to a new type of data, namely the shape-
files that provide the basis for electronic maps.

Let’s look at the new stuff first. The Internet is full of shapefiles
that contain mapping data. Shapefiles are a partially proprietary,
partially open format supported by a California software company
called ESRI. Shapefile is actually an umbrella term that covers sev-

eral different file types. Because the R community has provided
some packages to help deal with shapefiles, we don’t need to much
information about the details. The most important thing to know is
that shapefiles contain points, polygons, and "polylines." Everyone
knows what a point and a polygon are, but a polyline is a term
used by computer scientist to refer to a multi-segment line. In
many graphics applications it is much easier to approximate a
curved line with many tiny connected straight lines than it is to
draw a truly curved line. If you think of a road or a river on a map,
you will have a good idea of a polyline.

The U.S. Census bureau publishes shapefiles at various levels of de-
tail for every part of the country. Search for the term "shapefile" at
"site:census.gov" and you will find several pages with listings of
different shapefiles. For this exercise, we are using a relatively low
detail map of the whole U.S. We downloaded a "zip" file. Unzip
this (usually just by double-clicking on it) and you will find several
files inside it. The file ending in "shp" is the main shapefile. An-
other file that will be useful to us ends in "dbf" - this contains labels
and other information.

To get started, we will need two new R packages called PBSmap-
ping and maptools. PBSmapping refers not to public broadcasting,
but rather to the Pacific Biology Station, whose researchers and
technologists kindly bundled up a wide range of the R processing
tools that they use to manage map data. The maptools package
was developed by Nicholas J. Lewin-Koh (University of Singapore)
and others to provide additional tools and some "wrappers" to
make PBSmapping functions easier to use. In this chapter we only
scratch the surface of the available tools: there could be a whole
book just dedicated to R mapping functions alone.

151

http://www.housingmaps.com
http://www.housingmaps.com

Before we read in the data we grabbed from the Census Bureau,
let’s set the working directory in R-Studio so that we don’t have to
type it out on the command line. Click on the Tools menu and then
choose "Set Working Directory." Use the dialog box to designate
the folder where you have unzipped the shape data. After that,
these commands will load the shape data into R and show us what
we have:

> usShape <- importShapefile(+  
 "gz_2010_us_040_00_500k",readDBF=TRUE)

> summary(usShape)

PolySet

Records : 90696

 Contours : 574

 Holes : 0

 Events : NA

 On boundary : NA

Ranges

 X : [-179.14734, 179.77847]

 Y : [17.884813, 71.3525606439998]

Attributes

 Projection : LL

 Zone : NULL

Extra columns :

> plotPolys(usShape)

This last command gives us a simple plot of the 90,696 shapes that
our shapefile contains. Here is the plot:

This is funny looking! The ranges output from the summary() com-
mand gives us a hint as to why. The longitude of the elements in
our map range from -179 to nearly 180: this covers pretty much the
whole of the planet. The reason is that the map contains shapes for
Hawaii and Alaska. Both states have far western longitudes, but
the Aleutian peninsula in Alaska extends so far that it crosses over
the longitude line where -180 and 180 meet in the Pacific Ocean. As

152

a result, the continental U.S. is super squashed. We can specify a
more limited area of the map to consider by using the xlim and
ylim parameters. The following command:

> plotPolys(usShape,+  
 xlim=c(-130,-60),ylim=c(20,50))

...gives a plot that shows the continental U.S. more in its typical
proportions.

So now we have some map data stored away and ready to use. The
PBSmapping package gives us the capability of adding points to an
existing map. For now, let’s demonstrate this with a made up point
somewhere in Texas:

> X <- -100

> Y <- 30

> EID <- 1

> pointData <- data.frame(EID,X,Y)

> eventData <- as.EventData(+ 
 pointData,projection=NA)

> addPoints(eventData,col="red",cex=.5)

You have to look carefully, but in southern Texas there is now a lit-
tle red dot. We began by manually creating a single point - speci-
fied by X (longitude), Y (latitude), and EID (an identification num-

153

ber) - and sticking it into a dataframe. Then we converted the data
in that dataframe into an EventData object. This is a custom class
of object specified by the PBSmapping package. The final com-
mand above adds the EventData to the plot.

The idea of EventData is a little confusing, but if you remember
that this package was developed by biologists at the Pacific Biol-
ogy Station to map sightings of fish and other natural phenomena
it makes more sense. In their lingo, an event was some observation
of interest that occurred at a particular day, time, and location. The
"event id" or EID <- 1 that we stuck in the data frame was just say-
ing that this was the first point in our list that we wanted to plot.
For us it is not an event so much as a location of something we
wanted to see on the map.

Also note that the "projection=NA" parameter in the
as.EventData() coercion is just letting the mapping software know
that we don’t want our point to be transformed according to a map-
ping projection. If you remember from your Geography class, a pro-
jection is a mapping technique to make a curved object like the
Earth seem sensible on a flat map. In this example, we’ve already
flattened out the U.S., so there is no need to transform the points.

Next, we need a source of points to add to our map. This could be
anything that we’re interested in: the locations of restaurants,
crime scenes, colleges, etc. In Google a search for filetype:xls or file-
type;csv with appropriate additional search terms can provide in-
teresting data sources. You may also have mailing lists of custom-
ers or clients. The most important thing is that we will need street
address, city, and state in order to geocode the addresses. For this
example, we searched for "housing street address list filetype:csv"

and this turned up a data set of small businesses that have con-
tracts with the U.S. Department of Health and Human services.
Let’s read this in using read.csv():

> dhhsAddrs <- read.csv("DHHS_Contracts.csv")

> str(dhhsAddrs)

'data.frame':	 599 obs. of 10 variables:

 $ Contract.Number : Factor w/ 285 lev-
els "26301D0054","500000049",..: 125 125 125 279
164 247 19 242 275 70 ...

 $ Contractor.Name : Factor w/ 245 lev-
els "2020 COMPANY LIMITED LIABILITY COMPANY",..:
1 1 1 2 2 3 4 6 5 7 ...

 $ Contractor.Address : Factor w/ 244 lev-
els "1 CHASE SQUARE 10TH FLR, ROCHESTER, NY ",..:
116 116 116 117 117 136 230 194 64 164 ...

 $ Description.Of.Requirement: Factor w/ 468 lev-
els "9TH SOW - DEFINTIZE THE LETTER CONTRACT",..:
55 55 55 292 172 354 308 157 221 340 ...

 $ Dollars.Obligated : Factor w/ 586 lev-
els " $1,000,000.00 ",..: 342 561 335 314 294 2
250 275 421 21 ...

 $ NAICS.Code : Factor w/ 55 lev-
els "323119","334310",..: 26 26 26 25 10 38 33 29
27 35 ...

 $ Ultimate.Completion.Date : Factor w/ 206 lev-
els "1-Aug-2011","1-Feb-2013",..: 149 149 149 10
175 161 124 37 150 91 ...

154

 $ Contract.Specialist : Factor w/ 95 lev-
els "ALAN FREDERICKS",..: 14 14 60 54 16 90 55
25 58 57 ...

 $ Contract.Specialist.Email : Factor w/ 102 lev-
els "410-786-8622",..: 16 16 64 59 40 98 60 29 62
62 ...

 $ X : logi NA NA NA NA NA NA ...

There’s that crazy 60s song again! Anyhow, we read in a comma
separated data set with 599 rows and 10 variables. The most impor-
tant field we have there is Contractor.Address. This contains the
street addresses that we need to geocode. We note, however, that
the data type for these is Factor rather than character string. So we
need to convert that:

> dhhsAddrs$strAddr <- +  
 as.character(dhhsAddrs$Contractor.Address)

> mode(dhhsAddrs$strAddr)

[1] "character"

> tail(dhhsAddrs$strAddr,4)

[1] "1717 W BROADWAY, MADISON, WI "

[2] "1717 W BROADWAY, MADISON, WI "

[3] "1717 W BROADWAY, MADISON, WI "

[4] "789 HOWARD AVE, NEW HAVEN, CT, "

This looks pretty good: Our new column, called dhhsAddrs, is
character string data, converted from the factor labels of the origi-
nal Contractor.Address column. Now we need to geocode these.

We will use the Google geocoding application programming inter-
face (API) which is pretty easy to use, does not require an account
or application ID, and allows about 2500 address conversions per
day. The API can be accessed over the web, using what is called an
HTTP GET request. Note that the Terms of Service for the Google
geocoding API are very specific about how the interface can be
used - most notably on the point that the geocodes must be used
on Google maps. Make sure you read the Terms of Service before
you create any software applications that use the geocoding serv-
ice. See the link in the bibliography at the end of the chapter. The
bibliography has a link to an article with dozens of other geocod-
ing APIs if you disagree with Google’s Terms of Service.

These acronyms probably look familiar. HTTP is the Hyper Text
Transfer Protocol, and it is the standard method for requesting and
receiving web page data. A GET request consists of information
that is included in the URL string to specify some details about the
information we are hoping to get back from the request. Here is an
example GET request to the Google geocoding API:

http://maps.googleapis.com/maps/api/geocode/json?address=1
600+Pennsylvania+Avenue,+Washington,+DC&sensor=false

The first part of this should look familiar: The
http://maps.googleapis.com part of the URL specifies the domain
name just like a regular web page. The next part of the URL,  
"/maps/api/geocode" tells Google which API we want to use.
Then the "json" indicates that we would like to receive our result in
"Java Script Object Notation" (JSON) which is a structured, but hu-
man readable way of sending back some data. The address appears
next, and we are apparently looking for the White House at 1600

155

http://maps.googleapis.com
http://maps.googleapis.com

Pennsylvania Avenue in Washington, DC. Finally, sensor=false is a
required parameter indicating that we are not sending our request
from a mobile phone. You can type that whole URL into the ad-
dress field of any web browser and you should get a sensible result
back. The JSON notation is not beautiful, but you will see that it
makes sense and provides the names of individual data items
along with their values. Here’s a small excerpt that shows the key
parts of the data object that we are trying to get our hands on:

{

 "results" : [

 {

 "address_components" : [

 "geometry" : {

 "location" : {

 "lat" : 38.89788009999999,

 "lng" : -77.03664780

 },

 "status" : "OK"

}

There’s tons more data in the JSON object that Google returned,
and fortunately there is an R package, called JSONIO, that will ex-
tract the data we need from the structure without having to parse
it ourselves.

In order to get R to send the HTTP GET requests to google, we will
also need to use the RCurl package. This will give us a single com-
mand to send the request and receive the result back - essentially
doing all of the quirky steps that a web browser takes care of auto-
matically for us. To get started, install.packages() and library() the
two packages we will need - RCurl and JSONIO. If you are work-
ing on a Windows machine, you may need to jump through a hoop
or two to get RCurl, but it is available for Windows even if it is not
in the standard CRAN repository. Search for "RCurl Windows" if
you run into trouble.

Next, we will create a new helper function to take the address field
and turn it into the URL that we need:

Format an URL for the Google Geocode API

MakeGeoURL <- function(address)

{

 root <- "http://maps.google.com/maps/api/geocode/"

 url <- paste(root, "json?address=", + 
 address, "&sensor=false", sep = "")

 return(URLencode(url))

}

There are three simple steps here. The first line initializes the begin-
ning part of the URL into a string called root. Then we use paste()
to glue together the separate parts of the strong (note the sep="" so
we don’t get spaces between the parts). This creates a string that
looks almost like the one in the White House example two pages

156

http://maps.google.com/maps/api/geocode/
http://maps.google.com/maps/api/geocode/

ago. The final step converts the string to a legal URL using a utility
function called URLencode() that RCurl provides. Let’s try it:

> MakeGeoURL(+  
"1600 Pennsylvania Avenue, Washington, DC")

[1]
"http://maps.google.com/maps/api/geocode/json?add
ress=1600%20Pennsylvania%20Avenue,%20Washington,%
20DC&sensor=false"

Looks good! Just slightly different than the original example (%20
instead of the plus character) but hopefully that won’t make a dif-
ference. Remember that you can type this function at the command
line or you can create it in the script editing window in the upper
left hand pane of R-Studio. The latter is the better way to go and if
you click the "Source on Save" checkmark, R-Studio will make sure
to update R’s stored version of your function every time you save
the script file.

Now we are ready to use our new function, MakeGeoURL(), in an-
other function that will actually request the data from the Google
API:

Addr2latlng <- function(address)

{

 url <- MakeGeoURL(address)

 apiResult <- getURL(url)

 geoStruct <- fromJSON(apiResult, +  
 simplify = FALSE)

 lat <- NA

 lng <- NA

 try(lat <- +  
 geoStruct$results[[1]]$geometry$location$lat)

 try(lng <- +  
 geoStruct$results[[1]]$geometry$location$lng)

 return(c(lat, lng))

}

We have defined this function to receive an address string as its
only argument. The first thing it does is to pass the URL string to
MakeGeoURL() to develop the formatted URL. Then the function
passes the URL to getURL(), which actually does the work of send-
ing the request out onto the Internet. The getURL() function is part
of the RCurl package. This step is just like typing a URL into the
address box of your browser.

We capture the result in an object called "apiResult". If we were to
stop and look inside this, we would find the JSON structure that
appeared a couple of pages ago. We can pass this structure to the
function fromJSON() - we put the result in an object called
geoStruct. This is a regular R data frame such that we can access
any individual element using regular $ notation and the array in-
dex [[1]]. In other instances, a JSON object may contain a whole list
of data structures, but in this case there is just one. If you compare
the variable names "geometry", "location", "lat" and "lng" to the
JSON example a few pages ago you will find that they match per-
fectly. The fromJSON() function in the JSONIO package has done
all the heavy lifting of breaking the JSON structure into its compo-
nent pieces.

157

http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false
http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false
http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false
http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false
http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false
http://maps.google.com/maps/api/geocode/json?address=1600%20Pennsylvania%20Avenue,%20Washington,%20DC&sensor=false

Note that this is the first time we have encountered the try() func-
tion. When programmers expect the possibility of an error, they
will frequently use methods that are tolerant of errors or that catch
errors before they disrupt the code. If our call to getURL() returns
something unusual that we aren’t expecting, then the JSON struc-
ture may not contain the fields that we want. By surrounding our
command to assign the lat and lng variables with a try() function,
we can avoid stopping the flow of the code if there is an error. Be-
cause we initialized lat and lng to NA above, this function will re-
turn a two item list with both items being NA if an error occurs in
accessing the JSON structure. There are more elegant ways to ac-
complish this same goal. For example, the Google API puts an er-
ror code in the JSON structure and we could choose to interpret
that instead. We will leave that to the chapter challenge!

In the last step, our new Addr2latlng() function returns a two item
list containing the latitude and longitude. We can test it out right
now:

> testData <- Addr2latlng(+  
 "1600 Pennsylvania Avenue, Washington, DC")

> str(testData)

 num [1:2] 38.9 -77

Perfect! we called our new function Addr2latlng() with the address
of the White House and got back a list with two numeric items con-
taining the latitude and longitude associate with that address. With
just a few lines of R code we have harnessed the power of Google’s
extensive geocoding capability to convert a brief text street address
into mapping coordinates.

At this point there isn’t too much left to do. We have to create a
looping mechanism so that we can process the whole list of ad-
dresses in our DHHS data set. We have some small design choices
here. It would be possible to attach new fields to the existing data-
frame. Instead, the following code keeps everything pretty simple
by receiving a list of addresses and returning a new data frame
with X, Y, and EID ready to feed into our mapping software:

Process a whole list of addresses

ProcessAddrList <- function(addrList)

{

 resultDF <- data.frame(atext=character(), + 
 X=numeric(),Y=numeric(),EID=numeric())

 i <- 1

 for (addr in addrList)

 {

 latlng = Addr2latlng(addr)

 resultDF <- rbind(resultDF,+ 
 data.frame(atext=addr, + 
 X=latlng[[2]],Y=latlng[[1]], EID=i))

 i <- i + 1

 }

 return(resultDF)

}

This new function takes one argument, the list of addresses, which
should be character strings. In the first step we make an empty da-

158

taframe for use in the loop. In the second step we initialize a scalar
variable called i to the number one. We will increment this in the
loop and use it as our EID.

Then we have the for loop. We are using a neat construct here
called "in". The expression "addr in addrList" creates a new vari-
able called addr. Every time that R goes through the loop it assigns
to addr the next item in addrList. When addrList runs out of items,
the for loop ends. Very handy!

Inside the for loop the first thing we do is to call the function that
we developed earlier: Addr2latlng(). This performs one conversion
of an address to a geocode (latitude and longitude) as described
earlier. We pass addr to it as add contains the text address for this
time around the loop. We put the result in a new variable called
latlng. Remember that this is a two item list.

The next statement, starting with "resultDF <- rbind" is the heart of
this function. Recall that rbind() sticks a new row on the end of a
dataframe. So in the arguments to rbind() we supply our earlier
version of resultDF (which starts empty and grows from there)
plus a new row of data. The new row of data includes the text ad-
dress (not strictly necessary but handy for diagnostic purposes),
the "X" that our mapping software expects (this is the longitude),
the "Y" that the mapping software expects, and the event ID, EID,
that the mapping software expects.

At the end of the for loop, we increment i so that we will have the
next number next time around for EID. Once the for loop is done
we simply return the dataframe object, resultDF. Piece of cake!

Now let’s try it and plot our points:

> dhhsPoints <- ProcessAddrList(dhhsAddrs$strAddr)

> dhhsPoints <- dhhsPoints[!is.na(dhhsPoints$X),]

> eventData <- as.EventData(dhhsPoints,projection=NA)

> addPoints(eventData,col="red",cex=.5)

The second command above is the only one of the four that may
seem unfamiliar. The as.EventData() coercion is picky and will not
process the dataframe if there are any fields that are NA. To get rid
of those rows that do not have complete latitude and longitude
data, we use is.na() to test whether the X value on a given row is
NA. We use the ! (not) operator to reverse the sense of this test. So
the only rows that will survive this step are those where X is not
NA. The plot below shows the results.

159

If you like conspiracy theories, there is some support in this graph:
The vast majority of the companies that have contracts with DHHS
are in the Washington, DC area, with a little trickle of additional
companies heading up the eastern seaboard as far as Boston and
southern New Hampshire. Elsewhere in the country there are a
few companies here and there, particularly near the large cities of
the east and south east.

Using some of the parameters on plotPolys() you could adjust the
zoom level and look at different parts of the country in more detail.
If you remember that the original DHHS data also had the mone-
tary size of the contract in it, it would also be interesting to change
the size or color of the dots depending on the amount of money in

the Dollars.Obligated field. This would require running add-
Points() in a loop and setting the col= or cex= parameters for each
new point.

Chapter Challenge(s)

Improve the Addr2latlng() function so that it checks for errors re-
turned from the Google API. This will require going to the Google
API site, looking more closely at the JSON structure, and reviewing
the error codes that Google mentions in the documentation. You
may also learn enough that you can repair some of the addresses
that failed.

If you get that far and are still itching for another challenge, try im-
proving the map. One idea for this was mentioned above: you
could change the size or color of the dots based on the size of the
contract received. An even better (and much harder) idea would be
to sum the total dollar amount being given within each state and
then color each state according to how much DHHS money it re-
ceives. This would require delving into the shapefile data quite sub-
stantially so that you could understand how to find the outline of a
state and fill it in with a color.

R Functions Used in This Chapter

Addr2latlng() - A custom function built for this chapter

addPoints() - Place more points on an existing plot

as.character() - Coerces data into a character string

as.EventData() - Coerce a regular dataframe into an EventData ob-
ject for use with PBSmapping routines.

160

data.frame() - Takes individual variables and ties them together

for() - Runs a loop, iterating a certain number of times depending
upon the expression provided in parentheses

fromJSON() - Takes JSON data as input and provides a regular R
dataframe as output

function() - Creates a new function

importShapeFile() - Gets shapefile data from a set of ESRI compati-
ble polygon data files

MakeGeoURL() - Custom helper function built for this chapter

paste() - Glues strings together

plotPolys() - Plots a map from shape data

rbind() - Binds new rows on a dataframe

return() - Specifies the object that should be returned from a func-
tion

URLencode() - Formats a character string so it can be used in an
HTTP request

Sources

http://blog.programmableweb.com/2012/06/21/7-free-geocodin
g-apis-google-bing-yahoo-and-mapquest/

https://developers.google.com/maps/terms

http://en.wikipedia.org/wiki/Open_Mashup_Alliance

http://en.wikipedia.org/wiki/Shapefile

http://www.housingmaps.com/

http://www.census.gov/geo/www/cob/cbf_state.html

161

http://blog.programmableweb.com/2012/06/21/7-free-geocoding-apis-google-bing-yahoo-and-mapquest/
http://blog.programmableweb.com/2012/06/21/7-free-geocoding-apis-google-bing-yahoo-and-mapquest/
http://blog.programmableweb.com/2012/06/21/7-free-geocoding-apis-google-bing-yahoo-and-mapquest/
http://blog.programmableweb.com/2012/06/21/7-free-geocoding-apis-google-bing-yahoo-and-mapquest/
https://developers.google.com/maps/terms
https://developers.google.com/maps/terms
http://en.wikipedia.org/wiki/Open_Mashup_Alliance
http://en.wikipedia.org/wiki/Open_Mashup_Alliance
http://en.wikipedia.org/wiki/Shapefile
http://en.wikipedia.org/wiki/Shapefile
http://www.housingmaps.com
http://www.housingmaps.com
http://www.census.gov/geo/www/cob/cbf_state.html
http://www.census.gov/geo/www/cob/cbf_state.html

Data users are often interested in questions about relationships and prediction. For example, those
interested in athletics might want to know how the size of the fan base of a team is connected with
attendance on game day. In this chapter, our Australian colleague, Robert de Graaf, introduces the
techniques of linear regression, a very important data science tool.

CHAPTER 16

162

Line Up, Please

Sheepdog demonstration, Lone Pine Sanctuary, Brisbane, QLD. Photo credit: Jeff Stanton

Using R to Find Relationships between Sets of Data via Multiple
Regression, by Robert W. de Graaf

Finding relationships between sets of data is one of the key aims of
data science. The question of ‘does x influence y’ is of prime con-
cern for data analysts – are house prices influenced by incomes, is
the growth rate of crops improved by fertilizer, do taller sprinters
run faster?

The work horse method used by statisticians to interpret data is lin-
ear modeling, which is a term covering a wide variety of methods,
from the relatively simple to very sophisticated. You can get an
idea of how many different methods there are by looking at the Re-
gression Analysis page in Wikipedia and checking out the number
of entries listed under ‘Models’ on the right hand sidebar (and, by
the way, the list is not exhaustive).

The basis of all these methods is the idea that is possible to fit a line
to a set of data points which represents the effect an "independent"
variable is having on a "dependent" variable. It is easy to visualize
how this works with one variable changing in step with another
variable. Figure one shows a line fitted to a series of points, using
the so called "least squares" method (a relatively simple mathemati-
cal method of finding a best fitting line). Note that although the
line fits the points fairly well, with an even split (as even as it can
be for five points!) of points on either side of the line, none of the
points are precisely on the line – the data do not fit the line pre-
cisely. As we discuss the concepts in regression analysis further, we
will see that understanding these discrepancies is just as important
as understanding the line itself.

Figure 1: A line fitted to some points

The graph in figure 1 above shows how the relationship between
an input variable – on the horizontal x axis – relates to the output
values on the y axis.

The original ideas behind linear regression were developed by
some of the usual suspects behind many of the ideas we’ve seen al-
ready, such as Laplace, Gauss, Galton, and Pearson. The biggest in-

163

dividual contribution was probably by Gauss, who used the proce-
dure to predict movements of the other planets in the solar system
when they were hidden from view, and hence correctly predict
when and where they would appear in view again.

The mathematical idea that allows us to fit lines of best fit to a set
of data points like this is that we can find a position for the line
that will minimize the distance the line is from all the points. While
the mathematics behind these techniques can be handled by some-
one with college freshman mathematics the reality is that with
even only a few data points, the process of fitting with manual cal-
culations becomes very tedious, very quickly. For this reason, we
will not discuss the specifics of how these calculations are done,
but move quickly to how it can be done for us, using R.

Football or Rugby?

We can use an example to show how to use linear regression on
real data. The example concerns attendances at Australian Rules
Football matches. For all of you in the U.S., Australian Rules Foot-
ball is closer to what you think of as rugby and not so much like
American football. The data in this example concerns matches/
games at the largest stadium for the sport, the Melbourne Cricket
Ground (note: Australian Rules football is a winter sport, cricket is
a summer sport). The Melbourne Cricket Ground or MCG is also
considered the most prestigious ground to play a football match,
due to its long association with Australian Rules Football.

Australian Rules Football is the most popular sport to have been
developed in Australia. The object is to kick the ball through the
larger goal posts, scoring six points. If the ball is touched before it
crosses the line under the large posts, or instead passes through the

smaller posts on either side of the large goal posts, a single point is
scored. The rules ensure that possession of the ball is always chang-
ing. There is full body tackling and possession is turned over fre-
quently. This leads to continuous and exciting on-field action.

The main stronghold of Australian Rules Football is in the state of
Victoria (south eastern Australia), where the original league, the
VFL, became the AFL after its league of mostly Melbourne subur-
ban teams added teams to represent areas outside Victoria, such as
West Coast (Perth, the capital of the state of Western Australia) and
Adelaide (capital of the state of South Australia). Note that Mel-
bourne is the capital city of Victoria. Much of the popularity of the
VFL was based on the rivalries between neighboring suburbs, and
teams with long histories, like the Collingwood Football Club -
based in one of Melbourne’s most working class suburbs – have
large and loyal fan bases.

While it isn’t necessary to know anything about how the sport is
played to understand the example, it is useful to know that the
Australian Football League, the premiere organization playing Aus-
tralian Rules Football, was formerly the Victorian Football League,
and although teams from outside the Australian state of Victoria
have joined, more than half the teams in the league are Victorian,
even though Victoria is only one of six Australian states.

Getting the Data

The data are available from OzDasl, a website which provides pub-
lic domain data sets for analysis, and the MCG attendance data
has its own page at http://www.statsci.org/data/oz/afl.html.

164

http://www.statsci.org/data/oz/afl.html
http://www.statsci.org/data/oz/afl.html

The variable of interest is MCG attendance, and named ‘MCG’ in
the dataset. Most statisticians would refer to this variable as the de-
pendent variable, because it is the variable that we are most inter-
ested in predicting: It is the "outcome" of the situation we are try-
ing to understand. Potential explanatory, or independent, variables
include club membership, weather on match day, date of match,
etc. There is a detailed description of each of the variables available
on the website. You can use the data set to test your own theories
of what makes football fans decide whether or not to go to a game,
but to learn some of the skills we will test a couple of those factors
together.

Before we can start, we need R to be able to find the data. Make
sure that you download the data to the spot on your computer that
R considers the "working" directory. Use this command to find out
what the current working directory is:

> getwd()

After downloading the data set from OzDasl into your R working
directory, read the data set into R as follows:

> attend<-read.delim("afl.txt", header=TRUE)

> attach(attend)

We include the optional ‘header = TRUE’ to designate the first row
as the column names, and the ‘attach’ commands turns each of the
named columns into a single column vector.

Once we’ve read the data into R, we can examine some plots of the
data. With many techniques in data science, it can be quite valu-
able to visualize the data before undertaking a more detailed analy-
sis. One of the variables we might consider is the combined mem-

bership of the two teams playing, a proxy for the popularity of the
teams playing.

> plot(MCG ~ Members, xlab = "Combined membership
of teams playing", ylab = "MCG Match Day Atten-
dance")

20 30 40 50
20

40
60

80

Combined membership of teams playing

M
C

G
 M

at
ch

 D
ay

 A
tte

nd
an

ce

Figure 2: Scatterplot of membership versus attendance

165

We see evidence of a trend in the points on the left hand side of the
graph, and a small group of points representing games with very
high combined membership but that don’t seem to fit the trend ap-
plying to the rest of data. If it wasn’t for the four "outliers" on the
right hand side of the plot, we would be left with a plot showing a
very strong relationship.

As a next step we can use R to create a linear model for MCG atten-
dance using the combined membership as the single explanatory
variable using the following R code:

> model1 <- lm(MCG ~ Members-1)

> summary(model1)

There are two steps here because in the first step the lm() com-
mand creates a nice big data structure full of output, and we want
to hang onto that in the variable called "model1." In the second
command we request an overview of the contents of model1.

It is important to note that in this model, and in the others that fol-
low, we have added a ‘-1’ term to the specification, which forces
the line of best fit to pass through zero on the y axis at zero on the x
axis (more technically speaking, the y-intercept is forced to be at
the origin). In the present model that is essentially saying that if
the two teams are so unpopular they don’t have any members, no
one will go to see their matches, and vice versa. This technique is
appropriate in this particular example, because both of the meas-
ures have sensible zero points, and we can logically reason that
zero on X implies zero on Y. In most other models, particularly for
survey data that may not have a sensible zero point (think about
rating scales ranging from 1 to 5), it would not be appropriate to
force the best fitting line through the origin.

The second command above, summary(model1), provides the fol-
lowing output:

Call:

lm(formula = MCG ~ Members - 1)

Residuals:

 Min 1Q Median 3Q Max

-44.961 -6.550 2.954 9.931 29.252

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

Members 1.53610 0.08768 17.52 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.65 on 40 degrees of
freedom

Multiple R-squared: 0.8847,

Adjusted R-squared: 0.8818

F-statistic: 306.9 on 1 and 40 DF, p-value: <
2.2e-16

166

Wow! That’s a lot information that R has provided for us, and we
need to use this information to decide whether we are happy with
this model. Being ‘happy’ with the model can involve many fac-
tors, and there is no simple way of deciding. To start with, we will
look at the r-squared value, also known as the coefficient of deter-
mination.

The r squared value – the coefficient of determination – represents
the proportion of the variation which is accounted for in the de-
pendent variable by the whole set of independent variables (in this
case just one independent variable). An r-squared value of 1.0
would mean that the X variable(s), the independent variable(s), per-
fectly predicted the y, or dependent variable. An r-squared value of
zero would indicated that the x variable(s) did not predict the y
variable at all. R-squared cannot be negative. The r-squared of
.8847 in this example means that the Combined Members variable
account for 88.47% of the MCG attendance variable, an excellent
result. Note that there is no absolute rule for what makes an r-
squared good. Much depends on the purpose of the analysis. In the
analysis of human behavior, which is notoriously unpredictable, an
r-squared of .20 or .30 may be very good.

In figure 3, below, we have added a line of best fit based on the
model to the x-y plot of MCG attendance against total team mem-
bership with this command:

> abline(model1)

While the line of best fit seems to fit the points in the middle, the
points on the lower right hand side and also some points towards
the top of the graph, appear to be a long way from the line of best
fit.

Adding Another Independent Variable

We discussed at the beginning of this chapter the origin of Austra-
lian Rules Football in Victoria, where the MCG is located. While
most of the teams in the AFL are also Victoria teams, and therefore
have a supporter base which can easily access the MCG, a number
of the teams are from other states, and their supporters would

167

need to make a significant interstate journey to see their team play
at the MCG. For example, the journey from Sydney to Melbourne
is around eight hours by car or two by plane, whereas from Perth,
where most West Coast’s supporter base is located, is close to five
hours by air – and two time zones away. Australia is a really huge
country.

The dataset doesn’t have a variable for interstate teams but fortu-
nately there are only four teams that are interstate: Brisbane, Syd-
ney, Adelaide, and West Coast, abbreviated respectively as "Bris",
"Syd", "Adel", and "WC". We can make a binary coded variable to
indicate these interstate teams with a simple command:

> away.inter <-  
ifelse(Away=="WC" |  
 Away=="Adel"|  
 Away=="Syd"|  
 Away=="Bris",1,0)

The code above checks the values in the column labeled ‘Away’,
and if it finds an exact match with one of the names of an interstate
team, it stores a value of 1. Otherwise it stores a value of 0. Note
that we use a double equals sign for the exact comparison in R, and
the vertical bar is used to represent the logical ‘OR’ operator. These
symbols are similar, although not precisely the same, as symbols
used to represent logical operators in programming languages
such as C and Java. Having created the new ‘Away team is inter-
state’ variable, we can use this variable to create a new linear re-
gression model that includes two independent variables.

> model2<-lm(MCG~Members+away.inter-1)

> summary(model2)

Call:

lm(formula = MCG ~ Members + away.inter - 1)

Residuals:

 Min 1Q Median 3Q Max

-30.2003 -8.5061 0.0862 8.5411 23.5687

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

Members 1.69255 0.07962 21.257 < 2e-16 ***

away.inter -22.84122 5.02583 -4.545 5.2e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘ ’ 1

Residual standard error: 12.82 on 39 degrees of
freedom

Multiple R-squared: 0.9246,  
Adjusted R-squared: 0.9208

F-statistic: 239.2 on 2 and 39 DF, p-value: <
2.2e-16

168

Note that the r-squared value is now 0.9246, which is quite a bit
higher than the 0.8847 that we observed in the previous model. In
this new model, the two independent variables working together
account for 92.46% of the dependent variable. So together, the total
fan base and the status as an away team are doing a really great job
of predicting attendance. This result is also intuitive – we would
expect that football fans, regardless of how devoted they are to
their team, are more likely to come to games if they’re a moderate
car ride away, compared to a plane journey.

Because we have two independent variables now, we have to look
beyond the r-squared value to understand the situation better. In
particular, about one third of the way into the output for the lm()
command there is a heading that says "Estimate." Right below that
are slope values for Members and for away.inter. Notice that the
slope (sometimes called a "B-weight") on Members is positive: This
makes sense because the more fans the team has the higher the at-
tendance. The slope on away.inter is negative because when this
variable is 1 (in the case of interstate teams) the attendance is
lower) whereas when this variable is 0 (for local teams), attendance
is higher.

How can you tell if these slopes or B-weights are actually impor-
tant contributors to the prediction? You can divide the unstandard-
ized B-weight by its standard error to create a "t value". The lm()
command has done this for you and it is reported in the output
above. This "t" is the Student’s t-test, described in a previous chap-
ter. As a rule of thumb, if this t value has an absolute value (i.e., ig-
noring the minus sign if there is one) that is larger than about 2,
you can be assured that the independent/predictor variable we are
talking about is contributing to the prediction of the dependent

variable. In this example we can see that Members has a humon-
gous t value of 21.257, showing that it is very important in the pre-
diction. The away.inter variable has a somewhat more modest, but
still important value of -4.545 (again, don’t worry about the minus
sign when judging the magnitude of the t value).

We can keep on adding variables that we think make a difference.
How many variables we end up using depends, apart from our
ability to think of new variables to measure, somewhat on what we
want to use the model for.

 The model we have developed now has two explanatory variables
– one which can be any positive number, and one which is two lev-
els. We now have what could be considered a very respectable r-
squared value, so we could easily leave well enough alone. That is
not to say our model is perfect, however – the graphs we have pre-
pared suggest that the ‘Members’ effect is actually different if the
away team is from interstate rather than from Victoria – the crowd
does not increase with additional combined membership as
quickly with an away team, which is in line with what we might
expect intuitively.

One thing we didn’t mention was the actual prediction equation
that one might construct from the output of lm(). It is actually very
simple and just uses the estimates/B-weights from the output:

MCG = (21.257 * Members) - (4.545 * away.inter)

This equation would let us predict the attendance of any game
with a good degree of accuracy, assuming that we knew the com-
bined fan base and whether the team was interstate. Interestingly,
statisticians are rarely interested in using prediction equations like

169

the one above: They are generally more interested in just knowing
that a predictor is important or unimportant. Also, one must be
careful with using the slopes/B-weights obtained from a linear re-
gression of a single sample, because they are likely to change if an-
other sample is analyzed - just because of the forces of random-
ness.

Conclusion

The material we have covered is really only a taste of multiple re-
gression and linear modeling. On the one hand, there are a number
of additional factors that may be considered before deciding on a
final model. On the other hand, there are a great number of tech-
niques that may be used in specialized circumstances. For exam-
ple, in trying to model attendance at the MCG, we have seen that
the standard model fits the data some of the time but not others,
depending on the selection of the explanatory variables.

In general, a simple model is a good model, and will keep us from
thinking that we are better than we really are. However, there are
times when we will want to find as many dependent variables as
possible. Contrast the needs of a manager trying to forecast sales to
set inventory with an engineer or scientist trying to select parame-
ters for further experimentation. In the first case, the manager
needs to avoid a falsely precise estimate which could lead her to be
overconfident in the forecast, and either order too much stock or
too little. The manager wants to be conservative about deciding
that particular variables make a difference to prediction variable.
On the other hand the experimenter wants to find as many vari-
ables as possible for future research, so is prepared to be optimistic
about whether different parameters affect the variables of interest.

Chapter Challenge

We intentionally ignored some of the output of these regression
models, for the sake of simplicity. It would be quite valuable for
you to understand those missing parts, however. In particular, we
ignored the "p-values" associated with the t-tests on the slope/B-
weight estimates and we also ignored the overall F-statistic re-
ported at the very bottom of the output. There are tons of great re-
courses on the web for explaining what these are.

For a super bonus, you could also investigate the meaning of the
"Adjusted" r-squared that appears in the output.

Sources

http://en.wikipedia.org/wiki/Australian_rules_football

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.
html

http://www.ddiez.com/teac/r/linear_models.php

R Functions Used in This Chapter

abline - plots a best fitting line on top of a scatterplot

attach - makes a data structure the "focus" of attention

getwd - show the current working directory for R

ifelse - a conditional test that provides one of two possible outputs

lm - "linear models" and for this chapter, multiple regression

plot - general purpose graphing function, many uses in R

170

http://en.wikipedia.org/wiki/Australian_rules_football
http://en.wikipedia.org/wiki/Australian_rules_football
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://www.ddiez.com/teac/r/linear_models.php
http://www.ddiez.com/teac/r/linear_models.php

summary - produces an overview of an output structure

171

Data Mining is an area of research and practice that is focused on discovering novel patterns in data.
As usual, R has lots of possibilities for data mining. In this chapter we will begin experimentation
with essential data mining techniques by trying out one of the easiest methods to understand:
association rules mining. More beer and diapers please!

CHAPTER 17

172

Hi Ho, Hi Ho - Data Mining We Go

Data mining is a term that refers to the use of algorithms and com-
puters to discover novel and interesting patterns within data. One
famous example that gets mentioned quite frequently is the super-
market that analyzed patterns of purchasing behavior and found
that diapers and beer were often purchased together. The super-
market manager decided to put a beer display close to the diaper
aisle and supposedly sold more of both products as a result. An-
other familiar example comes from online merchant sites that say
things like, "people who bought that book were also interested in
this book." By using an algorithm to look at purchasing patterns,
vendors are able to create automatic systems that make these kinds
of recommendations.

Over recent decades, statisticians and computer scientists have de-
veloped many different algorithms that can search for patterns in
different kinds of data. As computers get faster and the researchers
do additional work on making these algorithms more efficient it
becomes possible to look through larger and larger data sets look-
ing for promising patterns. Today we have software that can search
through massive data haystacks looking for lots of interesting and
usable needles.

Some people refer to this area of research as machine learning. Ma-
chine learning focuses on creating computer algorithms that can
use pre-existing inputs to refine and improve their own capabilities
for dealing with future inputs. MAchine learning is very different
from human learning. When we think of human learning, like
learning the alphabet or learning a foreign language, humans can
develop flexible and adaptable skills and knowledge that are appli-
cable to a range of different contexts and problems. Machine learn-
ing is more about figuring out patterns of incoming information

that correspond to a specific result. For example, given lots of exam-
ples like this - input: 3, 5, 10; output: 150 - a machine learning algo-
rithm could figure out on its own that multiplying the input values
together produces the output value.

Machine learning is not exactly the same thing as data mining and
vice versa. Not all data mining techniques rely on what researchers
would consider machine learning. Likewise, machine learning is
used in areas like robotics that we don’t commonly think of when
we are thinking of data mining as such.

Data mining typically consists of four processes: 1) data prepara-
tion, 2) exploratory data analysis, 3) model development, and 4) in-
terpretation of results. Although this sounds like a neat, linear set
of steps, there is often a lot of back and forth through these proc-
esses, and especially among the first three. The other point that is
interesting about these four steps is that Steps 3 and 4 seem like the
most fun, but Step 1 usually takes the most amount of time. Step 1
involves making sure that the data are organized in the right way,
that missing data fields are filled in, that inaccurate data are lo-
cated and repaired or deleted, and that data are "recoded" as neces-
sary to make them amenable to the kind of analysis we have in
mind.

Step 2 is very similar to activities we have done in prior chapters of
this book: getting to know the data using histograms and other
visualization tools, and looking for preliminary hints that will
guide our model choice. The exploration process also involves fig-
uring out the right values for key parameters. We will see some of
that activity in this chapter.

173

Step 3 - choosing and developing a model - is by far the most com-
plex and most interesting of the activities of a data miner. It is here
where you test out a selection of the most appropriate data mining
techniques. Depending upon the structure of a dataset, there may
be dozens of options, and choosing the most promising one has as
much art in it as science.

For the current chapter we are going to focus on just one data min-
ing technique, albeit one that is quite powerful and applicable to a
range of very practical problems. So we will not really have to do
Step 3, because we will not have two or more different mining tech-
niques to compare. The technique we will use in this chapter is
called "association rules mining" and it is the strategy that was
used to find the diapers and beer association described earlier.

Step 4 - the interpretation of results - focuses on making sense out
of what the data mining algorithm has produced. This is the most
important step from the perspective of the data user, because this
is where an actionable conclusion is formed. When we discussed
the example of beer and diapers, the interpretation of the associa-
tion rules that were derived from the grocery purchasing data is
what led to the discover of the beer-diapers rule and the use of that
rule in reconfiguring the displays in the store.

Let’s begin by talking a little bit about association rules. Take a
look at the figure below with all of the boxes and arrows:

Customers Carts Store	 Inventory

Item	 1 Baby	 Wipes
Item	 2 Beer

Customer	 1 Item	 3 Bread
Item	 4 Cheddar
Item	 5 Chips

Corn	 Flakes
Item	 1 Diapers

Customer	 2 Item	 2 Lettuce
Item	 3 Mayonnaise

Milk
Item	 1 Peanut	 Butter
Item	 2 Salami

Customer	 3 Item	 3 Shampoo
Item	 4 Sponges
Item	 5 Tomatoes
Item	 6 Toothpaste
Item	 7

From the figure you can see that each supermarket customer has a
grocery cart that contains several items from the larger set of items
that the grocery store stocks. The association rules algorithm (also
sometimes called affinity analysis) tries out many different proposi-
tions, such as "if diapers are purchased, then beer is also pur-
chased." The algorithm uses a dataset of transactions (in the exam-
ple above, these are the individual carts) to evaluate a long list of
these rules for a value called "support." Support is the proportion
of times that a particular pairing occurs across all shopping carts.
The algorithm also evaluates another quantity called "confidence,"

174

which is how frequently a particular pair occurs among all the
times when the first item is present. If you look back at the figure
again, we had support of 0.67 (the diapers-beer association oc-
curred in two out of the three carts) and confidence of 1.0 ("beer"
occurred 100% of the time with "diapers"). In practice, both sup-
port and confidence are generally much lower than in this exam-
ple, but even a rule with low support and smallish confidence
might reveal purchasing patterns that grocery store managers
could use to guide pricing, coupon offers, or advertising strategies.

We can get started with association rules mining very easily using
the R package known as "arules." In R-Studio, you can get the
arules package ready using the following commands:

> install.packages("arules")

> library("arules")

We will begin our exploration of association rules mining using a
dataset that is built into the arules package. For the sake of familiar-
ity, we will use the Groceries dataset. Note that by using the Grocer-
ies data set, we have relieved ourselves of the burden of data prepa-
ration, as the authors of the arules package have generously made
sure that Groceries is ready to be analyzed. So we are skipping
right to Step 2 in our four step process - exploratory data analysis.
You can make the Groceries data set ready with this command:

> data(Groceries)

Next, lets run the summary() function on Groceries so that we can
see what is in there:

> summary(Groceries)

transactions as itemMatrix in sparse format with

 9835 rows (elements/itemsets/transactions) and

 169 columns (items) and a density of 0.02609146

most frequent items:

 whole milk other vegetables rolls/buns
soda

 2513 1903 1809
1715

 yogurt (Other)

 1372 34055

element (itemset/transaction) length distribution:

sizes

 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16

2159 1643 1299 1005 855 645 545 438 350 246
182 117 78 77 55 46

 17 18 19 20 21 22 23 24 26 27
28 29 32

 29 14 14 9 11 4 6 1 1 1
1 3 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 2.000 3.000 4.409 6.000 32.000

175

includes extended item information - examples:

 labels level2 level1

1 frankfurter sausage meet and sausage

2 sausage sausage meet and sausage

3 liver loaf sausage meet and sausage

Right after the summary command line we see that Groceries is an
itemMatrix object in sparse format. So what we have is a nice, rec-
tangular data structure with 9835 rows and 169 columns, where
each row is a list of items that might appear in a grocery cart. The
word "matrix" in this case, is just referring to this rectangular data
structure. The columns are the individual items. A little later in the
output we see that there are 169 columns, which means that there
are 169 items. The reason the matrix is called "sparse" is that very
few of these items exist in any given grocery basket. By the way,
when an item appears in a basket, its cell contains a one, while if
an item is not in a basket, its cell contains a zero. So in any given
row, most of the cells are zero and very few are one and this is
what is meant by sparse. We can see from the Min, Median, Mean,
and Max output that every cart has at least one item, half the carts
have more than three items, the average number of items in a cart
is 4.4 and the maximum number of items in a cart is 32.

The output also shows us which items occur in grocery baskets
most frequently. If you like working with spreadsheets, you could
imagine going to the very bottom of the column that is marked
"whole milk" and putting in a formula to sum up all of the ones in
that column. You would come up with 2513, indicating that there

are 2513 grocery baskets that contain whole milk. Remember that
every row/basket that has a one in the whole milk column has
whole milk in that basket, whereas a zero would appear if the bas-
ket did not contain whole milk. You might wonder what the data
field would look like if a grocery cart contained two gallons of
whole milk. For the present data mining exercise we can ignore
that problem by assuming that any non-zero amount of whole milk
is represented by a one. Other data mining techniques could take
advantage of knowing the exact amount of a product, but associa-
tion rules does not need to know that amount - just whether the
product is present or absent.

Another way of inspecting our sparse matrix is with the itemFre-
quencyPlot() function. This produces a bar graph that is similar in
concept to a histogram: it shows the relative frequency of occur-
rence of different items in the matrix. When using the itemFrequen-
cyPlot() function, you must specify the minimum level of "sup-
port" needed to include an item in the plot. Remember the mention
of support earlier in the chapter - in this case it simply refers to the
relative frequency of occurrence of something. We can make a
guess as to what level of support to choose based on the results of
the summary() function we ran earlier in the chapter. For example,
the item "yogurt" appeared in 1372 out of 9835 rows or about 14%
of cases. So we can set the support parameter to somewhere
around 10%-15% in order to get a manageable number of items:

> itemFrequencyPlot(Groceries,support=0.1)

This command produces the following plot:

176

We can see that yogurt is right around 14% as expected and we
also see a few other items not mentioned in the summary such as
bottled water and tropical fruit.

You should experiment with using different levels of support, just
so that you can get a sense of the other common items in the data
set. If you show more than about ten items, you will find that the
labels on the X-axis start to overlap and obscure one another. Use
the "cex.names" parameter to turn down the font size on the labels.

This will keep the labels from overlapping at the expense of mak-
ing the font size much smaller. Here’s an example:

> itemFrequencyPlot(Groceries,support=0.05,cex.names=0.5)

This command yields about 25 items on the X-axis. Without worry-
ing too much about the labels, you can also experiment with lower
values of support, just to get a feel for how many items appear at
the lower frequencies. We need to guess at a minimum level of sup-
port that will give us quite a substantial number of items that can
potentially be part of a rule. Nonetheless, it should also be obvious
that an item that occurs only very rarely in the grocery baskets is
unlikely to be of much use to us in terms of creating meaningful
rules. Let’s pretend, for example, that the item "Venezuelan Beaver
Cheese" only occurred once in the whole set of 9835 carts. Even if
we did end up with a rule about this item, it won’t apply very of-
ten, and is therefore unlikely to be useful to store managers or oth-
ers. So we want to focus our attention on items that occur with
some meaningful frequency in the dataset. Whether this is one per-
cent or half a percent, or something somewhat larger or smaller
will depend on the size of the data set and the intended application
of the rules.

Now we can prepare to generate some rules with the apriori() com-
mand. The term "apriori" refers to the specific algorithm that R will
use to scan the data set for appropriate rules. Apriori is a very com-
monly used alrgorithm and it is quite efficient at finding rules in
transaction data. Rules are in the form of "if LHS then RHS." The
acronym LHS means "left hand side" and, naturally, RHS means
"right hand side." So each rule states that when the thing or things
on the left hand side of the equation occur(s), the thing on the right
hand side occurs a certain percentage of the time. To reiterate a defi-

177

nition provided earlier in the chapter, support for a rule refers to
the frequency of co-occurrence of both members of the pair, i.e.,
LHS and RHS together. The confidence of a rule refers to the pro-
portion of the time that LHS and RHS occur together versus the to-
tal number of appearances of LHS. For example, if Milk and Butter
occur together in 10% of the grocery carts (that is "support"), and
Milk (by itself, ignoring Butter) occurs in 25% of the carts, then the
confidence of the Milk/Butter rule is 0.10/0.25 = 0.40.

There are a couple of other measures that can help us zero in on
good association rules - such as "lift"and "conviction" - but we will
put off discussing these until a little later.

One last note before we start using apriori(): For most of the work
the data miners do with association rules, the RHS part of the equa-
tion contains just one item, like "Butter." On the other hand, LHS
can and will contain multiple items. A simple rule might just have
Milk in LHS and Butter in RHS, but a more complex rule might
have Milk and Bread together in LHS with Butter in RHS.

In the spirit of experimentation, we can try out some different pa-
rameter values for using the apriori() command, just to see what
we will get:

> apriori(Groceries,parameter=list(support=0.005,+ 
confidence=0.5))

parameter specification:

 confidence minval smax arem aval

 0.5 0.1 1 none FALSE

originalSupport support minlen maxlen target

 TRUE 0.005 1 10 rules

 ext

 FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algo-
rithm

version 4.21 (2004.05.09) (c) 1996-2004 Chris-
tian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)]
done [0.00s].

sorting and recoding items ... [120 item(s)] done
[0.00s].

creating transaction tree ... done [0.01s].

checking subsets of size 1 2 3 4 done [0.01s].

writing ... [120 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

set of 120 rules

We set up the apriori() command to use a support of 0.005 (half a
percent) and confidence of 0.5 (50%) as the minimums. These val-

178

ues are confirmed in the first few lines of output. Some other confir-
mations, such as the value of "minval" and "smax" are not relevant
to us right now - they have sensible defaults provided by the apri-
ori() implementation. The "minlen" and "maxlen" parameters also
have sensible defaults: these refer to the minimum and maximum
length of item set that will be considered in generating rules. Obvi-
ously you can’t generate a rule unless you have at least one item in
an item set, and setting maxlen to 10 ensures that we will not have
any rules that contain more than 10 items. If you recall from earlier
in the chapter, the average cart only has 4.4 items, so we are not
likely to produce rules involving more than 10 items.

In fact, a little later in the apriori() output above, we see that the
apriori() algorithm only had to examine "subsets of size" one, two
three, and four. Apparently no rule in this output contains more
than four items. At the very end of the output we see that 120 rules
were generated. Later on we will examine ways of making sense
out of a large number of rules, but for now let’s agree that 120 is
too many rules to examine. Let’s move our support to one percent
and rerun apriori(). This time we will store the resulting rules in a
data structure called ruleset:

> ruleset <- apriori(Groceries,+  
parameter=list(support=0.01,confidence=0.5))

If you examine the output from this command, you should find
that we have slimmed down to 15 rules, quite a manageable num-
ber to examine one by one. We can get a preliminary look at the
rules using the summary function, like this:

> summary(ruleset)

set of 15 rules

rule length distribution (lhs + rhs):sizes

 3

15

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 3 3 3 3 3 3

summary of quality measures:

 support confidence lift

 Min. :0.01007 Min. :0.5000 Min. :1.984

 1st Qu.:0.01174 1st Qu.:0.5151 1st Qu.:2.036

 Median :0.01230 Median :0.5245 Median :2.203

 Mean :0.01316 Mean :0.5411 Mean :2.299

 3rd Qu.:0.01403 3rd Qu.:0.5718 3rd Qu.:2.432

 Max. :0.02227 Max. :0.5862 Max. :3.030

mining info:

 data ntransactions support confidence

 Groceries 9835 0.01 0.5

Looking through this output, we can see that there are 15 rules in
total. Under "rule length distribution" it shows that all 15 of the
rules have exactly three elements (counting both the LHS and the

179

RHS). Then, under "summary of quality measures," we have an
overview of the distributions of support, confidence, and a new pa-
rameter called "lift."

Researchers have done a lot of work trying to come up with ways
of measuring how "interesting" a rule is. A more interesting rule
may be a more useful rule because it is more novel or unexpected.
Lift is one such measure. Without getting into the math, lift takes
into account the support for a rule, but also gives more weight to
rules where the LHS and/or the RHS occur less frequently. In other
words, lift favors situations where LHS and RHS are not abundant
but where the relatively few occurrences always happen together.
The larger the value of lift, the more "interesting" the rule may be.

Now we are ready to take a closer look at the rules we generated.
The inspect() command gives us the detailed contents of the dta ob-
ject generated by apriori():
> inspect(ruleset)

 lhs rhs support confidence lift

1 {curd,

 yogurt} => {whole milk} 0.01006609 0.5823529 2.279125

2 {other vegetables,

 butter} => {whole milk} 0.01148958 0.5736041 2.244885

3 {other vegetables,

 domestic eggs} => {whole milk} 0.01230300 0.5525114 2.162336

4 {yogurt,

 whipped/sour cream} => {whole milk} 0.01087951 0.5245098 2.052747

5 {other vegetables,

 whipped/sour cream} => {whole milk} 0.01464159 0.5070423 1.984385

6 {pip fruit,

 other vegetables} => {whole milk} 0.01352313 0.5175097 2.025351

7 {citrus fruit,

 root vegetables} => {other vegetables} 0.01037112 0.5862069 3.029608

8 {tropical fruit,

 root vegetables} => {other vegetables} 0.01230300 0.5845411 3.020999

9 {tropical fruit,

 root vegetables} => {whole milk} 0.01199797 0.5700483 2.230969

10 {tropical fruit,

 yogurt} => {whole milk} 0.01514997 0.5173611 2.024770

11 {root vegetables,

 yogurt} => {other vegetables} 0.01291307 0.5000000 2.584078

12 {root vegetables,

 yogurt} => {whole milk} 0.01453991 0.5629921 2.203354

13 {root vegetables,

 rolls/buns} => {other vegetables} 0.01220132 0.5020921 2.594890

14 {root vegetables,

 rolls/buns} => {whole milk} 0.01270971 0.5230126 2.046888

15 {other vegetables,

 yogurt} => {whole milk} 0.02226741 0.5128806 2.007235

With apologies for the tiny font size, you can see that each of the 15
rules shows the LHS, the RHS, the support, the confidence, and the
lift. Rules 7 and 8 have the highest level of lift: the fruits and vegeta-
bles involved in these two rules have a relatively low frequency of
occurrence, but their support and confidence are both relatively
high. Contrast these two rules with Rule 1, which also has high con-
fidence, but which has low support. The reason for this is that milk
is a frequently occurring item, so there is not much novelty to that
rule. On the other hand, the combination of fruits, root vegetables,

180

and other vegetables suggest a need to find out more about custom-
ers whose carts may contain only vegetarian or vegan items.

Now it is possible that we have set our parameters for confidence
and support too stringently and as a result have missed some truly
novel combinations that might lead us to better insights. We can
use a data visualization package to help explore this possibility.
The R package called arulesViz has methods of visualizing the rule
sets generated by apriori() that can help us examine a larger set of
rules. First, install and library the arulesViz package:

> install.packages("arulesViz")

> library(arulesViz)

These commands will give the usual raft of status and progress
messages. When you run the second command you may find that
three or four data objects are "masked." As before, these warnings
generally will not compromise the operation of the package.

Now lets return to our apriori() command, but we will be much
more lenient this time in our minimum support and confidence pa-
rameters:

> ruleset <- apriori(Groceries,+  
parameter=list(support=0.005,confidence=0.35))

We brought support back to half of one percent and confidence
down to 35%. When you run this command you should find that
you now generate 357 rules. That is way too many rules to exam-
ine manually, so let’s use the arulesViz package to see what we
have. We will use the plot() command that we have also used ear-
lier in the book. You may ask yourself why we needed to library
the arulesViz package if we are simply going to use an old com-

mand. The answer to this conundrum is that arulesViz has put
some plumbing into place so that when plot runs across a data ob-
ject of type "rules" (as generated by apriori) it will use some of the
code that is built into arulesViz to do the work. So by installing
arulesViz we have put some custom visualization code in place
that can be used by the generic plot() command. The command is
very simple:

> plot(ruleset)

The figure below contains the result:

181

Even though we see a two dimensional plot, we actually have
three variables represented here. Support is on the X-axis and confi-
dence is on the Y-axis. All else being equal we would like to have
rules that have high support and high confidence. We know, how-
ever, that lift serves as a measure of interestingness, and we are
also interested in the rules with the highest lift. On this plot, the lift
is shown by the darkness of a dot that appears on the plot. The
darker the dot, the close the lift of that rule is to 4.0, which appears
to be the highest lift value among these 357 rules.

The other thing we can see from this plot is that while the support
of rules ranges from somewhere below 1% all the way up above
7%, all of the rules with high lift seem to have support below 1%.
On the other hand, there are rules with high lift and high confi-
dence, which sounds quite positive.

Based on this evidence, lets focus on a smaller set of rules that only
have the very highest levels of lift. The following command makes
a subset of the larger set of rules by choosing only those rules that
have lift higher than 3.5:

> goodrules <- ruleset[quality(ruleset)$lift > 3.5]

Note that the use of the square braces with our data structure rule-
set allows us to index only those elements of the data object that
meet our criteria. In this case, we use the expression quality(rule-
set)$lift to tap into the lift parameter for each rule. The inequality
test > 3.5 gives us just those rules with the highest lift. When you
run this line of code you should find that goodrules contins just
nine rules. Let’s inspect those nine rules:

> inspect(goodrules)

 lhs rhs support confidence lift

1 {herbs} => {root vegetables} 0.007015760 0.4312500 3.956477

2 {onions,

 other vegetables} => {root vegetables} 0.005693950 0.4000000 3.669776

3 {beef,

 other vegetables} => {root vegetables} 0.007930859 0.4020619 3.688692

4 {tropical fruit,

 curd} => {yogurt} 0.005287239 0.5148515 3.690645

5 {citrus fruit,

 pip fruit} => {tropical fruit} 0.005592272 0.4044118 3.854060

6 {pip fruit,

 other vegetables,

 whole milk} => {root vegetables} 0.005490595 0.4060150 3.724961

7 {citrus fruit,

 other vegetables,

 whole milk} => {root vegetables} 0.005795628 0.4453125 4.085493

8 {root vegetables,

 whole milk,

 yogurt} => {tropical fruit} 0.005693950 0.3916084 3.732043

9 {tropical fruit,

 other vegetables,

 whole milk} => {root vegetables} 0.007015760 0.4107143 3.768074

There we go again with the microscopic font size. When you look
over these rules, it seems evidence that shoppers are purchasing
particular combinations of items that go together in recipes. The
first three rules really seem like soup! Rules four and five seem like

182

a fruit platter with dip. The other four rules may also connect to a
recipe, although it is not quite so obvious what.

The key takeaway point here is that using a good visualization tool
to examine the results of a data mining activity can enhance the
process of sorting through the evidence and making sense of it. If
we were to present these results to a store manager (and we would
certainly do a little more digging before formulating our final con-
clusions) we might recommend that recipes could be published
along with coupons and popular recipes, such as for homemade
soup, might want to have all of the ingredients group together in
the store along with signs saying, "Mmmm, homemade soup!"

Chapter Challenge

The arules package contains other data sets, such as the Epub data-
set with 3975 transactions from the electronic publication platform
of the Vienna University of Economics. Load up that data set, gen-
erate some rules, visualize the rules, and choose some interesting
ones for further discussion.

Data Mining with Rattle

A company called Togaware has created a graphical user interface
(GUI) for R called Rattle. At this writing (working with R version
3.0.0), one of Rattle’s components has gotten out of date and will
not work with the latest version of R, particularly on the Mac. It is
likely, however, that those involved with the Rattle project will
soon update it to be compatible again. Using Rattle simplifies
many of the processes described earlier in the chapter. Try going to
the Togaware site and following the instructions there for installing
Rattle for your particular operating system.

Sources

http://en.wikipedia.org/wiki/Association_rule_learning

http://jmlr.csail.mit.edu/papers/volume12/hahsler11a/hahsler11
a.pdf

http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Will
iams.pdf

http://www.r-bloggers.com/examples-and-resources-on-associati
on-rule-mining-with-r/

http://rattle.togaware.com

http://www.statsoft.com/textbook/association-rules/

Reference

Michael Hahsler, Kurt Hornik, and Thomas Reutterer (2006) Impli-
cations of probabilistic data modeling for mining association rules.
In M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nuernberger, and W.
Gaul, editors, From Data and Information Analysis to Knowledge
Engineering, Studies in Classification, Data Analysis, and Knowl-
edge Organization, pages 598–605. Springer-Verlag.

R Functions Used in This Chapter

apriori() - Uses the algorithm of the same name to analyze a trans-
action data set and generate rules.

itemFrequencyPlot() - Shows the relative frequency of commonly
occurring items in the spare occurrence matrix.

183

http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Association_rule_learning
http://jmlr.csail.mit.edu/papers/volume12/hahsler11a/hahsler11a.pdf
http://jmlr.csail.mit.edu/papers/volume12/hahsler11a/hahsler11a.pdf
http://jmlr.csail.mit.edu/papers/volume12/hahsler11a/hahsler11a.pdf
http://jmlr.csail.mit.edu/papers/volume12/hahsler11a/hahsler11a.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://www.r-bloggers.com/examples-and-resources-on-association-rule-mining-with-r/
http://www.r-bloggers.com/examples-and-resources-on-association-rule-mining-with-r/
http://www.r-bloggers.com/examples-and-resources-on-association-rule-mining-with-r/
http://www.r-bloggers.com/examples-and-resources-on-association-rule-mining-with-r/
http://rattle.togaware.com
http://rattle.togaware.com
http://www.statsoft.com/textbook/association-rules/
http://www.statsoft.com/textbook/association-rules/

inspect() - Shows the contents of the data object generated by apri-
ori() that generates the association rules

install.packages() - Loads package from the CRAN respository

summary() - Provides an overview of the contents of a data struc-
ture.

184

In the previous chapter, we explored an unsupervised learning technique known as association rules
mining. In this chapter, we will examine a set of supervised learning approaches known as support
vector machines (SVMs). SVMs are flexible algorithms that excel at addressing classification
problems.

CHAPTER 18

185

What’s Your Vector, Victor?

From the previous chapter you may remember that data mining
techniques fall into two large categories: supervised learning tech-
niques and unsupervised learning techniques. The association
rules mining examined in the previous chapter was an unsuper-
vised technique. This means that there was no particular criterion
that we were trying to predict, rather we were just looking for pat-
terns that would emerge from the data naturally.

In the present chapter we will examine a supervised learning tech-
nique called "support vector machines." Why the technique is
called this we will examine shortly. The reason this is considered a
supervised learning technique is that we "train" the algorithm on
an initial set of data (the "supervised" phase) and then we test it
out on a brand new set of data. If the training we accomplished
worked well, then the algorithm should be able to predict the right
outcome most of the time in the test data.

Take the weather as a simple example. Some days are cloudy, some
are sunny. The barometer rises some days and fall others. The
wind may be strong or weak and it may come from various direc-
tions. If we collect data on a bunch of days and use those data to
train a machine learning algorithm, the algorithm may find that
cloudy days with a falling barometer and the wind from the east
may signal that it is likely to rain. Next, we can collect more data
on some other days and see how well our algorithm does at pre-
dicting rain on those days. The algorithm will make mistakes. The
percentage of mistakes is the error rate, and we would like the er-
ror rate to be as low as possible.

This is the basic strategy of supervised machine learning: Have a
substantial number of training cases that the algorithm can use to

discover and mimic the underlying pattern and then use the re-
sults of that process on a test data set in order to find out how well
the algorithm and parameters perform in a "cross validation."
Cross validation, in this instance, refers to the process of verifying
that the trained algorithm can carry out is prediction or classifica-
tion task accurately on novel data.

In this chapter, we will develop a "support vector machine" (SVM)
to classify emails into spam or not spam. An SVM maps a low di-
mensional problem into a higher dimensional space with the goal
of being able to describe geometric boundaries between different
regions. The input data (the independent variables) from a given
case are processed through a "mapping" algorithm called a kernel
(the kernel is simply a formula that is run on each case’s vector of
input data), and the resulting kernel output determines the posi-
tion of that case in multidimensional space.

A simple 2D-3D mapping example illustrates how this works:
Imagine looking at a photograph of a snow-capped mountain pho-
tographed from high above the earth such that the mountain looks
like a small, white circle completely surrounded by a region of
green trees. Using a pair of scissors, there is no way of cutting the
photo on a straight line so that all of the white snow is on one side
of the cut and all of the green trees are on the other. In other words
there is no simple linear separation function that could correctly
separate or classify the white and green points given their 2D posi-
tion on the photograph.

Next, instead of a piece of paper, think about a realistic three-
dimensional clay model of the mountain. Now all the white points
occupy a cone at the peak of the mountain and all of the green

186

points lie at the base of the mountain. Imagine inserting a sheet of
cardboard through the clay model in a way that divides the snow-
capped peak from the green-tree-covered base. It is much easier to
do now because the white points are sticking up into the high alti-
tude and the green points are all on the base of the mountain.

The position of that piece of cardboard is the planar separation
function that divides white points from green points. A support
vector machine analysis of this scenario would take the original
two dimensional point data and search for a projection into three
dimensions that would maximize the spacing between green
points and white points. The result of the analysis would be a
mathematical description of the position and orientation of the
cardboard plane. Given inputs describing a novel data point, the
SVM could then map the data into the higher dimensional space
and then report whether the point was above the cardboard (a
white point) or below the cardboard (a green point). The so called
support vectors contain the coefficients that map the input data for
each case into the high dimensional space.

To get started with support vector machines, we can load one of
the R packages that supports this technique. We will use the "kern-
lab" package. Use the commands below:

> install.packages("kernlab")

> library(kernlab)

I found that it was important to use the double quotes in the first
command, but not in the second command. The data set that we
want to use is built into this package. The data comes from a study
of spam emails received by employees at the Hewlett-Packard com-
pany. Load the data with the following command:

> data(spam)

This command does not produce any output. We can now inspect
the "spam" dataset with the str() command:
> str(spam)

'data.frame':	 4601 obs. of 58 variables:

 $ make : num 0 0.21 0.06 0 0 0 0 0 0.15 0.06 ...

 $ address : num 0.64 0.28 0 0 0 0 0 0 0 0.12 ...

 $ all : num 0.64 0.5 0.71 0 0 0 0 0 0.46 0.77 ...

 $ num3d : num 0 0 0 0 0 0 0 0 0 0 ...

.

.

.

 $ charDollar : num 0 0.18 0.184 0 0 0 0.054 0 0.203 0.081 ...

 $ charHash : num 0 0.048 0.01 0 0 0 0 0 0.022 0 ...

 $ capitalAve : num 3.76 5.11 9.82 3.54 3.54 ...

 $ capitalLong : num 61 101 485 40 40 15 4 11 445 43 ...

 $ capitalTotal : num 278 1028 2259 191 191 ...

 $ type : Factor w/ 2 levels "nonspam","spam": 2 2 2 2 2 2 2 2
2 2 ...

Some of the lines of output have been elided from the material
above. You can also use the dim() function to get a quick overview
of the data structure:

> dim(spam)

[1] 4601 58

The dim() function shows the "dimensions" of the data structure.
The output of this dim() function shows that the spam data struc-

187

ture has 4601 rows and 58 columns. If you inspect a few of the col-
umn names that emerged from the str() command, you may see
that each email is coded with respect to its contents. There is lots of
information available about the data set here:

http://archive.ics.uci.edu/ml/datasets/Spambase

For example, just before "type" at the end of the output of the str()
command on the previous page, we see a variable called "capitalTo-
tal." This is the total number of capital letters in the whole email.
Right after that is the criterion variable, "type," that indicates
whether an email was classified as spam by human experts. Let’s
explore this variable a bit more:

> table(spam$type)

nonspam spam

 2788 1813

We use the table function because type is a factor rather than a nu-
meric variable. The output shows us that there are 2788 messages
that were classified by human experts as not spam, and 1813 mes-
sages that were classified as spam. What a great dataset!

To make the analysis work we need to divide the dataset into a
training set and a test set. There is no universal way to do this, but
as a rule of thumb, you can use two thirds of the data set to train
and the remainder to test. Let’s first generate a randomized index
that will let us choose cases for our training and test sets. In the fol-
lowing command, we create a new list/vector variable that sam-
ples at random from a list of numbers ranging from 1 to the final
element index of the spam data (4601).

> randIndex <- sample(1:dim(spam)[1])

> summary(randIndex)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1 1151 2301 2301 3451 4601

> length(randIndex)

[1] 4601

The output of the summary() and length() commands above show
that we have successfully created a list of indices ranging from 1 to
4601 and that the total length of our index list is the same as the
number of rows in the spam dataset: 4601. We can confirm that the
indices are randomized by looking at the first few cases:

> head(randIndex)

[1] 2073 769 4565 955 3541 3357

It is important to randomize your selection of cases for the training
and test sets in order to ensure that there is no systematic bias in
the selection of cases. We have no way of knowing how the origi-
nal dataset was sorted (if at all) - in case it was sorted on some vari-
able of interest we do not just want to take the first 2/3rds of the
cases as the training set.

Next, let’s calculate the "cut point" that would divide the spam da-
taset into a two thirds training set and a one third test set:

> cutPoint2_3 <- floor(2 * dim(spam)[1]/3)

> cutPoint2_3

[1] 3067

188

http://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/Spambase

The first command in this group calculates the two-thirds cut point
based on the number of rows in spam (the expression  
dim(spam)[1] gives the number of rows in the spam dataset). The
second command reveals that that cut point is 3067 rows into the
data set, which seems very sensible given that there are 4601 rows
in total. Note that the floor() function chops off any decimal part of
the calculation. We want to get rid of any decimal because an index
variable needs to be an integer.

Now we are ready to generate our test and training sets from the
original spam dataset. First we will build our training set from the
first 3067 rows:

> trainData <- spam[randIndex[1:cutPoint2_3],]

We make the new data set, called trainData, using the randomized
set of indices that we created in the randIndex list, but only using
the first 3067 elements of randIndex (The inner expression in
square brackets, 1:cutPoint2_3, does the job of selecting the first
3067 elements. From here you should be able to imagine the com-
mand for creating the test set:

> testData <-
spam[randIndex[(cutPoint2_3+1):dim(spam)[1]],]

The inner expression now selects the rows from 3068 all the way
up to 4601 for a total of 1534 rows. So now we have two separate
data sets, representing a two-thirds training and one third test
breakdown of the original data. We are now in good shape to train
our support vector model. The following command generates a
model based on the training data set:

> svmOutput <- ksvm(type ~ ., data=trainData,  
kernel="rbfdot",kpar="automatic",C=5,cross=3, 
prob.model=TRUE)

Using automatic sigma estimation (sigest) for RBF
or laplace kernel

Let’s examine this command in some detail. The first argument,
"type ~ .", specifies the model we want to test. Using the word
"type" in this expression means that we want to have the "type"
variable (i.e., whether the message is spam or non-spam) as the out-
come variable that our model predicts. The tilde character ("~") in
an R expression simply separates the left hand side of the expres-
sion from the right hand side. Finally, the dot character (".") is a
shorthand that tell R to us all of the other variables in the data-
frame to try to predict "type."

The "data" parameter let’s us specify which dataframe to use in the
analysis, In this case, we have specified that the procedure should
use the trainData training set that we developed.

The next parameter is an interesting one: kernel="rbfdot". You will
remember from the earlier discussion that the kernel is the custom-
izable part of the SVM algorithm that lets us project the low dimen-
sional problem into higher dimensional space. In this case, the
rbfdot designation refers to the "radial basis function." One simple
way of thinking about the radial basis function is that if you think
of a point on a regular x,y coordinate system the distance from the
origin to the point is like a radius of a circle. The "dot" in the name
refers to the mathematical idea of a "dot product," which is a way
of multiplying vectors together to come up with a single number
such as a distance value. In simplified terms, the radial basis func-

189

tion kernel takes the set of inputs from each row in a dataset and
calculates a distance value based on the combination of the many
variables in the row. The weighting of the different variables in the
row is adjusted by the algorithm in order to get the maximum sepa-
ration of distance between the spam cases and the non-spam cases.

The "kpar" argument refers to a variety of parameters that can be
used to control the operation of the radial basis function kernel. In
this case we are depending on the good will of the designers of this
algorithm by specifying "automatic." The designers came up with
some "heuristics" (guesses) to establish the appropriate parameters
without user intervention.

The C argument refers to the so called "cost of constraints." Remem-
ber back to our example of the the white top on the green moun-
tain? When we put the piece of cardboard (the planar separation
function) through the mountain, what if we happen to get one
green point on the white side or one white point on the green side?
This is a kind of mistake that influences how the algorithm places
the piece of cardboard. We can force these mistakes to be more or
less "costly," and thus to have more influence on the position of our
piece of cardboard and the margin of separation that it defines. We
can get a large margin of separation - but possibly with a few mis-
takes - by specifying a small value of C. If we specify a large value
of C we may possibly get fewer mistakes, but on at the cost of hav-
ing the cardboard cut a very close margin between the green and
white points - the cardboard might get stuck into the mountain at a
very weird angle just to make sure that all of the green points and
white points are separated. On the other hand if we have a low
value of C we will get a generalizable model, but one that makes
more classification mistakes.

In the next argument, we have specified "cross=3." Cross refers to
the cross validation model that the algorithm uses. In this case, our
choice of the final parameter, "prob.model=TRUE," dictates that we
use a so called three-fold cross validation in order to generate the
probabilities associate with whether a message is or isn’t a spam
message. Cross validation is important for avoiding the problem of
overfitting. In theory, many of the algorithms used in data mining
can be pushed to the point where they essentially memorize the in-
put data and can perfectly replicate the outcome data in the train-
ing set. The only problem with this is that the model base don the
memorization of the training data will almost never generalize to
other data sets. In effect, if we push the algorithm too hard, it will
become too specialized to the training data and we won’t be able to
use it anywhere else. By using k-fold (in this case three fold) cross-
validation, we can rein in the fitting function so that it does not
work so hard and so that it does creat a model that is more likely to
generalize to other data.

Let’s have a look at what our output structure contains:

> svmOutput

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

 parameter : cost C = 5

Gaussian Radial Basis kernel function.

 Hyperparameter : sigma = 0.0287825580201687

Number of Support Vectors : 953

190

Objective Function Value : -1750.51

Training error : 0.027388

Cross validation error : 0.076296

Probability model included.

Most of this is technical detail that will not necessarily affect how
we use the SVM output, but a few things are worth pointing out.
First, the sigma parameter mentioned was estimated for us by the
algorithm because we used the "automatic" option. Thank good-
ness for that as it would have taken a lot of experimentation to
choose a reasonable value without the help of the algorithm. Next,
note the large number of support vectors. These are the lists of
weights that help to project the variables in each row into a higher
dimensional space. The "training error" at about 2.7% is quite low.
Naturally, the cross-validation error is higher, as a set of parame-
ters never perform as well on subsequent data sets as they do with
the original training set. Even so, a 7.6% cross validation error rate
is pretty good for a variety of prediction purposes.

We can take a closer look at these support vectors with the follow-
ing command:

> hist(alpha(svmOutput)[[1]])

The alpha() accessor reveals the values of the support vectors. Note
that these are stored in a nested list, hence the need for the [[1]] ex-
pression to access the first list in the list of lists. Because the particu-
lar dataset we are using only has two classes (spam or not spam),
we only need one set of support vectors. If the "type" criterion vari-
able had more than two levels (e.g., spam, not sure, and not spam),
we would need additional support vectors to be able to classify the

cases into more than two groups. The histogram output reveals the
range of the support vectors from 0 to 5:

The maximum value of the support vector is equal to the cost pa-
rameter that we discussed earlier. We can see that about half of the
support vectors are at this maximum value while the rest cluster
around zero. Those support vectors at the maximum represent the
most difficult cases to classify. WIth respect to our mountain meta-
phor, these are the white points that are below the piece of card-
board and the green points that are above it.

191

If we increase the cost parameter we can get fewer of these prob-
lem points, but at only at the cost of increasing our cross validation
error:

> svmOutput <- ksvm(type ~ ., data=trainData,
kernel="rbfdot",kpar="automatic",C=50,cross=3,pro
b.model=TRUE)

> svmOutput

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

 parameter : cost C = 50

Gaussian Radial Basis kernel function.

 Hyperparameter : sigma = 0.0299992970259353

Number of Support Vectors : 850

Objective Function Value : -6894.635

Training error : 0.008803

Cross validation error : 0.085424

Probability model included.

In the first command above, the C=50 is bolded to show what we
changed from the earlier command. The output here shows that
our training error went way down, to 0.88%, but that our cross-
validation error went up from 7.6% in our earlier model to 8.5% in
this model. We can again get a histogram of the support vectors to
show what has happened:

Now there are only about 100 cases where the support vector is at
the maxed out value (in this case 50, because we set C=50 in the
svm command). Again, these are the hard cases that the model

192

could not get to be on the right side of the cardboard (or that were
right on the cardboard). Meanwhile, the many cases with the sup-
port vector value near zero represent the combinations of parame-
ters that make a case lie very far from the piece of cardboard. These
cases were so easy to classify that they really made no contribution
to "positioning" the hyperplane that separates the spam cases from
the non-spam cases.

We can poke out way into this a little more deeply by looking at a
couple of instructive cases. First, let’s find the index numbers of a
few of the support vectors that were near zero:

 > alphaindex(svmOutput)[[1]][alpha(svmOutput)[[1]]<0.05]

 [1] 90 98 289 497 634 745 1055 1479 1530 1544
1646 1830 1948 2520 2754

This monster of a command is not as bad as it looks. We are tap-
ping into a new part of the svmOutput object, this time using the
alphaindex() accessor function. Remember that we have 850 sup-
port vectors in this output. Now imagine two lists of 850 right next
to each other: the first is the list of support vectors themselves, we
get at that list with the alpha() accessor function. The second list,
lined right up next to the first list, is a set of indices into the origi-
nal training dataset, trainData. The left hand part of the expression
in the command above let’s us access these indices. The right hand
part of the expression, where it says alpha(svmOutput)[[1]]<0.05,
is a conditional expression that let’s us pick from the index list just
those cases with a very small support vector value. You can see the
output above, just underneat the command: about 15 indices were
returned. Just pick off the first one, 90, and take a look at the indi-
vidual case it refers to:

 > trainData[90,]

make address all num3d our over remove

 0 0 0 0 0 0 0

internet order mail receive will

 0 0 0 0 0

.

.

.

charExclamation charDollar charHash capitalAve

 1.123 0 0 2.6

capitalLong capitalTotal

 16 26

type

nonspam

The command requested row 90 from the trainData training set. A
few of the lines of the output were left off for ease of reading and
almost all of the variables thus left out were zero. Note the very
last two lines of the output, where this record is identified as a
non-spam email. So this was a very easy case to classify because it
has virtually none of the markers that a spam email usually has
(for example, as shown above, no mention of internet, order, or
mail). You can contrast this case with one of the hard cases by run-
ning this command:

> alphaindex(svmOutput)[[1]][alpha(svmOutput)[[1]]==50]

193

You will get a list of the 92 indices of cases where the support vec-
tor was "maxed out" to the level of the cost function (remember
C=50 from the latest run of the svm() command). Pick any of those
cases and display it, like this:

> trainData[11,]

This particular record did not have many suspicious keywords, but
it did have long strings of capital letters that made it hard to clas-
sify (it was a non-spam case, by the way). You can check out a few
of them to see if you can spot why each case may have been diffi-
cult for the classifier to place.

The real acid test for our support vector model, however, will be to
use the support vectors we generated through this training process
to predict the outcomes in a novel data set. Fortunately, because
we prepared carefully, we have the testData training set ready to
go. The following commands with give us some output known as a
"confusion matrix:"

> svmPred <- predict(svmOutput, testData,
type="votes")

> compTable <- data.frame(testData[,58],svmPred[1,])

> table(compTable)

 svmPred.1...

testData...58. 0 1

 nonspam 38 854

 spam 574 68

The first command in the block above uses our model output from
before, namely svmOutput, as the parameters for prediction. It
uses the "testData," which the support vectors have never seen be-
fore, to generate predictions, and it requests "votes" from the pre-
diction process. We could also look at probabilities and other types
of model output, but for a simple analysis of whether the svm is
generating good predictions, votes will make our lives easier.

The output from the predict() command is a two dimensional list.
You should use the str() command to examine its structure. basi-
cally there are two lists of "vote" values side by side. Both lists are
1534 elements long, corresponding to the 1534 cases in our testData
object. The lefthand list has one for a non-spam vote and zero for a
spam vote. Because this is a two-class problem, the other list has
just the opposite. We can use either one because they are mirror im-
ages of each other.

In the second command above, we make a little dataframe, called
compTable, with two variables in it: The first variable is the 58th
column in the test data, which is the last column containing the
"type" variable (a factor indicating spam or non-spam). Remember
that this type variable is the human judgments from the original
dataset , so it is our ground truth. The second variable is the first
column in our votes data structure (svmPred), so it contains ones
for non-spam predictions and zeros for spam predictions.

Finally, applying the table() command to our new dataframe
(compTable) gives us the confusion matrix as output. Along the
main diagonal we see the erroneous classifications - 38 cases that
were not spam, but were classified as spam by the support vector
matrix and 68 cases that were spam, but were classified as non-

194

spam by the support vector matrix. On the counter-diagonal, we
see 854 cases that were correctly classified as non-spam and 574
cases that were correctly classified as spam.

Overall, it looks like we did a pretty good job. There are a bunch of
different ways of calculating the accuracy of the prediction, de-
pending upon what you are most interested in. The simplest way
is to sum the 68 + 38 = 106 error cases and divided by the 1534 total
cases for an total error rate of about 6.9%. Interestingly, that is a tad
better than the 8.5% error rate we got from the k-fold cross-
validation in the run of svm() that created the model we are test-
ing. Keep in mind, though, that we may be more interested in cer-
tain kinds of error than other kinds. For example, consider which is
worse, an email that gets mistakenly quarantined because it is not
really spam, or a spam email that gets through to someone’s inbox?
It really depend on the situation, but you can see that you might
want to give more consideration to either the 68 misclassification
errors or the other set of 38 misclassification errors.

Chapter Challenge

Look up the term "confusion matrix" an then follow-up on some
other terms such as Type I error, Type II error, sensitivity, and speci-
ficity. Think about how the support vector machine model could be
modified to do better at either sensitivity or specificity.

For a super challenge, try using another dataset with the kernlab
svm technology. There is a dataset called promotergene that is built
into the kernlab package. You could also load up your own data set
and try creating an svm model from that.

Sources

http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/sv
mbasic_notes.pdf

http://cran.r-project.org/web/packages/kernlab/kernlab.pdf

http://en.wikipedia.org/wiki/Confusion_matrix

http://stackoverflow.com/questions/9480605/what-is-the-relatio
n-between-the-number-of-support-vectors-and-training-data-and

http://www.louisaslett.com/Courses/Data_Mining/ST4003-Lab7
-Introduction_to_Support_Vector_Machines.pdf

http://www.jstatsoft.org/v11/i09/paper

195

http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmbasic_notes.pdf
http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmbasic_notes.pdf
http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmbasic_notes.pdf
http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmbasic_notes.pdf
http://cran.r-project.org/web/packages/kernlab/kernlab.pdf
http://cran.r-project.org/web/packages/kernlab/kernlab.pdf
http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Confusion_matrix
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
http://www.louisaslett.com/Courses/Data_Mining/ST4003-Lab7-Introduction_to_Support_Vector_Machines.pdf
http://www.louisaslett.com/Courses/Data_Mining/ST4003-Lab7-Introduction_to_Support_Vector_Machines.pdf
http://www.louisaslett.com/Courses/Data_Mining/ST4003-Lab7-Introduction_to_Support_Vector_Machines.pdf
http://www.louisaslett.com/Courses/Data_Mining/ST4003-Lab7-Introduction_to_Support_Vector_Machines.pdf
http://www.jstatsoft.org/v11/i09/paper
http://www.jstatsoft.org/v11/i09/paper

