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PREFACE 

THE MAIN GOAL 

This book  tries to give students of  computer  science and professional 
programmers a general understanding of  operating systems--the programs 
that enable people to share computers  efficiently. 

To make the sharing of  a computer  tolerable, an operating system must 
enforce certain rules of  behavior on all its users. One would therefore 
expect  the designers of  operating systems to do their u tmost  to make them 
as simple, efficient, and reliable as possible. 

A number  of operating systems made in the early 1960's  had these 
characteristics; bu t  in the late 1960's  designers were of ten overambitious 
and built enormous systems with poor  performance. 

I see no inherent reason why operating systems should not  reach the 
quality of  program construction found in present compilers; this will 
require an understanding of  the principles common to all operating systems 
and a consistent use of  safe methods of  designing large programs. It  is my 
hope that this book  will give you  a start in this direction. 

I assume that you  are familiar with the basic structure of  computers  
and programming languages and have some experience in writing and 
testing non-trivial programs. In a few cases a knowledge of  elementary 
calculus and probabili ty theory is also needed. 

THEMES 

The main theme of the book  is that  operating systems are not  radically 
different from other programs. The difficulties encountered in the design of  
efficient, reliable operating systems are the same as those one encounters in 
the design of  other large programs, such as compilers or payroll  programs. 

The historical importance of  operating systems is that  they led to the 
discovery of  new principles of  resource sharing, multiprogramming, and" 
program construction. These principles have a general validity beyond  
operating systems, and I think that  they should be taught as part of a core 
of computer  science courses, following courses on programming languages, 
data structures, and computer structures. 

vi i  
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The purpose of an operating system is to share computational resources 
among competing users. To do this efficiently a designer must  respect the 
technological limitations o f  these resources. 

Present computers consist of a small number of components 
(processors, store modules, and peripherals) which operate strictly 
sequentially. It is possible to multiplex a single processor and a small 
internal store (supported by a large backing store) among several 
computations to create the illusion that they are executed concurrently and 
have access to a large, homogeneous store. But these abstractions are not 
supported by the underlying technology, and if they are carried too far, the 
result is a total collapse of computational service known as thrashing. 

One o f  the difficulties o f  operating systems is the highly unpredictable 
nature o f  the demands made upon them. Independent users submit jobs 
with varying resource requirements at irregular intervals. An operating 
system is expected to schedule this unpredictable mixture of jobs in such a 
manner that the resources are utilized efficiently and the users can expect 
response within reasonably predictable times! 

The only way to satisfy these expectations is probably to put 
restrictions on the characteristics of jobs so the designer can take advantage 
o f  the expected usage o f  resources. This is certainly the main reason for the 
success of small, specialized operating systems. It also gives a plausible 
explanation of the failure of recent "general-purpose" operating systems 
which try to handle a much greater variety of jobs (in some cases for a 
variety of machine configurations as well). 

Although most components of present computers are sequential in 
nature, they can work simultaneously to some extent. This influences the 
design of operating systems so much that the subject can best be described 
as the management  o f  shared mult iprogramming systems.  

The main difficulty of multiprogramming is that concurrent activities 
can interact in a time-dependent manner which makes it practically 
impossible to locate programming errors by systematic testing. Perhaps, 
more than anything else, this explains the difficulty of making operating 
systems reliable. 

I f  we wish to succeed in designing large, reliable mult iprogramming 
systems, we must  use programming tools which are so well-structured that 
most  t ime-dependent errors can be caught at compile time. It seems 
hopeless to try to solve this problem at the machine level of programming, 
nor can we expect to improve the situation by means of so-called 
"implementation languages," which retain the traditional "right" of 
systems programmers to manipulate addresses freely. 

I use the programming language Pascal throughout the text to define 
operating system concepts concisely by algorithms. Pascal combines the 
clarity needed for teaching with the efficiency required for design. It is 
easily understood by programmers familiar with Algol 60 or Fortran, but 



PREFACE i x  

Pascal is a far more natural programming tool than these languages, 
particularly with respect to data structuring. As we go along, I extend 
Pascal with a well-structured notation for multiprogramming. 

STRUCTURE 

The book contains eight chapters: 
Chapter 1 is an overview of  operating systems. It defines the purpose of 

operating systems and outlines their historical development from early 
batch processing to recent interactive systems. It also points out the 
influence of technological constraints on the services offered by operating 
systems. 

Chapter 2 on sequential processes discusses the role of abstraction and 
structure in problem solving and the nature of computations. It summarizes 
structuring principles of data and sequential programs and gives an example 
of hierarchal program construction. 

Chapter 3 on concurrent processes emphasizes the role of reproducible 
behavior in program testing and compares various methods of process 
synchronization: simple and conditional critical regions, semaphores, 
message buffers, and event queues. It concludes with an analysis of the 
prevention of deadlocks by a hierarchal ordering of process interactions. 

Chapters 2 and 3 present an abstract view of computational processes 
and their representation in programming languages. The following Chapters, 
4 to 6, discuss techniques of implementing processes on computers with 
limited resources. This problem is mainly technological, and it seems 
unrealistic to look for a unifying view of how different kinds of 
components are used efficiently. I try to describe various techniques and 
point out under which circumstances they are successful. 

Chapter 4 on processor management discusses the short-term problems 
of scheduling concurrent processes on a limited number of processors at the 
lowest level of programming. It also explains the implementation of 
synchronizing primitives and evaluates the influence of these abstractions 
on the real-time characteristics of a system. 

Chapter 5 on store management considers the short-term problems of 
sharing an internal store of limited capacity among concurrent processes. It 
summarizes current store technology and explains the influence of recursive 
procedures, concurrent processes, and dynamic relocation on store 
addressing. It ends with an analysis of placement algorithms and store 
multiplexing. 

Chapter 6 analyzes the performance of various medium-term scheduling 
algorithms. It uses elementary queuing theory to derive analytical results 
for the average response time to user requests in a single processor system 
with these priority rules: first-come first-served, shortest job next, highest 
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response ratio next, and round robin. Foregound-background scheduling is 
discussed informally. 

Chapter 7 is concerned with resource protection--the problem of 
ensuring that physical resources and data are accessed by well-defined 
operations within computations authorized to use them. This is a 
fundamental problem of program design which should have been presented 
earlier in the book, if only I understood it better. It is handled inadequately 
in all present operating systems. As fragments of a solution I mention two 
of the more systematic techniques used: the class concept in Simula 67 and 
the capability concept. 

It is important that a designer of operating systems understand the 
underlying common principles. But the danger of this division of the 
subject into separate chapters is that you may find it difficult to see how 
they fit together into a working system and be unaware of the more subtle 
interactions between, say, process communication, store management, 
input/output, and preemptive scheduling. 

I have therefore tried to describe a complete operating system in some 
detail in Chapter 8. It is a case study of the RC 4000 multiprogramming 
system. It is by no means an ideal system, but it is the only one I know in 
detail, and is regarded as a consistent, simple, and reliable design which 
illustrates the concepts and implementation of concurrent processes. 

It should perhaps be explained why there are no chapters on input/ 
output and filing systems. For a particular operating system, considerations 
about how these tasks are handled are highly relevant. But in this book I 
have concentrated on the more elementary aspects of these complicated 
tasks, namely process synchronization, store management, scheduling, and 
resource protection. 

VOCABULARY 

In each chapter many words are first used intuitively to give you a 
feeling for the subject. Later I return to these words and try to give 
reasonably precise verbal definitions of their meaning. My use of a common 
word may not always agree completely with the various shades of meaning 
it has acquired elsewhere, but I hope to justify the usefulness of the 
concept behind the word and show that it is possible to describe operating 
systems in an informal but consistent terminology. 

The most important terms are collected in a Vocabulary section at the 
end of the book. 

LITERATURE 

This book is only one designer's view of operating systems. I urge you 
to examine my viewpoints critically and compare them with other 
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literature on the subject. As a guide to such a study I have included an 
annotated selective bibliography at the end of each chapter. 

For the sake of completeness I have listed all references mentioned in 
the text at the end of the book. 
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A N  OVERVIEW OF OPERATING SYSTEMS 

This chapter describes the purpose and technological background of 
operating systems. It stresses the similarities of all operating systems and 
points out the advantages of special-purpose over general-purpose systems. 

1,1. THE PURPOSE OF AN OPERATING SYSTEM 

1.1.1. Resource Sharing 

An operating system is a set of manual and automatic procedures that  
enable a group of people to share a computer  installation efficiently. 

The key word in this definition is sharing: it means that  people will 
compete for the use of physical resources such as processor time, storage 
space, and peripheral devices; but it also means that  people can cooperate 
by exchanging programs and data on the same installation. The sharing of a 
computer installation is an economic necessity, and the purpose of an 
operating system is to make the sharing tolerable. 

An operating system must have a policy for choosing the order in which 
competing users are served and for resolving conflicts of simultaneous 
requests for the same resources; it must also have means of enforcing this 
policy in spite of the presence of erroneous or malicious user programs. 
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Present computer  installations can execute several user programs 
simultaneously and allow users to retain data on backing storage for weeks 
or months.  The simultaneous presence of  data and programs belonging to 
different users requires that  an operating system protect users against each 
other. 

Since users must  pay for the cost  of  computing,  an operating system 
must also perform accounting of  the usage of  resources. 

In early computer  installations, operators carried out  most  of these 
functions. The purpose of  present operating systems is to carry ou t  these 
tasks automatically by means of  the computer  itself. But when all 
these aspects of  sharing are automated,  it becomes quite difficult for the 
installation management  to find out  what  the computer  is actually doing 
and to modify  the rules of sharing to improve performance. A good 
operating system will assist management  in this evaluation by collecting 
measurements on the utilization of  the equipment.  

Most components  of  present computer  installations are sequential in 
nature: they can only execute operations or transfer data items one at a 
time. But it is possible to have activities going on simultaneously in several 
of these components .  This influences the design of operating systems so 
much that our subject can best  be described as the management of shared 
multiprogramming systems. 

1.1.2. Virtual Machines 

An operating system defines several languages in which the rules of  
resource sharing and the requests for service can be described. One of  these 
languages is the job control language, which enables users to identify 
themselves and describe the requirements of  computat ional  jobs: the types  
and amounts of  resources needed, and the names of  programs and data files 
used. 

Another  language is the virtual machine language: the set of  machine 
operations available to a user during program execution. To maintain 
control of a computer  installation and isolate users from each other, an 
operating system must  prevent user programs from executing certain 
operations; otherwise, these programs could destroy procedures or data 
inside the operating system or start inpu t /ou tpu t  on peripheral devices 
assigned to other  users. So the set of  machine operations available to users 
is normally a subset of  the original machine language. 

But users must  have some means of  doing input /output .  The operating 
system enables them to do so by  calling certain standard procedures that  
handle the peripherals in a well-defined manner. To the user programs, 
these standard procedures appear to be extensions of the machine language 
available to them. The user has the illusion of  working on a machine that  
can execute programs written in this language. Because this machine is 
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partly simulated by program, it is called a virtual machine. So an operating 
system makes a virtual machine available to each user and prevents these 
machines from interfering destructively with each other. The simultaneous 
presence of  several users makes the virtual machines much slower than the 
physical machine. 

An operating system can make the programming language of  the virtual 
machine more attractive than that of  the original machine. This can be 
done by relieving the user of the burden of  technological details such as the 
physical identity of  peripheral devices and minor differences in their 
operation. This enables the user to concentrate on logical concepts such as 
the names of data files and the transfer of  data records to and from these 
files. The virtual machine can also be made more attractive by  error 
correction techniques; these make the virtual machine appear more reliable 
than the real one (for example, by  automatic repetition of  unsuccessful 
input /output  operations). In this way an operating system may succeed in 
making a virtue out  of a necessity. 

Yet another language is the one used inside the operating system itself 
to define the policy of  sharing, the rules of  protection,  and so on. A certain 
amount  of  bit ter experience with present operating systems has clearly 
shown that an operating system may turn out  to be inefficient, unreliable, 
or built on wrong assumptions just  like any other large program. Operating 
systems should be designed so that they are simple to understand, and easy 
to use and modify.  Even if an operating system works correctly, there is 
still a need for experimenting with its policy towards users and for adapting 
it to the requirements of  a particular environment, so it is important  not  
only to give users an attractive programming language, but  also to design 
good programming tools to be used inside the operating system itself. But 
since the operating system is imposed on everyone, it is extremely 
important  that the language used to implement it reflect the underlying 
machine features in an efficient manner. 

1.1.3. Operating Systems and User Programs 

Operating systems are large programs developed and used by  a changing 
group of  people. They are of ten modified considerably during their 
lifetimes. Operating systems must necessarily impose certain restrictions on 
all users. But  this should not  lead us to regard them as being radically 
different from other programs--they are just complicated applications of 
general programming techniques. 

During the construction of operating systems over the past decade, new 
methods of  multiprogramming and resource sharing were discovered. We 
now realize that these methods are equally useful in other programming 
applications. Any large programming effort  will be heavily influenced by  
the characteristics and amounts  of  physical resources available, by  the 
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possibility of  executing smaller tasks simultaneously, and by the need for 
sharing a set of data among such tasks. 

It may be useful to distinguish between operating systems and user 
computat ions because the former can enforce certain rules of  behavior on 
the latter. But it is important  to understand that each level of  programming 
solves some aspect of resource allocation. 

Let me give a few examples of  the influence of resource sharing on the 
design of  standard programs and user programs. 

Store allocation. One of the main reasons for dividing a compiler into 
smaller parts (called passes) is to allocate storage efficiently. During a 
compilation, the passes can be loaded one at a time from drum or disk into 
a small internal store where they are executed. 

Job scheduling. A data processing application for an industrial plant can 
involve quite complicated rules for the sequence in Which smaller tasks are 
scheduled for execution. There may be a daily job  which records details of  
production;  weekly and monthly  jobs which compute  wages; a yearly job  
associated with the fiscal year; and several other  jobs. Such long-term 
scheduling of  related jobs which share large data files is quite difficult to 
control automatically. In contrast, most  operating systems only worry 
about  the scheduling of  independent  jobs over time spans of  a few minutes 
or hours. 

Multiprogramming. To control  an industrial process, engineers must  be 
able to write programs that can carry out  many tasks simultaneously, for 
example, measure process variables continuously,  report  alarms to 
operators, accumulate measurements of  production,  and print reports to 
management. 

Program protection. The ability to protect  smaller components  of  a 
large program against each other is essential in real-time applications (such 
as banking and t icket  reservation) where the service of  reliable program 
components  must be continued while new components  are being tested. 

So the problems of  resource sharing solved by  operating systems repeat  
themselves in user programs; or, to put  it differently, every large 
application of  a computer  includes a local operating system that  
coordinates resource sharing among smaller tasks of  that  application. What 
is normally called " the  operating sys tem" is just the one that  coordinates 
the sharing of  an entire installation among users. 

When you  realize that  resource sharing is not  a unique characteristic of  
operating systems, you  may wonder whether the simulation of  virtual 
machines makes operating systems different from other programs. But  alas, 
a closer inspection shows that  all programs simulate virtual machines. 

Computer  programs are designed to solve a class of problems such as 
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the editing of all possible texts, the compilation of all possible Algol 
programs, the sorting of arbitrary sets of data, the computat ion of  payrolls 
for a varying number of  employees, and so on. The user specifies a 
particular case of the class of problems by means of  a set of data, called the 
input, and the program delivers as its result another set of data, called the 
output. 

One way of looking at this flexibility is to say that  the input  is a 
sequence of  instructions written in a certain language, and the function of 
the program is to follow these instructions. 

From this point of view, an editing program can execute other 
programs written in an editing language consisting of instructions such as 
search, delete, and insert textstring. And an Algol compiler can execute 
programs written in the Algol 60 language. The computer itself can be 
viewed as a physical implementation of a program called the instruction 
execution cycle. This program can carry out other programs written in a 
so-called machine language. 

If we adopt the view that  a computer  is a device able to follow and 
carry out descriptions of processes written in a formal language, then we 
realize that  each of these descriptions (or programs) in turn makes the 
original computer  appear to be another computer  which interprets a 
different language. In other words, an editing program makes the computer  
behave like an editing machine, and an Algol compiler turns it into an Algol 
60 machine. Using slightly different words, we can say that  a program 
executed on a physical machine makes that  machine behave like a virtual 
machine which can interpret a different programming language. And this 
language is certainly more attractive for its purpose than the original 
machine language; otherwise, there would be no reason to write the 
program in the first place! 

From these considerations it is hard to avoid the conclusion that  
operating systems must be regarded merely as large application programs. 
Their purpose is to manage resource sharing, and they are based on general 
programming methods. The proper aim of education is to  identify these 
methods. But before we do that,  I will briefly describe the technological 
development of operating systems. This will give you  a more concrete idea 
of what typical operating systems do and what they have in common.  

1.2. TECHNOLOGICAL BACKGROUND 

1.2.1. Computer and Job Profiles 

We now go back to the middle of the 1950's to trace the influence of 
the technological development of  computers on the structure of operating 
systems. 

When many users share a computer  installation, queues of computa- 
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tions submitted for execution are normally formed, and a decision has to 
be made about  the order in which they should be executed to obtain 
acceptable overall service. This decision rule is called a scheduling 
algorithm. 

A computat ion requested by a user is called a job; it can involve the 
execution of  several programs in succession, such as editing fol lowed by  
compilation and execution of  a program written in a high-level language. A 
job can also require simultaneous execution of  several programs cooperat- 
ing on the same task. One program may, for example, control  the printing 
of  data, while another program computes  more output .  

In the following, I justify the need for automatic scheduling of  jobs  by  
quite elementary considerations about  a computer installation with the 
following characteristics: 

instruction execution time 
internal store 
card reader 
line printer 
magnetic tape stations 

2/~sec 
32 K words 

1,000 cards/min 
1,000 lines/min 

80,000 char/sec 

(1 ~ = 10-6 ,  and 1 K = 1024). 
We will consider an environment in which the main problem is to 

schedule a large number of small jobs whose response times are as short  as 
possible. {The response time of  a job  is the interval between the request  for 
its execution and the return of  its results.) This assumption is justified for 
universities and engineering laboratories where program development  is the 
main activity. 

A number  of  people have described the typical job profile for this type  
of  environment (Rosin, 1965; Walter, 1967). We will assume that the 
average job  consists of  a compilation and execution of  a program writ ten in 
a high-level language. The source text  read from cards and listed on a 
printer, is the major part of  the input /output .  More precisely, the average 
job will be characterized by  the following figures: 

input time (300 cards) 0.3 min 
ou tpu t  time (500 lines) 0.5 min 
execution time 1 min 

1.2.2. Batch-processing Systems 

For the moment  we will assume that  magnetic tape is the only form of  
backing store available. This has a profound influence on the possible forms 
of  scheduling. We also impose the technological restriction on the computer  
that  its mode of  operation be strictly sequential. This means that:  (1) it can 
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only execute one program at a time; and (2) after the start of an 
input /output  operation, program execution stops until  the transfer of  data 
has been completed. 

The simplest scheduling rule is the open shop where users each sign up 
for a period of, say, 15 min and operate the machine themselves. For the 
individual user this is an ideal form of service: it enables him to correct 
minor programming errors on the spot and experiment with programs 
during their execution. Unfortunately,  such a system leads to prohibitive 
costs of idle machinery: for an average job, the central processor will only 
be working for one out  of every 15 min; the rest of the time will be spent 
waiting for the operator. The situation can be characterized by two simple 
measures of  average performance: 

processor utilization = execution t ime/total  time 

throughput  = number of jobs executed per time unit  

For the open shop, processor utilization is only about 7 per cent with a 
throughput  of no more than 4 jobs per hour, each requiring only one 
minute of execution time(!). 

Idle processor time caused by manual intervention can be greatly 
reduced by even the most primitive form of automatic scheduling. Figure 
1.1 illustrates an installation in which users no longer can interact with 
programs during execution. They submit their jobs to an operator who 
stacks them in the card reader in their order of arrival. From the card 
reader, jobs are input directly to the computer,  listed on the printer, and 
executed one by one. This scheduling is done by an operating system which 
resides permanently in the internal store. 

Under this form of scheduling an average job occupies the computer  for 
1.8 min (the sum of input /output  and execution times). This means that  
processor utilization has been improved to 55 percent with a corresponding 
throughput  of  33 jobs per hour. 

But even this simple form of automatic scheduling creates new 
problems: How do we protect the operating system against erroneous user 
programs? How can we force user programs to return control to the 
operating system when they are finished, or if they fail to terminate after a 

f I 
Input Execution Output 

Fig. 1.1 Automatic scheduling of  a job queue input directly 
from a card reader, executed, and output directly 

on a line printer by a single processor. 



8 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1 

period of  time defined by  the operating system? Early operating systems 
offered no satisfactory solutions to these problems and were frequently 
brought down by  their jobs. We will ignore this problem at the moment  and 
return to it in the chapters on processor management and resource 
protection. 

This argument in favor of  automatic scheduling has ignored the 
processor time that is lost while the operator handles the peripheral 
devices: inserting paper in the printer, mounting tapes for larger jobs, and 
so forth. The argument has also ignored processor time that  is wasted when 
the operator  makes a mistake. But  these factors are ignored throughout  the 
chain of arguments and do not  affect the trend towards bet ter  utilization of  
the processor. 

The main weakness is that the argument did not  include an evaluation 
of  the amount  of  processor time used by  the new component - - the  
operating system. The reason for this omission is that  an operating system 
carries out  certain indispensable functions ( input /output ,  scheduling, and 
accounting) which previously had to be done elsewhere in the installation 
by operators and users. The relevant factor here--the amount  of  processor 
time lost by an inefficient implementation of  the operating system-- 
unfortunately cannot  be measured. But  in any case, the figures given in the 
following are not  my  estimates, but  measurements of  the actual 
performance of some recent operating systems. 

The bot t leneck in the previous simple system is the slow input /ou tpu t  
devices; they keep the central processor waiting 45 per cent of  the time 
during an average job  execution. So the next  step is to use the fast tape 
stations to implement a batch processing system as shown in Fig. 1.2. First, 
a number  of  jobs are collected from users by an operator  and copied from 

I I I 
I 
I 

Input on a 
= small computer 

I 
I 

Execution on a 
main computer 

•//•/J Output on a 
small computer 

Fig. 1.2 Batch processing of jobs in three phases: input of 
cards to tape on a small computer; execution with tape 
input/output on a main computer; and output of tape to 

printer on a small computer. 
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cards to magnetic tape on a small, cheap computer .  This tape is carried by  
the operator  to the main computer ,  which executes the batch of  jobs one 
by one, delivering their ou tpu t  to  another tape. Finally, this ou tpu t  tape is 
carried to the small computer  and listed on the printer. Notice that  
although jobs are executed in their order of  arrival inside a batch, the 
printed ou tpu t  of  the first job is not  available until the entire batch has 
been executed. 

During the execution of  a batch on the main computer ,  the operator 
uses the small computer  to print the ou tpu t  of an earlier batch and input  a 
new batch on tape. In this way the main computer ,  as well as the card 
reader and printer, is kept  busy all the time. Input /ou tpu t  delays on the 
main computer  are negligible in this system, but  another source of  idle time 
has appeared: the mounting and dismounting of  tapes. This can only be 
reduced by batching many jobs together on a single tape. But  in doing so 
we also increase the waiting time of users for the results of  their jobs. This 
dilemma between idle processor time and user response time can be 
expressed by the following relation: 

processor utilization = 
batch execution time 
batch response time 

where 

batch response time = batch mounting time + batch execution t ime 

This can also be rewritten as follows: 

batch response time = 
batch mounting time 

1 - processor utilization 

Since there is a limit to the amount  of idle processor time management 
is prepared to accept, the net result is that  response time for users is still 
determined by the manual speed of  operators! In the installation 
considered a batch cycle typically proceeds as follows: 

Delivery time of  50 jobs 30 min 
Conversion of  cards to tape 15 min 
Mounting of  tapes 5 min 
Batch execution 50 min 
Conversion of  tape to printer 25 min 
Manual separation of  ou tpu t  15 min 

Total  batch cycle 140 min 

With a tape mounting time of  5 min per batch, utilization of the main 
processor is now as high as 50/55 = 90 per cent, and throughput  has 
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reached 55 jobs per hour. But at the same time, the shortest response time 
for any job is 140 min. And this is obtained only if the job joins a batch 
immediately after submission. 

We have also ignored the problem of the large jobs: When jobs requiring 
hours for execution are included in a batch, the jobs following will 
experience much longer response times. Most users are only interested in 
fast response during working hours. So an obvious remedy is to let the 
operators sort jobs manually and schedule the shorter ones during the 
daytime and the longer ones at night. 

If the operator divides the jobs into three groups, the users might 
typically expect response times of the following order: 

1-minjobs: 2-3 hours 
5-min jobs: 8-10 hours 
other jobs: 1-7 days 

We have followed the rationale behind the classical batch-processing 
system of the late 1950's (Bratman, 1959). The main concern has been to 
reduce idle processor time, unfortunately with a resultant increase in user 
response time. 

In this type of system the most complicated aspects of sharing are still 
handled by operators, for example, the scheduling of simultaneous 
input/output and program execution on two computers, and the 
assignment of priorities to user jobs. For this reason I have defined an 
operating system as a set of manual and automatic procedures that enable a 
group of people to share a computer installation efficiently (Section 1.1.1). 

1.2.3. Spooling Systems 

It is illuminating to review the technological restrictions that dictated 
the previous development towards batch processing. The first one was the 
strict sequential nature of the computer which made it necessary to prevent 
conversational interaction with running programs; the second limitation 
was the sequential nature of the backing store (magnetic tapes) which 
forced us to schedule large batches of jobs strictly in the order in which 
they were input to the system. 

The sequential restrictions on scheduling were made much less severe 
(but were by no means removed) by technological developments in the 
early 1960's. The most important improvement was the design of 
autonomous peripheral devices which can carry out input/output opera- 
tions independently while the central processor continues to execute 
programs. 

The problem of synchronizing the central processor and the peripheral 
devices after the completion of input/output operations was solved by the 
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interrupt concept. An interrupt is a timing signal set by a peripheral device 
in a register connected to a central processor. It is examined by the central 
processor after the execution of each instruction. When an interrupt occurs, 
the central processor suspends the execution of its current program and 
starts another program--the operating system. When the operating system 
has responded properly to the device signal, it can either resume the 
execution of  the interrupted program or start a more urgent program (for 
example, the one that  was waiting for the input/output) .  

This technique made concurrent operation of a central processor and its 
peripheral devices possible. The programming technique used to control 
concurrent operation is called multiprogramming. 

It was soon realized that  the same technique could be used to simulate 
concurrent execution of  several user programs on a single processor. Each 
program is allowed to execute for a certain period of time, say of the order 
of 0.1-1 sec. At the end of this interval a timing device interrupts the 
program and starts the operating system. This in turn selects another 
program, which now runs until  a timing interrupt makes the system switch 
to a third program, and so forth. 

This form of  scheduling, in which a single resource (the central 
processor) is shared by several users, one at a time in rapid succession, is 
called multiplexing. Further improvements are made possible by enabling a 
program to ask the operating system to switch to other programs while it 
waits for input /output .  

The possibility of  more than one program being in a state of  execution 
at one time has considerable influence on the organization of storage. It is 
no longer possible to predict in which part of  the internal store a program 
will be placed for execution. So there is no fixed correspondence at 
compile time between the names used in a program to refer to data and the 
addresses of  their store locations during execution. This problem of 
program relocation was first solved by means of a loading program, which 
examined user programs before execution and modified addresses used in 
them to correspond to the store locations actually used. 

Later, program relocation was included in the logic of the central 
processor: a base register was used to modify  instruction addresses 
automatically during execution by the start address of the storage area 
assigned to a user. Part of the protection problem was solved by extending 
this scheme with a limit register defining the size of the address space 
available to a user; any a t tempt  to refer to data or programs outside this 
space would be trapped by the central processor and cause the operating 
system to be activated. 

The protection offered by base and limit registers was, of  course, 
illusory as long as user programs could modify these registers. The 
recognition of  this flaw led to the design of central processors with two 
states of execution: a privileged state, in which there are no restrictions on 
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the operations executed;  and a user state, in which the execution of 
operations controlling interruption, input /output ,  and store allocation is 
forbidden and will be trapped if at tempted.  A transition to the privileged 
state is caused by interrupts from peripherals and by protection violations 
inside user programs. A transition to the user state is caused by execution 
of  a privileged operation. 

It is now recognized that  it is desirable to be able to distinguish in a 
more flexible manner  between many levels of  protect ion (and not  just 
two). This early protect ion system is safe, but  it assigns more responsibility 
to the operating system than necessary. The operating system must, for 
example, contain code which can start input /output  on every type of 
device because no other  program is allowed to do that.  But actually, all that  
is needed in this case is a mechanism which ensures that  a job only operate 
devices assigned to it; whether  a job handles its own  devices correctly or 
not  is irrelevant to the operating system. So a centralized protect ion 
scheme tends to increase the complexity of an operating system and make 
it a bot t leneck at run time. Nevertheless, this early protection scheme must  
be recognized as an invaluable improvement:  clearly, the more responsibil- 
ity management  delegates to an operating system, the less they can tolerate 
that  it breaks down. 

Another  major innovation of this period was the construction of  large 
backing stores, disks and drums, which permit  fast, direct access to data 
and programs. This, in combination with multiprogramming, makes it 
possible to build operating systems which handle a continuous stream of  
input, computat ion,  and output  on a single computer .  Figure 1.3 shows 
the organization of  such a spooling system. The central processor is 
multiplexed between four  programs: one controls input of  cards to a queue 
on the backing store; another  selects user jobs from this input queue and 

Backing 
store 

Input 
queue 

Output 
queue 

Internal 
store 

Input 
program 

Scheduling 
program 

Output 
program 

User 
program 

Card I reader 

Line 
printer 

Fig. 1.3 A spoolingsystem controlling continuous buffering 
of input/output on backing storage and sequential 

scheduling of user jobs. 
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starts their execution one at a time; and a third one controls printing of  
output  from the backing store. These three programs form the operating 
system. The fourth  program held in the internal store is the current user 
program which reads its data from the input queue and writes its results in 
an output  queue on the backing store. 

The point of using the backing store as a buffer is that  the input of  a 
job can be fed into the machine in advance of its execution; and its output  
can be printed during the execution of later jobs. This eliminates the 
manual overhead of tape mounting. At the same time, direct access to the 
backing store makes it possible to schedule jobs in order of priority rather 
than in order of  arrival. The spooling technique was pioneered on the Atlas 
computer at Manchester University (Kilburn, 1961). 

A very successful operating system with input /output  spooling, 
called Exec H, was designed by Computer Sciences Corporation (Lynch, 
1967 and 1971). It controlled a Univac 1107 computer with an instruction 
execution time of 4 psec. The backing store consisted of two or more fast 
drums, each capable of transferring 10,000 characters during a single 
revolution of 33 msec. The system typically processed 800 jobs per day, 
each job requiring an average of 1.2 min. It was operated by the users 
themselves: To run a job, a user simply placed his cards in a reader and 
pushed a button.  As a rule, the system could serve the users faster than 
they could load cards. So a user could immediately remove his cards from 
the reader and proceed to a printer where his output  would appear shortly. 

Less than 5 per cent of  the jobs required magnetic tapes. The users who 
needed tapes had to mount  them in advance of program execution. 

Fast response to student jobs was achieved by using the scheduling 
algorithm shortest job next. Priorities were based on estimates of execution 
time supplied by users, but jobs that  exceeded their estimated time limits 
were terminated by force. 

Response times were so short that  the user could observe an error, 
repunch a few cards, and resubmit his job immediately. System 
performance was measured in terms of the circulation time of jobs. This 
was defined as the sum of the response time of a job after its submission 
and the time required by the user to interpret the results, correct the cards, 
and resubmit the job; or, to put it more directly, the circulation time was 
the interval between two successive arrivals of  the same job for execution. 

About  a third of all jobs had a circulation time of less than 5 min, and 
90 per cent of all jobs were recirculated ones that  had already been run one 
or more times the same day. This is a remarkable achievement compared to 
the earlier batch-processing system in which small jobs took a few hours to 
complete! At the same time, the processor utilization in the Exec H system 
was as high as 90 per cent. 

The Exec H system has demonstrated that  many users do not  need a 
direct, conversational interaction with programs during execution. Users 
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will often be quite satisfied with a non-interactive system which offers 
them informal access, fast response, and minimal cost. 

Non-interactive scheduling of  small jobs  with fast response is 
particularly valuable for program testing. Program tests are usually short  in 
duration: After  a few seconds the ou tpu t  becomes meaningless due to a 
programming error. The main thing for the programmer is to get the initial 
ou tpu t  as soon as possible and to be able to run another test  after 
correcting the errors shown by  the previous test. 

There are, however, also cases in which the possibility of  interacting 
with running programs is highly desirable. In the following section, I 
describe operating systems which permit  this. 

1.2.4. Interactive Systems 

To make direct conversation with running programs tolerable to  human 
beings, the computer  must  respond to requests within a few seconds. As an 
experiment,  try to  ask a friend a series of  simple questions and tell him to 
wait ten seconds before answering each of  them; I am sure you  will agree 
that  this form of communicat ion is not  well-suited to the human 
temperament .  

A computer  can only respond to many users in a few seconds when the 
processing time of  each request  is very small. So the use of  multi- 
programming for  conversation is basically a means of  giving fast response to 
trivial requests; for  example, in the editing of  programs, in t icket  
reservation systems, in teaching programs, and so forth. These are all 
situations in which the pace is limited by human thinking. They involve 
very moderate  amounts  of  inpu t /ou tpu t  data which can be handled by 
low-speed terminals such as typewriters or displays. 

In interactive systems in which the processor time per request  is only a 
few hundred milliseconds, scheduling cannot  be based on reliable user 
estimates of  service time. This uncertainty forces the scheduler to allocate 
processor t ime in small slices. The simplest rule is round-robin scheduling: 
each job  in turn is given a fixed amount  of processor time called a time 
slice; if a job is not  completed at the end of  its time slice, it is interrupted 
and returned to the end of  a queue to walt for another t ime slice. New jobs 
are placed at the end of  the queue. This policy guarantees fast response to 
user requests that  can be processed within a single time slice. 

Conversational access in this sense was first proposed by  Strachey 
(1959). The creative advantages of  a closer interaction between man and 
machine were pointed out  a few years later by  Licklider and Clark (1962). 
The earliest operational systems were the CTSS system developed at 
Massachusetts Institute of  Technology and the SDC Q-32 system built by  
the System Development  Corporation. They are described in excellent 
papers by  Corbato (1962) and Schwartz {1964 and 1967). 
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Fig. 1.4 An interactive system with low-speed user terminals 
and swapping of jobs between internal and backing storage. 

Figure 1.4 illustrates the SDC Q-32 system in a simplified form, ignor- 
ing certain details. An internal store of 65 K words is divided between a 
resident operating system and a single active user job; the rest of the jobs 
are kept on a drum with a capacity of 400 K words. 

The average time slice is about  40 msec. At the end of  this interval, the 
active job is transferred to the drum and another job is loaded into the 
internal store. This exchange of  jobs between two levels of storage is called 
swapping. It takes roughly another 40 msec. During the swapping, the 
central processor is idle so it is never utilized more than 50 per cent of  the 
time. 

During the daytime the system is normally accessed simultaneously by 
about 25 user terminals. So a user can expect response to a simple request 
(requiring a single time slice only) in 25*80 msec = 2 sec. 

A small computer  controls terminal input /output  and ensures that  users 
can continue typing requests and receiving replies while their jobs are 
waiting for more time. A disk of 4000 K words with an average access time 
of 225 msec is used for semi-permanent storage of data files and programs. 

The users communicate with the operating system in a simple job 
control language with the following instructions: 

LOGIN: The user identifies himself and begins using the system. 

LOAD: The user requests the transfer of  a program from disk to 
drum. 

START: The user starts the execution of a loaded program or 
resumes the execution of a stopped program. 

STOP: The user stops the execution of a program temporarily. 

DIAL: The user communicates with other users or with system 
operators. 

LOGOUT: The user terminates his use of the system. 
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The system has been improved over the years: Processor utilization has 
been increased from 50 to  80 per cent by the use of  a more complicated 
scheduling algorithm. Nevertheless, it is still true that  this system and 
similar ones are forced to spend processor time on unproduct ive transfers 
of  jobs between two levels o f  storage: Interactive systems achieve 
guaranteed response to short  requests at the price of  decreased processor 
utilization. 

In the SDC Q-32 system with an average of  25 active users, each user is 
slowed down by  a factor  of  50. Consequently,  a one-minute job  takes 
about  50 min to complete  compared to the few minutes required in the 
Exec H system. So interactive scheduling only makes sense for  trivial 
requests; it is not  a realistic method  for computat ional  jobs that  run for  
minutes and hours. 

Later and more ambitious projects are the MULTICS system (Corbato,  
1965) also developed at MIT, and the IBM system TSS-360 (Alexander, 
1968). In these systems, the problem of store multiplexing among several 
users is solved by a more refined method:  Programs and data are transferred 
between two levels of  storage in smaller units, called pages, when they  are 
actually needed during the execution of  jobs. The argument is that  this is 
less wasteful in terms of  processor time than the crude method  of  swapping 
entire programs. But experience has shown that this argument is no t  always 
valid because the overhead of  starting and completing transfers increases 
when it is done in smaller portions. We will look at this problem in more 
detail in the chapter on store management.  The paging concept  was 
originally invented for the Atlas computer  (Kilburn, 1962). 

Another  significant contr ibut ion of  these systems is the use of  large 
disks for semi-permanent storage of  data and programs. A major problem in 
such a filing system is to ensure the integrity of data in spite of  occasional 
hardware failures and protect them against unauthorized usage. The 
integrity problem can be solved by  periodic copying of  data from disk to 
magnetic tape. These tapes enable an installation to restore data on the disk 
after a hardware failure. This is a more complicated example of  the  design 
goal ment ioned in Section 1.1.2: An operating system should try to make 
the virtual machine appear more reliable than the real one. 

The protect ion problem can be solved by  a password scheme which 
enables users to identify themselves and by maintaining as part of  the filing 
system a directory describing the author i ty  of  users (Fraser, 1971). 

Interactive systems can also be designed for real-time control of  
industrial processes. The central problem in a real-time environment is that  
the computer  must  be able to receive data as fast as they  arrive; otherwise, 
they will be lost. (In that  sense, a conversational system also works under  
real-time constraints: It must  receive input as fast as users type  it.) 

Usually, a process control  system consists of  several programs which are 
executed simultaneously. There may, for example, be a program which is 
started every minute to measure various temperatures,  pressures, and flows 
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and compare these against preset alarm limits. Each time an alarm 
condition is detected,  another program is started to report  it to an 
operator, and while this is being done, the scan for further alarms 
continues. Still other programs may at the same time accumulate 
measurements on the production and consumption of materials and energy. 
And every few hours these data are probably printed by yet  another 
program as a report  to plant management. 

This concludes the overview of the technological background of  shared 
computer  installations. I have tried through a series of  simple arguments to 
illustrate the influence of  technological constraints on the service offered 
by  operating systems. Perhaps the most  valid conclusion is this: In spite of  
the ability of  present computer  installations to perform some operations 
simultaneously, they  remain basically sequential in nature; a central 
processor can only execute one operation at a time, and a drum or disk can 
only transfer one block of  data at a time. There are computers  and backing 
stores which can c a r ~  out  more than one operation at a time, but  never to 
the extent  where the realistic designer of operating systems can afford to 
forget completely about  sequential resource constraints. 

1.3. THE SIMILARITIES OF OPERATING SYSTEMS 

The previous discussion may have left the impression that  there are 
basic differences between batch processing, spooling, and interactive 
systems. This is certainly true as long as we are interested mainly in the 
relation between the user service and the underlying technology. But to  
gain a deeper insight into the nature of operating systems, we must  look for 
their similarities before we stress their differences. 

To mention one example: All shared computer  installations must  
handle concurrent activities at some level. Even if a system only schedules 
one job at a time, users can still make their requests simultaneously. This is 
a real-time situation in which data (requests) must  be received when they 
arrive. The problem can, of course, be solved by  the users themselves (by 
forming a waiting line) and by the operators (by writing down requests on 
paper); but  the observation is important  since our goal is to handle the 
problems of  sharing automatically. 

It is also instructive to compare the batch-processing and spooling 
systems. Both achieve high efficiency by means of  a small number  of  
concurrent activities: In the batch processing system, independent  
processors work  together; in the spooling system, a single processor 
switches among independent programs. Furthermore,  both  systems use 
backing storage (tape and drum) as a buffer  to compensate for  speed 
variations of  the producers and consumers of  data. 

As another example, consider real-time systems for process control  and 
conversational programming. In these systems, concurrently executed 
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programs must be able to exchange data to cooperate on common tasks. 
But  again, this problem exists in all shared computer  installations: In a 
spooling system, user computat ions exchange data with concurrent  
input /output  processes; and in a batch processing system, another set of  
concurrent processes exchanges data by means of  tapes mounted  by  
operators. 

As you  see, all operating systems face a common set of  problems. To 
recognize these, we must  reject the established classification of  operating 
systems (into batch processing, spooling, and interactive systems) which 
stresses the dissimilarities of  various forms of  technology and user service. 
This does not  mean that the problems of  adjusting an operating system to 
the constraints of  a particular environment should be ignored. But the 
designer will solve them much more easily when he fully understands the 
principles common to all operating systems. 

1.4. DESIGN OBJECTIVES 

The key to success in programming is to have a realistic, clearly-defined 
goal and use the simplest possible methods  to achieve it. Several operating 
systems have failed because their designers started with very vague or 
overambitious goals. In the following discussion, I will describe two quite 
opposite views on the overall objectives of  operating systems. 

1.4.1. Special-purpose Systems 

The operating systems described so far have one thing in common:  
Each of  them tries to use the available resources in the most  simple and 
efficient manner to give a restricted, but  useful form of computat ional  
service. 

The Exec H spooling system, for example, strikes a very careful balance 
between the requirements of  fast response and efficient utilization. The 
overhead of  processor and store multiplexing is kept  low by  executing jobs  
one at a time. But with only one job  running, processor time is lost when a 
job waits for input /output .  So to reduce input /ou tpu t  delays, data are 
buffered on a fast drum. But since a drum has a small capacity, it becomes 
essential to keep the volume of  buffered data small. This again depends on 
the achievement of  short response t ime for the following reason: the faster 
the jobs are completed,  the less time they occupy  space within the system. 

The keys to the success of  the Exec H are that  the designers: (1) were 
aware of  the sequential nature of  the processor and the drum, and 
deliberately kept  the degree of  multiprogramming low; and (2) t o o k  
advantage of  their knowledge of the expected workload--a large number  of  
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small programs executed wi thout  conversational interaction. In short, the 
Exec H is a simple, very efficient system that serves a special purpose. 

The SDC Q-32 serves a different special purpose: conversational 
programming. It sacrifices 20 per cent of  its processor time to give response 
within a few seconds to 25 simultaneous users; its operating system 
occupies only 16 K words of  the internal store. This too  is a simple, 
successful system. 

The two systems do not  compete  with each other. Each gives the users 
a special service in a very efficient manner. But  the spooling system is 
useless for conversation, and so is the interactive system for serious 
computat ion.  

On the other  hand, neither system would be practical in an 
environment where many large programs run for hours each and where 
operators mount  a thousand tapes daffy. This may be the situation in a 
large atomic research center where physicists collect and process large 
volumes of  experimental data. An efficient solution to this problem 
requires ye t  another operating system. 

The design approach described here has been called design according to 
performance specifications. Its success strongly suggests that  efficient 
sharing of a large installation requires a range of operating systems, each of  
which provides a special service in the most  efficient and simple manner. 
Such an installation might, for example, use three different operating 
systems to offer: 

(1) conversational editing and preparation of jobs; 

(2) non-interactive scheduling of  small jobs with fast response; and 

(3) non-interactive scheduling of  large jobs. 

These services can be offered on different computers  or at different times 
on the same computer .  For the users, the main thing is that  programs 
written in high-level languages can be processed directly by  all three 
systems. 

1.4.2. General-purpose Systems 

An alternative method is to make a single operating system which offers 
a variety of services on a whole range of computers.  This approach has 
often been taken by  computer  manufacturers. 

The 0S/360 for the IBM 360 computer  family was based on this 
philosophy. Mealy (1966) described it as follows: 

"Because the basic structure of  0S/360 is equally applicable to 
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batchedojob and real-time applications, it may be viewed as one of the first 
instances of a second-generation operating system. The new objective of 
such a system is to accommodate an environment of diverse applications 
and operating modes. Although not to be discounted in importance, various 
other objectives are not new--they have been recognized to some degree in 
prior systems. Foremost among these secondary objectives are: 

o Increased throughput 

[] Lowered response time 

[] Increased programmer productivity 

[] Adaptability (of programs to changing resources) 

[] Expandability 

"A second-generation operating system must be geared to change and 
diversity. System/360 itself can exist in an almost unlimited variety of 
machine configurations." 

Notice that performance (throughput and response) is considered to be 
of secondary importance to functional scope. 

An operating system that tries to be all things to all men naturally 
becomes very large. 0S/360 is more than an operating system--it is a library 
of compilers, utility programs, and resource management programs. It 
contains several million instructions. Nash gave the following figures for the 
resource management components of 0S/360 in 1966: 

Data management 58.6 K statements 
Scheduler 45.0 
Supervisor 26.0 
Utilities 53.0 
Linkage editor 12.3 
Testran 20.4 
System generator 4.4 

219.7 K 

(Nato report, 1968, page 67). 
Because of its size, the 0S/360 is also quite unreliable. To cite Hopkins: 

"We face a fantastic problem in big systems. For instance, in 0S/360 we 
have about 1000 errors each release and this number seems to be 
reasonably constant" (Nato report, 1969, page 20). 

This is actually a very low percentage of errors considering the size of 
the system. 
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This method  has been called design according to functional specifica- 
tions. The results have been generally disappointing, and the reason is 
simply this: Resource sharing is the main purpose of an operating system, 
and resources are shared most efficiently when the designer takes full 
advantage of his knowledge of the special characteristics of the resources 
and the jobs using them. This advantage is immediately denied him by 
requiring that  an operating system must work in a much more general case. 

This concludes the overview of  operating systems. In the following 
chapters, operating systems are studied at a detailed level in an a t tempt  to 
build a sound theoretical understanding of  the general principles of  
multiprogramming and resource sharing. 

1.5. LITERATURE 

This chapter owes much to a survey by Rosin (1969) of  the 
technological development of  operating systems. 

With the background presented, you  will easily follow the arguments in 
the excellent papers on the early operating systems mentioned:  Atlas 
(Kilburn, 1961; Morris, 1967), Exec II (Lynch, 1967 and 1971), CTSS 
(Corbato, 1962), and SDC Q-32 (Schwartz, 1964 and 1967). I recommend 
that  you study these papers to become more familiar with the purpose of  
operating systems before you proceed with the analysis of  their 
fundamentals. The Atlas, Exec H, and SDC systems are of special interest 
because they were critically reevaluated after several years of actual use. 

The paper by Fraser (1971) explains in some detail the practical 
problems of maintaining the integrity of data in a disk filing system in spite 
of  occasional hardware malfunction and of  protecting these data against 
unauthorized usage. 
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SEQUENTIAL PROCESSES 

This chapter describes the role of  abstraction and structure in problem 
solving, and the nature of computations.  It also summarizes the structuring 
principles of  data and sequential programs and gives an example of  
hierarchal program construction. 

2.1. INTRODUCTION 

The starting point  of  a theory of  operating systems must  be a sequential 
process--a succession of  events that  occur one at a time. This is the way our 
machines work; this is the way we think. Present computers  are built  from 
a small number  of  large sequential components:  store modules which can 
access one word at a time, arithmetic units which can perform one addition 
at a time, and peripherals which can transfer one data block at a time. 
Programs for these computers  are written by  human beings who master 
complexity by  dividing their tasks into smaller parts which can be analyzed 
and solved one at a time. 

This chapter is a summary of  the basic concepts of  sequential 
programming. I assume you  already have an intuitive understanding of  
many of  the problems from your  own programming experience. We shall 
begin by  discussing the role of abstraction and structure in problem solving. 

23 
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2.2. ABSTRACTION AND STRUCTURE 

Human beings can think precisely only of simple problems. In our 
efforts to understand complicated problems, we must concentrate at any 
moment  on a small number of  properties that  we believe are essential for 
our present purpose and ignore all other aspects. Our partial descriptions of  
the world are called abstractions or models. 

One form of  abstraction is the use of  names as abbreviations for more 
detailed explanations. This is the whole purpose of terminology. It enables 
us to say "operating sys tem" instead of  "a  set of manual and automatic 
procedures that  enable a group of people to share a computer installation 
efficiently." 

In programming, we use names to refer to variables. This abstraction 
permits us to ignore their actual values. Names are also used to refer to 
programs and procedures. We can, for example, speak of " the  editing 
program." And if we understand what editing is, then we can ignore, for 
the moment ,  how it is done in detail. 

Once a problem is understood in terms of a limited number of  aspects, 
we proceed to analyze each aspect separately in more detail. It  is often 
necessary to repeat this process so that  the original problem is viewed as a 
hierarchy of  abstractions which are related as components  within 
components at several levels of detail. 

In the previous example, when we have defined what an editing 
program must do, we can proceed to construct it. In doing so, we will 
discover the need for more elementary editing procedures which can 
"search,"  "dele te ,"  and " inser t"  a textstring. And within these procedures, 
we will probably write other procedures operating on single characters. So 
we end up with several levels of procedures, one within the other. 

As long as our main interest is the properties of a component  as a 
whole, it is considered a primitive component, but, when we proceed to 
observe smaller, related components  inside a larger one, the latter is 
regarded as a structured component or system. When we wish to make a 
distinction between a given component  and the rest of  the world, we refer 
to the latter as the environment of  that  component .  

The environment makes certain assumptions about  the properties of  a 
component  and vice versa: The editing program assumes that  its input 
consists of a text  and some editing commands, and the user expects the 
program to perform editing as defined in the manual. These assumptions 
are called the connections between the component  and its environment. 

The set of connections between components  at a given level of detail 
defines the structure of the system at that  level. The connections between 
the editing program and its users are defined in the program manual. Inside 
the editing program, the connections between the components  "search," 
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"delete ,"  and "insert"  are defined by  what these procedures assume about  
the properties and location of  a textstring and by what operations they 
perform on it. 

Abstraction and recognition of  structure are used in all intellectual 
disciplines to present knowledge in forms that are easily unders tood and 
remembered.  Our concern is the systematic use of  abstraction in the design 
of  operating systems. We will try to identify problems which occur in all 
shared computer  installations and define a set of  useful components  and 
rules for connecting them into systems. 

In the design of  large computer  programs, the following difficulties 
must be taken for granted: (1) improved understanding of  the problems 
will change our goals in time; (2) technological innovations will eventually 
change our tools; and (3) our intellectual limitations will often cause us to 
make errors in the construction of  large systems. These difficulties imply 
that large systems will be modified during their entire existence by  
designers and users, and it is essential that  we build such systems with this 
in mind. If it is difficult to understand a large system, it is also difficult to 
predict the consequences of modifying it. So reliability is intimately related 
to the simplici ty  of structure at all levels. 

Figure 2.1(a) shows a complicated system S, consisting of  n compo- 
nents SI ,  $2 . . . .  , Sn. In this system, each component  depends directly on 
the behavior of  all other  components.  Suppose an average of  p simple steps 
of reasoning or testing are required to understand the relationship between 
one component  and another and to verify that  they are properly 
connected. Then the connection of a single component  to its environment 
can be verified in ( n - 1 ) p  steps, and the complete system requires 
n(n - 1)p steps. 

This can be compared with the system shown in Fig. 2.1(b): There, the 
connections between the n components  are defined by a common set of  
constraints chosen so that  the number of steps q required to verify whether  

P P 

(a) (b} 

Fig. 2.1 Two examples of system structures. 
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a component  satisfies them is independent  of  the number  of  components  n. 
The p roof  or test  effort  is now q steps per component  and nq steps for the 
whole system. 

The argument is, of  course, extreme, but  it does drive home the 
following point:  If the intellectual effort  required to understand and test  a 
system increases more than linearly with the size of  the system, we shall 
never be able to build reliable systems beyond  a certain complexity.  Our 
only hope is to restrict ourselves to simple structures for which the effort  
of  verification is proport ional  to the number  of  components .  

The importance of  precise documentation of  system structure can 
hardly be overemphasized. Quite often, a group of  designers intend to 
adopt  a simple structure, but  they fail to state precisely what  the 
assumptions are at each level of  programming, and instead rely on informal, 
spoken agreements. Inevitably, the result is that  each member  of  the group 
adds complexi ty  to the structure by making unnecessary or erroneous 
assumptions about  the behavior of  components  designed by his colleagues. 
The importance of  making assumptions explicit is especially felt when an 
initial version of  a system must  be modified; perhaps by a different group 
of  people. 

2.3. COMPUTATIONS 

In Chapter 1 the word computa t ion  was used intuitively to refer to 
program execution.  In the following, this concept  and its components  data 
and operations are defined explicitly. 

2.3.1. Data and Operations 

The exchange of  facts or ideas among human beings by speech is based 
on mutual  agreement on the meaning of  certain sounds and combinat ions 
of  sounds. Other  conventions enable us to  express the same ideas by  means 
of  text  and pictures, holes in punched cards, polarity of  magnetized media, 
and modula ted  electromagnetic waves. In short, we communicate  by  means 
of  physical phenomena chosen by  us to represent certain aspects of  our 
world. These physical representations of  our abstractions are called data, 
and the meanings we assign to them are called their information. 

Data are used to transmit information between human beings, to store 
information for future use, and to derive new information by manipulating 
the data according to certain rules. Our most  important  tool  for the 
manipulation of  data is the digital computer .  

A da tum stored inside a computer  can only assume a finite set of  values 
called its type. Primitive types  are defined by enumeration of  their values, 
for example: 
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type  boolean = (false, true) 

or by  definition of  their range: 

type  integer = - 8388608 . . 8388607  

Structured types are defined in terms of  primitive types,  as is explained 
later in this chapter. 

The rules of  data manipulation are called operations. An operation 
maps a finite set of  data, called its input, into a finite set of  data, called its 
output.  Once initiated, an operation is executed to completion within a 
finite time. These assumptions imply that the ou tpu t  of  an operation is a 
time-independent function of its input, or, to put  it differently: An 
operation always delivers the same ou tpu t  values when it is applied to a 
given set of  input  values. 

An operation can be defined by enumeration of its ou tpu t  values for all 
possible combinations of  its input  values. This set of values must be finite 
since an operation only involves a finite set of  data with finite ranges. But 
in practice, enumeration is only useful for extremely simple operations 
such as the addition of  two decimal digits. As soon as we extend this 
method of  definition to the addition of  two decimal numbers of, say, 10 
digits each, it requires enumeration of  1 0  2 0 triples (x, y, x + y)! 

A more realistic method is to define an operation by a computational 
rule involving a finite sequence of  simpler operations. This is precisely the 
way we define the addition of  numbers.  But  like other abstractions, 
computat ional  rules are useful intellectual tools only as long as they  remain 
simple. 

The most  powerful  method  of  defining an operation is by assertions 
about  the type  of  its variables and the relationships be tween their values 
before and after the execution of the operation. These relationships are 
expressed by  statements of the following kind: If the assertion P is true 
before initiation of  the operation Q, then the assertion R will be true on its 
completion. I will use the notat ion 

" P"  Q " R "  

to define such relationships. 
As an example, the effect  of  an operation sort which orders the n 

elements of  an integer array A in a non-decreasing sequence can be defined 
as follows: 

"A: array 1 . .n  of  integer" 
sort(A); 

"for  all i, j: 1 . .n  (i ~ j  implies A(i) ~ A(j))"  
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Formal assertions also have limitations: They tend to be as large as the 
programs they refer to. This is evident from the simple examples that  have 
been published (Hoare, 1971a). 

The whole purpose of  abstraction is a b b r e v i a t i o n .  You can often help 
the reader of  your  programs much more by a short, informal s ta tement  that  
appeals to a common background of  more rigorous definition. If  your  
reader knows what a Fibonacci number is, then why write 

"F:  array 0 . .n  of  in teger  & j: O. .n & 
for all i: 0 . . j  (F( i )  = if i < 2 then i else F( i  - 2) + F( i  - 1))" 

when the following will do 

"F(0)  to F ( j )  are t he  f i r s t  j + 1 F i b o n a e c i  n u m b e r s "  

Definition by formal or informal assertion is an abstraction which 
enables us to concentrate on what  an operation does and ignore the details 
of  how it is carried out. The t y p e  concept is an abstraction which permits 
us to ignore the actual values of  variables and state that  an operation has 
the effect defined for all values of the given types. 

2.3.2. Processes 

Data and operations are the primitive components  of  computations.  
More precisely, a c o m p u t a t i o n  is a finite set of operations applied to a 
finite set of data in an a t tempt  to solve a problem. If a computat ion solves 

(a) 

x1 

3 

(b) 

Fig. 2.2 A precedence graph of  (a) a sequential and (b) a 
concurrent computation. 
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the given problem, it is also called an algorithm. But it is possible that  a 
computat ion is meaningless in the sense that  it does not  solve the problem 
it was intended to solve. 

The operations of  a computat ion must be carried out  in a certain order 
of precedence to ensure that  the results of  some operations can be used by 
others. The simplest possible precedence rule is the execution of  operations 
in strict sequential order, one at a time. This type  of  computat ion is called 
a sequential process. It consists of  a set of  operations which are totally 
ordered in time. 

Figure 2.2(a) shows a precedence graph of the process performed by  an 
operating system that schedules user computat ions one at a time. Each 
node represents an instance of one of  the following operations: r (read user 
request), x (execute user computat ion) ,  and p (print user results). The 
directed branches represent precedence of  operations. In this case: 

r l  precedes x l ,  
x l  precedes p l ,  
p l  precedes r2, 
r2 precedes x2, 

Most of  our computat ional  problems require only a partial ordering of  
operations in time: Some operations must be carried out  before others, bu t  
some of them can also be carried out  concurrently. This is illustrated in Fig. 
2.2(b) by  a precedence graph of  a spooling system (see Chapter 1, Fig. 1.3). 
Here the precedence rules are: 

r l  precedes x l  and r2, 
x l  precedes p l  and x2, 
p l  precedes p2,  
r2 precedes x2 and r3, 

Partial ordering makes concurrent execution of some operations 
possible. In Fig. 2.2(b), the executions of the following operations may 
overlap each other in time: 

r2 and x l ,  
r3 and x2 and p l ,  

In order to understand concurrent computations,  it is often helpful to 
try to partition them into a number  of  sequential processes which can be 
analyzed separately. This decomposi t ion can usually be made in several 
ways, depending on what your  purpose is. 
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If you  wish to design a spooling system, then you  will probably 
partition the computat ion in Fig. 2.2(b) into three sequential processes of  a 
cyclical nature each in control  of  a physical resource: 

reader process: 
scheduler process: 
printer process: 

r l ; r 2 ; r 3 ; . . .  
x l ; x 2 ; x 3 ; .  . . 
p l ; p 2 ; p 3 ; .  . . 

These processes can proceed simultaneously with independent  speeds, 
except  during short intervals when they  must  exchange data: The scheduler 
process must receive user requests from the reader process, and the printer 
process must be informed by the scheduler process of  where user results are 
stored. Processes which cooperate  in this manner are called loosely 
connected processes. 

On the other  hand, if you  are a user, it makes more sense to recognize 
the following processes in Fig. 2.2(b): 

job 1: r l ; x l ; p l ;  
job 2: r2; x2; p2; 
job 3: r3 ;x3;p3;  

Both decomposit ions are useful for a particular purpose, bu t  each of  
them also obscures certain facts about  the original computat ion.  From the 
first decomposi t ion it is not  evident that  the reader, scheduler, and printer 
processes execute a stream of  jobs; the second decomposi t ion hides the fact 
that  the jobs share the same reader, processor, and printer. A decomposi- 
t ion of  a computat ion into a set of  processes is a partial description or  an 
abstraction of  that  computat ion.  And how we choose our abstractions 
depends on our present purpose. 

The abstractions chosen above illustrate a general principle: In a 
successful decomposit ion,  the connections between components  are much 
weaker than the connections inside components .  It is the loose connections 
or infrequent interactions between the processes above which make it 
possible for us to s tudy them separately and consider their interactions 
only at a few, well-defined points. 

One of  the recurrent themes of  this book  is process interaction. It is a 
direct consequence of  the sharing of  a computer .  Processes can interact for 
various reasons: (1) because they  exchange data, such as the reader, 
scheduler, and printer processes; (2) because they share physical resources, 
such as j o b l ,  job2,  job3,  and so on; or (3) because interaction simplifies our 
understanding and verification of  the correctness of  a computat ion-- this  is 
a strong point  in favor of  sequential computations.  

Concurrent  computat ions  permit bet ter  utilization of a computer  
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installation because timing constraints among physical components  are 
reduced to a minimum. But since the order of  operations in time is not  
completely specified, the ou tpu t  of  a concurrent computat ion may be a 
t ime-dependent function of its input unless special precautions are taken. 
This makes it impossible to reproduce erroneous computat ions  in order to 
locate and correct observed errors. In contrast, the ou tpu t  of  a sequential 
process can always be reproduced when its input is known. This property 
of  sequential processes along with their extreme simplicity makes them 
important  components  for the construction of  concurrent computations.  

The main obstacles to the utilization of  concurrency in computer  
installations are economy and human imagination. Sequential processes can 
be carried out  cheaply by repeated use of  simple equipment;  concurrent  
computat ions require duplicated equipment.  

Human beings find it very difficult to comprehend the combined effect  
of  activities which evolve simultaneously with independent  speeds. Those 
who have studied the history of  nations in school, one by one--American 
history, French history, and so on--recall how difficult it was to remember,  
in connect ion with a crucial time of  transition in one country,  what  
happened in other  countries at the same time. The insight into our 
historical background can be greatly improved by  presenting history as a 
sequence of  stages and by  discussing the situation in several countries at  
each stage--but then the student  finds it equally difficult to remember  the 
continuous history of  a single nation ! 

It is hard to avoid the conclusion that  we understand concurrent  events 
by  looking at sequential subsets of  them. This would mean that, even 
though technological improvements may eventually make a high degree of  
concurrency possible in our computations,  we shall still a t tempt  to 
partition our problems conceptually into a moderate number  of  sequential 
activities which can be programmed separately and then connected loosely 
for concurrent  execution. 

In contrast, our understanding of  a sequential process is independent  of  
its actual speed of  execution. All that matters is that operations are carried 
out  one at a time with finite speed and that  certain relations hold between 
the data before and after each operation. 

2.3.3. Computers and Programs 

The idea of  defining complicated computat ions  rigorously implies the 
use of  a formal language to describe primitive data types and operations as 
well as combinations of  them. A formal description of  a computat ion is 
called a program, and the language in which it is expressed is called a 
programming language. 

Programs can be used to communicate algorithms among human beings, 
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Store 

Processors 

Fig. 2.3 A model of a computer installation. 

but, in general, we write programs to solve problems on computers. We will 
indeed define a computer installation as a physical system capable of 
carrying out  computations by interpreting programs. 

Figure 2.3 shows a model of  a computer  installation. I t  consists of a 
store and one or more processors. The store is a physical component  in 
which data and programs can be retained for future use. I t  is divided into a 
finite set of primitive components  called locations. Each location can store 
any one of a finite set of  data values. 

A processor is a physical component  which can carry out a sequential 
process defined by a program. During its execution, a program is stored as a 
sequence of  data called instructions. An instruction consists of four  
components defining an operation, its input and output ,  and a successor 
instruction. Data used to identify store locations are called addresses. 

The processors can work concurrently and share the common store. 
Some of  the processors are called terminals or peripheral devices; they  are 
dedicated to the transfer of  data between the environment and the store. 
Other processors are called central processors; they operate mainly on 
stored data. For our purposes, the distinction between peripheral devices 
and central processors is no t  fundamental;  it merely reflects various degrees 
of  specialization. 

The rest of this chapter is a discussion of the fundamental  abstraction, 
sequential processes. It summarizes methods of  structuring data and 
sequential programs, and serves as a presentation of the programming 
language used throughout  the text,  a subset of the language Pascal, created 
by Wirth. The algorithmic statements of Pascal are based on the principles 
and notat ion of Algol 60. But the data structures of Pascal are much more 
general than those of  Algol 60. 

Pascal permits hierarchal structuring of data and program, extensive 
error checking at compile time, and production of efficient machine code 
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on present computers. It combines the clarity needed for teaching the 
subject with the efficiency required for designing operating systems. If you  
are familiar with Algol 60, you  will find it quite natural to adopt Pascal as 
your programming tool. 

The following is a brief and very informal description of a subset of  
Pascal with the emphasis on the language features that  make it different 
from Algol 60. Although my summary of Pascal is sufficient for 
understanding the rest of  the book, I recommend that  you  study the 
official Pascal report, which is written in clear, informal prose (Wirth, 
1971a). 

I have taken a few minor liberties with the Pascal notation. They are 
not  mentioned explicitly because my subject is not  rigorous language 
definition, but  operating system principles. 

2.4. DATA STRUCTURES 

2.4.1. Primitive Data Types 

Constants  are denoted by numbers or identifiers. A definition of the 
form: 

c o n s t a l = c l ,  a 2 = c 2 ,  . . .  , ak = ck; 

introduces the identifiers a l ,  a2 . . . .  , ak as synonyms of the constants c l ,  
c2, . . .  , ck,  for example: 

const e = 2.718281828; 

Variables are introduced by declarations of the form: 

vat v l ,  v2 . . . .  , vk: < t y p e >  ; 

which associates the identifiers v l ,  v2 . . . . .  , vk with a data type. 
A data t ype  is the set of  values which can be assumed by a variable. A 

type can be defined either directly in the declaration of a variable or 
separately in a type definition which associates an identifier T with the 
type: 

type T = < t y p e >  ; 

vat v l ,  v2, . . .  , vk: T; 

A pr imi t ive  t ype  is a finite, ordered set of  values. The primitive types: 
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boolean 
integer 
real 

are predefined for a given computer.  
Other primitive types can be 

successive values: 
defined by enumeration of a set of  

(a l ,  a2, . . .  , ak)  

denoted by identifiers a l ,  a2, . . .  , ak, for example: 

type name of  month = 

(January, February, March, April, May, June, July, 
August, September, October, November, December); 

A primitive type can also be defined as a range within another  primitive 
type:  

cmin. . emax 

where cmin and cmax are constants denoting the minimum and maximum 
values in the range, for example: 

type number of day = 1 . .31 ;  
vat payday: number of  day; 

war summer month: June..August; 

The first example is a variable payday, which can assume the values 1 to 31 
(a subrange of  the standard type integer). The second example is a variable 
summer month, which can assume the values June to  August (a subrange of  
the type name of  month defined previously). 

The set of  values which can be assumed by a variable v of  a primitive 
type T can be generated by means of  the standard functions: 

rain(T) max(T) succ(v) pred(v) 

in ascending order: 

v:= rain(T); 
while v -~ max(T) do v:= succ(v); 

or in descending order: 
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v: = max(T);  
while v ¢ min(T)  do v: = pred(v); 

2.4.2. Structured Data Types 

Structured types are defined in terms of  primitive types or in terms of  
other structured types using the connection rules of arrays and records. 

The type definition: 

array D of  R 

defines a data structure consisting of a fixed number of components  of 
type R. Each component  of an array variable v is selected by an index 
expression E of type D: 

Examples: 

v(E) 

type table = array 1 . .20  of  integer; 
vat A : table; i: 1. •20; 
. . . A ( i )  . . .  

vat length o f  month:  
array name o f  month  of number o f  day; 

• . .  length o f  month  (February) . . .  

The type definition: 

record f l :  T1; f2: T 2 ; . . .  ; fk: Tk e n d  

defines a data structure consisting of a fixed number of components  of  
types T1, T 2 , . . . ,  Tk. The components are selected by identifiers f l ,  
f2, . . .  , fk.  A component  fj within a record variable v is denoted: 

Example: 

v . f i  

type date = record 
day: number o f  day; 
month:  number o f  month;  
year: O. .2000; 

end 
vat birthday: date; 
• . .  b ir thday,  m o n t h . . .  
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Good programmers do not  confine themselves exclusively to the  
structures defined by an available programming language. They invent 
notations for abstractions that  are ideally suited to their present purpose. 
But they will choose abstractions which later can be represented efficiently 
in terms of  the standard features of their language. 

I will occasionally do the same and postulate extensions to Pascal which 
help me to stress essential concepts and, for the moment ,  ignore trivial 
details. 

As one example, I will assume that  one can declare a variable s 
consisting of a sequence of components  of type T: 

vat s: sequence of  T 

Initially, the sequence is empty.  The value of  a variable t of type T can 
be appended to or removed from the sequence s by means of  the standard 
procedures 

put(t ,  s) get(t, s) 

The components  are removed in the order in which they are appended to 
the sequence. In other words, a sequence is a first-in, first-out store. 

The boolean function 

empty(s)  

defines whether or not  the sequence s is empty.  
The implementation of  sequences by means of arrays will be explained 

in Chapter 3. For a more detailed discussion of  the representation of 
various data structures see Knuth  (1969). 

2.5. PROGRAM STRUCTURES 

2.5.1. Primitive Statements 

Operations and combinations of them are described by statements. The 
primitive statements are exit statements, assignment statements, and 
procedure statements. 

The exit  statement 

exit L 

is a restricted form of a go to statement.  It causes a jump to the end of  a 
compound statement labeled L: 
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l a b e l L b e g i n  . . . e x i t L ; . . ,  end 

This  use o f  jumps  is an ef f ic ient  way of  leaving a c o m p o u n d  s t a t em en t  
in the  excep t iona l  cases when  a so lu t ion  to  a p rob lem is f o u n d  earlier than  
expec ted ,  or  when  no  solut ion exists. Bu t  in con t ras t  to  the  u n s t r u c t u r e d  
go to s ta tement ,  the  ex i t  s t a t emen t  simplifies the  ver i f ica t ion of  p rogram 
correctness .  

Suppose  an assert ion P holds  be fore  a c o m p o u n d  s t a t emen t  Q is 
execu ted .  The re  are n o w  two  cases to  consider :  E i the r  Q is e x e c u t e d  to  
comple t ion ,  in which case an assert ion R is k n o w n  to  hold ;  or  an exi t  is 
made  f r o m  Q when  an excep t iona l  case S holds.  So the  e f fec t  o f  s t a t e m e n t  
Q is the  fol lowing:  

" P "  Q "R or  S "  

The  ass ignment  s t a t e m e n t  

V :  = E 

assigns the  value o f  an express ion  E to  a variable v. The  express ion mus t  be 
o f  the  same t ype  as v. Express ions  consist  o f  opera tors  and func t ions  
appl ied to  cons tants ,  variables, and  o the r  expressions.  The  operators  are: 

a r i thmet ic :  + - * / m o d  
relat ional :  = ~ < > 
boo lean :  & or  n o t  

The  f u nc t i on  designator  

F ( a l ,  a2, . . . .  ak)  

causes the  evaluat ion o f  a func t ion  F wi th  the actual  pa ramete r s  a l ,  
a2, . . .  , ak.  

The  procedure  s t a t e m e n t  

P ( a l ,  a2,  . . .  , a k )  

causes the  execu t i on  o f  a p rocedu re  P wi th  the  actual  parameters  a l ,  
a2, . . .  , ak.  

The  actual parameters  o f  func t ions  and p rocedures  can be variables and 
expressions.  Express ions  used as parameters  are evaluated  be fo re  a func t ion  
or p rocedu re  is execu ted .  
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Fig. 2.4 

Chap. 2 

A compound statement. 

2.5.2. Structured Statements 

Structured statements are formed by connecting primitive statements 
or other  s tructured statements according to  the following rules: 

(1) Concatenation of  statements S1, $2, . . .  , Sn into a compound  
statement:  

label L begin S1; $2;  . . .  ; Sn end 

b e g i n S 1 ; S 2 ;  . . .  ;Sn end 

(See Fig. 2.4). 

(2) Selection of one of  a set of  s tatements by means of a boolean 
expression B: 

i f B  then S1 else $2 

if B then S 

or by means of  an expression E of  a primitive type  T: 
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? 
~ r  

r 

Fig. 2 .5  T h e  i f  a n d  ca se  s t a t e m e n t s .  

t y p e  T = ( c l ,  c2  . . . .  , cn); 
. , • 

case E o f  
c l :  S 1 ; c 2 :  $2 ;  . . .  cn: Sn;  
end  

I f  E = c] t hen  s t a t e m e n t  S] is e x e c u t e d  (See Fig. 2.5).  

(3) 
t rue :  

39 

Repe t i t i on  o f  a s t a t e m e n t  S while  a b o o l e a n  express ion  B remains  

while  B d o  S 

or  r epe t i t i on  o f  a sequence  o f  s t a t e m e n t s  S1,  $2 ,  . . .  , Sn unt i l  a boo l ean  
express ion  B b e c o m e s  t rue :  

r epea t  81 ;  $2 ;  . . .  ; Sn unt i l  B 

(See Fig. 2.6) .  
A n o t h e r  poss ibi l i ty  is to  r epea t  a s t a t e m e n t  S wi th  a success ion o f  

pr imi t ive  values assigned to  a con t ro l  var iable  v: 

fo r  v:= E m i n  to  E m a x  do  S 
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Fig. 2.6 The while and repeat statements. 

(4) Recursion of a procedure P which calls itself: 

p rocedumP(  . . .  ); 
begin . . .  P; . . .  end 

(See Fig. 2.7.) 
Notice that  the analytical effort  required to understand the effect of  

these structures is proportional to the number of component  statements. 
For example, in the analysis of  an if statement,  we must first prove that  a 
certain assertion R will be true after execution of statement S1, provided 
assertions B and P hold before $1 is initiated, and similarly for $2: 

"B & P " S 1  " R "  "no t  B & P " S 2  " R "  

From this we infer that  

" P "  i fB  then S1 else $2 " R "  

The repetition statements are understood by mathematical  induction. 
From 

we infer that  

"B & P"  S " P "  

"P" while B do S "not B & P" 
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I 

Fig. 2.7 A recursive procedure statement. 

The  aim is to  f ind an invariant P--an  assert ion which is t rue  before  the  
i te ra t ion  is s tar ted and remains t rue  af te r  each ex ecu t i o n  of  the  s t a t m e n t  S. 

F o r  records,  the  fo l lowing s t ruc tu red  s t a t emen t  can be used:  

wi th  v do  S 

I t  enables the  s t a t emen t  S to  re fe r  to  the c o m p o n e n t s  of  a r ecord  variable v 
by  the i r  ident if iers  f l ,  f2,  . . . , fk w i t h o u t  qual ifying t h e m  with the  r ecord  
ident i f ier  v, fo r  example :  

wi th  birthday d o  
begin day:= 19; month:= April; year:= 1938  end 

Final ly,  we have the  i m p o r t a n t  abs t rac t ion  o f  assigning a name  to  a 
sequence  o f  s ta tements  $1 ,  $2,  . . .  , Sn by  means  o f  procedure and 
function declarations o f  the fo rm:  

procedure P ( p l ;  p2 ;  . . .  ; pk); 
< local declarat ions  > 
b e g i n S 1 ; S 2 ;  . . .  ; S n e n d  

func t i on  F ( p l ; p 2 ;  . . .  ; p k ) :  < r e s u l t  t y p e >  ; 
< local declara t ions  > 
begin S1;  $2 ;  . . .  ; Sn end 

where p l ,  p2 ,  . . . .  pk are declarat ions  of  formalparameters. The  declara- 
t ion  p] of  a cons tan t  or variable pa rame te r  vj of  t y p e  Tj has the  fo rm:  

cons t  vj: Tj var vj: Tj 

The  preceding  specifier  can be o m i t t e d  for  cons t an t  parameters .  
A func t i on  F compu te s  a value t h a t  mus t  be  o f  a pr imit ive type .  At  
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least one of  its statements $1, $2, . . .  , Sn must assign a result value to the 
function identifier F 

F:= E 

where E is an expression of the result type. 
The function statements must not  assign values to actual parameters 

and non-local variables. This rule simplifies program verification as will be 
explained in Chapter 3. 

The declarations of identifiers which are local to a procedure or 
function are written before the begin symbol of the statement part. They 
are written in the following order: 

const <constant def ini t ions> 
type < t y p e  def ini t ions> 
var <variable declarat ions> 
<local  procedure and function declarat ions> 

A program consists of a declaration part and a compound statement.  
Finally, I should mention that  comments  are enclosed in quotes: 

"This is a commen t"  

This concludes the presentation of the Pascal subset. 

2.6. PROGRAM CONSTRUCTION 

We design programs the same way we solve other complex problems: by 
step-wise analysis and refinement. In this section, I give an example of  
hierarchal program construction. 

2.6.1. The Banker's Algorithm 

The example chosen is a resource sharing problem first described and 
solved by Dijkstra (1965). Although the problem involves concurrent 
processes, it is used here as an example of sequential programming. 

An operating system shares a set of resources among a number  of  
concurrent processes. The resources are equivalent in the sense that  when a 
process makes a request for one of them, it is irrelevant which one is 
chosen. Examples of equivalent resources are peripheral devices of the same 
type and store pages of equal size. 

When a resource has been allocated to a process, it is occupied until the 
process releases it again. When concurrent processes share resources in this 
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manner, there is a danger that  they may end up in a deadlock ,  a state in 
which two or more processes are waiting indefinitely for an event that  will 
never happen. 

Suppose we have 5 units of a certain resource, and we are in a state 
where 2 units are allocated to a process P and 1 uni t  to another process Q. 
But both processes need two more units to run to completion. If we are 
lucky, one of them, say Q, will acquire the last two units, run to 
completion, and release all three of its units in time to satisfy further 
requests from P. But it is also possible that  P and Q both will acquire one of  
the last two units and then (since there are no more) will decide to wait 
until another uni t  becomes available. Now they are deadlocked: P cannot 
continue until  Q releases a unit;  Q cannot continue until P releases a unit;  
and each of  them expects the other to resolve the conflict. 

The deadlock could have been prevented by allocating all units needed 
by P (or Q) at the same time rather than one by one. This policy would 
have forced P and Q to run at different times, and as we have seen in 
Chapter 1, this is often the most efficient way of using the resources. But 
for the moment,  we will try to solve the problem without  this restriction. 

Let me define the problem more precisely in Dijkstra's terminology: A 
banker wishes to share a fixed capital of f lorins among a fixed number of  
customers.  Each customer specifies in advance his maximum need for 
florins. The banker will accept a customer if his need does not  exceed the 
capital. 

During a customer's transactions, he can only borrow or return florins 
one by one. It may sometimes be necessary for a customer to wait before 
he can borrow another florin, but the banker guarantees that  the waiting 
time will always be finite. The  current loan of a customer can never exceed 
his maximum need. 

If the banker is able to satisfy the maximum need of a customer, then 
the customer guarantees that  he will complete his transactions and repay 
his loan within a finite time. 

The current situation is safe if it is possible for the banker to enable all 
his present customers to complete their transactions within a finite time; 
otherwise, it is unsafe. 

We wish to find an algorithm which can determine whether the banker's 
current situation is safe or unsafe. If the banker has such an algorithm, he 
can use it in a safe situation to decide whether a customer who wants to  
borrow another florin should be given one immediately or told to walt. The 
banker makes this decision by pretending to grant the florin and then 
observing whether this leads to a safe situation or not. 

The situation of a customer is characterized by his current loan and his 
further claim where 

claim = need - loan 
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Fig. 2.8 The banker's algorithm: a safe situation. 

The situation of the banker is characterized by his original cap i ta l  a n d  

his current amount  of  cash  where 

cash  = cap i ta l  - s u m  o f  loans  

The algorithm that  determines whether the overall situation is safe or 
not  is quite simple. Let me illustrate it by an example: Fig. 2.8 shows a 
situation in which three customers, P, Q, and R,  share a capital of 10 
florins. Their combined need is 20 florins. In the current situation, Fig. 
2.8(a), customer Q has a loan of  2 florins and a claim of 1 florin; this is 
denoted 2 (1). For P and R the loans and claims are 4 (4) and 2 (7) 
respectively. So the available cash C at the moment  is 10 - 4 - 2 - 2 = 2. 

The algorithm examines the customers one by one, looking for one who 
has a claim not  exceeding the cash. In Fig. 2.8(a), customer Q has a claim 
of 1. Since the cash is 2, customer Q will be able in this situation to 
complete his transactions and return his current loan of 2 florins to the 
banker. 

After the departure of customer Q, the situation will be the one shown 
in Fig. 2.8(b). The algorithm now scans the remaining customers and 
compares their claims with the increased cash of 4 florins. It is now possible 
to satisfy customer P completely. 

This leads to the situation in Fig. 2.8(c) in which customer R can 
complete his transactions. So finally, in Fig. 2.8(d) the banker has regained 
his capital of 10 florins. Consequently, the original state Fig. 2.8(a) was 
safe. 

It is possible to go from the safe state in Fig. 2.8(a) to an unsafe 
situation, such as the one in Fig. 2.9(a). Here, the banker has granted a 
request from customer R for another florin. In this new situation, customer 
Q can be satisfied. But this leads us to the situation in Fig. 2.9(b) in which 
we are stuck: neither P nor R can complete their transactions. 

If the banker's algorithm finds that  a situation is unsafe, this does no t  
necessarily mean that  a deadlock will occur--only that  it might occur. But 
if the situation is safe, it is always possible to prevent a deadlock. Notice 
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Fig. 2.9 The banker's algorithm: an unsafe situation. 

that  the banker prevents deadlocks in the same way as we originally 
proposed: by serving the customers one at a time; but the banker only does 
so in situations where it is strictly necessary. 

We will now program the banker's algorithm for the general case 
considered by Habermann (1969), in which the banker's capital consists of  
several currencies: florins, dollars, pounds, and so on. 

2.6.2. A Hierarchal Solution 

The first version of the banker's algorithm is trivial: 

type S = ? 

function safe(current state: S): boolean; 

It consists of  a boolean function safe with a parameter defining the current 
state. The details of the function and the type of its parameter are as yet  
unknown. 

The first refinement (Algorithm 2.1) expresses in some detail what the 

ALGORITHM 2. 1 The Banker's Algori thm 

t y p e  S = ? 

function safe(current state: S): boolean; 
vat state: S; 
begin 

state:= current state; 
complete transactions(state); 
safe: = all transactions completed(state); 

end 
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function safe does: It simulates the complet ion of  customer transactions as 
far as possible. If all transactions can be completed,  the current state is safe. 

In the second refinement (Algorithm 2.2), the state is decomposed  
into: (1) an array defining the claim and loan of each customer and 
whether or not  that  customer's transactions have been completed; and (2) 
two components  defining the capital and cash of the banker. The exact  
representation of  currencies ( type C) is still undefined. 

The procedure complete transactions is now defined in some detail. It 
examines the transactions of  one customer at a time: If they  have not  
already been completed and complet ion is possible, the procedure simulates 
the return of  the customer 's  loan to the banker. This continues until no 
more transactions can be completed.  

ALGORITHM 2.2 The Banker's Algorithm (cont.) 

type  S = record 
transactions: array B of  

record 
claim, loan: C; 
completed: boolean; 

end 
capital, cash: C; 

end 
B = 1. .number o f  customers; 
C = ?  

procedure complete transactions(vat state: S); 
vat customer: B; progress: boolean; 
begin 

with state do 
repeat 

progress:= false; 
for  every customer do 
with transactions(customer) do 
ff not  completed then 
if completion possible(claim, cash) then 
begin 

return loan(loan, cash); 
completed: = true; 
progress:= true; 

end 
until not  progress; 

end 
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The statement 

for every customer d o . . .  

is equivalent to 

for  customer:= rain(B) to max(B) d o . . .  

Algorithm 2.3 shows that  the current  state is safe if the banker 
eventually can get his original capital back. 

ALGORITHM 2.3 The Banker's AIgorithm (cont.) 

function all transactions completed(state: S): boolean; 
begin 

with state do 
all transactions completed := capital = cash; 

end 

In the third refinement (Algorithm 2.4), we define the representation 
of  a set of  currencies as an array of  integers and write the details of  the 
function completion possible, which shows that the transactions of  a single 
customer can be completed if his claim of each currency does not  exceed 
the available cash. 

ALGORITHM 2.4 The Banker's Algorithm (cont.) 

type  C = array D of  integer; 
D = 1..number of  currencies; 

funct ion completion possible(claim, cash: C): boolean; 
vat currency: D; 
label no 
begin 

for every currency do 
if claim(currency) > cash(currency)then 
begin 

completion possible:= false; 
exit no; 

end 
completion possible:= true; 

end 
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Algorithm 2.5 shows the final details of the banker's algorithm. 

ALGORITHM 2.5 The Banker's Algorithm (cont.) 

procedure return loan(var loan, cash: C); 
vat currency: D; 
begin 

for every currency do 
cash (currency): = cash (currency) + loan (currency); 

end 

To be honest, I do not  construct my first version of any program in the 
orderly manner described here. Nor do mathematicians construct  proofs in 
the way in which they present them in textbooks. We must all experiment 
with a problem by trial and error until  we understand it intuitively and 
have rejected one or more incorrect solutions. But it is important  that  the 
final result be so well-structured that  it can be described in a step-wise 
hierarchal manner. This greatly simplifies the effort  required for other 
people to understand the solution. 

2.6.3. Conclusion 

I have constructed a non-trivial program (Algorithm 2.6) step by step in 
a hierarchal manner. At  each level of programming, the problem is 
described in terms of  a small number of variables and operations on these 
variables. 

ALGORITHM 2.6 The Complete Banker's AIgorithm 

type S = record 
transactions: array B of  

record 
claim, loan: C; 
completed: boolean; 

end 
capital, cash: C; 

end 
B = 1 . . number  o f  customers; 
C = array D of  integer; 
D = 1 . . number  o f  currencies; 

funct ion safe(current state: S): boolean; 
vat state: S; 

procedure complete  transactions(vat state: S); 
vat customer: B; progress: boolean; 



Sec. 2.6. PROGRAM CONSTRUCTION 

function completion possible(claim, cash: C): boolean; 
var currency: D; 
label no 
begin 

for every currency do 
i f  claim(currency) > cash(currency)then 
begin 

completion possible:= false; 
exit no; 

end 
completion possible := true; 

end 

procedure return loan(var loan, cash: C); 
var currency: D; 
begin 

for every currency do 
cash(currency):= cash(currency) + loan(currency); 

end 

begin 
with state do 
repeat 

progress:= false; 
for every customer do 
with transactions(customer) do 
if not completed then 
if completion possible(claim, cash) then 
begin 

return loan(loan, cash); 
completed: = true; 
progress: = true; 

end 
until not progress; 

end 

function all transactions completed(state: S): boolean; 
begin 

with state do 
all transactions completed:= capital = cash; 

end 

begin 
state:= current state; 
complete transactions( sta te ) ; 
safe: = all transactions completed(state); 

end 
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At the most abstract level, the program consists of  a single variable, 
current state, and a single operation, safe. If this operation had been 
available as a machine instruction, our problem would have been solved. 
Since this was not  the case, we wrote another program (Algorithm 2.1), 
which can solve the problem on a simpler machine using the operations 
complete transactions and all transactions completed. 

This program in turn was rewritten for a still simpler machine 
(Algorithms 2.2 and 2.3). The refinement of  previous solutions was 
repeated until the level of detail required by the available machine was 
reached. 

So the design of a program involves the construction of a series of  
programming layers, which gradually transform the data structures and 
operations of  an ideal, non-existing machine into those of an existing 
machine. The non-existing machines, which are simulated by program, are 
called virtual machines to distinguish them from the physical machine. 

It was mentioned in Section 1.1.3 that  every program simulates a 
virtual machine that  is more ideal than an existing machine for a particular 
purpose: A machine that  can execute the banker's algorithm is, o f  course, 
ideally suited to the banker's purpose. We now see that  the construction of  
a large program involves the simulation of a hierarchy o f  virtual machines. 
Figure 2.10 illustrates the virtual and physical machines on which the 
banker's algorithm is executed. 

At each level of programming, some operations are accepted as 
primitives in the sense that  it is known what they do as a whole, but  the 
details of how it is done are unknown and irrelevant at that  level. 
Consequently, it is only meaningful at each level to describe the effect  of  

Machine 
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Operations Data types 

safe S 

complete transactions S 

all transactions completed 

completion possible C 

return loan 

Pascal statements D 

Machine language ! Machine types 

Instruction execution cycle Registers 

Fig. 2.10 The banker's algorithm viewed as a hierarchy of 
virtual and physical machines. 
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the program at discrete points in time before and after the execution of  
each primitive. At these points, the state of the sequential process is 
defined by assertions about  the relationships between its variables, for 
exam ple: 

"all transactions completed =- capital = cash" 

Since each primitive operation causes a transition from one state to 
another, a sequential process can also be defined as a succession of  states in 
time. 

As we proceed from detailed to more abstract levels of programming, 
some concepts become irrelevant and can be ignored. In Algorithm 2.2, we 
must consider assertions about  the local variable, progress, as representing 
distinct states during the execution of  the partial algorithm. But at the level 
of programming where Algorithm 2.2 is accepted as a primitive, complete 
transactions, the intermediate states necessary to implement it are com- 
pletely irrelevant. 

So a state is a partial description of a computat ion just like the 
concepts sequential process and operation. A precise definition of these 
abstractions depends on the level of  detail desired by the observer. A user 
may recognize many intermediate states in his computation,  but  for the 
operating system in control of  its execution, the computat ion has only a 
few relevant states, such as "wai t ing" or "running."  

In order to test the correctness of a program, we must run it through all 
its relevant states at least once by supplying it with appropriate input and 
observing its output .  I remarked in Section 2.3.1 that  the definition of 
operations by enumeration of all possible data values is impractical except 
in extremely simple cases. The same argument leads to the conclusion tha t  
exhaustive testing of operations for all possible input values is ou t  of the 
question. 

If we were to test the addition of two decimal numbers of 10 digits 
each exhaustively, it would require 1020 executions of  a program loop of, 
say 10/~sec, or, all in all, 3 * 107 years. The only way to reduce this t ime 
is to use our knowledge of the internal structure of the adder. If we know 
that  it consists of 10 identical components,  each capable of adding two 
digits and a carry, we also know that  it is sufficient to test each component  
separately with 10 * 10 * 2 combinations of  input digits. This insight 
immediately reduces the number of test cases to 2000 and brings the total 
test time down to only 20 msec. 

Returning to the problem of testing the correctness of  a program such 
as the banker's algorithm, we must accept that  such a test is impossible at a 
level where it is only understood as a primitive: safe. We would have to 
exhaust all combinations of  various currencies and customers in every 
possible state! But if we take advantage of  the layered structure of  our 
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programs (see Fig. 2.10), we can start at the machine level and demonstrate 
once and for all that the machine instructions work correctly. This proof 
can then be appealed to at higher programming levels independent of the 
actual data values involved. At the next level of programming, it is proved 
once and for all that the compiler transforms Pascal statements correctly 
into machine instructions. And when we reach the levels at which the 
banker's algorithm is programmed, it is again possible to test each level 
separately, starting with Algorithm 2.5 and working towards Algorithm 2.1. 

In this chapter, I have stressed the need for simplicity in programming. 
I cannot accept the viewpoint that the construction of programs with a 
pleasant structure is an academic exercise that is irrelevant or impractical to 
use in real life. Simplicity of structure is not just an aesthetic pursuit--It is 
the key to survival in programming! Large systems can only be fully 
understood and tested if they can be studied in small, simple parts at many 
levels of detail. 

2.7. LITERATURE 

This chapter has briefly summarized concepts which are recognized and 
understood, at least intuitively, by most programmers. 

The role of hierarchal structure in biological, physical, social, and 
conceptual systems is discussed with deep insight by Simon (1962). 

In the book by Minsky (1967) you will find an excellent and simple 
presentation of the essential aspects of sequential machines and algorithms. 
Homing and Randell (1972) have analyzed the concept "sequential 
process" from a more formal point of view. 

Hopefully, this book will make you appreciate the Pascal language. It is 
defined concisely in the report by Wirth (1971a). 

A subject which has only been very superficially mentioned here is 
correctness proofs of algorithms. It was suggested independently by Naur 
and Floyd and further developed by Hoare (1969). 

The practice of designing programs as a sequence of clearly separated 
layers is due to Dijkstra (1971a). He has successfully used it for the 
construction of an entire operating system (1968). Eventually, this 
constructive approach to programming may change the field from a 
hazardous application of clever tricks into a mature engineering discipline. 

DIJKSTRA, E. W., "The structure of THE multiprogramming system," Comm. ACM 
11, 5, pp. 341-46, May 1968. 

DIJKSTRA, E. W., A short introduction to the art of  programming, Technological 
University, Eindhoven, The Netherlands, Aug. 1971a. 

HOARE, C. A. R., "An axiomatic basis for computer programming," Comm. ACM 12, 
10, pp. 576-83, Oct. 1969. 
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Englewood Cliffs, New Jersey, 1967. 

SIMON, H. A., "The architecture of complexity," Proc. American Philosophical Society 
106, 6, pp. 468-82, 1962. 

WIRTH, N., "The programming language Pascal," Acta Informatica 1, 1, pp. 35-63, 
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CONCURRENT PROCESSES 

This chapter is a study of  concurrent processes. I t  emphasizes the role 
of  reproducible behavior in program verification and compares various 
methods of  process synchronization: critical regions, semaphores, message 
buffers, and event queues. It concludes with an analysis of the prevention 
of deadlocks by hierarchal ordering of  process interactions. 

3.1. CONCURRENCY 

The process concept was introduced in the previous chapter (see 
Section 2.3.2). In the following, I will summarize the basic properties of  
sequential and concurrent processes, and introduce a language notat ion for 
the latter. 

3.1.1. Definition 

A process is a sequence of  operations carried out  one at a time. The 
precise definition of an operation depends on the level of detail at which 
the process is described. For some purposes, you  may regard a process as a 
single operation A, as shown on top of Fig. 3.1. For other purposes, it may be 
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Level of detail 

A 
I I 

B C D E 
II II I 

I F I I  G i i  H II / I I  J I I  K I F-~-t M I I  N I 

• Time 

Fig. 3.1 The same process viewed at different levels 
of detail as a succession of operations A or B, C . . . .  
or F, G , . . .  in time. 

more convenient to look upon the same process as a sequence of  simpler 
operations B, C, D, and E. And when you  examine it in still more detail, 
previously recognized operations can be partitioned into still simpler ones: 
F, G, H, and so on. 

If you  compare this picture with the hierarchy of  machines on which 
the banker's algorithm is executed (see Fig. 2.10), you  will see that  as we 
proceed to more detailed levels o f  programming, a process is described in 
terms of  increasingly simpler operations which are carried out in increas- 
ingly smaller grains o f  time. 

At all levels of programming, we assume that  when an operation is 
initiated, it terminates within a finite time and delivers output  which is a 
t ime-independent function of  its input (see Section 2.3.1). 

If the variables of  a process are inaccessible to other processes, it is easy 
to show by induction that  the final output  of  a sequence of  operations will 
be a t ime-independent funct ion of  the initial input. In this case, a process 
can be regarded as a single operation, provided that  it terminates. 

But if one process can change the variables of another process, the 
output  of the latter may depend on the relative speed of  the processes. In 
this case, a process cannot be regarded as a single operation. I will describe 
the problem of multiprogramming systems with time-dependent behavior 
later and proceed here to describe the basic properties of concurrent 
processes. 

Processes are concurrent if their executions overlap in time. Figure 3.2 
shows three concurrent processes, P, Q, and R. 

P 

Q 
I I 

R 
I 

• Time 

' Fig. 3.2 Three concurrent processes P, 
Q, andR. 
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A B 
Process P I I I I 

C D 
Process Q I I I I 

• Time 

* Fig. 3.3 Two concurrent processes P and Q consisting 
of operations A, B and C, D which are partly interleaved, 
partly overlapped in time. 

Whether the individual operations of concurrent  processes are 
overlapped or interleaved in t ime, or both  (as shown in Fig. 3.3), is 
irrelevant. Whenever the first operat ion of  one process is started before  the 
last operat ion of  another  process is completed,  the two processes are 
concurrent.  

In an installation where several processors work simultaneously, the 
machine instructions of  concurrent  processes can overlap in time. But if 
one processor is mult iplexed among concurrent  processes, the machine 
instructions of  these processes can only be interleaved in time. The logical 
problems turn out  to  be the same in both  cases; they are caused by our 
ignorance of  the relative speeds of  concurrent  processes. 

3 . 1 . 2 .  C o n c u r r e n t  S t a t e m e n t s  

The language nota t ion 

cobegin S1; $2;  . . .  ; Sn coend 

indicates tha t  the statements $1,  $2, . . .  , Sn can be executed 
concurrently.  It was first proposed by  Dijkstra (1965).  

To define the effect  of  a concurrent statement, we must  take into 
account  the statements SO and Sn+l,  which precede and follow it in a 
given program: 

• Fig. 3.4 Precedence graph of a con- 
current statement. 
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SO cobegin $1; $ 2 ; . . .  ; Sn coend S n + l  

This piece of  program can be represented by the precedence graph shown in 
Fig. 3.4. The desired effect  is to execute SO first, and then execute S1, 
$2  . . . .  , Sn  concurrently;  when all the statements S1, $2, . . .  , Sn  have 
been terminated, the following statement Sn +1 is executed. 

Concurrent  statements can be arbitrarily nes ted ,  for example: 

cobegin 
$1; 
begin 
$2; 
cobegin $3; $4 coend 
$5; 

end 
$6; 

coend 

This corresponds to the precedence graph shown in Fig. 3.5. 

Fig. 3.5 Precedence graph of nested concurrent statements. 

3.1.3. An Example: Copying 

The use of  the concurrent  s ta tement  is illustrated by  Algorithm 3.1, 
which copies records f rom one sequence to another.  
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ALGORITHM 3.1 Copying of a Sequence of Records 

procedure copy (vaz f, g: sequence of  T); 
vat s, t: T; completed: boolean; 
begin 

if  not  empty(f) then 
begin 

completed:= false; 
get(s, f) ;  
repeat 

t := s; 
cobegin 

put(t, g); 
ff empty(f) then completed:= true 

else get(s, f); 
coend 

until  completed; 
end 

end 
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• Fig. 3.6 Precedence graph of 
copying of a sequence of records. 

the 
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The variables used are two sequences, f and g, of  records of  type  T; two 
buffers, s and t, each holding one record; and a boolean, indicating whether  
or not  the copying has been completed. 

The algorithm gets a record from the inPut sequence, copies it f rom one 
buffer to another, puts it on the ou tpu t  sequence, and, at the same time, 
gets the next  record from the input sequence. The copying, output ,  and 
input  are repeated until the input sequence is empty.  

Figure 3.6 shows a precedence graph of  this computa t ion  using the 
operations: g (get record), c {copy record), and p (put  record). 

3.2. FUNCTIONAL SYSTEMS 

In the following, we consider more precisely what  t ime-independent or 
functional behavior means, and under what  circumstances multipro- 
gramming systems have this property.  As an introduct ion to this topic, we 
will first examine our ability to verify the correctness of  programs. 

3.2.1. Program Verification 

The ideal program is one which is known with absolute certainty to be 
correct. It has been argued that  this can be achieved by rigorous proofs 
(Hoare, 1969 and 1971a). I believe that  the use of  p roof  techniques 
contr ibutes to the correctness of  programs by forcing programmers to  
express solutions to  problems in two different ways: by  an algorithm and 
by  a proof.  But  it must  be remembered that  a p roof  is merely another 
formal s tatement  of the same size as the program it refers to, and as such it 
is also subject to human errors. This means that  some other  form of  
program verification is still needed, at least for large programs. 

The next  best  thing to absolute correctness is immediate detection of  
errors when they occur. This can be done either at compile time or at run 
time. In either case, we rely on a certain amount  of  redundancy in our 
programs, which makes it possible to check automatically whether  
operations are consistent with the types  of  their variables and whether  they  
preserve certain relations among those variables. 

Error detect ion at compile time is possible only by  restricting the 
language constructions; error detect ion at run time is possible only by  
executing redundant  statements that  check the effect  of  other  statements. 
In practice, bo th  methods  are used, bu t  there are limits to how far one can 
go in each direction: At  some point, severe language restrictions and 
excessive run-time checking will make the system useless for practical 
purposes. 

This leaves a class of  errors that  is caught neither at compile t ime nor at 
run time. It seems fair to say that  these errors can only be located and 
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corrected if programs have functional behavior which enables the designer 
to reproduce errors under controlled circumstances. 

One can subject a sequential program to a fairly systematic initial 
testing by examining its internal structure and defining a sequence of input 
data which will cause it to execute all statements at least once. 

Dijkstra once remarked that  "program testing can be used to show the 
presence of  errors, but  never their absence" (Nato report, 1969). Even a 
systematically tested program may contain some undetected errors after it 
has been released for normal use. If  it has been subject to intensive initial 
testing, the remaining errors are usually quite subtle. Often, the designer 
must repeat the erroneous computat ion many times and print successive 
values of various internal variables to find out in which part of the program 
the error was made. 

So program testing is fundamental ly based on the ability to reproduce 
computations. The difficulty is that  we must reproduce them under varying 
external circumstances. In a multiprogramming system, several user 
computations may be in progress simultaneously. These computations are 
started at unpredictable times at the request of users. 8o, strictly speaking, 
the environment of a program is unique during each execution. Even when 
computations are scheduled one at a time, a programming error is fre- 
quently observed by a user on one installation and corrected by a designer 
on another installation with a different configuration. 

This has the following consequences: (1) an operating system must 
protect the data and physical resources of  each computat ion against 
unintended interference by other computations; and (2) the results of  each 
computat ion must be independent of the speed at which the computat ion 
is carried out. 

The protection problem is discussed in a later chapter. Here we are 
concerned with the assumption of  speed-independence. This assumption is 
necessary because a computat ion has no influence on the rate at which it 
proceeds. That rate depends on the presence of  other computations and the 
possibly dynamic policy of scheduling. It is also a highly desirable 
assumption to make, considering our difficulty in understanding concurrent 
processes in terms of their absolute speeds. 

The next  section illustrates the consequences of  t ime-dependent 
behavior of  erroneous programs. 

3.2.2. Time-dependent Errors 

Consider again Algorithm 3.1, which copies records from a sequence f 
to another sequence g. Initially, f contains a sequence of records 1, 2, . . .  , 
m, while g is empty.  We will denote this as follows: 

f = ( 1 , 2 ,  . . .  ,m)  g = ( n )  
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When the copying has been completed,  g contains all the records in 
their original order while f is empty:  

f = (D) g = (1, 2 . . . .  , m) 

The repetition s tatement  in Algorithm 3.1 contains three component  
statements,  which will be called COPY, PUT, and GET: 

C O P Y _  = t:= s 
PUT -~ put(t, g) 
GET -= if empty(f) then completed:= true 

else get (s, f) 

They are used as follows: 

repeat 
COPY cobegin PUT; GET coend 

until completed; 

Now suppose the programmer expresses the repetit ion by  mistake as 
follows: 

repeat 
cobegin COPY; PUT; GET coend 

until completed; 

The copying, output ,  and input of  a single record can now be executed 
concurrently.  

To simplify the argument, we will only consider cases in which the 
statements COPY, PUT, and GET can be arbitrarily interleaved in time, bu t  
we will ignore the possibility that  they can overlap in time. 

Suppose the first record is copied correctly f rom sequence f to g. The 
computat ion will then be in the following state after the first execution of  
the repetit ion statement:  

s = 2 & f = ( 3 ,  . . .  , m ) & t  = l & g = ( 1 )  

The following table shows the possible execution sequences of  COPY, 
PUT, and GET during the second execution of  the repetit ion statement.  It 
also shows the resulting ou tpu t  sequence g after each execution sequence. 

COPY; PUT; GET leads to g = (1, 2) 
COPY; GET; PUT leads to g = (1, 2) 
PUT; COPY; GET leads to g = (1, 1) 
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PUT; GET; COPY leads to 
GET; COPY; PUT leads to 
GET; PUT; COPY leads to 

g=(1,1) 
g = (1 ,  3) 
g = (1 ,  1) 

One of these sequences is shown below in detail: 

" s = 2 & f = ( 3 ,  . . .  , m ) & t = l & g  = ( 1 ) ' '  
GET; 

"s = 3 & f = ( 4 ,  . . .  , m ) & t  = l & g = ( 1 ) ' '  
COPY; 

"s= 3& f = ( 4  . . . . .  m)& t= 3 & g = ( 1 )  '' 
PUT; 

" s = 3 & f  = (4 ,  . . .  , m ) & t  = 3 & g  = ( 1 , 3 ) ' '  

The erroneous concurrent statement can be executed in six different 
ways with three possible results: (1) if copying is completed before input 
and ou tpu t  are initiated, the correct record will be output ;  (2) if ou tpu t  is 
completed before copying is initiated, the previous record will again be 
output ;  and (3) if input is completed before copying is initiated and this in 
turn completed before ou tpu t  is initiated, the next record will instead be 
output .  

This is just for a single record of  the ou tpu t  sequence. If we copy a 
sequence of  10000 records, the program can give of  the order of  3 l°°°° 
different results! It is therefore extremely unlikely that  the programmer 
will ever observe the same result twice. 

If we consider the general case in which concurrent operations overlap 
in time, we are unable even to enumerate the possible results of  a 
programming error without  knowing in detail how the machine reacts to 
at tempts  to perform more than one operation simultaneously on the same 
variable. 

The actual sequence of  operations in time will depend on the presence 
of  other  (unrelated) computat ions and the scheduling policy used by  the 
operating system to share the available processors among them. The 
programmer is, of  course, unaware of  the precise combination of  external 
events that  caused his program to fail and is unable to repeat it under 
controlled circumstances. When he repeats the program execution with the 
same input, it will sometimes produce correct results, sometimes different 
erroneous results. 

The programmer's only hope of  locating the error is to s tudy the 
program text. This can be very frustrating (if not  impossible) if the text  
consists of  thousands of  lines and one has no clues about  where to look for 
the error. 

It  can be argued that such errors are perfectly reproducible in the 
sense that  if we had observed and recorded the behavior of  all 
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computat ions and physical resources continuously during the execution 
of a given computat ion,  it would also have been possible to reproduce 
the complete behavior of  the computer  installation. But  this is a purely 
hypothetical  possibility. Human beings are unable to design programs 
which take into account  all simultaneous events occurring in a large 
computer  installation. We must  limit ourselves to programs which can be 
verified independently of  other  programs. So, in practice, events causing 
t ime-dependent results are not  observed and recorded, and must therefore 
be considered irreproducible. 

Concurrent  programming is far more hazardous than sequential 
programming unless we ensure that  the results of  our computat ions  are 
reproducible in spite of  errors. In the example studied here, this can 
easily be checked at compile time, as I will describe in the next  section. 

- 3.2.3. Dis jo in t  Processes 

The two concurrent processes in Algorithm 3.1 

cobegin 
put(t, g); 
if empty(f} then completed: = true 

else get(s, f); 
coend 

are completely independent  processes which operate on disjoint sets of  
variables (t, g) and (s, f, completed). 

Concurrent  processes which operate on disjoint sets of  variables are 
called disjoint or non-interacting processes. 

In the erroneous version of  Algorithm 3.1 

cobegin 
t :=s ;  
put(t, g); 
if empty(f) then completed:= true 

else get(s,f); 
coend 

the processes are no t  disjoint: The ou tpu t  process refers to a variable t 
changed by  the copying process, and the copying process refers to a 
variable s changed by the input  process. 

When a process refers to a variable changed by another process, it is 
inevitable that  the result of the former process will depend on the time at 
which the latter process makes an assignment to this variable. 

These t ime-dependent  errors can be caught at compile t ime if the 
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following restriction on concurrent statements is made: The notat ion 

cobeginS1;S2;  . . .  ;Sn c o e n d  

indicates that  statements S1, $2, . . .  , Sn define disjoint processes which 
can be executed concurrently. This means that  a variable vi changed by a 
statement Si cannot be referenced by another statement Sj {where j ¢ i). 

In other words, we insist that  a variable subject to change by a process 
must be strictly private to that  process; but  disjoint processes can refer 
to common variables not  changed by any of them. 

To enable the compiler to  check the disjointness of processes, the 
language must have the following property: It must  be possible to 
determine the identi ty of a statement 's  constant and variable parameters by 
inspecting the statement.  

In Pascal this is certainly possible for assignment statements and 
expressions involving variables of primitive types and record types only. 

Components of arrays are selected by indices determined at run time 
only. So, at compile time it is necessary to require that  an entire array be 
private to a single process within a concurrent statement. 

Functions present no problems in Pascal since they cannot perform 
assignment to non-local variables. But with procedures, it is necessary to 
observe a certain discipline in the use of  parameters. 

The language notat ion must distinguish between constant and variable 
parameters. Pascal already does this: A comparison of a procedure 
statement 

P(a, b) 

with the corresponding procedure declaration 

procedure P(const c: C; vat v: V) 

immediately shows that  the procedure statement will leave variable a 
unchanged, but  may change variable b. 

To make a cleat distinction between constant and variable parameters, 
we will not  permit a variable to occur both as a constant and as a variable 
parameter in the same procedure statement. 

Without this rule one cannot make simple assertions about  the effect of  
procedures. Consider, for example, the following procedure: 

procedure  P(const c: integer; vat v: integer); 
begin v := c + 1 end  

If we call this procedure as follows: 

P(a, b) 
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where  a and  b are in teger  variables,  we can make  the  assert ion t h a t  u p o n  
re tu rn  f r o m  the  p rocedure ,  b = a + 1. Bu t  this asser t ion leads to  a 
con t r ad i c t i on  in the  fo l lowing  case: 

P(a, a) 

name ly  a = a + 1. 
A n o t h e r  con t r ad i c t i on  occurs  if  the  same variable is used twice  as a 

variable p a r a m e t e r  in a p r o c e d u r e  s t a t emen t .  F o r  example ,  if a p rogram 
conta ins  the  fo l lowing  p rocedu re :  

p ro ced u re  P(var  v, w: integer); 
begin v: = 1; w: = 2 end  

t h e n  the  call 

P(a, b) 

leads to  the  resul t  a = 1 & b = 2. Bu t  w h en  the  same assert ion is used  fo r  
the call 

P(a, a) 

it  leads to  the  con t r ad i c t i on  a = 1 & a = 2. 
These  con t r ad ic t ions  can be avoided  b y  obey ing  the  fo l lowing rule:  All 

variables used as variable parameters  in a p r o c e d u r e  s t a t e m e n t  mus t  be 
dist inct  and canno t  occur  as cons tan t  parameters  in the  same s t a t ement .  

A Pascal p rocedu re  can also have side effects :  I t  can change non- local  
variables d i rec t ly ,  as is shown in the  fo l lowing example :  

var v: T; 

p r o c e d u r e  P; 
begin . . .  v:= E . . .  end  

or call o the r  p rocedures  which  have side effects .  So,  it  is n o t  possible to  
iden t i fy  the variables involved b y  simple inspec t ion  o f  a p r o c e d u r e  
s t a t emen t  and the  cor responding  p ro ced u re  declara t ion .  

One  possibi l i ty  is to  specify  all global  variables re fe r red  to  wi th in  a 
p rocedu re  P (and wi th in  o t h e r  p rocedures  called b y  P)  expl ic i t ly  in the  
p rocedu re  declara t ion:  

vat  v: T; 

p r o c e d u r e  P; 
global  v; 
begin . . .  v:= E . . .  e n d  
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A more radical solution is to forbid side effects and check that  a 
procedure only refers to non-local variables used as parameters. 

A final difficulty is the exit statement. Consider the following program: 

label L 
begin . . .  label M 

begin . . . 
cobegin 

• . .  exit L; 
. . .  exit M; 

coend  

end 

end 

Here we have two processes trying to exit different compound statements 
labeled L and M at the same time. But this is meaningless: First, we have 
defined that  a concurrent s tatement is terminated only when all its 
processes are terminated; so a single process cannot terminate it by an exit 
statement; second, it is possible for the program to continue as a purely 
sequential process after the concurrent statement (this is indeed the case in 
the above example), so the desire to continue the process simultaneously at 
two different points is a contradiction. 

We will therefore also forbid jumps out o f  concurrent statements. 
The rules presented here are due to Hoare (1971b). They enable a 

compiler to identify the constant and variable parameters of  every 
statement by simple inspection and check the disjointness of concurrent 
processes. This property also simplifies the analysis of programs by people 
and should therefore be regarded as a helpful guideline for program 
structuring--not as a severe language restriction. 

When these rules are obeyed, the axiomatic properties of  concurrent 
statements become very simple. Suppose statements S1, $2, . . . ,  Sn 
define disjoint processes, and each Si is an operation that  makes a result Ri 
true if a predicate Pi holds before its execution• In other words, it is known 
that  the individual statements have the following effects: 

" P I "  S1 " R I "  
"P2"  $2 " R 2 "  
. . . . . 

"Pn" Sn "R n" 

(I assume that  statements and assertions made about them only refer to 
variables which are accessible to the statements according to the rule of  
disjointness). 

The concurrent s tatement 
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cobegin S1; $2; . . .  ; Sn coend 

can then be regarded as a single operation S with the following effect 

"P"  S " R "  

where 

P -= P i  & P2 & . . . & Pn 
R=-  R I & R 2 & . . . & R n  

As Hoare (1971b) puts it: "Each Si makes its contr ibution to the 
common goal." The previous result can also be stated as follows: 
Disjointness  is a su f f ic ien t  condi t ion  for  t ime - independen t  behavior o f  
concurrent  processes.  

The usefulness of  disjoint processes is of  course, limited. In some cases, 
concurrent processes must be able to access and change common variables. 
I will introduce language constructs suitable for process interactions of  this 
kind later in this chapter. 

In the following we will derive a sufficient condition for time- 
independent behavior of  concurrent interacting processes. To do this, it is 
first necessary to formulate the requirement of  time-independence in a 
slightly different way using the concept--the history of  a computat ion.  

3.2.4. The History Concept* 

Consider a program which is connected to its e n v i r o n m e n t  by a single 
input  variable x and a single o u t p u t  variable y. During the execution of the 
program, the input variable x assumes a sequence of values determined by 
the environment: 

x:= a0 ;x :=  a l ; . . .  ;x :=  am; 

and the output  variable y assumes another  sequence of values determined 
by the program and its input:  

y:= b0 ;y :=  b l ; . . .  ; y : =  bn; 

Together, the inpu t  sequence  X = (a0, a l ,  . . .  , am)  and the o u t p u t  
sequence  Y = (bO, b l  . . . .  , bn) define the history of a computat ion.  For 
analytical purposes, the history can be represented by an array in which 

*You may wish to skip this section and the following one on first reading. They 
illustrate a more formal analysis of  time-independent behavior. The practical utility of  
this approach has yet  to be demonstrated. 
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X 

Y 

ao a, . . l a m l  
bO b l  . . . .  • . . . .  i bn Fig. 3.7 The history of a computation 

with two variables, x and y. 

each row defines the sequence of  values assumed by  a given variable, as 
shown in Fig. 3.7. 

A history is simply a listing of  the sequences of input and ou tpu t  values 
observed during a computat ion.  It is a t ime-independent representation that  
says nothing about  the precise time at which these values were assigned to 
the variables. 

When a computat ion involves several variables, the history array 
contains a row for each of  them. We can divide the complete history into 
the input history and the output history. Sometimes we will include the 
history of  internal variables in the ou tpu t  history. 

A program is functional if the output history Y of  its execution always 
is a time-independent function f of  its input history X: 

Y = f ( x )  

A functional program produces identical ou tpu t  histories every time it is 
executed with the same input history, independent  of its speed of  
execution. 

As an example, let us again look at Algorithm 3.1 in which an input 
sequence 

f = ( 1 , 2 ,  . . .  , m )  

is copied to an (initially empty)  ou tpu t  sequence g. 
Figure 3.8 shows the sequence of assignments made initially during the 

execution of  this algorithm. 

c o m p l e t e d  

$ 

t 

false 

1 

1 

I I ~ Time 
2 3 

Fig. 3.8 The initial sequence of assign- 
ments made during the copying of a 
sequence of records. 

From these values (and the ones assigned during the rest of  the 
computat ion),  we derive the history shown in Fig. 3.9. 

The input history defines the sequence of assignments to the variable s; 
the ou tpu t  history comprises the variables completed and t. 

Notice that  the rows in a history array are not  necessarily of  the same 
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completed 

S 

t 

false true [ 

1 2 " .  m 

1 2 " "  m 
Fig. 3.9 The history of the copying of 
a sequence of records. 

length because the number of assignments may be different for each 
variable. 

Notice also that  the elements in a given column of a history array do 
not  necessarily define values assigned at the same time. A comparison of  
Figs. 3.8 and 3.9 immediately shows that  all values in the leftmost  column 
of the history array were assigned at different times. When a program 
contains concurrent statements, the sequence in which assignments to 
disjoint variables are made depends on the relative rates of  the processes. 

So, in general there are many different sequences in which a given 
history can be produced in time. The functional requirement only says that  
when the sequence of values is known for each input variable, it must  be 
possible to predict the sequence of values for each output  variable, 
independent of the rate at which they will be produced. 

In some cases, we are still interested in observing actual rates of  
progress. For this purpose, time is regarded as a discrete variable which is 
increased by one each time an assignment to at least one of the variables 
considered has been completed. 

These instants of time are indicated explicitly in Fig. 3.8. In a history 
array, an instant of  t ime is defined by a line which crosses each row exactly 
once. Such a time slice defines the extent  of the history at a particular 
instant. 

Figure 3.10 shows the previous history with two successive time slices t l  
and t2, which define the extent  of the history after the first assignments to 
the variables completed and s. 

completed 

$ 

t 

fa lse[  true 1 

1 2 

1 2 

" ' °  m 

• " °  m 

false [ true [ 

1 2 " .  m 

1 2 "°" m 

t l  t2 

Fig. 3.10 A history with two successive time slices, 
t l  and t2. 

A history H1 is called an initial part of another history H2 if H I  is 
contained in H2. More precisely, H1 and H2 must have the same number  of  
rows, and each row in H1 must be equal to an initial part of  the 
corresponding row in H2; but  some rows in H I  may be shorter than the 
corresponding rows in H2. This relationship is denoted 
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H1 ~ H2 

During a computat ion,  every time slice t defines an initial part  H(t) of  
the final history H. 

We will use the history concept  to prove an important  theorem by  Patil 
(1970). 

3.2.5. A Closure Property 

Consider again a program which communicates with its environment by  
means of  a set of  distinct input and ou tpu t  variables. We will observe the 
execution of  the program in two cases: In the first case, the environment 
supplies an input history X, and the program responds by returning an 
output  history Y: 

X ~ Y  

In the second case, the observed input /ou tpu t  relationship is: 

Z t ~ y~ 

So far, nothing has been said about  whether the program is functional. 
If we repeat  the execution with the input history X'  the program may 
possibly produce a different ou tpu t  history, Y" ~ Y'. 

But suppose we only consider programs which satisfy the following 
requirement: If during its execution,  a program is supplied with two 
different input histories X and X', where X is contained in X', then the 
same relationship will hold between the corresponding ou tpu t  histories Y 
and Y': 

X ~< X' implied Y ~< Y' 

This is called the consistency requirement. It is a sufficient condit ion 
for functional behavior. If  a consistent program is executed twice with the 
same input, it delivers the same outpu t  in both  cases because 

X = X' implies X ~ X' & X' ~ X 
implies Y ~ Y' & Y' ~ Y 
implies Y = Y' 

Intuitively, the consistency requirement means that  it is possible, at 
every instant in time, to  predict a port ion Y of the final output from the 
observed input X. If a program in execution is supplied with more input  X' 

X, the additional input cannot affect  the ou tpu t  Y predicted earlier, but  
can only extend it to Y' ~ Y. 
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X and X' refer to the input  produced by the environment. This is no t  
necessarily the same as the input  consumed by the program. The 
environment may assign new values to input  variables, due to erroneous 
synchronization, before previous values have been consumed by  the 
program. In that  case, it is impossible to predict  the final output  f rom the 
observed input. So the program is not  consistent. 

The consistency requirement is also violated if concurrent processes can 
enter a deadlock state in which they are unable to  respond to further input 
under circumstances which depend on their speed of  execution (see Section 
2.6.1). 

We now introduce an additional requirement of consistent programs: 
Since the ou tpu t  is a function of  the input, a program in execut ion cannot  
produce an ou tpu t  value until  the corresponding input value is present. This 
cause-and-effect relationship can be expressed as follows: Suppose we 
observe an input  history at successive instants in time 

X(0) ,X(1) ,  . . .  ,X( t ) ,  . . . .  X 

where t indicates the earliest time at which an initial part  X(t) of the input 
is available. Let the final input  and ou tpu t  histories be X and Y, 
respectively. Now it is clear that  an initial input history X(t)  must be 
contained in the final input history: 

x(t)  < x 

Because the program is consistent, it is possible to predict  part  of  the 
ou tpu t  history from the initial input  history X(t).  But in a physical system 
it takes a finite t ime to produce this output ;  so the earliest momen t  at 
which some or all of  this ou tpu t  can be available is the next  instant of  time 
t + 1 where the ou tpu t  history is Y(t  + 1). The ou tpu t  Y(t  + 1), which is 
predicted from an initial part of the input, must itself be an initial part of  
the final ou tpu t  Y. So we have 

Y(t + 1) ~< Y 

If we combine these two physical conditions, we get the so-called 
dependency requirement: 

X(t) ~ X implies Y(t  + 1) ~< Y 

In the following, we will consider programs for which the consistency 
and dependency requirements hold unconditionally.  They are called 
unconditionally functional programs. We will prove the important  closure 
property, which states that  any interconnection o f  a finite number o f  
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u n c o n d i t i o n a l l y  f u n c t i o n a l  p r o g r a m s  is u n c o n d i t i o n a l l y  f u n c t i o n a l  as a 
w h o l e .  

A system S consisting of  a finite number  of components  S1, $2, . . .  , 
S n  can always be parti t ioned successively into smaller systems consisting of  
two components  each: 

S = (S1, $2 ')  
$2'  = ($2, $3 ')  
• • • 

S n -  l ' = ( S n -  l , Sn  ) 

It is therefore sufficient to show that the interconnection of  two 
unconditionally functional programs, S1 and $2, also is an unconditionally 
functional program S. The general theorem follows by induction. 

The input and ou tpu t  histories of  S are called X and Y, as shown in Fig. 
3.11. X in turn consists of  two separate input histories, X1 and X2 for S1 
and $2, respectively. Similarly, Y consists of  two separate output  histories, 
Y1 and Y2 for S1 and $2, respectively. The histories of  internal ou tpu t  
produced by S1 for $2,  and vice versa, are called J and K. 

Fig. 3.11 Two programs S1 and $2, 
connected to each other and to a 
common environment by means of 
input/output sequences X, Y, J, and 
K. 

We will s tudy the combined system S = (S1, $2)  when it is supplied 
with two different input histories X and X'  where 

X~< X' 

and delivers the ou tpu t  histories J, K, Y and J ' ,  K',  Y'. 
Consider first subsystem S1 and observe its input history X, K and the 
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--1 I J I  IY,' 
I I L _ _ _ J  

Fig. 3.12 Program 
shown in Fig. 3.11. 

Chap. 3 

S1 of the system 

corresponding ou tpu t  history J as shown in Fig. 3.12. (The ou tpu t  history 
Y1 is ignored for the moment .)  

Suppose the following holds at time t: 

X(t) ~ X'  & K(t) < K' 

This means that at t ime t during the first execution,  the initial input  history 
to  S1 is contained in its final input  history of  the second execution.  

Now since S1 is uncondit ionally functional, it satisfies the dependency 
requirement;  so we have 

X(t) ~ X'  & K(t) ~ K' implies J(t + 1) ~ J '  

By applying similar reasoning to subsystem $2, we find that  

X(t) ~ X '  & J(t) ~ J' implies K(t + 1) ~ K' 

These results can be combined into the following: 

X(t) ~ X' & J(t) ~ J' & K(t) < K' 
implies J(t + 1) ~ J '  & K(t + 1) ~ K' 

We already assumed that  X ~ X',  so X(t) ~ X' holds at any instant of  
time. Consequently,  if the initial histories, J(t) and K(t),  at t ime t are 
contained in the final histories, J '  and K', then this is also the case at t ime 
t + 1. This is trivially true at t ime t = 0 where J(t) and K(t) are empty.  So it 
holds throughout  the execution that  

X ~ X'  implies J < J '  & K ~ K' 
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But since the subsystems satisfy the consistency requirement, this in turn 
means that 

X ~ X' implies Y ~ Y' 

So the combined system S also satisfies the consistency requirement. And, 
for physical reasons, it also satisfies the dependency requirement. (This can 
be proved formally as well.) 

The closure property enables a designer to verify that a large program is 
functional by a step-wise analysis of smaller program components. The 
functional behavior is ensured by local conditions (the consistency and 
dependency requirements) which only constrain the relationship between a 
program component and its immediate environment (represented by 
input/output variables). 

In actual systems, the consistency requirement seldom holds uncon- 
ditionally. The functional behavior may depend on certain additional 
requirements; for example, that the input is of a certain type and is not 
delivered more rapidly than the system is able to consume it. A system 
which satisfies the consistency and dependency requirements, provided that 
additional constraints hold, is called conditionally functional. For such 
systems, the closure property holds when the additional constraints hold. 

I will conclude the present discussion with some examples of useful 
systems in which time-dependent behavior is inherent and desired. 

3.2.6. Non-functional Systems 

I have stressed the importance of designing multiprogramming systems 
which are functional in behavior. But it must be admitted that some 
computational tasks are inherently time-dependent. 

Consider, for example, priority scheduling according to the rule 
shortest job next. This involves decisions based on the particular set of 
computations which users have requested at a given time. If a scheduling 
decision is postponed a few seconds, the outcome may well be different 
because new and more urgent requests can be made in the meantime by 
users. So priority scheduling depends not only on the order in which users 
input their requests, but also on their relative occurrence in time. 

In the spooling system shown in Fig. 1.3 there is a time-dependent 
relationship between the stream of jobs input and the stream of printed 
output. But the spooling system has one important property which makes 
the time-dependent behavior tolerable: It maintains a functional relation- 
ship between the input and output  o f  each job. 

The user computations are disjoint; they could be carried out on 
different machines. But, for economic reasons, they share the same 
machine. And this can only be done efficiently by introducing a certain 
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(b) 

Fig. 3.13 Two disjoint processes (a) without and (b) with a 
common operation Q. 

amount  of  time-dependent behavior on a microscopic time scale. However,  
on a macroscopic time scale, the operating system hides the time- 
dependency from the individual user and offers him a virtual machine with 
perfectly reproducible behavior. 

Figure 3.13 shows another example of  the same principle: (a) shows 
two disjoint processes consisting of  the operations P, Q, R and S, Q, T; (b) 
shows an equivalent system in which we have taken advantage of  the 
occurrence of  a common operation Q in both  processes. The processes now 
share a single instance of  operation Q, which can receive input  from 
operations P and S and deliver ou tpu t  to operations R and T. 

The equivalence of  the two systems in Fig. 3.13(a) and (b) is based on 
the assumption that  requests received by  Q from P have no effect  on the 
response of  Q to requests received from S, and vice versa, and that  Q 
responds to any request within a finite time. 

An example of  a set of  common operations shared by  all user 
computat ions  is a filing system, which permits users to create and 
manipulate data and programs on backing storage and maintain them over a 
certain period of  time. 

The system in Fig. 3.13(b) is non-functional if we observe the input  and 
ou tpu t  of  the common operation Q because this is a t ime-dependent  
merging of  data values belonging to independent  processes. But  the  system 
is still functional if we only observe the relationship be tween the ou tpu t  
f rom P and the input to R (or that  between the ou tpu t  from S and the 
input to T). 

So we come to the conclusion that  functional behavior is an abstraction 
just like the concepts operation, process, and state (see Section 2.6.3). 
Whether or not  a system is considered functional depends on the level of  
description chosen by  the observer. 
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• 3.3. M U T U A L  EXCLUSION 

Much has been said about the role of disjoint processes and functional 
behavior in multiprogramming systems. We must now deal with interacting 
processes--concurrent processes which have access to common variables. 

Common variables are used to represent the state of physical resources 
shared by competing processes. They are also used to communicate data 
between cooperating processes. In general, we will say that  all common 
variables represent shared objects called resources. Interacting processes can 
therefore also be defined as processes which share resources. 

To share resources, concurrent processes must be synchronized. 
Synchronization is a general term for any constraint on the ordering of  
operations in time. We have already met  synchronizing rules which specify 
a precedence or priority o f  operations by constraints of the form 
"operation A must be executed before operation B"  and "an operation of  
priority P must only be executed when all operations of  higher priority 
have been executed."  

In this section, we will discuss process interactions in which the 
constraint is of the form "operations A and B must never be executed at 
the same t ime."  This synchronizing rule specifies mutual exclusion of 
operations in time. 

3.3.1. Resource Sharing 

We begin with an example in which two concurrent processes, P and Q, 
share a single physical resource R. P and Q are cyclical processes which 
every now and then wish to use R for a finite period of  time, but  they  
cannot use it at the same time. 

An example of  a resource that  can be accessed only by one process at a 
time is a magnetic tape station. In this case, the requirement of  mutual  
exclusion is dictated by the physical characteristics of  the resource: Since 
we can only nhount one tape at a time on a magnetic tape station and access 
its data strictly sequentially, it is impractical to  let several processes use the 
tape station at the same time. But, as we shall see, there is also a deeper 
logical reason for the requirement of  mutual  exclusion of certain operations 
in time. 

We will follow a chain of  arguments made by Dijkstra (1965) to 
illuminate the nature of  the mutual exclusion problem. 

Let us first t ry the following approach: The resource R is represented 
by a boolean, indicating whether it is free or occupied at the moment .  Each 
process goes through a cycle in which it first reserves the resource, then 
uses it, and finally releases it again. Before reserving the resource, a process 
waits in a loop until the resource is free. This leads to the following 
program: 
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var free: boolean; 
begin 

free: = true; 
cobegin 
"P" repeat 

repeat until free; 
free: = false; 
use resource; 
free: = true; 
P passive; 

forever 
"Q" repeat 

repeat until free; 
free:-- false; 
use resource; 
free:= true; 
Q passive; 

~ o r e v e r ~  
coend 

end 

This program clearly violates the rules of concurrent statements laid 
down in Section 3.2.3: Both processes change and refer to the variable free. 
But let us ignore this for the moment. 

Initially, free is true. It is therefore possible for P a~ld Q to refer to free 
at the same time and find it true. Then, they will both in good faith assign 
the value false to free and start using the resource. So this program does not 
satisfy the condition that the resource can be used by at most one process 
at a time. 

Well, then we must try something else. In the next version, the boolean 
free is replaced by another boolean, Pturn, which is true when it is P's turn 
to use the resource and false when it is Q's turn: 

vat Pturn : boolean; 
begin 

Pturn: = true; 
cobegin 
"P" repeat 

repeat until Pturn; 
use resource; 
Pturn:= false; 
P passive; 

forever (cont.) 
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" Q "  repeat  
repeat  until  not  Pturn; 
use resource; 
Pturn:= true; 
Q passive; 

forever 
coend 

end 

There are only two cases to consider: either Pturn is true or it is false. 
When Pturn is true, only process P can start using the resource and release it 
again. And when Pturn is false, only process Q can start using the resource 
and release it again. So mutual  exclusion of  P and Q is indeed achieved. But 
the solution is far too  restrictive: It forces the processes to share the 
resource in a strictly alternating sequence: 

P , Q , P , Q ,  . . .  

If one of  the processes, say P, is s topped in its passive state after having 
released the resource, the other process Q will also be s topped when it has 
released the resource (by means of  the assignment Pturn:= true) and then 
tries to reserve it again. 

This is quite unacceptable in an installation where P and Q could be 
two independent  user computat ions.  We must require that  a solution to the 
problem make no assumptions about  the relative progress of  the processes 
when they are not  using the resource. 

Another  highly undesirable effect  of the previous solution is the waste 
of  processing time in unproductive waiting loops. This is called the busy 
form o f  waiting. 

Our third a t tempt  uses two booleans to indicate whose turn it is: 

vat Pturn,  Qturn : boolean; 
begin 

Pturn : = false; Qturn : = false; 
cobegin 
"P" repeat 

Pturn : = true; 
repeat until not Qturn; 
use resource; 

Pturn := false; 
P passive; 

forever (cont .)  
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"Q" repeat 
Qturn : = true; 
repeat until not Pturn; 
use resource; 
Qturn :=  false;. 
Q passive; 

forever  
coend 

end 

Assignment to variable Pturn is only made by process P. When P does 
not  use the resource, Pturn is false, so 

not Pturn implies P passive 

The two processes are completely symmetrical,  so the assertion 

not Pturn implies P passive 
& not  Qturn implies Q passive 

must be invariant. 
Process P waits until  Qturn is false before it uses the resource, so 

P active implies not  Q turn 
implies Q passive 

Similar reasoning about  process Q leads to the conclusion that  

P active implies Q passive 
& Q active implies P passive 

is invariant. 
Mutual exclusion is therefore guaranteed, and it is no t  difficult  to see 

that  stopping one process in its passive state does not  influence the progress 
of the other process. But it is a highly dangerous solution: The processes 
can make the assignments 

Pturn := true Qturn := true 

' at the same time and then remain indefinitely in their waiting loops waiting 
for one of the booleans to become false. In short, the solution can lead to a 
deadlock. 

We learn from our mistakes. The lesson of this one is that  when 
competing processes request the resource at the same time, the decision to 
grant it to one of  them must be made within a finite time. 
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It is possible to continue along these lines and find a correct solution. 
This was first done by Dekker and described by  Dijkstra (1965). Dijkstra 
solved the general case, in which n processes share a single resource. The 
solution turns out  to be far too  complicated and inefficient to be of 
practical value. 

I have described these preliminary, incorrect solutions to make you  
appreciate the subtlety of  the mutual exclusion problem and discover a set 
of  criteria that  a realistic solution must satisfy. Let me repeat  these criteria: 

(1) The resource in question can be used by one process at a t ime at 
most. 

{2) When the resource is requested simultaneously by  several processes, 
it must be granted to one of  them within a finite time. 

(3) When a process acquires the resource, the process must release it 
again within a finite time. Apart  from this, no assumption is made about  
the relative speeds of the processes; processes may even be s topped when 
they are not  using the resource. 

(4) A process should not  consume processing time when it is waiting to 
acquire the resource. ~ ~P,~ ,~¢K~ 

For  the moment ,  we will leave the problem there and consider another 
instance of  it in which interacting processes are cooperating rather than 
competing. 

• 3.3.2.  Data Shar ing 

The second example of  process interaction is taken from an actual 
system that supervises an industrial plant. Among other things, this 
real-time system measures the consumption of  energy and the product ion 
of  materials in the plant continuously and reports it to management every 
few hours. 

Consumption and production are measured in discrete units (kilowatt- 
hours and product  units) and recorded in pulse registers connected to a 
computer.  The computer  is multiplexed among a number  of concurrent  
processes. A cyclical process P inputs and resets the pulse registers every 
few seconds and adds their values (0 or 1) to  a corresponding number  of  
integer variables. Another  cyclical process Q outputs  and resets the integer 
counters every few hours. Operators can change the frequency of  execution 
of  P and Q independently.  The processes therefore do not  know their 
relative rates. 

Let us assume that the periodic scheduling of  processes and the input/  
ou tpu t  are handled correctly by standard procedures. No generality is lost 
by considering only one pulse counter v. As a first a t tempt ,  I suggest the 
following solution: 
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var-v: i n t eger ;  

begin 
V :  = 0; 
cobegin 
"P" repeat 

d e l a y ( l ) ;  
v:= v + i n p u t ;  

forever 
"Q" repeat 

d e l a y ( 1 8 0 0 0 ) ;  
o u t p u t ( v ) ;  

v:= 0; 
forever 

coend 
end 

This program too violates the rules of concurrent statements because 
process Q refers to a variable v changed by process P. But again we will 
ignore this violation for the moment  since it expresses the desired 
interaction between the processes. 

The intention is that  a value of  v ou tpu t  at time t should define the 
number of  pulses accumulated over the past 18,000 seconds, or 5 hours, 
prior to time t. 

Now, in most computers, statements such as 

v: = v + i n p u t  o u t p u t ( v )  

are executed as a sequence of instructions which use registers, say r and s, 
to hold intermediate results: 

r:= i n p u t ;  s: = v; 
r: = r + v; o u t p u t ( s ) ;  
V :  = r; 

A concurrent s tatement can therefore be executed as a sequence of  
instructions interleaved in time. The operating system will ensure that  the 
instructions of  each process are executed in the right order, but  apart f rom 
this, the system may interleave them in many different ways. In the system 
considered here, the operating system switches from one process to another  
every 20 msec to maintain the illusion that  they are executed simultane- 
ously. The actual interleaving of instructions in time is therefore a 
t ime-dependent function of other concurrent processes not  considered here. 

One possibility is that  the instructions of P and Q are interleaved as 
follows: 
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P: 
Q: 
P: 
Q: 

"v = p u l s e  c o u n t "  

r: = 1; 
s:  = v;  o u t p u t ( s ) ;  

r:= r + v;v: = r;  

s: = 0; v:  = 8; 

"v = 0 & o u t p u t  = p u l s e  c o u n t "  

Another possibility is the following: 

P: 
Q:  

Q: 
P: 

"v = p u l s e  c o u n t "  

r: = l ; r :  = r  + v;  

s:= v; o u t p u t ( s ) ;  

S: = 0 ;  V: = S; 

v : =  r;  

"v = p u l s e  c o u n t  + 1 & o u t p u t  = p u l s e  c o u n t "  

In the first case, the program measures an input pulse (r: = 1), but fails 
to accumulate it (v = 0); in the second case, the program outputs  the 
current pulse count  correctly, but proceeds to include it in the count  over 
the next  five hours. The result should have been 

"v = 1 & o u t p u t  = p u l s e  c o u n t "  

o r  

"v = 0 & o u t p u t  = p u l s e  c o u n t  + 1" 

depending on when the last pulse was measured. 
The penalty of  breaking the laws o f  concurrent statements is 

t ime-dependent erroneous behavior. The example shown here illustrates the 
remark made in Section 3.1.1 about concurrent processes executed 
simultaneously on several processors or on a single, multiplexed processor: 
"The logical problems turn out to be the same in both cases; they are 
caused by our ignorance of the relative speeds of concurrent processes." 

It should be evident by now that  our present programming tools are 
hopelessly inadequate for controlling access to physical resources and data 
shared by concurrent processes. A new tool is needed, and like our previous 
tools it should be simple to understand, efficient to implement,  and safe to 
u s e .  

• 3 .3 .3 .  C r i t i ca l  Reg ions  

The erroneous behavior in the pulse counting program is caused by the 
interleaving of  concurrent statements in time. If we were sure that  only one 
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process at a time could operate on the common variable v, the previous 
solution would work. 

So let us postulate a language construction which has precisely this 
effect. I will use the notat ion 

vat v: shared T 

to declare a common variable v of type T. 
Concurrent processes can only refer to and change common variables 

within structured statements called critical regions. A critical region is 
defined by the notat ion 

region v do S 

which associates a s tatement S with a common variable v. This notat ion 
enables a compiler to check that  common variables are used only inside 
critical regions. 

Critical regions referring to the same variable v exclude one another  in 
time. More precisely, we make the following assumptions about critical 
regions on a variable v: 

(1) When a process wishes to enter a critical region, it will be enabled 
to do so within a finite time. 

(2) At most, one process at a time can be inside a critical region. 

(3) A process remains inside a critical region for a finite time only. 

Criterion 3 says that  all statements operating on a common variable 
must terminate. 

Criterion 2 expresses the requirement of mutual exclusion in t ime of  
these statements. 

Criteria 1 and 2 put the following constraints on the scheduling of  
critical regions associated with a given variable: (a) when no processes are 
inside critical regions, a process can enter a critical region immediately;  (b) 
when a process is inside a critical region, other processes trying to enter 
critical regions will be delayed; and (c) when a process leaves a critical 
region while other processes are trying to enter critical regions, one of  the 
processes will be enabled to proceed inside its region; (d) these decisions 
must be made within finite periods of time. 

Finally, (e) the priority rule used to select a delayed process must  be 
fair: It must not  delay a process indefinitely in favor of  more urgent 
processes. An example of a fair scheduling policy is first-come, first-served, 
which selects processes in their order of arrival; an unfair policy is 
last-come, first-served, which favors the latest request. 
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Although we require that  scheduling be fair, no assumptions are made 
about  the specific order in which processes are scheduled. This depends 
entirely on the underlying implementat ion.  As Dijkstra (1971b) puts it: " In  
the long run a number  of  identical processes will proceed at the same 
macroscopic speed. But we don ' t  tell how long this run is." (See also 
Dijkstra, 1972.) 

Critical regions can be implemented in various ways. We are going to  
consider some of  them later. 

• Critical regions referring to different  variables can be executed 
simultaneously, for  example:  

vat v: shared V; w: shared W; 
cobegin 

region v do P; 
region w do Q; 

coend 

A process can also enter  nested critical regions: 

region v do 
begin . . .  

r e g i o n w d o  . . .  ; 
. . . 

end 

0 In doing so, one must be aware of  the danger of  deadlock in such 
constructions as: 

cobegin 
" P "  region v do region w do . . . ; 
" Q "  region w do  region v do . . . ; 
coend 

It is possible that  process P enters its region v at the same time as 
process Q enters its region w. When process P tries to  enter  its region w, it 
will be delayed because Q is already inside its region w. And process Q will 
be delayed trying to enter  its region v because P is inside its region v. This is 
a case in which correctness criterion 3 is violated: The processes do not  
leave their critical regions after  a finite time. A method  of avoiding this 
problem will be described later. 

The concept  critical region is due to Dijkstra (1965). The language 
constructs which associate critical regions with a common variable are my  
own (Brinch Hansen, 1972b).  Similar constructs have been proposed 
independent ly  by Hoare (1971b).  
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With this new tool, common variables and critical regions, the solutions 
to our previous problems become trivial. In the first problem, our only 
concern was to guarantee mutual  exclusion of operations on a physical 
resource performed by concurrent processes. Algorithm 3.2 solves the 
problem in the general case of  n processes. 

ALGORITHM 3.2 A Resource R Shared by n Concurrent Processes 

vat R:  shared boolean; 
cobegin 

"PI" repeat 
region R do use resource; 
P1 passive; 

forever 
• • • • • 

"Pn" repeat 
region R do use resource; 
Pn passive; 

forever 
coend 

The pulse counting problem is solved by Algorithm 3.3. 

ALGORITHM 3.3 A Variable v Shared by Two Concurrent Processes 

vat v: shared integer; 
begin 

v: = O; 
cobegin 

"P" repeat 
delay(I);  
region v do v:= v + input; 

forever 
"Q" repeat 

delay(18000);  
region v do begin 

output(v);  
V: = O; 

end 
forever 

coend 
end 
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3.3.4. Conclusion 

Critical regions provide an elegant solution to the resource sharing 
problem. But how fundamental  is this concept? After all, we succeeded in 
one instance in solving the problem without  introducing critical regions in 
our language. I am referring to the algorithm in Section 3.3.1, which 
permits a resource to alternate between two processes: P, Q, P, Q, . . . .  
This solution may not  be ideal, bu t  it does ensure mutual  exclusion wi thout  
using critical regions--or does it? 

In the analysis of  its effect,  I made the innocent statement:  "There are 
only two cases to consider: eitherPturn is true or it is false." These are the 
only values that  a boolean variable can assume from a formal point  o f  view. 
But suppose the computer  installation consists of  several processors 
connected to a single store as shown in Fig. 2.3. Then, it is quite possible 
that  the operations of  processes P and Q can overlap in time. We must  now 
carefully examine what happens in this physical system when P and Q try 
to  operate simultaneously on the variable Pturn. 

Suppose process P initiates the assignment 

Pturn := false 

This storage operation takes a finite time. We know that Pturn is true 
before the operation is started and that Pturn will be false when the 
operation is completed.  But  there is a transitional period, called the 
instruction execution time, during which the physical state of  the storage 
cell is unknown.  It is changing in a t ime-dependent manner, determined by  
the characteristics of  the electronic circuits and the storage medium used. 

If process Q is allowed to refer to the same storage location while the 
assignment is in progress, the resulting value (or more precisely, the bit 
combination used to represent the value) is unpredictable. In other  words, 
process Q is performing an undefined operation. 

The hardware designer solves this problem by  connecting the 
concurrent processors to a sequential switching circuit called an arbiter. 
The arbiter ensures that, at most, one processor at a time can access a given 
storage location. It is a hardware implementation of critical regions. 

So our reasoning on the effect  of  the algorithm in Section 3.3.1 was 
based on the implicit assumption that load and store operations on a given 
variable exclude each other  in time. The same assumption underlies 
Dekker's solution to the resource sharing problem. 

The load and store operations are proper critical regions at the short  
grains of  t ime controlled by hardware. But  at higher levels of  programming, 
we must  guarantee mutual  exclusion in larger grains of  time for arbitrary 
statements. The language construct  
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region v do S 

is introduced for this purpose. 
Mutual exclusion is indeed one of the most fundamental  concepts of  

programming. Whenever we make assertions about the effect of any 
operation on a certain variable, for example: 

"A: array 1 . . n  of  integer" 
sort(A); 

"for  all i,1: 1. .  n (i ~ j imp l i e sA( i )  ~ A(j))" 

it is tacitly understood that  this is the only operation performed at  that  
t ime on this variable. In the above example, it would indeed have been a 
coincidence if the array A had been sorted if other processes were happily 
modifying it simultaneously. 

• In sequential computations,  mutual  exclusion is automatically achieved 
because the operations are applied one at a time. But we must explicitly 
indicate the need for mutual  exclusion in concurrent computations.  

I t  is impossible to make meaningful statements about the ef fect  o f  
concurrent computations unless operations on common variables exclude 
one another in time. So in the end, our understanding of concurrent 
processes is based on our ability to execute their interactions strictly 
sequentially. Only disjoint processes can proceed at the same time. 

• But there is one important  difference between sequential processes and 
critical regions: The statements $1, $2, . . .  , Sn of a sequential process are 
totally ordered in time. We can therefore make assertions about  its progress 
from an initial predicate P towards a final result R : 

" P "  S1 " R i "  $2 " R 2 "  . . .  " R n - l "  Sn " R "  

In contrast, nothing is specified about the ordering of  critical regions in 
t ime--they can be arbitrarily interleaved. The idea of  progressing towards a 
final result is therefore meaningless. All we can expect is tha t  each critical 
region leave certain relationships among the components  of  a shared 
variable v unchanged. These relationships can be defined by an assertion I 
about v which must be true after initialization of v and before and after 
each subsequent critical region. Such an assertion is called an invariant. 

When a process enters a critical region to execute a s tatement  S, a 
predicate P holds for the variables accessible to  the process outside the 
critical region, and an invariant I holds for the shared variable accessible 
inside the critical region. After the completion of statement S, a result R 
holds for the former variables and invariant I has been maintained. 

So a critical region has the following axiomatic property: 
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, ,p,,  

region v do "P & I "  S "R & I" ;  

3.4. PROCESS COOPERATION 

The interactions controlled by critical regions are rather indirect--each 
process can ignore the existence and function of other processes as long as 
they exclude each other in time and maintain invariants for common 
variables. 

We will now study more direct interactions between processes 
cooperating on common tasks. Such processes are well aware of each 
other's existence and purpose: Each of  them depends directly on data 
produced by other members of the community .  

3.4.1. Process Communication 

To cooperate on common tasks, processes must be able to exchange 
data. Figure 3.14 shows the situation we will study. A process P produces 
and sends a sequence of data to another process C, which receives and 
consumes them. The data are transmitted between the processes in discrete 
portions called messages. They are regarded as output by P and as input by 
C. 

Since either process can proceed at a rate independent of the other's, it 
is possible that  the sender may produce a message at a time when the 
receiver is not  yet  ready to consume it (it may still be processing an earlier 
message). To avoid delaying the sender in this situation, we introduce a 

(a) (b) (c) 

Fig. 3 .14  A producer P and a con- 
sumer C connected by a buffer B 
which  can either be (a) full, (b) empty, 
or (c) somewhere in between.  
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temporary storage area in which the sender can place one or more messages 
until the receiver is ready to consume them. This storage area is called a 
buffer and designated B; its function is to smooth speed variations between 
the processes and occasionally permit the sender to be ahead of  the 
receiver. 

The communicat ion must be subject to  two resource constraints: (1) 
the sender cannot exceed the finite capacity of the buffer;  and (2) the 
receiver cannot consume messages faster than they  are produced. 

These constraints are satisfied by the following synchronizing rule: If  
the sender tries to put  a message in a full buffer, the sender will be delayed 
until the receiver has taken another message from the buffer; if the receiver 
tries to  take a message from an empty buffer, the receiver will be delayed 
until the sender has put  another message into the buffer. 

We also assume that  all messages are intended to be received exactly as 
they  were sent--in the same order and with their original content.  Messages 
must not  be lost, changed, or permuted within the buffer. These 
requirements can be stated more precisely with the aid of  Fig. 3.15. 

0 1 2 . . . . .  S 

r - - -  

R L F/YYY//   I I I I  
0 1 2 . . . • 

Fig. 3.15 A message sequence S sent by a producer and the 
corresponding message sequence R received by a consumer. 

The sequence S of  messages sent by a producer P and the corresponding 
sequence R of  messages received by a consumer C are shown conceptually 
as infinite arrays: 

vat S, R: array 0..co of  message 

Two index variables s and r 

v a t  s ,  r :  0 . . c o  

initialized to zero, define the number of messages sent and received at any 
instant in time: 

s > 0 implies S(1) to S(s) have been sent in that  order 

r > 0 implies R(1) to  R(r) have been received in that  order 
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Our requirements are the following: 

(1) The number  of  messages received cannot  exceed the number  of  
messages sent 

0 ~  r ~  s 

(2) The number  of messages sent, but  not  yet  received, cannot  exceed 
the buffer  capacity m a x  

O ~  s - r ~  m a x  

(3) Messages must  be received exactly as they are sent 

for i: 1 . . r  (R( i )  = S(i))  

So, all in all, we have the following c o m m u n i c a t i o n  invariant: 

O ~  r ~  s ~  r + m a x &  
for i: 1 . . r  (R( i )  = S( i ) )  

I suggest the following notat ion for a language construct  which satisfies 
this requirement:  

var B: buffer  max of  T 

It declares a message buffer  B, which can transmit messages of  type  T 
between concurrent processes. The buffer  capacity is defined by an integer 
constant, max. 

Messages are sent and received by  means of  the following standard 
procedures: 

send(M,  B)  receive(M,  B)  

where M is a variable of  type  T. 
Since send  and receive refer to a common variable B, we require that  

these operations exclude each other in time. They are critical regions with 
respect to the buffer  used. 

It is worth pointing out  that  with the synchronizing rules defined, a 
sender  and a receiver canno t  be d e a d l o c k e d  wi th  respec t  to a single message 
buf fer .  A sender can only be delayed when a buffer  is full 

s = r + m a x  

and a receiver can only be delayed when a buffer  is empty  
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s = r  

A situation in which they are both  delayed with respect to the same buffer  
is therefore impossible if the buffer  has a non:zero capacity max > O. 

It is also interesting to notice that  a message buffer (if properly used) is 
uncondit ionally functional in the sense defined in Section 3.2.5. 

If we observe a message sequence X going into a buffer,  we expect  that  
a message sequence Y = X will eventually come out  of  it. And if we observe 
two input sequences, X and X' ,  where the former is contained in the latter, 
then we have trivially that  

X ~ X' implies  Y ~ Y' 

So a message buffer  satisfies the consistency requirement if  all messages 
sent are eventually received. And since send and receive cannot  take place 
at the same time, it takes a finite time for a message to pass through the 
buffer.  So the dependency requirement  is also satisfied. 

From the closure proper ty  we conclude that a set o f  unconditionally 
functional processes connected only by message buffers is unconditionally 
functional as a whole, provided there are only one sender and one receiver 
for each buffer, and all messages sent are eventually received. 

It is quite possible, with the synchronizing rules defined here, to 
connect  several senders and receivers to a single buffer,  as shown in Fig. 
3.16. But when this is done,  the input to the buffer  is a t ime-dependent  
merging of  messages from m different processes, and the ou tpu t  is a 
t ime-dependent  splitting of  messages to n different receivers. In that  case, 
there is no functional relationship be tween the ou tpu t  o f  each producer  
and the input  of  each consumer. 

The communicat ion primitives, send and receive, as proposed here will 
transmit messages by value; that  is, by copying them first from a sender 
variable M into a buffer  B, and then from B into a receiver variable M'. This 
is only practical for  small messages. 

For larger messages, the data structures and primitives must  be defined 
such t ha t  messages are transmitted by reference, that  is; by  copying an 
address from one process to  another. But  in order to satisfy the 

I I 

B 

Fig. 3.16 A message buffer B which 
connects m producers and n con- 
sumers. 
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communication invariant, such a language construct  must  ensure that  at 
most  one process at  a time can refer to a message variable. 

In the following, I will consider the simplest possible form of  process 
communication--the exchange of  timing signals. 

3.4.2. Semaphores 

In some cases, a process is only interested in receiving a t iming signal 
from another process when a certain event has occurred. But apart f rom 
that, no other exchange of  data is required. 

A n  example is Algorithm 3.3 where each process wishes to be delayed 
until a certain interval of  time has elapsed. 

This can be regarded as a special case of  process communicat ion in 
which an empty  message is sent each time a certain event occurs. Since the 
messages are empty  (and therefore indistinguishable), it is sufficient to 
count  them. The buffer is therefore reduced to a single, non-negative 
integer, which defines the number  of  signals sent, bu t  not  ye t  received. 

Such a synchronizing variable is called a semaphore. It was first 
proposed and investigated by  Scholten and Dijkstra. A semaphore variable v 
will be declared as follows: 

vat v: semaphore 

The corresponding send and receive primitives will be called 

signal(v) wait(v) 

(Dijkstra originally called them V and P.) 
Since a semaphore is a common variable for its senders and receivers, 

we must require that  signal and wait operations on the same semaphore 
exclude each other  in time. They are critical regions with respect to the 
semaphore. 

Following Habermann (1972), a semaphore v will be characterized by  
two integer components:  

s(v) 

r(v) 

the number  of  signals sent 

the number  of  signals received 

Initially, s(v) = r(v) = O. 
The communicat ion invariant defined in the previous section now 

becomes: 

0 ~ r(v) ~ s(v) ~ r(v) + max(integer) 
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It means that:  (1) a process can only send or receive some or no signals; 
(2) signals cannot be received faster than they are sent; and (3) a semaphore 
can only count  to the upper limit of integers set by a given machine. 

It is useful to  permit an initial assignment to a semaphore before 
process communication begins. So we will introduce a third semaphore 
component:  

c(v) the number of initial signals 

and permit an assignment: 

V :  = C 

to be made outside concurrent statements. But within concurrent state- 
ments, the orily operations permitted on a semaphore v are still signal and 
wait. 

The semaphore invariant now becomes 

0 ~ r(v) ~ s(v) + c(v) ~ r(v) + max(integer) 

In most computers, the range of  integers is much larger than the 
number of unconsumed signals that  can occur in practice. For  example, in a 
computer  with 24-bit words, max(integer) = 8388607. We will therefore 
ignore this constraint in the following and assume that  an implementat ion 
treats semaphore overflow as a programming error. 

The synchronizing rules of semaphores are the following: 

(1) If the operation wait (v) is started at a time when r(v) < s(v) + c(v), 
then r(v) is increased by one and the receiver continues; but  if r(v) = s(v) + 
c(v), then the receiver is delayed in a process queue associated with the 
semaphore v. 

(2) The operation signal (v) increases s(v) by one; if one or more 
processes are waiting in the queue associated with the semaphore v, then 
one of  them is selected and enabled to continue, and r(v) is increased by 
one. The scheduling of  waiting processes must be fair (see Section 3.3.3). 

A critical region 

vat R : shared T; 
region R do S; 

can be implemented by associating a semaphore mutex ,  initialized to one, 
with the shared variable R and then surrounding the statement S by a pair 
of wait and signal operations as shown in Algorithm 3.4. 
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ALGORITHM 3.4 Mutual Exclusion Implemented With Semaphores 

vat  R:  record content:  T; mutex:  semaphore end 
begin 

with  R do mutex  := 1; 
cobegin 

with  R do 
begin wait( mutex  ) ; $1; signal( mutex  ) end 
• • . 

with R do 
begin wait( mu tex ) ; Sn ; signal( mutex  ) end 
o o o  

c o e n d  
end 

To see that  this implementation is correct, observe the following: Since 
the processes always execute a wait operation before a signal operation on 
mutex ,  we have 

0 ~< s(mutex)  ~< r(mutex)  

When this is combined with the semaphore invariant, the result is 

0 ~< s(mutex)  ~ r (mutex)  ~ s (mutex)  + 1 

From the structure of Algorithm 3.4, it is evident that  the number of 
processes n that  are inside their critical regions at a given time are those 
which have passed a wait operation at the beginning of these regions, but 
have not  as yet  passed a corresponding signal operation at the end of the 
regions. So 

n(mutex)  = r(mutex)  - s (mutex)  

This in turn means that  

0 ~ n (mutex)  ~ 1 

In other words, one process at most can be inside its critical region at 
any time. When no processes are inside their critical regions, we have 

n(mutex)  = 0 

o r  

r(mutex)  = s(mutex)  
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Since r(mutex) < s(mutex) + 1, in this situation another process can 
complete a wait operation and enter its critical region immediately.  

So the correctness criteria for critical regions are satisfied provided each 
of the statements $1 to Sn terminates. 

It is an amusing paradox of critical regions that,  in order to implement  
one, we must  appeal to the existence of  simpler critical regions (namely, 
wait and signal). In the next  chapter, which explains an implementat ion of  
wait and signal, I shall appeal to the existence of  a storage arbiter--a 
hardware implementation of  still simpler critical regions, and so on, ad 
infinitum. The buck ends at the atomic level, where nuclear states are 
known to be discrete and mutually exclusive. 

At this stage, it is tempting to conclude that there is no need for 
extending a programming language with a construct  for critical regions and 
common variables. The problem can evidently be solved by wait and signal 
operations on semaphores. 

This conclusion is indeed valid in a world where programs are known to 
be correct with absolute certainty. But  in practice it is untenable.  The 
purpose of  the language construct  

• var v: shared T; 
region v do S; 

is to enable a compiler to distinguish between disjoint and interacting 
processes, and check that common variables are used only within critical 
regions. 

If we replace this structured notat ion with semaphores, this will have 
grave consequences: 

(1) Since a semaphore can be used to solve arbitrary synchronizing 
problems, a compiler cannot  conclude that a pair of  wait and signal 
operations on a given semaphore initialized to one delimits a critical region, 
nor that  a missing member  of  such a pair is an error. A compiler will also be 
unaware of  the correspondence between a semaphore and the common 
variable it protects.  In short, a compiler cannot give the programmer any 
assistance whatsoever in establishing critical regions correctly. 

(2) Since a compiler is unable to recognize critical regions, it cannot 
make the distinction be tween critical regions and disjoint processes. 
Consequently,  it must  permit the use of common variables everywhere. So 
a compiler can no longer give the programmer any assistance in avoiding 
t ime-dependent errors in supposedly disjoint processes. 

The horrors that  this leads to have already been demonstra ted (see 
Section 3.2.2). 

As an example of  the first problem, consider the programmer who by 
mistake writes the following: 
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wait(mutex); signal(mutex); 
S; S; 

wait(mutex); wait(mutex); 

In the left example, the program will be deadlocked at the end of the 
"crit ical" region; in the right example, the program will sometimes permit 3 
processes to be inside a "critical" region simultaneously. 

The advantage of language constructs is that  their correctness can be 

ALGORITHM 3.5 Periodic Scheduling of Concurrent Processes 

vat schedule: array 1 . . n  of  
record deadline, interval: integer end 

start: array 1 . .n  of  semaphore; 
timer: semaphore; 
task: 1 . .  n; t: in teger; 

begin 
timer: = O; initialize(schedule, start); 
cobegin 

repeat "hardware timer" 
t: = interval desired; 
while t > O d o t : = t - 1 ;  
signal(timer); 

forever 

repeat "scheduler" 
wait(timer); 
for every task do 
with schedule(task) do 
begin 

deadline := deadline - 1; 
if deadline ~ 0 then 
begin 

deadline: = interval; 
signal(start(task)); 

end 
end 

forever 

repeat "task i"  
wait(start(i)); 
perform task; 

forever 
coend 

end 
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established once and for all when the compiler is tested. The alternative is 
to test each critical region separately in all user programs! 

It is reasonable to use semaphores in a compiler to implement critical 
regions. But at higher levels of programming, the main applicability of 
semaphores is in situations in which processes exchange only timing signals. 
This is the concept that  semaphores represent in a direct, natural manner. 

As an example, let us again consider the problem of scheduling a 
number of processes periodically in a real-time system. In Algorithm 3.3, 
the periodic scheduling was handled by a standard procedure that  delays a 
process until a certain interval of time has elapsed. We now want to show 
how this delay can be implemented in terms of  semaphores. 

For each task process, we introduce a record defining the time interval 
between two successive executions (called the interval), the time interval 
until its next  execution. (called the deadline), and a semaphore on which 
the process can wait until its next  execution starts. 

The time schedule of all tasks is scanned by a central scheduling process 
every second: In each cycle, the scheduler decreases all deadlines by one 
and sends a start signal to the relevant tasks. 

The scheduling process in turn receives a signal from a hardware timer 
every second. 

This scheme is shown in Algorithm 3.5. 

3.4.3. Conditional Critical Regions 

The synchronizing tools introduced so far: 

critical regions 
message buffers 
semaphores 

are simple and efficient tools for delaying a process until a special condit ion 
holds: 

mutual  exclusion 
message available (or buffer element available) 
signal available 

We will now study a more general synchronizing tool which enables a 
process to wait until an arbitrary condition holds. 

For this purpose I propose a synchronizing primitive await, which 
delays a process until the components  of a shared variable v satisfy a 
condition B: 
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var v: shared T 
region v do 
begin . . .  await B; . . .  end 

The await primitive must be textually enclosed by a critical region 
associated with the variable v. If critical regions are nested, the 
synchronizing condition B is associated with the innermost enclosing 
region. 

The shared variable v can be of an arbitrary type T. The synchronizing 
condition B is an arbitrary boolean expression which can refer to 
components of v. 

The await primitive can for example be used to implement conditional 
critical regions of the form proposed by Hoare (1971b): 

"Consumer" 

region v do 
begin await B; $1 end 

"Producer" 

region v do $2 

Two processes, called the consumer and the producer, cooperate on a 
common task. The consumer wishes to enter a critical region and operate 
on a shared variable v by a statement $1 when a certain relationship B holds 
among the components of  v. The producer enters a critical region 
unconditionally and changes v by a statement $2 to make B hold. 

I will use this example and Fig. 3.17 to explain the implementat ion of  
critical regions and the await primitive. When a process such as the 
consumer above wishes to enter a critical region, it enters a main queue, Or, 
associated with the shared variable v. From this queue, the processes enter 

1 

(a) (b) 

Fig. 3.17 Scheduling of (a) simple and 
(b) conditional critical regions V by 
means of process queues Qv and Qe. 
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their critical regions one at a time to ensure mutual  exclusion of operations 
on v. 

After entering its critical region, the consumer inspects the shared 
variable v to determine whether it satisfies the condition B: In tha t  case, 
the consumer completes its critical region by executing the s tatement  S1; 
otherwise, the process leaves its critical region temporarily and joins an 
event queue, Qe, associated with the shared variable. 

Other processes can now enter their critical regions through the main 
queue, Qv. These processes may either complete their critical regions 
unconditionally or decide to await the holding of  an arbitrary condition on 
variable v. If their conditions are not  satisfied, they all enter the same event 
queue, Qe. 

When another process such as the previous producer changes the shared 
variable v by a s tatement $2 inside a critical region, it is possible that  one or 
more of the conditions expected by processes in the event queue, Qe, will 
be satisfied. Consequently,  when a critical region has been successfully 
completed, all processes in the event queue, Qe, are transferred to the main 
queue, Qv, to permit them to reenter their critical regions and inspect the 
shared variable v again. 

It is possible that  a consumer will be transferred in vain between the 
main queue and the event queue several times before its condition B holds. 
But this can only occur as frequently as producers change the shared 
variable. This controlled amount  of busy waiting is the price we pay for the 
conceptual simplicity achieved by using arbitrary boolean expressions as 
synchronizing conditions. 

In the case of simple critical regions, we expect that  all operations on a 
shared variable maintain an invariant I (see Section 3.3.4). Within 
conditional critical regions, we must also require that  the desired invariant 
is satisfied before an await statement is executed. When the waiting cycle of 
a consumer terminates, the assertion B & I holds. 

In the following, we will solve two synchronizing problems using first 
critical regions and semaphores, and then conditional critical regions. This 
will enable us to make a comparison of these synchronizing concepts. 

• 3.4.4. An Example: Message Buffers 

We will implement the message buffer defined in Section 3.4.1 and 
shown in Fig. 3.18. 

The buffer consists of a finite number  of identical elements arranged in 
a circle. The circle consists of  a sequence of emp ty  elements tha t  can be 
filled by a producer and a sequence of full elements that  can be emptied by 
a consumer. The producer and consumer refer to empty  and full elements 
by means of two pointers, p and c. During a computat ion,  both pointers 
move clockwise around the circle without  overtaking each other. 

~Yi~o~ ~q c.vAy 
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fu l l  

c ~ . . J _ ~ x  Fig. 3.18 A cyclical message buffer 
with a producer pointer p and a 

p consumer pointer c. 

The  sequence  o f  messages received 

R ( 1 ) , R ( 2 ) ,  . . .  , R ( r )  

mus t  be con ta ined  in the  sequence  o f  messages sent  

S ( 1 ) , S ( 2 ) ,  . . .  ,S ( s )  

Le t  the  buf fe r  and its poin ters  be declared as fol lows:  

buf fer :  array 0 . . m a x - 1  o f  T; 
p ,  c: O. . m a x - l ;  

T h e  desired e f fec t  is achieved if the  fol lowing rules are observed:  

(1) During a c o m p u t a t i o n ,  p o i n t e r s  p and e mus t  en u m era t e  the  same 
sequence  o f  bu f f e r  e lements :  

buf fer (O):  = S(1);  
b u f f e r ( l ) :  = S(2) ;  
• * • • • 

b u f f e r ( p  - 1 rood  max) :  = S(s); 

R (1 ) :=  buf fer (O);  
R(2 ) :=  b u f f e r ( l ) ;  

, , . . . 

R ( r ) :  = b u f f e r ( c  - 1 rood  max) ;  

(2) The  receiver  mus t  n o t  e m p t y  an e l emen t  unt i l  i t  has been  sent:  

O~< r <  s 

(3) The  sender  mus t  n o t  f i l l  an e l emen t  unt i l  i t  has been  received:  

0 ~< s - r < m a x  

The  so lu t ion  tha t  uses condi t iona l  critical regions is Algor i thm 3.6. 
Init ial ly,  poin ters  p and  c are equal  and t h ey  are m o v ed  b y  the  same 
func t ion  p + 1 rood  m a x  and c + 1 m o d  m a x .  So, the  poin ters  en u m era t e  
the  same sequence  o f  buf fe r  elements .  
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ALGORITHM 3.6 Process Communication With Conditional Critical Regions 

type  B = shared record 
b u f f e r :  array 0 . . m a x - 1  of  T; 
p,  c: O. . m a x -  l ; 

f u l l :  O. . m a x ;  

end 
" I n i t i a l l y  p = c = f u l l  = 0"  

procedure send(m: T; vat b: B); 
region b do 
begin 

await f u l l  < m a x ;  

b u f f e r ( p ) :  = m ;  
p:= (p + 1) mod m a x ;  

fu l l :  = f u l l  + 1; 
end 

procedure r e c e i v e ( v a t  m :  T ;  b: B); 
region b do 
begin 

await f u l l  > 0; 
m :  = b u f f e r ( c ) ;  
c: = ( c + 1) mod m a x ;  

f u l l :  = f u l l  - 1; 
end 

Chap. 3 

The variable f u l l  is initially zero. It is increased by  one after each s e n d  
and decreased by  one after each rece i ve .  So 

f u l l  = s - r 

Receiving is only done when f u l l  > 0 or s > r; sending is only done 
when f u l l  < m a x  or s - r < m a x .  The solution is therefore correct. 

Now, let us solve the same problem with simple critical regions and 
semaphores: We will use the pointers p and c exactly as before--so 
condition 1 is still satisfied. 

The delay of  the receiver will be controlled by a semaphore f u l l  in the 
following way: 

initially: f u l l :  = 0 

before receive: w a i t ( f u l l )  
after send: s i g n a l ( f u l l )  

When the semaphore is used in this way, we evidently have 
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0 ~< r ~< number o f  waits(full) & 

0 ~< number o f  signals(full) ~< s 

The semaphore invariant defined in Section 3.4.2 ensures that,  when 
the initial number  of  full signals has been consumed by  wait operations, 
further wait operations cannot be completed faster than the corresponding 
signal operations: 

number o f  waits(full) ~< number o f  signals(full) + 0 

Immediately before a wait operation is completed,  the stronger con- 
dition 

number o f  waits(full) < number o f  signals(full) + 0 

holds. 
From this we conclude that before a message is received, the condition 

0~< r <  s 

holds. 
We have chosen to represent the condition r < s by the semaphore full. 

But since timing signals are merely indistinguishable boolean events, we 
cannot use the same semaphore to represent the other condition, s - r 
max, which controls sending. 

So we must  introduce another semaphore, empty ,  and use it as follows: 

initially: 
before send: 
after receive: 

empty  := max 
wait(empty) 
signal(empty) 

By similar reasoning, we can show that  before sending the following 
holds: 

0 ~< s ~< number o f  waits(empty) & 

0 ~< numberofs ignals(empty)  ~< r & 

number o f  waits(empty) < number o f  signals(empty) + max 

o r  

0~< s < r + m a x  

The complete solution is Algorithm 3.7. 
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ALGORITHM 3.7 Process Communication With Semaphores 

type B = record 
v: shared record 

buf fer:  array O. .max-1 of T; 
p, c: O. . m a x -  l ; 

end 
full ,  e m p t y :  semaphore ;  

end 
"Initially p = c = ful l  = 0 & e m p t y  = m a x "  

procedure send(m:  T; vat  b: B);  
begin 

with b do 
begin 

w a i t ( e m p t y ) ;  
region v do 
begin 

buf fer (p )  := m;  
p:= (p + 1) mod m a x ;  

end 
signal(full);  

end 
end 

procedure receive(vat  m:  T; b: B);  
begin 

with b do 
begin 

wait( fu l l ) ;  
region v do 
begin 

m: = buf fer (c) ;  
c: = (c +1) rood max;  

end 
s igna l (empty ) ;  

end 
end 

Chap. 3 

This exercise has already given a good indication of the diffel'ence 
between conditional critical regions and semaphores: 

(1) A semaphore can only transmit indistinguishable timing signals; it 
can therefore only be used to count the number of times a speci f ic  e v e n t  

has occurred in one process without being detected by another process. 
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Consequently,  it is necessary to associate a semaphore with each 
synchronizing condition. 

The first algorithm with conditional critical regions uses two syn- 
chronizing conditions 

full > 0 f u l l <  max 

but  only one variable full. 
In the second algorithm, these conditions are represented by two 

semaphore variables 

full empty  

(2) Notice also that  within conditional critical regions, the program 
text  shows directly the condition under which a region is executed. But in 
the second algorithm, the association between a semaphore and a 
synchronizing condition exists only in the mind o f  the programmer. He 
cannot deduct  from the s tatement  

wait(empty) 

that  full < max before sending wi thout  examining the rest of  the program 
and discovering that full < max when 

signal(empty) 

is executed after receiving! When semaphores are used to represent general 
scheduling conditions, these conditions can only be deduced from the 
program text  in the most indirect manner. 

One can also explain the difficulty with semaphores in the following 
way: If a process decided to wait on a semaphore inside a critical region, it 
would be impossible for another process to enter its critical region and 
wake up the former process. This is the reason that the wait operations in 
Algorithm 3.7 are executed outside the critical regions. 

However, it is dangerous to separate a synchronizing condition from a 
successive critical region. The danger is that  another process may enter its 
critical region first and make the condition false again. If we split critical 
regions in this way, we must introduce additional variables to represent 
intermediate states of  the form "I expect  condition B to hold when I 
enter my  critical region." So, while a single variable full is sufficient in 
Algorithm 3.6, we need two variables, full and empty,  in Algorithm 3.7. 

The elegance of  Algorithm 3.6 makes it tempting to suggest that  the 
language constructs for message buffers suggested in Section 3.4.1 can be 
replaced by  conditional critical regions and common variables. But I wish 
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to point out  that  the arguments made earlier in favor of the language 
construct for simple critical regions can also be made for message buffers. 

In Section 3.4.1, we found that  a system consisting of processes 
connected only by buffers can be made functional as a whole. But this is 
only true if the send and receive operations are implemented correctly and 
if they are the only operations on the buffers. A compiler is unable to 
recognize the data structure B in Algorithm 3.6 as a message buffer and 
check that  it is used correctly. So when message buffers are used 
frequently,  it may well be worth including them as a primitive concept in a 
programming language. 

We now proceed to the next  problem, which is due to Courtois, 
Heymans, and Parnas (1971). 

3.4.5. An Example: Readers and Writers 

Problem Definition 

Two kinds of concurrent processes, called readers and writers, share a 
single resource. The readers can use the resource simultaneously, but  each 
writer must  have exclusive access to it. When a writer is ready to use the 
resource, it should be enabled to do so as soon as possible. 

The first step is to introduce a terminology which enables us to talk 
about  the problem in a meaningful manner. A process must declare its wish 
to use the resource, and, since the resource may be occupied at that  
moment ,  the process must then be prepared to wait for it. A process must 
also indicate when it has completed its use of  the resource. 

So any solution to this kind of resource allocation problem must  be of  
the following nature: 

request resource; 
use resource; 
release resource; 

All processes must go through such a sequence of events, and I would 
expect the solution to be symmetrical with respect to the readers and 
writers. To simplify matters, I will start by solving a simpler problem in 
which I do not  bother to ensure that  the writers exclude one another,  but 
only that  they exclude all readers, and vice versa. They are thus more 
symmetrical with the readers. 

A process is called active from the moment  it has requested the 
resource until  it has released the resource again. A process is called running 
from the moment  it has been granted permission to use the resource until it 
has released the resource again. 
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system can be characterized by four integers, all 

the number of active readers 
the number of running readers 
the number of active writers 
the number of running writers 

A solution to the simplified problem is correct if the following criteria 
are satisfied: 

(1) Scheduling o f  waiting processes: Readers can use the resource 
simultaneously and so can writers, but the number of running processes 
cannot exceed the number of  active processes: 

O ~ rr ~ ar & O ~ rw ~ aw 

This invariant will be called W. 

(2) Mutual exclusion of  running processes: Readers and writers cannot 
use the resource at the same time: 

n o t ( r r >  0 & r w >  O) 

This invariant will be called X. 

(3) No deadlock o f  active processes: When no processes are running, 
active processes can start using the resource within a finite time: 

(rr = 0 & rw = O) & (ar > 0 or aw > O) implies 

(IT > 0 or rw > O) within a finite time 

(4) Writers have priority over readers: The requirement of  mutual  
exclusion means that  the resource can only be granted to an active writer 
when there are no running readers (rr = 0). To give priority to writers, we 
make the slightly stronger condition that  the resource can only be granted 
to an active reader when there are no active writers (aw = 0). 

Solution With Semaphores 

This time we will solve the problem first by means of  simple critical 
regions and semaphores. Two semaphores, called reading and writing, 



108 CONCUR RENT PROCESSES Chap. 3 

enable the readers and writers to wait for the resource. They are both 
initialized to zero. The solution is Algorithm 3.8. 

ALGORITHM 3.8 The Readers and Writers Problem Solved With Semaphores 

type T = record ar, rr, a w ,  rw:  in teger  end 

vat  v: shared T; reading,  wr i t ing:  s e m a p h o r e ;  

"Initially ar = rr = a w  = rw  = reading = w r i t i ng  = 0 "  

cobegin 
begin " r e a d e r "  

region v do 
begin 

ar:= ar + 1; 
gran t  reading(v ,  reading);  

end 
wai t ( read ing) ;  

read; 

region v do 
begin 

rr: = rr - I ;  
ar:= ar - 1; 
gran t  wr i t ing (v ,  wr i t ing) ;  

end  
. ° • 

end  

beg in  " w r i t e r "  

region v do 
begin 

aw:= a w  + 1; 
gran t  wr i t ing (v ,  wr i t ing) ;  

end  
wai t (wr i t i ng ) ;  

wr i t e ;  

region v do 
begin 

rw:= rw  - 1; 
aw:  = a w  - 1; 
gran t  reading(v ,  reading);  

e n d  
. . . 

end  
. . . 

coend 
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A reader indicates that  it is active by increasing ar by one. It then calls a 
procedure, grant  reading, which examines whether the resource can be 
granted for reading immediately. Then the reader waits until it can use the 
resource. Finally, it leaves the running and active states by decreasing rr and 
ar by one and calls another procedure, grant  writing, which determines 
whether the resource should now be granted to the writers. The behavior of 
a writer is quite symmetrical. 

The scheduling procedures, grant  reading and grant  writing, are defined 
by Algorithm 3.9. 

ALGORITHM 3.9 The Readers and Writers Problem (cont.) 

p r o c e d u r e  grant  reading(var v: T; reading: semaphore);  
begin 

with v do 
i f  a w  = 0 t h e n  
while rr < ar do 
begin 

rr:= rr + 1; 
signal(reading); 

end  
end  

procedure grant  writing(var v: T; writing: semaphore);  
begin 

with v do 
if rr = 0 t h e n  
while rw < aw do 
begin 

rw:= rw + 1; 
signal(writing); 

end 
end  

The resource can be granted to all active readers (rr = ar) provided no 
writers are active (aw = 0). And it can be granted to all active writers 
(rw = aw)  provided no readers are running (rr = 0). 

I will now outline a correctness proof of this solution. The arguments 
are explained informally to make them easy to understand, but a purist will 
not  find it difficult to restate them formally as assertions directly in the 
program text.  

Let us first verify that  the components of variable v have the meaning  
intended. Since ar and aw are increased by one for each request and 
decreased by one for each release made by readers and writers, respectively, 
we immediately conclude that  they have the following meanings: 
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ar = n u m b e r  o f  act ive  readers 

aw = n u m b e r  o f  act ive  wri ters  

It is a little more difficult to see the meanings of the variables rr and rw.  
Consider for example rr: It  is increased by one for each signal on the 
semaphore reading and decreased by one for each release made by a reader, 
SO: 

rr = n u m b e r  o f  signals(reading) - n u m b e r  o f  releases made  by readers 

From the program structure, it is also clear that  the running readers are 
those which have been enabled to complete a wai t  on the semaphore 
reading minus those which have released the resource again. So 

n u m b e r  o f  running  readers = 

n u m b e r  o f  readers which  can or  has passed wait(reading)  - 

n u m b e r  o f  releases m a d e  by  readers 

The semaphore invariant ensures that  

n u m b e r  o f  readers which  can or has passed  wait(reading)  = 

n u m b e r  o f  signals(reading) 

So we finally conclude that  

rr = n u m b e r  o f  running  readers 

and similarly for writers that  

rw  = n u m b e r  o f  running  writers  

Consider now correctness criteria 1 and 2. We assume that  the 
assertions W and X hold immediately before a request by a reader. This is 
trivially true after initialization when 

0 = r r = a r &  O = rw  = aw 

The increase of ar by one inside a request does not  change the validity of  W 
and X, so we have: 

"reader  r e q u e s t "  
region v do 
begin "W & X "  

ar:= ar + 1; (con t. ) 
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"W & X "  
g r a n t  r ead ing (v ,  read ing) ;  

end 

The proeedure g r a n t  r ead ing  either does nothing (when a w  ~ 0 or rr = 

ar) ,  in which ease W and X stin hold, or it increases the number of  running 
readers by one until 

O <  r r = a r  & O = r w = a w  

holds. This implies that  W and X still hold: 

? impfies W & X 

Consider now a reader release. A release is only made by a running 
process, so we have rr > 0 immediately before. Assuming that  W and X 
also hold initially, we have 

" r e a d e r  r e l e a s e "  
region v d o  
begin " W  & X & rr > 0 "  

rr: = rr - 1; 
ar:= ar - 1; 
,,??,, 

g r a n t  w r i t i n g ( v ,  w r i t i n g ) ;  
,,???,, 

end 

Now W & X & rr > 0 is equivalent to 0 < rr ~ ar & 0 = r w  ~ a w  so 

?? =- 0 ~< rr ~< ar & O = r w  ~< a w  

which in turn implies W & X. 
The procedure g r a n t  w r i t i n g  either does nothing (when rr =/= 0 or r w  = 

a w ) ,  in which case W and X still hold, or it increases the number of  running 
writers by one until 

O=rr~< a r & O <  r w = a w  

holds. This implies that  W and X still hold: 

??? implies W & X 

By similar arguments, you  can show that  the invariance of W and X is 
maintained by a writer request and release. 
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The next  thing we must show is the absence of deadlocks as required by 
correctness criterion 3. When the resource is not  used by any readers, it can 
be shared by all active writers; and when the resource is neither used nor 
desired by any writers, it can be shared by all active readers. It is not  
difficult to show that  this invariant 

D =- (rr = 0 implies r w  = a w )  & 

( a w  = 0 implies rr  = a t )  

is maintained by the request and release operations defined by Algorithms 
3.8 and 3.9. 

If we assume that  the resource is idle 

I ~- r r = O & r w = O  

then we find that  

I & D implies a w  = r w  = 0 

and also that  

I & D & aw = 0 impliesar = rr  = 0 

In other words, a situation in which no process uses the resource (rr  = 0 

& r w  = 0) is one in which no process desires to do so (ar  = 0 & a w  = 0 ) .  

This completes the arguments for the correctness of the first solution to 
the readers and writers problem. You will appreciate that  the proof will be 
far more tedious if it is formalized in detail. Although it is a well-structured 
program and quite typical of the way in which semaphores can be used, it is 
no t  the sort of  program which is self-evident at first glance. (Why, for 
example, need a reader that  releases the resource only worry about  the 
scheduling of  writers and not  about  that  of other readers?) 

S o l u t i o n  w i t h  C o n d i t i o n a l  C r i t i c a l  R e g i o n s  

It is tempting to conclude that  the complexity of the previous solution 
is caused by the intricate scheduling rules of  readers and writers. But this is 
no t  true. For by using conditional critical regions, it is possible to write 
down in a few lines a solution so simple that  its correctness is almost 
self-evident. This is Algorithm 3.10. 

It is easy to see that  

rr  = n u m b e r  o f  r u n n i n g  r e a d e r s  

a w  = n u m b e r  o f  a c t i v e  w r i t e r s  
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ALGORITHM 3. 10 The Readers and Writers Problem Solved 
With Conditional Critical Regions 

v a t  v: shared record rr,  a w :  i n t e g e r  end 

" I n i t i a l l y  rr = a w  = 0 "  

cobegin 
begin " r e a d e r "  

region v do 
begin await a w  = 0; rr:= rr + 1 end 
read;  

region v do rr:= rr - 1; 
. . . 

end 
begin " w r i t e r "  

region v do 
begin a w :  = a w  + 1; await rr = 0 end 
w r i t e ;  

region v do a w  := a w  - 1; 

, . • 

end 
o ° ° 

coend 
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The variables ar a n d  r w  are not  used in this program, so we can simply 
define that  these identifiers denote the following: 

ar = n u m b e r  o f  a c t i v e  r e a d e r s  

r w  = n u m b e r  o f  r u n n i n g  w r i t e r s  

This establishes the meanings of  the variables. 
The program text  also shows that  each active process goes through a 

waiting and running state in that  order. Consequently 

0 ~ r u n n i n g  p r o c e s s e s  ~ r u n n i n g  a n d  w a i t i n g  p r o c e s s e s  

This means that  invariant W holds. 
Assuming that  W and X hold before a reader request, we find 

region v do 
begin "W X" 

await a w  = 0; 
"W & X & a w  = 0"  
rr:= rr + 1; 
' ' ~ ' '  

end 
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Now W & a w  = 0 implies r w  = O. After the increase of rr ,  we still have 
r w  = 0, which implies that  X holds. W has already been shown to be 
maintained by all requests and releases, so 

? implies W & X 

And before a reader release, we have 

region v do 
"W & X & rr > 0"  r r :=  rr  - 1 "??" ;  

Since X & rr  > 0 implies r w  = 0, it is evident that  X also holds after the 
release, and again W is also maintained. 

By similar simple arguments, it can be shown that  the invariance of  W 
and X is maintained by the writers. 

To see that  a deadlock cannot occur, consider the idle resource state rr  

= 0 & r w  = O. If there are active writers, they will be able to run within a 
finite time since rr = 0. On the other hand, if there are no active writers, 
but only active readers, the readers will be able to run within a finite time 
since a w  = O. 

The o r i g i n a l  p r o b l e m  differs only from the simplified one by requiring 
exclusive access by writers to the resource. Both solutions can be adapted 
immediately to this requirement by forcing the running writers to use the 
resource inside another critical region 

vat w: shared b o o l e a n ;  

• . • . • 

region w do w r i t e ;  

This solution shows that  the mutual  exclusion of writers is completely 
irrelevant to the readers; it can be settled among the writers themselves. 

3.4.6. A Comparison of Tools 

It is time now to compare the two synchronizing methods and consider 
why the use of  semaphores introduces so much complexity for problems of  
the previous type. 

The root  of the matter  is that  any synchronizing concept is an ideal, 
direct means of expression for a particular type of process interaction, but  
it fails miserably when applied to a totally different type of interaction. 

The conditional critical region 

region v do begin await B; S end 
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is the most  natural tool  in a situation where a process wishes to wait until 
the components  of  a shared data structure satisfy a certain condition. 

Likewise, a wait operation on a semaphore is the most  direct way of  
expressing the wish to wait until a timing signal has been produced. 

The difficulty is that  the former situation is far more common in 
realistic systems, and it can only be expressed by means of  simple critical 
regions and semaphores in a most  indirect and obscure manner. The 
programmer must associate a semaphore with each possible scheduling 
condition B and express himself as follows: 

region v do 
if B then begin S; signal(sem) end 

else indicate request(q); 
wait(sem ); 

And all other processes which might make condition B true inside their 
own critical regions, such as the following: 

region v do R 

must now take responsibility for activating the delayed processes as 
follows: 

region v do 
begin 

R;  
f i B  & request(q) then 
begin 

remove request(q); 
S; signal( sern ) ; 

end 
end 

When this indirect way of expression is used to control resources, the 
programmer is forced to separate the request, grant, and acquisition of  
resources and introduce additional variables to represent the intermediate 
states "resource requested, but  not  yet  granted" and "resource granted, bu t  
not  yet  acquired." The former state is represented by  the condition 
request(q) and the latter by  the relation waits(sem) < signals(sem). 

To make matters worse, the use of  semaphores forces the programmer 
to make very strong logical connections among otherwise independent  
processes: Readers must  be prepared to schedule writers, and vice versa. A 
wait operation on a semaphore represents a synchronizing condition B, 
which is stated elsewhere in the program at points where the corresponding 
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signal operations are carried out. So the programmer must now examine 
not  only the preceding request operation, but also all other release 
operations to verify that  a signal operation is performed only when 
condition B holds and one or more processes are waiting for it. 

3.4.7. Event Queues 

The conceptual simplicity of simple and conditional critical regions is 
achieved by ignoring details of scheduling: The programmer is unaware of 
the sequence in which waiting processes enter critical regions and access 
shared resources. This assumption is justified for processes that  are so 
loosely connected that  simultaneous requests for the same resources 
rarely occur. 

But in most computer  installations, resources are heavily used by a large 
group of  users. In these situations, operating systems must be able 
to control the scheduling of  resources explicitly among competing 
processes. 

The scheduling of  heavily-used resources can be controlled by 
associating a synchronizing variable with each process and maintaining 
explicit queues of requests. 

Since our purpose is not  to study data structures, I will simply declare a 
queue of  elements of type T as follows: 

var q: queue of  T 

and postulate that  the standard procedures 

enter(t, q) remove(t, q) 

enters and removes an element t of type T from a given queue q according 
to the scheduling policy desired. 

The boolean function 

empty(q) 

determines whether or not  a given queue q is empty.  
A queue differs from a sequence in that  the elements of the former are 

not  necessarily removed in the same order in which they are entered. 
As an example of completely controlled resource allocation, we will 

solve the following problem: A number of processes share a pool of 
equivalent resources. When resources are available, a process can acquire 
one immediately;  otherwise, it must  enter a request and wait until a 
resource is granted to it. 

Algorithm 3.11 is an at tempt  to solve this problem by means of 
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ALGORITHM 3. 1 1 Scheduling of  Heavily Used Resources 
With Conditional Critical Regions 

type  P = 1 . . number  of  processes; 
R = 1. .number o f  resources; 

vat v: shared record 
available: sequence o f  R;  
requests: queue of  P; 
turn: array P of  boolean; 

end 

procedure reserve(process: P; vat resource: R); 
region v do 
begin 

while empty(available) do 
begin 

enter(process, requests); 
turn (process) := false; 
await turn(process); 

end 
get(resource, available); 

end 

procedure release(resource: R ) ; 
vat process: P; 
region v do 
begin 

put(resource, available); 
if  no t  empty(requests) then 
begin 

remove(process, requests); 
turn(process) := true; 

end 
end 
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conditional critical regions. Available resources are defined by a sequence 
of indices of  type  R. Pending requests are defined by a queue of  indices of  
type  P. A resource unit  is granted to process number  i by setting an element  
turn(i) of  a boolean array to true. 

My first objection to this program is that  it does not  solve the problem 
correctly,  at least not  under our present assumptions about  critical regions. 
When a process A tries to reserve a resource unit  at a t ime when none are 
available, the process enters its own identi ty in the queue of  requests and 
awaits its turn. When another  process B releases a resource unit  at a t ime 
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when other processes are waiting for it, the process selects one of  the 
waiting processes, say A, and makes its turn true. So when process B leaves 
its critical region (within the release procedure),  process A will reenter its 
critical region (within the reserve procedure) and find that  its turn is true; 
process A then completes its critical region by removing the index of  an 
available resource unit. 

The trouble is that  the programmer does no t  control  the sequence in 
which processes enter and reenter their critical regions from the main 
queue, Qv associated with the shared variable v (see Fig. 3.17(b)). 
Therefore, it is possible that  when process B leaves its critical region after a 
release, another process C enters its critical region on the same variable v 
directly through the main queue and reserves the unit  intended for process 
A. So this algorithm does no t  give us explicit control  over the scheduling of 
individual processes. 

To solve the problem correctly with the present tools, we must  
introduce a sequence of  resources that  have been granted to, but  not  yet  
acquired by waiting processes. 

However,  rather than make this intermediate state explicit in the 
program, I suggest that  processes reentering their critical regions f rom event 
queues take priority over processes entering critical regions directly through 
a main queue. This ensures that  resources granted to waiting processes 
remain available to them until they reenter their critical regions. 

In other words, we make the scheduling rules of  critical regions 
partially known to the programmer. The proposed priority rule is 
reasonable because: (1) it simplifies explicit control  of  scheduling; and (2) 
it ensures fair scheduling of conditional critical regions in the sense that  it 
gives processes waiting for events a chance to complete  their critical regions 
within a finite t ime (provided, of course, the events occur). 

With this modification Algorithm 3.11 becomes at least logically 
correct. 

My second object ion to Algorithm 3.11 is that  it is extremely 
inefficient. The definition of  conditional critical regions in Section 3.4.3 
implies that  all processes waiting for resources will be allowed to reenter 
their critical regions as soon as a resource is granted to one of  them; then, 
all of  them but  one will reevaluate their boolean turn in vain. This is 
inevitable because there is only one event queue associated with a given 
shared variable and because the language does not  permit the programmer 
to identify individual processes and say "please, enable process A to  reenter 
its critical region." 

To control scheduling explicitly, a programmer must  be able to  
associate an arbitrary number  of  event queues with a shared variable and 
control the transfers of  processes to and from them. In general, I would 
therefore replace my  previous proposal for conditional delays with the 
following one: 
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The declaration 

var e: event  v 

associates an event queue e with a shared variable v declared elsewhere. 
A process can leave a critical region associated with the variable v and 

join the event queue e by executing the standard procedure 

await(e) 

Another process can enable all processes in the event queue e to reenter 
their critical regions by executing the standard procedure 

cause(e) 

The await and cause procedures can only be called within critical 
regions associated with the variable v. They exclude each other in time. 

A consumer/producer relationship must now be expressed as follows: 

"Consumer"  "Producer" 

region v do region v do  
begin begin 

while not  B do await(e); $2; 
S1; cause(e); 

end end 

Although less elegant than the previous notation:  

region v do 
begin await B; $1 end 

region v do $2 

the new one still clearly shows that  the consumer is waiting for condition B 
to hold. 

We can now control process scheduling efficiently to any degree 
desired. Algorithm 3.12 is an efficient version of  the scheduling of  
heavily-used resources: It associates an event variable with each process. 

One more objection can be made to both Algorithms 3.11 and 3.12: 
They violate the rules of  procedures defined in Section 3.2.3 by their use of  
side effects on the shared variable v. It would have been more honest  to 
pass v explicitly as a parameter to the reserve and release procedures. 

My reason for not  doing so is the following: There is no reason that  
processes calling the reserve and release procedures should be concerned 
about the existence and structure of the shared variable v used to 
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implement these procedures. All that  matters to a process is that  a call of 
reserve eventually returns the identi ty of an available resource, and that  a 
call of  release makes a resource available to other processes. Even the 
scheduling algorithm used to grant a resource to a particular process is 
irrelevant to the user processes in the sense that  these processes usually 
have little or no influence on this policy. 

ALGORITHM 3. 12 Scheduling of Heavily Used Resources With 
Simple Critical Regions and Event Variables 

type P = 1 . .number  of  processes; 
R = 1..number of  resources; 

var v: shared record 
available: sequence of  R;  
requests: queue of  P; 
turn: array P of  event v; 

end 

procedure reserve(process: P; vat resource: R); 
region v do 
begin 

while empty(available) do 
begin 

enter(process, requests); 
await(turn(process)); 

end 
get(resource, available); 

end 

procedure release(resource: R); 
var process: P; 
region v do 
begin 

put(resource, available); 
if not  empty(requests) then 
begin 

remove(process, requests); 
cause(turn(process)); 

end 
end 

For this reason, processes should not  be forced to be aware of the 
existence of the shared variable v and pass it as a parameter to  the 
resource scheduling procedures. Indeed, if the variable v were accessible to 

J 



Sec. 3.4. PROCESS COOPERATION 121 

processes, they might be tempted to operate directly on it within their own 
critical regions and perhaps override the scheduling rules of the installation 
or cause the total  collapse of service by making the variable v inconsistent 
with the assumptions made about it by reserve and release. 

So what we need is a language notat ion which associates a set of  
procedures with a shared variable and enables a compiler to check that  
these are the only operations carried out  on that  variable and ensure that  
they exclude each other in time. I will no t  t ry to bend Pascal in this 
direction, but will present an example of such a notat ion in Chapter 7: a 
simple case of  the class concept in Simula 67. 

I will use the term monitor to denote a shared variable and the set of  
meaningful operations on it. The purpose of a monitor  is to control the 
scheduling of resources among individual processes according to a certain 
policy. 

In the previous example, the monitor  consisted of  a shared variable v 
and two procedures reserve and release. 

As we shall see in Chapter 4, most computers support the 
implementation of  a basic monitor, which controls the sharing of 
processors, storage, and peripherals among computations at the lowest level 
of programming. 

This section has shown that  the monitor  concept is equally useful at 
higher levels of programming and that  one generally needs several 
monitors--one for each shared variable. (One can, of  course, combine all 
shared variables into a single shared data structure. But this becomes an 
unnecessary bottleneck due to the requirement of mutual exclusion of  all 
operations on it.) 

3.4.8. Conclusion 

We have now considered several methods of process synchronization: 

critical regions 
semaphores 
message buffers 
conditional critical regions 
event queues 

I find that  they are all equivalent in the sense that  each of them can be 
used to solve an arbitrary scheduling problem from a logical point of  view. 
But for a given problem, some of them lead to more complicated and 
inefficient programs than others. So they are clearly not equivalent from a 
practical point of  view. 

Each synchronizing concept is defined to solve a certain kind of  
problem in a direct, efficient manner: 
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synchronizing problem synchronizing tool 

mutual  exclusion 
exchange of  timing signals 
exchange of  data 
arbitrary conditional delay 
explicit process scheduling 

critical region 
semaphore 
message buffer  
conditional critical regions 
event queues 

If the programmer has a choice, he should select the tool  that  
conceptually corresponds most  closely to the synchronizing problem he 
faces. He will then find that  his program becomes not  only simple to 
understand, bu t  also efficient to execute.  

The most  general synchronizing tool  considered is the event queue. But 
it has the same deficiency as semaphores: It forces the Rrogrammer to be 
explicitly aware of  scheduling details. Therefore,  it should only be used in 
situations in which this awareness is necessary to control  heavily-used 
resources. 

This concludes the discussion of  synchronizing concepts.  We will now 
study the deadlock problem in some detail. 

3.5. DEADLOCKS 

3.5.1. The Deadlock Problem 

A deadlock is a state in which two or more processes are waiting 
indefinitely for condit ions which will never hold. 

A deadlock involves circular waiting: Each process is waiting for a 
condition which can only be satisfied by  one of  the others; bu t  since each 
process expects one of the others to resolve the conflict, they are all unable 
to  continue. 

We have met  the deadlock problem twice: in connection with the 
banker 's  algorithm and the mutual  exclusion problem (see Sections 2.6.1, 
3.3.1, and 3.3.3). In both  cases, the occurrence of  a deadlock depended on 
the relative speed of  concurrent  processes. Deadlocks are serious, 
t ime-dependent  errors which should be prevented at all costs. 

The deadlock problem was first recognized and analyzed by Dijkstra 
(1965). But  it had occurred of ten enough in earlier operating systems. In 
1968, Havender said abou t  0S/360: "The original multitasking concept  of  
the operating system envisioned relatively unrestrained compet i t ion for 
resources to perform a number  of  tasks concurrently . . . .  But  as the 
system evolved, many instances of  task deadlock were uncovered."  

A similar observation was made by  Lynch in 1971: "Several problems 
remained unsolved with the Exec H operating system and had to be avoided 
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by one ad hoc means or another. The problem of  deadlocks was not  at  all 
understood in 1962 when the system was designed. As a result several 
annoying deadlocks were programmed into the system."  

It has been argued that  deadlocks are not  a problem of program 
correctness, but an economic issue. An installation may deliberately take 
the risk of  deadlocks if they occur infrequently enough. When they  occur, 
the cheapest way of resolving them is by removing one or more jobs. 

The difficulty with this point of view is that  no methods are available at 
the moment  for predicting the frequency of deadlocks and evaluating the 
costs involved. In this situation, it seems more honest  to design systems in 
which deadlocks cannot occur. This is also a vital design objective when 
you consider how hopeless it is to correct erroneous programs with 
t ime-dependent behavior (see Section 3.2.2). 

So in the following we will concentrate on methods of  deadlock 
prevention. 

3.5.2. Permanent Resources 

Following Holt (1971), we distinguish between permanent  and 
temporary resources. A permanent resource can be used repeatedly by 
many processes; a temporary resource is produced by one process and 
consumed by another. Examples of  permanent  and temporary resources are 
physical devices and messages, respectively. 

We will first s tudy a system with a fixed number  of permanent  
resources of various types. Resources of the same type are equivalent from 
the point  of  view of  the processes using them. 

A process is expected to make a request for resources before it uses 
them. After making a request, a process is delayed until  it acquires the 
resources. The process can now use the resources until it releases them 
again. 

So a process follows the pattern: 

request resources; 
use resources; 
release resources; 

Coffman (1971) has pointed out  that  the following conditions are 
necessary for the occurrence of a deadlock with respect to permanent  
resources: 

(1) Mutual exclusion: A resource can only be acquired by one process 
at a time. 

(2) Non-preemptive scheduling: A resource can only be released by the 
process which has acquired it. 
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(3) Partial allocation: A process can acquire its resources piecemeal. 

(4) Circular waiting: The previous conditions permit concurrent  
processes to  acquire part of  their resources and enter a state in which they  
wait indefinitely to  acquire each other 's  resources. 

Deadlocks are prevented by  ensuring that  one or more of the necessary 
conditions never hold. 

The first possibility is to permit several processes simultaneous access to 
resources (for example,  read-only access to common data within disjoint 
processes). But,  in general, processes must  be able to get exclusive access to 
resources (for example,  access to common data within critical regions). So, 
to  prevent deadlock by  permitting simultaneous access to all resources is 
unrealistic. 

The second possibility is deadlock prevention by  preemptive 
scheduling--that is ,  by  forcing processes to release resources temporari ly in 
favor of  other  processes. It takes a finite t ime to transfer a resource from 
one process to another.  Preemption therefore leads to a less efficient 
utilization of  resources. 

In present computers ,  preemption is used mainly to multiplex central 
processors and storage between concurrent  processes. As we will see later, 
the resulting loss in the utilization of  equipment  can be quite significant 
unless the f requency of  preemption is carefully controlled. 

Preemption is impractical for peripheral devices that  require mounting 
of  private data media by  operators (such as card readers, line printers, and 
magnetic tape stations). 

In THE multiprogramming system (Bron, 1971), a line printer is 
nevertheless subject to preemptive scheduling. But this is done with great 
restraint: The system will t ry  to  print the ou tpu t  of  one process 
consecutively; only if a process threatens to monopolize the printer will the 
system start to print forms for another process. In practice, very few files 
are split, but  it is doubt fu l  whether  this method  would be practical for 
larger installations. 

The third possibility is to prevent deadlocks by  a complete allocation of  
all resources needed by  a process in advance of  its execution.  This means 
that  the resource requirements of  concurrent  processes cannot  exceed the 
total  capacity of  the system. 

The success of  this method depends on the characteristics of  the 
workload--whether  it is possible to find a combinat ion of  jobs which can 
utilize all resources concurrently in a disjoint manner. 

The four th  possibility is to  prevent deadlocks by  a sequential ordering 
of requests, which prevents circular waiting. 

The banker's algorithm does this by  finding a sequence in which 
concurrent  processes can be completed one at a time if necessary. The 
difficulty with this algorithm is that  it is quite expensive to execute  at run 
time. 
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Consider a system with m resource types and n processes. Algorithm 
2.6 determines whether the current situation is safe from deadlocks by 
examining the m resource claims of each process until it finds a process 
which can be completed. The algorithm repeats this examination until all n 
processes are eliminated. In the worst case, the algorithm has an execution 
time proportional to 

m ( n + n -  l + n -  2 +  . . .  + l ) = m n ( n + l ) / 2  

In THE multiprogramming system, 2 resource types (plotters and paper 
tape punches) and 5 user processes are controlled by a banker. This gives a 
maximum of 30 iterations for each request. But in a system with 10 
resource types and 10 concurrent processes, the maximum is 550 iterations 
of, say, 1 msec, or 0.55 sec per request! 

It is possible to  write a more complicated algorithm with an execution 
time proportional to mn (Holt, 1971). This algorithm avoids repeated 
examination of the same processes by ordering the claims of each resource 
type by size and associating with each process a count of  the number  of  
resource types requested. 

The main problem with the banker's algorithm is that  it takes a very 
pessimistic view of  the resource requirements: Each process must indicate 
its maximum resource requirements in advance; and, in determining 
whether a situation is safe from deadlocks, the banker assumes that  each 
process may request all its resources at once and keep them throughout  its 
execution. 

Consider the situation shown in Fig. 2.8(a) where three processes, P, Q, 
and R, share 10 resources of the same type which at present are allocated as 
follows: 

cash = 2 
Process: Loan: Claim: 

P 4 4 
Q 2 1 
R 2 7 

Suppose we have an installation with a single printer which is needed 
by practically all processes for short periods of time. If the printer is also 
controlled by the banker, Algorithm 2.6 will decide that  in the above 
situation, it is only safe to grant it to process Q (because Q is the only 
process which can be completed with certainty). So the printer will remain 
idle until Q decides to use it even though P and R could use the printer 
meanwhile. 

For this reason, the printer was excluded from the banker's domain in 
THE multiprogramming system, as was the backing store. In doing so, the 
design group, of course, took a risk of  deadlocking the system. Operating 
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experience has shown that  a storage deadlock occurs about 5 times per 
year. It is resolved by manual removal of user jobs. 

In the following, I will discuss prevention of deadlocks by a hierarchal 
ordering of  requests. 

3.5.3. Hierarchal Resource Allocation 

In a hierarchal resource system, the request and release of resources of  
various types are subject to a fixed sequential ordering. 

A resource hierarchy consists of a finite number  of  levels L1, L2, . . . .  
Lmax. Each level in turn consists of a finite number of resource types. 

Resources needed by a process from a given level must  be acquired by a 
single request. 

When a process has acquired resources at a level Lj, it can only request 
resources at a higher level Lk,  where k > j. 

Resources acquired at a level Lk must be released before the resources 
acquired at a lower level Lj, where k > j. 

When a process has released all resources acquired at a given level, it can 
make another request at the same level. 

In short, resources can be partially requested level by level in one 
direction, and partially released level by level in the opposite direction as 
shown in Fig. 3.19. 

Requests I 

L1 
L2 

L m a x  

Releases 
Fig. 3.19 A hierarchy of resources 
with levels L1, L2, . . . ,  Lmax. Re- 
sources at low levels are requested 
before resources at high levels. Re- 
leases are made in the opposite order 
of requests. 

We assume that  a process will release all resources acquired at a given 
level Lj within a finite time unless it is delayed indefinitely by requests for 
resources at a higher level Lk where k > j. 

Under these assumptions, a deadlock cannot occur in a system with 
hierarchal resource allocation. This is easily proved by induction. 

Suppose that  the resources requested by processes at the level Lj always 
will be acquired and released within a finite t ime for j >i i. We will then 
show that  this also holds for ] /> i - 1. 

The previous hypothesis is clearly true at the highest level Lmax: 
Processes here can never be delayed by requests for resources at higher 
levels because such levels do not  exist. And, since partial allocation within a 
level is prevented, processes cannot be deadlocked with respect to  resources 
at level Lmax. 
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Consider now a process P that  requests resources at the level Li-1.  
Again, since partial allocation is prevented inside level Li-1 ,  processes 
cannot be deadlocked with respect to resources at that  level, provided they  
are always able to release these resources within a finite time after their 
acquisition. This release can only be delayed by requests for resources at a 
higher level Lj, where j />  i. But, according to our hypothesis, such requests 
(and subsequent releases} will always be made within a finite time. So 
requests and releases at level Li- 1 are also made within a finite time. 

It follows by induction that  an indefinite delay of requests is impossible 
at all levels L1 to Lmax. 

An example of  hierarchal resource allocation is a spooling system, as 
shown in Fig. 2.2(b). In this case, there is only one level with three resource 
types: a card reader, a central processor, and a line printer. The system 
forces each user to use these resources strictly sequentially: 

request reader; input; 
request processor; execute; 
request printer; output; 

release reader; 
release processor; 
release printer; 

As another example, consider a common variable v accessed by critical 
regions. One can regard such a variable as a permanent resource for which a 
request and release are made upon entry to and exit from each critical 
region. From the previous theorem, it follows that  deadlocks of  nested 
critical regions can be prevented by a hierarchal ordering of common 
variables vl ,  v2, . . .  , vmax and critical regions: 

region vl  do 
region v2 do 
. . . , . 

region vmax do 
. , * • . ~ 

We now turn to deadlock prevention for temporary resources. The 
discussion will be restricted to systems with hierarchal process communica- 
tion. 

3.5.4. Hierarchal Process Communication 

We will consider a system of processes connected only by message 
buffers. Associated with each buffer is one or more senders and one or 
more receivers. 

It has already been shown in Section 3.4.1 that  senders and receivers 
cannot be deadlocked with respect to a single message buffer. But, if we 
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connect a circle of  processes by message buffers, it is possible for them to 
wait indefinitely for messages from each other. 

To avoid this circularity, we will again resort to a hierarchal system. 
Consider a system in which a fixed number of processes are organized as a 
hierarchy with the levels L1, L2, . . .  , Lmax .  In this hierarchy, processes 
at lower levels, called masters, can supply processes at higher levels, called 
servants, with messages ("requests").  Servants can return answers 
("replies") to their masters in response to messages. 

So messages are sent in only one direction, and answers are sent in only 
the opposite direction. 

Even though the system is hierarchal, there is still a danger of  
deadlocks. Figure 3.20 shows a situation in which two chains of buffers lead 
from a master P to a servant S, (A directed branch from a process node P to 
another process node Q indicates that  P and Q are connected by a buffer, 
with P as a sender and Q as a receiver.) 

empty~ full Fig. 3.20 Four processes--P, Q, R, and 
S--connected by unidirectional buffers 
shown as directed branches. 

The danger here is that  P may be unable to send to R and R unable to 
send to S because the buffers which connect them are both full; and, at the 
same time, S may be unable to receive from Q, and Q unable to receive 
from P because the buffers which connect them are both empty.  So we 
have a deadlock in which 

P waits for R to receive, 
R waits for S to receive, 
S waits for Q to send, and 
Q waits for P to send 

This shows that  when several communicat ion paths lead from one 
process to another, a deadlock can occur even for monologues consisting 
only of messages. 

A deadlock can also occur for conversations consisting of messages and 
answers. Figure 3.21 shows a master P and a servant Q. It is possible that  P 
and Q will be unable simultaneously to send a message and an answer, 
respectively, because both buffers are full. Or they may be unable to 
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full (empty) full (empty) 

Fig. 3.21 Two processes P and Q 
connected by bidirectional buffers 
shown as directed branches. 

receive a message and an answer at the same time because both buffers are 
empty.  So we have a deadlock in which 

P waits for Q to receive (or send), and 
Q waits for P to receive (or send) 

The ground rule of deadlock prevention is: Do not  t ry to send a 
message or answer unless someone will eventually receive it; and do not  try 
to receive a message or answer unless someone will eventually send it. 

We will therefore make the following basic assumption: When a master 
M sends a message to a servant S, the latter will eventually receive it, and (if 
required) send an answer, unless it is delayed indefinitely by one of  its own 
servants. 

Under this assumption, a deadlock cannot occur in a system with 
hierarchal process communicat ion.  This is again proved by induction. 

Suppose that  messages sent to processes at any level Lj always will be 
received, consumed, and (if required) answered within a finite time for j 
i. We will then show that  this also holds for j t> i - 1. 

According to our basic assumption, the previous hypothesis is true for 
any process Pj at the highest level, j = max, because there are no servants to 
delay it. 

Consider now a process Pi-1  at the level Li -1 .  Thanks to the basic 
assumption, P/- 1 will satisfy the hypothesis if it is not  delayed indefinitely 
by a servant Pj at a higher level £4, where j t> i. There are two possibilities 
of such delays: 

(1) P/-1 may be unable to send a message to a servant Pj because a 
buffer is full. But according to the hypothesis, the servant Pj at level Lj 
(where j I> i) will eventually receive one of the messages and enable Pi- 1 
to continue. 

(2) Pi- 1 may be unable to receive an answer from a servant Pj because 
a buffer is empty.  Again, according to the hypothesis, the servant at level Lj 
(where j />  i) will eventually receive the corresponding message and produce 
the answer which enables Pi- 1 to continue. 
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So messages sent to processes at the level L i - 1  will always be received, 
consumed, and (if required) answered within a finite time. It follows by  
induction that  this holds at all levels, L1 to Lmax.  

The following conditions are sufficient to  ensure that  the basic 
assumption about  process communicat ion holds: 

(1) There must  be constant  agreement be tween senders and receivers 
about  where the next  message or answer will be delivered. 

(2) Inside each process, all operations (other  than send and receive) 
that  produce and consume messages or answers must  terminate.  

(3) Messages and answers must  be complete  in the following sense: 
When a process has received a message or an answer, it needs no further 
data f rom the sender to produce the corresponding answer or next  message. 

(4) A message requiring an answer must  only be sent when there is an 
empty  buffer  element in which the answer can be delivered immediately.  

In THE multiprogramming system, the latter requirement  is satisfied by  
a strict alternation between messages and answers exchanged by  two 
processes: When a message is sent, the corresponding answer buffer  is 
always empty ,  and vice versa. 

In the RC 4000 system, the same is achieved by  permitting two 
processes to  exchange a message and an answer in the same buffer  element 
(Brinch Hansen, 1970). 

The above conditions are well-suited to step-wise system construction:  
They can be verified by  examining each process and its senders and 
receivers separately. 

Hierarchal process communicat ion was first studied by  Habermann 
(1967) in connection with THE multiprogramming system. 

The previous results also apply to conditional critical regions if the 
words message and answer are unders tood in an abstract sense: A producer  
sends a message (or an answer) by  making a condition B true and causing 
an event; a consumer receives it by  awaiting the event and making the 
condit ion false again. 

This concludes our analysis of  concurrent  processes. 

3.6. LITERATURE 

No student  of  multiprogramming can afford to miss the monograph in 
which Dijkstra (1965) gave the field a firm foundat ion by  his analysis of  
critical regions, semaphores, message buffers, and deadlocks. 

A discussion of  the use of  message buffers for a step-wise construct ion 
of  multiprogramming systems is found in the paper by  Morenoff  and 
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McLean (1967). The RC 4000 scheme for process communicat ion is 
unusual in the sense that  it considers the sending of  a message and the 
return of  an answer between two processes as a single interaction (Brinch 
Hansen, 1970). 

The paper by  Hoare (1971b) contains a proposal for a restricted form 
of conditional critical regions. It also clearly states the requirements of  a 
well-structured language notat ion for concurrent  processes and resource 
sharing. 

The survey by Coffman, Elphick, and Shoshani (1971) is an excellent 
guide to the literature on deadlocks. 

I also recommend that  you  s tudy the synchronizing concept  coroutines 
invented by  Conway (1963) and illustrated by Knuth (1969). I have not  
included it here because it is mainly suited to a strictly interleaved exe- 
cution of  processes on a single processor. As such, it is a highly efficient and 
conceptually simple tool for the simulation of concurrent processes. 

In recent years, some efforts have been made to formalize the concepts 
of  concurrent computat ions.  The monograph of  Bredt (1970) summarizes 
the works of  Adams, Karp and Miller, Luconi, and Rodriguez. These 
researchers have primarily studied the functional behavior and equivalence 
of  various computat ional  models. 
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PROCESSOR MANAGEMENT 

This chapter explains how concurrent processes and synchronizing 
primitives can be implemented on a computer with one or more processors 
and a single internal store. It concludes with an evaluation of the influence 
of these abstractions on the real-time characteristics of the system. 

4.1. INTRODUCTION 

The previous chapter introduced language constructs for describing 
concurrent processes and their interactions. We will now consider how 
concurrent processes and synchronizing primitives can be implemented on 
present computers. 

The sharing of a computer installation by a group of users is an 
economic necessity. It leads to a situation in which resources become 
scarce--there are not  enough physical processors and storage to simultane- 
ously execute all processes requested by users. The available resources can 
be shared among the processes either by executing them one at a time to 
completion or by executing several of them in rapid succession for short 
periods of time. In both cases, each processor must pause every now and 
then and decide whether t o  continue the execution of its present process or 
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switch to some other process instead. The rule according to which this 
decision is made is called a scheduling algorithm. 

To make the scheduling problem manageable, it is usually considered at 
several levels of  abstraction. The view of scheduling presented here 
recognizes two main levels: 

At the lower level, which may be called hardware management or 
short-term scheduling, the objective is to allocate physical resources to 
processes, as soon as they become available, to maintain good utilization of  
the equipment.  This level of  programming simulates a virtual machine for 
each process and a set of  primitives which enable concurrent  processes to 
achieve mutual  exclusion of  critical regions and communicate  with one 
another. 

At  the higher level of  scheduling, which may be called user management 
or medium-term scheduling, the aim is to allocate virtual machines to users 
according to the rules laid down by  the installation management.  Typical 
tasks at this level are the establishment of  the identi ty and authori ty  of  
users; the input  and analysis of  their requests, the initiation and control of  
computat ions,  the accounting of  resource usage, and the maintenance of  
system integrity in spite o f  occasional hardware malfunction. 

The decision to allocate a resource to a process inevitably favors that  
process (at least temporarily) over other processes waiting for the same 
resource. In other  words, all levels of  scheduling implement  a policy 
towards users and their computat ions.  This is important  to realize because 
policies are among the first things installation managers will wish to modify  
to satisfy users. Consequently,  policies should be clearly separated from the 
logical aspects of  scheduling such as processor synchronization and store 
addressing. 

The present chapter on processor management discusses the short-term 
problems of  scheduling concurrent  processes on a limited number  of  
processors connected to an internal store of  practically unlimited capacity. 

Chapter 5 on store management considers the short-term problems of  
allocating an internal store of  limited capacity to concurrent  processes 
using a larger, slower backing store. 

Chapter 6 on scheduling algorithms analyzes the effect  of  various 
medium-term policies on the average response times to user requests. 

4.2. SHORT-TERM SCHEDULING 

The aim of  the following discussion is to explain how concurrent  
processes are scheduled on a computer  with one or more identical 
processors connected to a single internal store, as shown in Fig. 2.3. The 
number  of  concurrent processes can exceed the number  of  processors, bu t  
the store is assumed to be large enough to satisfy all concurrent  processes at 
any time. 
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We will take a "bo t t om-up"  approach and show: 

(1) how a basic monitor can be implemented by means of  a storage 
arbiter and simple machine instructions; 

(2) how this moni tor  can be used to implement scheduling primitives, 
which initiate and terminate processes and transmit timing signals between 
them; and 

(3) how these primitives in turn can be used to implement concurrent 
statements, critical regions, message buffers, and more general monitors. 

The algorithms in this chapter are written in Pascal at a level of  detail 
that  clarifies the main problems of  process scheduling and suggests efficient 
methods of  implementation. These algorithms represent the machine code 
that  a compiler would produce to implement the concurrent  statements 
and synchronizing constructs defined in Chapter 3. 

4.2.1. Process Descriptions 

Figure 4.1 shows the process states which are relevant at the short-term 
level of  scheduling. Initially, a process is terminated or non-existent. When 
a process is initiated, it enters a queue of  processes which are ready to run. 
When a processor becomes available, the process becomes running. In the  
running state, a process may terminate itself or wait on a timing signal. In 
the latter case, the process will return to the ready state when the signal is 
produced by another process. 

Also shown in Fig. 4.1 is a list of  the primitives which cause the 
transitions between the states. The following explains how these scheduling 
primitives are implemented. 

ready 

6 1 

waiting terminated 

1. init iate process 
2. run process 
3. terminate process 
4. preempt process 
5. wait 
6. signal 

running 

(a) (b) 

° Fig. 4.1 The possible process states (a) and the primit ives 
(b) that cause the transitions between them. 
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Our starting point  is the trivial case in which each processor is dedicated 
to  perpetual execut ion of a single process. In other  words, only the running 
state is relevant. 

We assume that  all processes are represented in the common  store by an 
array called the process table. An entry in this table is called a process 
description. It  defines the initial values of  the processor registers (including 
the instruction counter)  for  a given process. 

type  P = 1 . .max imum number of  processes; 
process description = record 

register state: R ; 
end 

var process table: array P of  process description; 

Each processor has a register containing the index of  the process it runs. 
The instruction execution cycle of  a processor is as follows: 

vat process: P; registers: R; store: T; 
repeat 

execute instruction (registers, store); 
forever 

The details of  instruction execut ion are irrelevant here. 
The next  step is to consider a dynamic system in which processes are 

initiated by other  processes and terminated by themselves after  a finite 
time. 

The number  of  processes can now vary. So we introduce a sequence 
called terminated, which contains the indices of  process descriptions no t  
used at the moment :  

• vat terminated: sequence of  P; 

It  is possible that  the number  of  processes sometimes exceeds the 
number  of  processors. So we must  also introduce a queue of processes tha t  
are ready to  run when a processor becomes available: 

• vat ready: queue of  P; 

When a running process terminates itself, its processor can be assigned 
to  a process in the ready queue. It  is possible for  several processors to 
become available simultaneously and t ry  to refer to process descriptions in 
the ready queue at the same time. Consequently,  we must  ensure mutual 
exclusion of  operations on process descriptions and the ready queue; 
otherwise, the results of  process initiation and terminat ion will be 
unpredictable.  
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Critical regions have been implemented in hardware for many years on 
computers  in which program execution and input /output  can proceed 
simultaneously. A sequential switching circuit, called an arbiter, guarantees 
that  at any instant in time either the central processor or a peripheral 
device, but  not  both,  can access the internal store to read or write a single 
word. If processors try to overlap their access, the arbiter enables one of  
them to proceed and delays the rest for the few microseconds it takes to ac- 
cess the store. This technique has been called cycle stealing or interleaving. 

So the machine instructions load and store are implemented as critical 
regions: 

, vat store: shared array index of  word; 
address: index; register: word; 

region store do register:= store(address); 
region store do store(address):= register 

We will now assume that, apart from this hardware scheduling of  access 
to single store words, the computer  also includes another arbiter to which 
all processors are connected. This device along with two machine 
operations enter region and leave region is a hardware implementation of  
critical regions performed on process descriptions and queues. These will be 
the only critical regions which use the busy form of waiting. To make this 
tolerable, the duration of  such regions must be short. 

On top  of  this, we will construct  primitives that  enable processes to 
establish other critical regions that  use the non-busy form of waiting. 

As an intermediate tool, we will first implement a basic monitor  
concept which in turn can be used to implement specific operations on 
process descriptions and queues. 

• 4.2.2. A Basic Mon i t o r  

Process descriptions and scheduling queues will be maintained by  a 
basic monitor which can be called by running processes. 

A calling process is identified by the process register in its processor. 
A monitor call is made by loading the relevant parameters in registers 

and then executing a machine instruction: 

monitor call(entry) 

which has the following effect:  

e n t e r  region 
process tab le (process ).register state:= registers; 
c a s e  entry o f  . . .  e n d  
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It enters a critical region, stores the register values of the calling process in 
its description, and jumps to a moni tor  procedure. 

The basic moni tor  will always complete a call by executing a machine 
instruction: 

monitor exit(candidate) 

which has the following effect:  

q process := candidate; 
registers: = process table (process ).register state; 
leave region 

It assigns the value of  a variable candidate to the  process register, loads the 
other  registers from the corresponding process description, and leaves the 
critical region. 

We will use the following notat ion to define a basic moni tor  procedure 
Q, which operates on a shared variable v consisting of  process descriptions 
and queues: 

var v: shared V; 

procedure Q ( . . . ) ;  
vat candidate: P; 
region v do 
begin 

S; continue(candidate); 
end 

The value of  the register which identifies a calling process is defined by  
a standard function process: 

funct ion process: P 

This simplified moni tor  concept  will now be used to implement  
scheduling primitives for concurrent  processes. 

4.2.3. Process Implementation 

-: Once the system has been started, there must be at least one running 
process which can accept requests from users and initiate their processes. 

• So we assume that one of  the processors initially runs this basic process. 
The other  processors will initially run" idling processes which continue 

to  call the basic moni tor  until other  processes (initiated by  the basic 
process) are ready to run: 
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"idling process" 
repeat run process forever 

It is important  that  the idling is done by processes outside the monitor.  
This permits the basic process to enter the monitor  and initiate new 
processes. 

The basic monitor  procedure run process, called by an idling process, is 
defined by Algorithm 4.1. It examines the ready queue: If that  queue is 
empty,  the idling process continues; otherwise, one of  the ready processes 
continues. 

- A L G O R I T H M  4. 1 The Scheduling o f  a Ready Process 

const idling = rain(P); 
vat v: shared 

record 
process table: array P of  process description; 
terminated: sequence of  P; 
ready: queue o f  P; 

end 

, function process: P; 

' procedure select(var candidate: P; ready: queue of  P); 
begin 

if empty(ready) then candidate := idling 
else remove(candidate, ready); 

end 

, procedure run process; 
vat candidate: P; 
region v do 
begin 

select(candidate, ready); 
"continue(candidate); 
end 

As an example of process initiation, consider a concurrent statement 
which is both preceded by and followed by sequential statements: 

SO; 
cobegin S1; $2; . . .  ; Sn coend 
Sn+ l; 

This construct is implemented as follows: The process that  executes 
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statement SO initiates the concurrent processes S1, $2, . . .  , Sn by  calling 
a moni tor  procedure,  initiate process ,  n times and then calling another 
moni tor  procedure,  delay process ,  which delays it until all the concurrent  
processes are terminated. When the delayed process continues, it executes 
s tatement Sn+ l : 

SO; 
for every Si do init iate process( ini t ial  s tate);  
delay process;  
S n + l ;  

The parameter to init iate process  defines the initial register values of  a 
new process. 

To implement these moni tor  procedures, a process  descr ip t ion  is 
extended to  contain the following components:  

° register s tate  defines the register values of  the given process. 

• par en t  defines the process which initiated the given process. 

° chi ldren defines the number  of  processes initiated by  the given 
process, but  not  ye t  terminated. 

• de layed  defines whether or not  the given process is delayed 
until all its children have been terminated. 

The monitor  procedure init iate process  is defined by  Algorithm 4.2. It 
initializes a process description and enters its index in the ready  queue. 
Finally, it increases the number  of  children of the calling process by  one 
and continues that  process. 

The moni tor  procedure delay process  is defined by Algorithm 4.3. If 
the number  of  children of  the calling process is greater than zero, the 
calling process is delayed and its processor is allocated to another process; 
otherwise, the calling process continues. 

Each of  the children processes S1, $2, . . .  , Sn within a concurrent  
s tatement executes a s tatement  Si and calls a moni tor  procedure,  t e rmina te  
process:  

Si; 
t e rmina te  process;  

This moni tor  procedure is defined by Algorithm 4.4. It releases the 
description of  the calling process and decreases the number  of  children of  
its parent by one: If the number  of  children becomes zero and the parent is 
delayed, the parent is then continued; otherwise, the processor is allocated 
to another process. 
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ALGORITHM 4.2 The Initiation o f  a Child Process 

type process description = reco rd  
register state: R;  
parent: P; 
children: integer; 
delayed: boolean; 

end 

procedure initiate process(initial state: R); 
vat new: P; 
region v do  
begin 

get(new, terminated); 
with  process table(new) do  
begin  

register state := initial state; 
parent: = process; 
children:= O; 
delayed:= false; 

end 
enter(new, ready); 
wi th  process table(process) do  
children := children + 1; 
con tin ue(process ) ; 

end 
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A L GORI THM 4.3 The Delay of  a Parent Process 

• p r o c e d u r e  delay process; 
vat candidate: P; 
reg ion  v do  
begin  

wi th  process table(process) do  
f f  children > 0 t h e n  
begin  

delayed := true; 
select(candidate, ready); 

end 
else candidate := process; 
con tin ue ( cand ida re); 

end 
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ALGORITHM 4.4 The Termination of a Child Process 

procedure terminate process; 
v a t  candidate: P; 
region v do 
begin 

candidate := process table(process), parent; 
put(process, terminated); 
with process table(candidate) do 
begin 

children: = children - 1; 
if children = 0 & delayed then 
delayed := false else 
select( candida re, ready); 

end 
continue(candidate); 

end 

Chap. 4 

4.2.4. Semaphore and Event Implementation 

The basic moni tor  can also be used to implement primitives for process 
interaction. Since the basic moni tor  uses the busy form of waiting (in 
interactions with the arbiter), these primitives should be as simple as 
possible. 

As an example, we will implement the wait and signal operations for a 
fixed number  of  semaphores. The semaphores are represented by  an array 
inside the basic monitor.  Each semaphore consists of  two components:  

The first component  is an integer counter, which defines the number  of  
signals sent, bu t  no t  ye t  received. Its initial value defines the initial number  
of  signals. It is increased by  one when a signal operation has been 
completed and decreased by one when a wait operation has been 
completed.  

To satisfy the semaphore invariant, which states that  signals cannot  be 
received faster than they are sent, the wait and signal operations must  
ensure that  the counter remains greater than or equal to zero (see Section 
3.4.2). 

The second component  is a queue of  processes waiting to receive signals 
no t  ye t  sent. Initially, this queue is empty.  

The monitor  procedure wait is defined by  Algorithm 4.5. If the 
semaphore counter is greater than zero, it is decreased by  one and the 
calling process continues; otherwise, the calling process is delayed. 

The monitor  procedure signal is also defined by  Algorithm 4.5. If one 
or more processes are waiting in the semaphore queue, one of  them is 
transferred to the ready queue; otherwise, the semaphore counter  is 
increased by  one. The calling process continues in any case. 
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, ALGORITHM 4.5 The Semaphore Operations Wait and Signal 

var v: shared record 
. . . 

semaphore: array S of  
record 

counter: integer; 
waiting: queue of  P; 

end 
end 

procedure wait(s: S); 
var candidate: P; 
region v do 
begin 

with semaphore(s) do 
if counter > 0 then 
begin 

counter: = counter - 1; 
candidate := process; 

end else 
begin 

enter(process, waiting); 
select(candidate, ready); 

end 
continue(candidate); 

end 

procedure signal(s: S); 
var candida te :  P; 
region v do 
begin 

with semaphore(s) do 
ff not  empty(waiting) then 
begin 

remove(candidate, waiting); 
enter(candidate, ready); 

end 
else counter:= counter + 1; 
continue(process); 

end 
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' The wait and signal operations can be used to implement arbitrary critical 
regions which use the non-busy form of  waiting as defined by  Algorithm 
3.4. 
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Algorithm 4.6 shows the implementation of "event variables and the 
operations await and cause event. An event variable consists of two 

• ALGORITHM 4.6. The Event OperationsAwaitand Cause 

vat v: shared record 
o • • 

event:  array E o f  
record 
• reentry: S~ ~ 
• delayed: queue of P; 
end 

end 

procedure await(e: E); 
v a r  candidate: P; 
region v do 
begin 

with event(e) do 
begin 

enter(process, delayed); 
with semaphore(reentry) do 
if not empty(waiting) then 
begin 

remove(candidate, waiting); 
en ter( candidate, ready); 

end 
else counter: = counter + 1; 

end 
select(candidate, ready); 
continue(candidate); 

end 

procedure cause ( e : E ) ; 
v a t  candidate: P; 
region v do 
begin 

with event(e) do 
with semaphore(reentry) do 
while not empty(delayed) do 
begin 

remove(candidate, delayed); 
en ter( candidate, waiting); 

end 
con tin ue(process ) ; 

end 
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components:  a queue of processes waiting for an event and an index of  a 
semaphore on which these processes must wait to reenter their critical 
regions after the occurrence of an event. 

The await procedure enters the calling process in an event queue and 
performs a signal operation on the associated semaphore to enable another 
process to enter its critical region. 

The cause procedure transfers all processes from an event queue to an 
associated semaphore queue. As defined here, the processes are transferred 
one at a time from one queue to the other; however, in practice, the whole 
event queue would be detached from the event variable and linked to the 
semaphore queue in one operation. The calling process, which is still inside 
its critical region, continues. 

The four primitives, wait, signal, await, and cause, permit the 
implementation of  conditional critical regions as defined in Section 3.4.7. 
And conditional critical regions in turn can be used to implement other 
synchronizing tools such as message buffers and arbitrary monitors, as 
shown by Algorithms 3.6 and 3.12. 

Without going into further detail, it should be clear that  the 
synchronizing concepts defined in Chapter 3 can be built on top of  the 
basic monitor.  

There is just one problem that  remains: How can we preempt running 
processes which threaten to monopolize processors? This is discussed in the 
following section. 

4.2.5. Processor Multiplexing 

In the previous discussion, we assumed that  once a process has started 
to run, it continues to do so until it explicitly releases the processor again 
(by a terminate, delay, wait, or await operation). This is called 
non-preemptive scheduling. It makes sense when one can rely on processes 
to terminate themselves within a reasonable period of  time after their 
initiation. This assumption may be justified in dedicated systems with 
highly reliable programs, but in general it is not  realistic. In most cases, it 
must be possible to force a process to terminate; otherwise, a programming 
error might cause it to run forever. 

Even when programs are reliable, it is still valuable to be able to 
interrupt the execution of  a process temporarily to allocate its processor to 
a more urgent process and continue the interrupted process later when the 
more urgent one terminates. This is called preemptive scheduling with 
resumption. It is the subject of the following discussion. 

In the design of Algorithms 4.1 to 4.6, we made the implicit 
assumption that  running processes take priority over ready processes: A 
process in the ready queue is only run when a running process releases its 
processor. This is quite acceptable as long as the number of processes does 
not  exceed the number of  processors, because in that  case, there is always 
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an idle processor ready to run a process when it is activated by some other 
process. But, when the number of processes exceeds the number of  
processors, scheduling must reflect the policy of management towards user 
processes rather than their random order of arrival in the ready queue. 

As a first improvement,  we can assign a fixed priority to each process 
and keep the scheduling queues ordered accordingly. Whenever a process is 
activated by another process, the basic monitor  should compare the 
priorities of  the two processes and continue the more urgent one after 
transferring the other one to the ready queue. 

The priorities divide the processes into a finite number of priority 
groups numbered 1, 2, . . .  , n, with small integers denoting high priority. 
In a given queue, processes are scheduled in their order of priority; 
processes of  the same priority are scheduled in their order of arrival in the 
queue. 

A queue q of elements of  type T divided into n priority groups can be 
declared as follows: 

type priority = 1. .  n 
var q: queue priority of  T 

The standard procedure 

enter(t, p, q) 

enters an element t of  type T with the priority p in a queue q. 
The standard procedure 

remove(t, p, q) 

removes the most urgent element t of  type T from a queue q and assigns its 
priority to a variable p. 

We also need two boolean functions that  determine whether or no t  a 
given queue q is empty  or holds an element which is more urgent than 
another one with a given priority p:  

empty(q) urgent(p, q) 

The priority of  a process can be defined when it is initiated. 
A further refinement is to permit dynamic priorities, priorities tha t  

change in time. It would be ideal if each processor could evaluate the 
priorities of its running process and all ready processes after each in- 
struction executed to determine which process should run next. This 
is, of  course, impractical: Processors would then spend more time 
evaluating priorities than running processes. This is the basic dilemma of 
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preemptive scheduling: Preemption is necessary to give fast response to 
urgent processes, but  the amount  of  processor time required to evaluate 
priorities and switch from one process to another sets a practical limit to 
the frequency of  preemption.  

A reasonable compromise is to let priorities remain fixed over the 
intervals of  time considered at the short-term level of  scheduling, but  
permit them to vary slowly over the intervals of  time considered at the 
medium-term level of  scheduling. In other  words, priorities can only change 
after reasonable periods of  useful execution. 

To achieve this effect,  each processor is supplied with a timing device. 
A timer is a counter  that  is decreased at a constant rate; when it becomes 
zero, a signal is set in a register, and the timer starts another period of  
counting: 

~/~ var interrupt: shared boolean; 
timer: integer; 

repeat 
timer:= interval desired; 
repeat 

timer: = timer - 1; 
until timer = O; 
region interrupt do interrupt:= true; 

forever 

The timing signal, which is called an interrupt, is examined by a 
processor in each instruction execution cycle without  any noticeable effect  
on its speed of  execution:  

• vat interrupt: shared boolean; 
process: P; registers: R; store: T; 

repeat 
region interrupt do 
if interrupt then 
begin 

interrupt: = false; 
o monitor call(preemptprocess); 
end 
execute instruction(registers, store); 

forever 

The processor responds to an interrupt by  resetting the interrupt 
register to false and calling a basic moni tor  procedure,  preempt process. 
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The monitor  can now preempt the running process, rearrange the ready 
queue according to a dynamic scheduling algorithm, and resume the most 
urgent process: 

' procedure preempt process; 
vat candidate: P; 
region v do 
begin 

en ter(process, ready); 
rearrange (ready); 
remove(candidate, ready); 
continue(candidate); 

end  

This form of scheduling, whicl~ leads to frequent preemption and 
resumption of running and ready processes, is called processor multi- 
plexing. A simple form of  processor multiplexing is the round-robin 
algorithm described in Section 1.2.4. 

The purpose of an interrupt is to replace a complicated scheduling 
algorithm with the simplest possible algorithm: The evaluation of  a single 
boolean after each instruction execution. An interrupt is a signal to a 
processor from its environment that  indicates that  priorities should be 
reevaluated. 

Although the previous instruction execution cycle looks plausible, it is 
actually highly dangerous. Suppose a processor is inside a critical region 

enter  region . . . leave region 

executing a basic monitor  procedure. In the middle of this, an interrupt 
may cause the processor to t ry to reenter the monitor:  

entry := preempt process; 
enter  region 

. • • 

The result is a deadlock of the processor. 
• This problem is solved by introducing two states of execution inside a 

processor: the enabled state, in which interrupts are honored,  and the 
inhibited state, in which interrupts are ignored. Interrupts are inhibited 
and enabled upon entry to and exit from the basic monitor,  respectively. 
This version of a central processor and a monitor  call and exit is defined by 
Algorithms 4.7 and 4.8. 

If a computer  has only a single processor which is multiplexed among 
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ALGORITHM 4.7 The Instruction Execution Cycle of a 
Processor With Interrupts 

var interrupt: shared boolean; enabled: boolean; 
process, initial process: P; 
registers: R; store: T; 

begin 
region interrupt do 
begin 

in terrup t := false; 
enabled: = true; 
process := initial process; 
registers: = process table(process).register state; 

end 
repeat 

region interrupt do 
if interrupt & enabled then 
begin 

interrupt: = false; 
moni tor  call(preempt process); 

end 
execute instruction(registers, store); 

forever 
end 
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ALGORITHM 4.8 A Monitor Call and Exit 

"moni tor  call(entry)" 
enter region 
enabled: = false; 
process table(process ).register state := registers; 
case entry of  . . .  end 

"moni tor  exi t(candidate)" 
process: = candidate; 
registers := process tab le (process ).register state; 
enabled: = true; 
leave region 

concurrent processes, the operations enter region and leave region serve no 
purpose. But the ability to inhibit interrupts is still necessary to ensure tha t  
monitor  calls exclude one another in time. 

So far, we have only considered short-term scheduling of  central 
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processors. Interrupts are also used to control  short-term scheduling of  
peripheral devices. Inpu t /ou tpu t  between peripherals and internal storage 
can be initiated by  machine instructions executed within the basic monitor.  
The peripherals signal the complet ion of  data transfers by  interrupts, which 
enable the basic moni tor  to continue processes Waiting for input /output .  

So in practice, several interrupts are connected to a central processor: 

type  index = 1 . . m ;  
vat interrupt: shared array index of  boolean; 

It is therefore necessary to extend the moni tor  procedure preempt  process 
with an identification of  the interrupt which caused the moni tor  call: 

procedure preempt  process(cause: index) 

Since the processors are identical and use the same 
irrelevant which processor a given interrupt  occurs on. 

monitor ,  it is 

4.2.6. Timing Constraints 

Short-term scheduling as discussed here is an implementat ion of  the 
well-structured concepts of  multiprogramming defined in Chapter 3. Above 
this level of  programming, the number  of  physical processors and the use of  
interrupts are as irrelevant as the logic circuits used to implement  an adder. 

But  while we gain conceptual  clarity from this abstraction, we also lose 
control of  the finer details of scheduling at higher levels of  programming. 
So the scheduling decisions taken at the short-term level determine the rate 
at which a computer  is able to respond to real-time events. 

To get an idea of  how serious this problem is, we will assume that  each 
processor has 8 registers and that a store word can be accessed in 1 psec. An 
outline of  the machine code required to implement  scheduling primitives 
on a typical computer  shows roughly the following execution times: 

hardware level 

store access (per word) 

basic moni tor  level 

1 psec 

interrupt 20 psec 

process level 

wait or signal 0.05-0.25 msec 
arbitrary critical region 0.1 -0.5 msec 

Process initiation a n d  termination within a concurrent  s ta tement  
require about  0.5 msec per process (when store allocation time is ignored!). 
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" It is evident that  the bet ter  the abstractions become,  the more we lose 
control of  short-term scheduling. Within the basic monitor,  it is possible to 
respond to about  50,000 events per second. Above this level, guaranteed 
response time to real-time events is increased by  a factor between 12 and 
25. 

Although these figures are acceptable in most  environments, there are 
certainly applications which require response to more than 2000-4000 
events per second (for example, speech recognition). 

If priorities are dynamic, the scheduling decisions made after a timer 
interrupt will take at least 0.25 msec for the simplest algorithm (such as 
round-robin). So it is unrealistic to change priorities more frequently than, 
say, every 10 msec (which means that  2.5 per cent of  the processor time is 
used to control processor multiplexing). If processors are mult iplexed at 
this rate among ready processes by simple round-robin scheduling, 
guaranteed response by processes to real-time events is suddenly reduced to 
a multiple of  10 msec, or less than 100 events per second! 

It was this drastic reduction of  real-time response caused by short-term 
scheduling that  I had in mind when I made the s tatement  in Section 4.1 
that  "all levels of  scheduling implement a policy towards users and their 
computations.  This is important  to realize because policies are among the 
first things installation managers will wish to modify  to satisfy users." 

These figures can no doubt  be improved somewhat  by additional 
hardware support .  Nevertheless, the decisions made at the short-term level 
of  scheduling cannot  always be ignored at higher levels of  programming, so 
a realistic designer must  also be prepared to change this part of the system 
for certain applications. 

4.2.7. Conclusion 

Our intellectual inability to analyze all aspects of  a complex problem in 
one step forces us to divide the scheduling problem into a number  of  
decisions made at different levels of  programming. The criteria for a 
successful decomposi t ion of  the scheduling problem are no t  well- 
understood at the moment .  

The danger of  the abstraction achieved by short-term scheduling is that  
the decisions which determine the efficiency of  hardware utilization and 
the rate at which the system is able to respond to external events are made 
at a very low level of  programming, which is hard to influence at higher 
levels precisely because it hides the physical characteristics of  the system. 

Practical experience with operating systems has shown that  some 
short-term policies--in particular those which involve store multiplexing-- 
can have a disastrous effect  on the system as a whole and make any a t tempt  
to control the mode of  operation at the management level futile. Part o f  
the answer to this problem is that  there must  be a strong interaction 
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between the various levels of  scheduling. A reasonable approach is to let the 
medium-term scheduler assign priorities that  are used by the short-term 
scheduler to select candidates for available resources. At the same time, the 
short-term scheduler can influence the decisions of the medium-term 
scheduler by  collecting measurements of the actual utilization of  resources 
and the waiting times of  processes. 

4.3. LITERATURE 

The thesis by  Saltzer (1966) is an excellent analysis of short-term 
scheduling. Saltzer made a clear distinction be tween the hardware and user 
management levels of scheduling. The recognition of  the ready, running, 
and waiting states is also due to him. Saltzer implemented basic critical 
regions by  means of  two instructions, lock and unlock (which correspond 
to enter region and leave region). Other process interactions were handled 
by a fairly restrictive set of  primitives, block and wakeup, which enable a 
process to delay itself until another process wakes it up. 

Wirth (1969) explains the implementation and application of  the 
scheduling primitives initiate process, terminate process, wait and signal 
(which he calls fork, join, P, and V) in the algorithmic machine language PL 
360. He points out  the danger of forcing programmers to think in terms of  
interrupts instead of  well-structured primitives. 

In the Venus operating system described by Liskow (1972),  processor 
multiplexing is handled almost exclusively by  hardware: wait and signal are 
available as machine instructions that  maintain process queues ordered by  
priority. 

A paper by  Lampson (1968) contains an interesting proposal to 
centralize all scheduling decisions in a single, microprogrammed computer  
to which all external interrupts are connected.  The scheduler can send a 
single interrupt to each of  the other  processors indicating that  they  should 
preempt  their running processes and resume ready processes of  higher 
priority. The use of  small processors to perform specific operating system 
tasks may well turn out  to be more economical for multiprogramming than 
the use of  a system consisting of  identical processors, each of  medium or 
large size. 

Hoover  and Eckhart  (1966) describe the influence of  extreme real-time 
requirements in a telephone switching system on the choice of  a short-term 
scheduling strategy. Their scheduler differs from those which preempt  less 
urgent processes unconditionally in favor of  more urgent processes in the 
following way: The scheduler periodically examines all ready processes; a 
scheduling cycle is divided into a number  of  phases, each dedicated to 
non-preemptive execution of  processes of  a given priority. In each cycle, all 
priority levels are served at least once, and high priority is achieved by 
dedicating several phases to a given class of  processes. In this way, excessive 
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delay of  processes of  lower priority is avoided. This strategy is realistic 
when the processing time of  each process is short compared to the response 
times required. 

Brinch Hansen (1970) describes the RC 4000 multiprogramming 
system, which includes a set of  scheduling primitives called create, start, 
stop, and remove process. These primitives, implemented by  a monitor,  
enable processes to schedule other  processes according to any strategy 
desired at the medium-term level. This design is described and commented  
on in detail in Chapter 8. 
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STORE MANAGEMENT 

This chapter describes techniques of  sharing an internal store of  limited 
capacity among concurrent  computat ions,  with and wi thout  the use of  a 
larger, slower backing store. It  summarizes current store technology and 
explains the influence of  recursive procedures, concurrent  processes, and 
dynamic relocation on store addressing. It concludes with an analysis of  
placement algorithms and store multiplexing. 

Concurrent  processes share two vital resources: processors and storage. 
Processor management  has already been discussed. The subject  of  this 
chapter is store management--the techniques used to share an internal store 
of  limited capacity among concurrent  computations.  

Store management decisions are made at all levels of  programming. We 
will again distinguish between two main levels: medium-term and 
short-term store management.  

Medium-term store management implements the service policy towards 
users. It maintains a queue of  programs and data on a backing store and 
decides when computat ions  are initiated and terminated. It also preempts  
and resumes computat ions  during their execution to satisfy more  urgent 
user requests immediately.  

Short-term store management transfers programs and data be tween a 
backing store and an internal store and assigns processors to them as 
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directed by  medium-term management.  It tries to utilize the internal store 
efficiently by:  (1) limiting the frequency of  data and program transfers; (2) 
keeping computat ions  in the internal store which can run while others are 
waiting for  input /output ;  and (3) transferring data and programs to the 
internal store only when computat ions  actually need them. 

In this chapter, we concentrate  on short-term store management.  To 
share resources efficiently, a designer must  depend on his knowledge of  
their technology and expected usage. So we begin with two sections 
on store technology and addressing. They are fol lowed by two sections on 
placement algorithms and store multiplexing, describing how internal 
storage is assigned to programs and data and how the latter are transferred 
back and forth between internal store and backing store during execution.  

5.1. STORE TECHNOLOGY 

5.1.1. Store Components 

A store is used to retain data and programs until they  are needed during 
execution.  It is divided into a finite set of  components  called locations. 
Each location can represent any one of a finite set of data values. These 
values are recorded and obtained by  write and read operations. 

Following Bell and Newell (1971),  we will characterize various store 
types  by  the manner in which locations can be accessed efficiently. 

A store with sequential access consists of  locations which can only be 
accessed in sequential order. The store is posi t ioned at its first locat ion by  a 
rewind operation. Read and write operations access the current location 
and posit ion the store at its next  location: 

var store: file o f  V; value: V; 

rewind(store); 
read(value, store); 
write(value, store); 

Sequential access is used mainly for large files stored on detachable 
media such as paper tape, punched cards, printed forms, and magnetic tape. 
It is the cheapest and slowest me thod  of  storage. 

A store with direct access consists of  locations which can be accessed in 
arbitrary order by  indexing: 

vat store: array A of  V; address: A; value: V; 

value := store(address); 
store(address) := value; 
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Most computers  use two kinds of  directly accessible stores: 

(1) An internal store gives fast, direct access to locations called words. 
It is used to hold data and programs during execution. The store medium is 
usually fast magnetic cores. Integrated circuits are used to implement  a 
small set of  very fast locations called registers. 

In an internal store, the time required to access a location is 
independent of the location's physical position. This is called random access. 

(2) A backing store gives slower, direct access to locations consisting of  
blocks of  words. It is used to hold data and programs until computat ions  
need them in the internal store. The store medium is usually slow magnetic 
cores or rotating magnetic surfaces such as drums and disks. 

In a rotating store, a block can only be accessed when the rotat ion of  
the medium brings it under an access head. This is called cyclic access. 

On some disks, the access heads can move linearly across the rotating 
surface. This is called sequential-cyclic access. 

The stores ment ioned can be characterized more precisely by  the 
following physical properties: 

store capacity the number  of  locations 
location length the number  of bits per location 
access time the average time required to read 

or write the value of  a location 

The figures below are typical for present computers.  I have bhosen a 
representative word length of  32 bits and a block length of 1 K words. 

store medium capacity access time 

(K words) (msec/K words) 

integrated circuits 0.01-1 0.1 
core 10-1000 1-5 
drum 1000-10,000 10-30 
disk 10,000-100,000 100-1000 
magnetic tape 10,000-100,000 1000-100,000 

For stores with sequential and cyclic access, the access time consists of  
a waiting time required to position an access head in front of a block and a 
transfer time required to transfer the block to or from the store. 

store medium waiting time transfer time 

(msec) (msec/K words) 

drum 2-10 5-20 
disk 100-1000 5-20 
magnetic tape 1000-100,000 20-100 
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5.1.2. Hierarchal Stores 

The store in present computers  is usually a hierarchy o f  store 
components of  different types. An example is shown in Fig. 5.1. At the 
bo t tom of  the hierarchy is a fast internal store of moderate  capacity. Above 
this level, we find a slower, larger backing store. And, on top  of  this, a still 
slower and much larger file store. 

File Magnetic tape 
store Disk 

Backing Drum 
store Slow cores 

11 
I 

Internal I Fast cores 
store I Integrated circuits 

Fig. 5.1. A store hierarchy. 

The motivation for this variety of  store components  is economic:  The 
cost of  storage is roughly proport ional  to the store's capacity and access 
rate. It would be prohibitively expensive to maintain all user programs and 
data permanently in an internal store. Instead, users and operating systems 
try to distribute programs and data at various levels in the store hierarchy 
according to their expected frequency o f  usage. 

An example of  hierarchal storage was ment ioned in connection with the 
SDC Q-32 system (Section 1.2.4): A disk of  4000 K words with an average 
access t ime of  225 msec is used to hold data and program files between 
computat ions.  When a user wishes to execute  a program, it is transferred 
from the disk to  a drum of 400 K words  with an average access t ime of  40 
msec. From the drum, the program is periodically transferred to a core 
store of  65 K words to receive short  slices of  processor time. 

Some people have expressed the hope that  it may eventually become 
economical  to  build internal stores that  are an order of  magnitude larger 
than present core stores and therefore eliminate the need for backing 
stores. I believe that,  although internal stores may become as large as that,  
it  will always be economically attractive to use still larger and slower 
backing stores to  hold less frequently used data. The hierarchal structure of  
stores is no t  caused by  inadequate technology--i t  is a sound principle for 
efficient resource utilization. 
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5,2. STORE ADDRESSING 

Store management raises three basic questions: 

. \  
(1) What is the appropriate unit of  store assignment to  computat ions? 

(2) How are these units placed in an internal store prior to their use? 

(3) How are they  referenced by computat ions during execution? 

The following discussion of  program segmentation and store addressing 
gives some of  the answers to questions (1) and (3). Subsequent  sections on 
placement algorithms and store multiplexing deal with question (2). 

I assume that programs are written in a well-structured language which 
enables a compiler and an operating system to take advantage to some 
extent  of  predictable store requirements. I also expect  a compiler to assign 
store addresses correctly to programs so that  there is no need to check 
them during execution. 

5.2.1. Program Segmentation 

To the user of  a high-level programming language, a virtual store 
consists of  data identified by  textstrings called identifiers. It is a mapping 
of  identifiers into values: 

virtual store: identifier ~ value 

To the designer of  computer  systems, a real store consists of  locations 
identified by  consecutive numbers called addresses. It is a mapping of  
addresses into values: 

real store: address ~ value 

Before a program is executed,  locations must be assigned to it in the real 
store. This so-called store allocation defines the intermediate mapping of  
identifiers into addresses: 

store aUoca tion : identifier ~ address 

Store allocation is performed partly by a compiler, partly by  an 
operating system. 

Practical methods of store allocation try to achieve two conflicting 
goals: (1) to access a store as fast as possible during execution;  and (2) to 
share it among concurrent  jobs. 
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The fastest access is achieved by  a f ixed allocation of storage to 
programs at compile time. This enables programs to access locations 
directly during execution. 

But,  when a store is shared by jobs requested and terminated at 
unpredictable times, it is impossible to know the location of  available 
storage in advance of  program execution. So sharing requires a dynamic 
allocation of storage at run time. 

To make sharing possible and still get reasonably fast access, the 
following compromise is made: 

Programs and data are divided into a few large segments. Each segment 
consists of  related data which can be placed anywhere in the store and 
addressed relative to a common origin, as shown in Fig. 5.2. The origin and 
number  of  locations of  a segment are called its base address and length, 
respectively. 

Length I 

Base address v b P 

~/// / / / / / /~ • elative address 

Fig. 5.2. A segment identified by a base address and a 
length, and a location within the segment identified by a 

relative address. 

Base addresses are unique within the entire store, but  relative addresses 
are only unique within segments. They are called real and virtual addresses, 
respectively. 

The division of  programs into segments and the replacement of  
identifiers by  relative addresses is done by  a compiler. When segments are 
needed during program execution,  an operating system assigns locations to 
them and defines their base addresses. 

The number  of  base addresses can be kept  small if the segments are 
kept  suffi.~iently large. This makes it practical to store base addresses in 
directly accessible locations or registers during execution in order to ensure 
fast access. When a compiled program refers to a segment locat ion by  its 
relative address, a central processor automatically adds the base address of  
the segment and accesses the location directly. 

So efficient sharing of  an internal store with direct access requires 
segmentation of  programs at compile t ime and address mapping at run 
time: 

virtual store: identifier ~ virtual address ~ real address -~ value 

This is the main idea behind current techniques of  store allocation. 
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Since each instruction requires address mapping, the latter should 
obviously be made as simple as possible. To cite Wirth (1971b):  "The 
efficiency of  a system stands or falls with the efficiency of  the address 
calculations." 

We will discuss three independent  computational requirements which 
lead to  increasingly complicated forms of  addressing: 

recursive procedures 
concurrent processes 
dynamic relocation 

The first two requirements should be well-known to you,  but  the third 
one may be new. So far, we have only considered the need to assign storage 
to segments immediately before execution starts. An extension of  this 
technique is needed when an internal store is multiplexed among several 
computat ions by  transferring segments back and forth between internal 
store and backing store: It must  now be possible to place segments in 
different locations and redefine their base addresses during execution. This 
is called dynamic relocation. 

5.2.2. Single-segment Computations 

The simplest case is a computat ion which only requires a single 
segment. 

Sequential, Non-recursive Computations 

Consider the following program: 

procedure R ; 
procedure S; 
begin . . .  end 

begin , . .  S; . . .  end 

label Q begin . . .  R;  . . .  end 

It consists o f  a s tatement  Q, which calls a procedure R;  R in turn calls 
another procedure S. 

The natural units of  segmentation are: (1) the statements which can be 
compiled into invariant machine code; and (2) the variables declared inside 
a procedure. 

Storage for the program segment is needed throughout  the computa-  
tion. Storage for a data segment is needed only while the computa t ion  is 
executing the corresponding procedure.  
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Data segment 
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Fig. 5.3. Store allocation for a sequential, non-recursive 
computation. 

Since procedures are called sequentially, storage for data segments will 
be allocated and released strictly in last-in, first-out order. Program and 
data segments can therefore be combined into a single segment which varies 
in length according to the number  of  procedures called. A store used in this 
manner is called a stack. 

Figure 5.3 shows the extent  of  the stack when the previous computa t ion  
is inside procedure S. The stack is addressed by word indices relative to its 
base address. 

A slight complication arises if a procedure is called in different  
contexts,  for example: 

procedure S; 
b e g i n . . ,  end 

procedure R;  
begin . . .  S ; . . .  end 

label Q 
begin . . .  R ;  . . .  S ;  . . .  end 

Here, procedure S is called inside bo th  s ta tement  Q and procedure R.  The 
extent  of  the stack prior to a call of  S is different in each case. But a 
compiler can calculate the maximum extent  of  the stack prior to any call o f  
the procedure and can always place its data segment at that  point. This is 
illustrated by  Fig. 5.4. In the worst  case, a data segment will be allocated 
permanently for each procedure.  

Since the maximum extent  of  the stack can be determined at compile 
time, an operating system can regard it as a fixed-length segment at  
execution time. 
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Fig. 5.4. Store allocation for a nonrecursive procedure S 
called in different contexts (a) and (b). 

So, in general, a sequential, non-recursive computat ion requires only a 
single segment of  fixed length addressed by word indices. Fast addressing is 
achieved by keeping the base address in a register. 

Base register Ib~I 

"1 

Segment 

T 
Word index 

~> Value 

Fig. 5.5. A virtual store consisting of a single relocatable 
segment. 

This type of  virtual 
symbols: 

store 

base address 
(or data value) 

is shown in Fig. 5.5 using the fol lowing 

relative address segment 

The virtual addresses used by a computat ion (word indices) are 
independent of  the location of  its segment in the store. Dynamic relocation 
therefore only requires a change of  the base register value. 
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Examples of  computers of this type are the IBM 7094 H (Bell and 
Newell, 1971), the CDC 6600 (Thornton,  1964), and the Atlas (Kilburn, 
1962). 

5.2.3. Multi-segment Computations 

The next  case to consider is a computat ion which requires several 
segments. 

Sequential, Recursive Computations 

Consider the following program: 

procedure R; 
begin . . .  i f C t h e n R ;  . . .  end 

label Q begin . . .  R;  . . .  end 

Procedure R calls itself repeatedly while condit ion C holds. Each call 
creates an instance R1, R2, . . .  , Rn of the variables declared inside the 
procedure as shown in Fig. 5.6. 

In this case, a compiler cannot predict the extent  of  the stack prior to 
an instance of  a procedure call. Consequently,  programs must  be compiled 
for an array of data segments. 

Display / 

Segment index 

Data segments 

I 
! 
I 

R2 

l q 

v 

index 

• Fig. 5.6. Store allocation for a sequential, recursive compu- 
tation. 
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At compile time, an identifier is replaced by  a virtual address consisting 
of  a segment index and a word index The segment index is equal to the 
number  of  procedures which enclose the identifier in the program text;  it is 
often called the level o f  procedure nesting. The word index is the relative 
address of  a location within the given segment. 

At execution time, the currently accessible data segments are defined 
by an array o f  base registers, the display. 

When a procedure with segment index s is called, a new display is 
created. It consists of  the entries 0 to s - 1 of  the previous display and an 
entry s defining the origin of  a new data segment for the procedure called. 
Upon return from the procedure, the previous display becomes valid again. 
The displays can be stored as part of the data segments and linked together 
in their order of  creation as shown in Fig. 5.7. 

Current display 

I 
I 

Fig. 5.7. A stack consisting of data segments and displays 
l inked in their order o f  creation.  

This brief presentation assumes that you  already are familiar with the 
implementation of  recursive procedures. RandeU and Russell (1964) 
explain this in detail in their book  on the KDF 9 Algol 60 compiler. 

I conclude that a sequential, recursive computation requires a virtual 
store consisting of  segments of  fixed length addressed by segment and word 
indices. This type  of  store is shown in Fig. 5.8. The segment index is used 
to select a base address in the current display; this is added to the word 
index to get the real address of  a segment word. Fast access is achieved by  
keeping the current display (or its most  recently used entries) in registers. 

It is no t  clear how many display registers one needs to execute 
programs efficiently. For example, the B6700 computer  has 32 display 
registers (Organick and Cleary, 1971). This is much more than most  
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Base array Current segment 
(Current display) 

Segment index Wor( index 

Fig. 5.8. A virtual store consisting of 
non-relocatable segments. 

programs need. Wirth (1971b) reports that  a Pascal compiler for the CDC 
6400 computer  only uses 3 display registers and that  Pascal programs are 
limited to 5 levels of procedure nesting. 

Concurrent Computations 

Consider the following program, which includes concurrent statements, 
but no recursive procedures: 

procedure R; 
begin . . .  end 

procedure S; 
procedure T; 
begin . . .  end 

cobegin R; T coend 

label Q cobegin R; S coend 

At some point in the execution of this program, the tree of parent and 
child processes may look like that  shown in Fig. 5.9. The processes are 
shown as nodes linked to their parents. Process S, for example, is the child 
of  process Q and also the parent of  processes R 2 and T. 

Since concurrent processes can create data segments at the same time, it 
is necessary to have a separate stack branch for each process. The 
computat ion as a whole therefore builds up a tree-structured stack 
corresponding to Fig. 5.9. 

Although the stack is tree-structured, each process can only access tha t  
part of it which lies on a directed path from the process itself through its 
ancestors to the root  of  the tree. In the previous example, process T can 
access its own data and those of processes S and Q. So the virtual store of  
each process is still a linear array of  data segments. 
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Fig. 5.9. A concurrent computation consisting of child 
processes linked to parent processes. 

Each procedure is non-recursive, but  can be called by more than one 
process. (An example is procedure R in the previous program.) This makes 
it impossible to assign a fixed position in the stack to variables declared 
within a given procedure. A display is therefore needed to define the origins 
of  data segments currently accessible to a given process. When a process is 
created, a new stack branch and a display are also created. The child display 
is identical to the parent display. 

So the virtual store required by a single process is a linear array of  
fixed-length segments, as shown in Fig. 5.8. Evidently, it makes no 
difference whether or not  a concurrent  computat ion includes recursive 
procedures--the addressing schemes are the same. 

5.2.4. Program Relocation 

In a concurrent computat ion,  a given variable may be accessible to 
several processes within various procedures. So the base address of  a given 
data segment may be stored in several displays. If the segment is relocated 
during execution,  it is necessary to follow the chain of  displays for each 
process and change the corresponding base address wherever it is 
found. 

From a practical point  of  view, it is clearly preferable that  relocation of  
a segment only require an assignment to a single base register. The 
addressing scheme shown in Fig. 5.8 can therefore only be recommended  
for non-relocatable segments. 

To make dynamic relocation practical, the base addresses of  all 
segments belonging to a computat ion must be kept  in a single table called 
the segment table. When a process creates a data segment, its base address is 
placed in an empty  location in the segment table and its index in this table 
is placed in the current display of  the process. 

This type  of  virtual store is shown in Fig. 5.10. Address mapping is now 
done in three steps: (1) a segment index assigned at compile time is used to 
select a segment table index from the current display; (2) this index in turn 
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• Fig. 5.10. A virtual store consisting of  relocatable seg- 
ments. 

is used to select a base, address from the segment table; and finally, (3) the 
base address is added to a word index to get a real address. 

The length of segment tables varies considerably in present computers: 
In the IBM 360/67 computer, each computation is limited to 16 

segments defined by base registers (Comfort, 1965). 
The B5000 computer allows a maximum of 1024 segments within each 

computation. The segment table is therefore kept in the internal store as an 
initial part of the stack and only its most recently used entries are kept in 
registers (Lonergan and King, 1961). 

The B8500 computer keeps the indices and origins of the 16 most 
recently used segments in a very fast store. When a segment is referenced, 
an attempt is made to find its base address in this store using its index as a 
search key. If this search fails, the base address is obtained from the 
segment table in the slower internal store and entered in the fast store 
together with its index. Because the fast store associates a value (a base 
address) with a key (a segment index), it is called an associative store 
(McCullough, 1965). 

The GE 645 computer used in the Multics system is rather extreme: It 
permits a maximum of 256 K segments per computation (Glaser, 1965). 
The argument originally made in favor of this design was that it makes it 
possible to assign unique virtual addresses to all program and data files in 
the entire installation and thereby facilitates the sharing of these during 
execution (Dennis, 1965). 

This argument does not seem plausible to me. In practice, dynamic 
relocation requires that each computation use a separate segment table and 
assign indices to segments when they are first referenced. And, as Daley and 
Dennis (1968) point out in a later paper: "An immediate consequence of 
this is that the same segment will, in general, be identified by different 
segment indices in different computations." Consequently, the range of 
segment indices need only be large enough to enable a computation to 
distinguish among the segments it actually uses. 

At this point, a general remark about dynamic relocation might be 
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helpful: When segments are relocatable during execution, it must  be 
ensured that references to them by computat ions and their operating 
systems exclude one another in time. 

This can be done by  preempting a computat ion completely while one 
or more of  its segments are being relocated. This method is simple to 
implement in a single-processor system in which at most  one process at a 
time can refer to the store. 

Another  possibility is to relocate a segment while the computat ion 
involved continues to run. This is done in three steps: (1) make the base 
address invalid; (2) move the segment to its new location; and (3) redefine 
the base address. If a process refers to the segment during this critical 
region, its processor will recognize the invalid base address and interrupt 
the process. 

In a multiprocessor system, a computat ion and its operating system 
may run on different processors. It is also possible that the computat ion 
itself consists o f  concurrent  processes which run on different processors, 
but  have access to the same segments. Consequently,  dynamic relocation 
requires that  base addresses be kept in store locations or registers accessible 
to all processors. 

It should also be ment ioned that input~output can interfere with 
program relocation. Most peripheral devices are built to transfer a block of  
data to or from an internal store without  interruption. Consequently,  a 
segment cannot  be relocated before all input /output  operations on it are 
completed.  

5.2.5. Conclusion 

In a survey of  store management techniques, Hoare and McKeag 
(1971c) emphasize that  " the designer of  software systems should not  
always strive after the greatest generality and its at tendant  complexity,  but  
should use his best judgement  in selecting the simplest technique which is 
sufficient for his current purpose."  

This is particularly true of  store addressing where the price of  
unnecessary complexity is paid for every instruction executed. To use an 
addressing scheme that  caters to relocatable, concurrent,  recursive jobs 
(Fig. 5.10) in an installation that only runs non-relocatable, sequential, 
non-recursive jobs (Fig. 5.5) serves no useful purpose, bu t  will certainly 
complicate the operating system considerably and reduce performance. 

5.3. PLACEMENT ALGORITHMS 

I have described the motivation for program segmentation and have 
shown how segments are accessed during execution.  We must  now decide 
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where in available internal storage these segments should be placed prior to 
their use. This decision rule is called a placement algorithm. 

Placement is complicated by three characteristics of segments: (1) they 
are created and deleted at unpredictable times; (2) they have different 
lengths; and (3) they must be placed in a linear store. 

5.3.1. Contiguous Segments 

The most direct approach is to place a segment in contiguous locations 
in the real store (or more precisely, in locations with contiguous real 
addresses). When this method is used, the effect of unpredictable creation 
and deletion is to divide the store into a random pattern of segments of 
different lengths mixed with holes of available storage also of different 
lengths. This is illustrated by Fig. 5.11. 

Hole 

Segment 

Segment 

Hole 

Segment 

Hole 
Fig. 5.11. Contiguous allocation of 
segments in a linear store. 

If the length of a segment is fixed during its lifetime, the following 
placement algorithms suggest themselves: 

First fit: a segment is placed in the first hole large enough to hold it. 
Best fit: a segment is placed in the smallest hole large enough to hold it. 
Intuitively, one would expect the best fit algorithm to increase the 

probability of being able to satisfy subsequent store requests compared to 
the first fit algorithm, which tends to split larger holes into smaller ones. 
But in simulation experiments Knuth (1969) found that in practice first fit 
appears to be superior. Since it is also the simpler algorithm, it can be 
recommended. It is used, for example, in the Master Control Program for 
the B5500 computer (McKeag, 1971a). 

If the search for the first hole that fits always starts at one end of the 
store, the smaller holes tend to accumulate at that end and increase 
the search time for the larger holes. This effect can be avoided by searching 
the store cyclically, starting from a different hole each time. The starting 
point can itself be selected cyclically. 
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The main problem with contigous segments is that  they split the 
available storage into holes of  different lengths. It may therefore be 
impossible at some point  to find a hole for a segment, although it requires 
less than the total amount  of  available storage. 

The cures that  have been used are: (1) dynamic relocation; and (2) 
complete initial allocation. 

Compacting 

One method of  dynamic relocation is to move all segments to one end 
of  the store, thus combining all holes at the other end. This compacting 
technique illustrated by  Fig. 5.12 is used in the Scope operating system for 
the CDC 6600 computer  (Wilson, 1971a). 

A 
_ J 

B J 

Before compacting 

J A 

After compacting 

Fig. 5.12. Compacting of segments. 

When a good placement strategy (such as first fit) is used, the need for 
relocation only arises when most  of  the store is occupied. Knuth (1969) 
found that 90 per cent of  a store could be filled without  relocation when 
segments were small, say 10 per cent of  the store capacity each. 
Measurements made by Batson (1970) on a B5500 university installation 
showed that most  segments were indeed quite small: Segments were limited 
to a maximum of  1 K words each, but  60 per cent of  them actually 
contained less than 40 words. When the system was operating in a steady 
state, the segments in use occupied about  80 per cent of  a store of  28 K 
words. 

So, when compacting is needed, a large part of the store (80-90 per 
cent) must be copied. This can be quite time-consuming: If a word is 
copied in 2 #sec, 80 per cent of  a store of  64 K words can be compacted in 
about  100 msec. 
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In a well-designed system, compacting occurs so rarely that  the 
processor t ime spent on relocation is negligible (except in real-time systems, 
which must  guarantee response to external events in less than 100 msec 
under all circumstances). But it hardly seems worthwhile to complicate 
addressing and store allocation just  to utilize the last 10-20 per cent of  the 
store in rare circumstances. 

The real problem, however, is not  processor and store utilization, but  
the danger of  deadlock. If nothing is done about  it, processes may be 
unable to continue even though their combined need does no t  exceed the 
available storage. Such a system cannot deliver reliable, long-term service. 
According to McKeag (1971a),  a survey of  eleven B5500 installations 
showed that  9 per cent of  all system failures (about  one a week) were store 
deadlocks caused by non-relocatable segments. 

Store Multiplexing 

Segments can also be relocated as part o f  store multiplexing: Instead of  
all segments being compacted,  some of them are transferred temporari ly 
from the internal store to a backing store and replaced by  other  segments. 
This is a good example of  deadlock prevention by preemption (Section 
3.5.2). It is discussed in detail in Section 5.4 on store multiplexing. 

Complete Initial Allocation 

A much simpler method  of  deadlock prevention is to allocate the 
maximum storage needed by a computat ion in advance of its execution.  

A single segment of  fixed length is assigned to a sequential 
computation. This segment contains the machine code and a linear stack. 
During its execution,  the sequential computat ion can create and delete its 
own data segments in last-in, first-out order within the stack, as shown in 
Fig. 5.3. It can also use recursive procedures as long as the stack does no t  
exceed its maximum extent.  

Under special circumstances, complete  initial allocation can also be 
used for concurrent computations. The definition of  concurrent  s tatements 
in Section 3.1.2 implies that  parent processes neither create nor delete data 
segments while child processes exist (because parents must  wait until all 
their children are terminated).  In other  words, only the leaves of  a stack 
tree vary in length. In Fig. 5.13(a), the leaves are C, D, E, G, and H. 

Suppose also that  the maximum extent of  a stack branch is known 
before the process using that branch is created. These two restrictions on 
concurrent  processes make it possible to store a stack tree as nested 
segments, as shown in Fig. 5.13(b). 

The spooling system shown in Fig. 1.3 is an example of  concurrent  
processes that  use one level of  segment nesting. The RC 4000 
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Fig. 5.13. A tree of concurrent processes (a) using nested 
segments (b). 

multiprogramming system (Brinch Hansen, 1970) permits arbitrary nesting 
of  processes within a single segment. 

The disadvantage of  using such large contiguous segments is that  the 
store is utilized less efficiently: A hole may be fairly large, but  not  large 
enough to hold a complete  computat ion.  

Finally, it should be ment ioned that the deadlock problem of  
contiguous segments repeats itself on a more serious time scale on backing 
stores. 

5.3.2. Paged Segments 

A system using contiguous segments is constantly fighting "pol lu t ion"  
of its resources: Gradually, jobs will partition the store into an 
unpredictable mixture of  non-equivalent holes until drastic measures must 
be taken to avoid disaster. 

Paging is a radical solution to the placement problem. It treats the 
stores consistently as pools of  equivalent resources. Stores are divided into 
storage units of equal length, called page frames, and segments are divided 
into data units of  the same length, called pages. During execution,  a page 
can be placed in any available page frame. A program still refers to segment 
locations by contiguous virtual addresses, but  in the real store a segment 
may be placed in disjoint page frames as shown in Fig. 5.14. 

Within a segment, a location is identified by page and word indices. The 
page index is used to select the base address of  a page frame from a 
so-called page table; this is added to the word index to get a real address. 
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CI ." 
Real store 

(a) (b) 

Fig. 5.14. A segment (a) consisting of three pages A, B, C, 
and its placement (b) in the real store. 

One of  the alms of segmentation is to make programs insensitive to 
their placement in the store. It is therefore common to choose the page 
length as a power of two: 

p = 2 m 

where p is the number  of  words per page and m is a positive integer. 
Programs can then use contiguous relative addresses within a segment: 

n bits [ 

relative address 

These are interpreted by processors as consisting of a page index (the most  
significant bits) and a word index (the least significant bits): 

r n 'm bits I mb i t s  I 

page index word index 

Notice that  there is no difficulty in handling paged segments  which vary 
in length during their lifetime as long as the total  number  of pages used 
does not  exceed the number  of page frames. 

The placement algorithm is now trivial, but  this has been achieved only 
by increasing the complexity of addressing. Figure 5.15 illustrates the 
difference between contiguous and paged segments in this respect. 
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Fig. 5.15. Addressing of (a) a contiguous segment, and (b) 
a paged segment. 

Thus, if segments are paged, the symbol Fig. 5.15(a) should be replaced 
by (b) in Figs. 5.5, 5.8, and 5.10. 

The first computer to use paging was the Atlas, designed at the 
University of Manchester in England. It has a core store of 16 K words 
divided into page frames of 512 words each. An associative store with 32 
locations performs fast mapping of page indices into page frames. 

Contiguous segmentation leaves about 10 to 20 per cent of an internal 
store unused. Randell (1969) calls this phenomenon external frag- 
mentation--storage wasted between segments. 

Theoretically, external fragInentation can be avoided altogether by 
paging. But paging decreases the utilization of storage in other ways: (1) by 
using additional storage for page tables; and (2) by rounding up storage 
requests to an integral number of pages. Randell calls this internal 
fragmentation--storage lost within segments. 

Small pages increase the length of page tables, but reduce the effect of 
rounding; large pages have the opposite effect. So there must exist a page of 
medium size that minimizes internal fragmentation. 

Let p and s denote the page length and the average segment length in 
words, respectively. Then a segment requires a page table with approxi- 
mately sip entries of one word each, and wastes roughly p/2 words within 
its last page (the latter approximation is only justified when p < <  s). 

When all page frames are occupied, the fraction of storage lost by 
internal fragmentation is therefore: 

I + P  f = ~- -~- (5.1)- 

df 
By setting ~ = 0, we find the optimum page length Po and the 

minimum internal fragmentation fo : 
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P0 = ~/2s (5.2) ° 

= ~ (5 .3) ,  f0 V s  

Conversely, there is an opt imum segment length s o for a given page 
length p.  Table 5.1 shows s o and f0 for various page lengths p,  which are 
powers of two. 

TABLE 5.1. The optimum segment length s o 

and the minimum internal fragmentation f o 
for various page lengths p. 

P so f0 
(words) (words) (per cent) 

8 3 2  25  
16 128 13  
32 512 6 
64 2 K 3 

1 2 8  8 K 1.6 
256 32 K 0.8 
512 128 K 0.4 

1024 512 K 0.2 

The general trend is that  store fragmentation decreases when segments 
(and pages) increase in length. 

The average segment length measured in the B5500 installation at the 
University of Virginia was about 50 words. So, if we were to place each data 
segment created by a procedure call in a separate set of page frames, the 
best choice would be a page length of 8 words. This would make the 
internal fragmentation approximately 25 per cent. 

An alternative is to assign a single large segment to each process and let 
the process create and delete its own data segments within it, as shown in 
Fig. 5.3. Small user programs in a B5500 installation typically occupy 2 to 
3 K words of  core store each (McKeag, 1971a). For  s = 2500, the best page 
length would be p = 64 words. Putting this into equation (5.1) gives f = 3 
per cent. 

So, while contiguous segments should be small to reduce external frag- 
mentation,  paged segments should be large to reduce internal fragmentation. 

User programs of  2 to 3 K words are probably exceptionally small. 
Other installations have measured typical programs of 16 to 32 K words 
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each (see for example, Arden and Boettner,  1969). In this case, a page 
length of  256 words would minimize store fragmentation. 

Most computers,  however, use larger pages of  512 words (Atlas) or 
1024 words (IBM 360/67 and GE 645) to reduce the processing time 
needed to initiate and complete page transfers between a backing store and 
an internal store. 

Figure 5.16 shows the effect  of large pages on store fragmentation for 
various segment lengths. It also shows the minimum fragmentation that can 
be achieved by  an opt imum choice P0 of  the page length for a given 
segment length. 

5 0 -  A4°  
3o 

0 I I ----T . . . .  ~ . . . .  
2 4 8 16 32 

s (K words) 

Fig. 5.16. Store fragmentation f as a function of the 
average segment length s for various page lengths p. 

With pages of  1 K words, store fragmentation is 2 to 6 per cent for 
segments of  8 to 32 K words. Although this exceeds the theoretical 
minimum of 1 to 2 per cent, it is still bet ter  than the 10 to 20 per cent  
wasted by contiguous segments. 

Randell (1969) reaches the opposite conclusion, that  internal frag- 
mentation is more serious than external fragmentation. But his assumption 
is that  the average segment only occupies 1 K words. As I pointed out  
earlier, internal fragmentation can be reduced by allocating much larger 
segments for complete  computations.  

Finally, it is worth mentioning that paging has been successfully 
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implemented by program alone on at least two small machines: the GIER 
(Naur, 1965) and the Electrologica X8 (McKeag, 1971b). 

5.3.3. Conclusion 

Contiguous placement is well-suited to segments of fixed-length, which 
are small compared to the internal store. It simplifies addressing, but 
complicates placement. Complete initial allocation of storage or dynamic 
replacement of segments is necessary to prevent deadlock; the former 
method is recommended for nested segments, the latter for disjoint 
segments. Compacting is of doubtful value. Contiguous placement seems to 
be the most efficient technique for small, sequential computations. 

Paging is best suited to large segments that may vary in length during 
execution. It complicates addressing, but makes placement trivial. Properly 
used, paging appears to utilize storage better than contiguous placement. It 
is ideal for concurrent computations if users can specify reasonable storage 
limits for every computation (to avoid a deadlock of unrelated computa- 
tions) without predicting the precise requirements of single processes. 

From time to time, it is suggested that it might be worthwhile to use 
more than one page length within a given system. It seems to me that this 
combines the worst aspects of contiguous and paged placement; the danger 
of deadlock and the complexity of addressing. 

5.4. STORE MULTIPLEXING 

We will finally examine systems which deliberately initiate more 
computations than the internal store can hold. In these systems, segments 
are kept on a backing store and transferred to an internal store on demand; 
when the internal store is full, some of its segments are removed to the 
backing store to make room for others. This is called store multiplexing. 

The medium-term objective of store multiplexing is to give fast 
response to short computations by preempting longer ones temporarily. 

The short-term objective of store multiplexing is to increase utilization 
of the internal store by only keeping available those segments that 
computations actually use. 

5.4.1. Demand Fetching 

We will mainly study store multiplexing among paged segments, but the 
results apply qualitatively to contiguous segments as well. So wherever I 
use the word "page" in the following discussion, I might just as well have 
used the term "contiguous segment." 
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I assume that  pages are only brought into the internal store when 
processes refer to them. This is called demand fetching. 

The presence or absence of  a page in the internal store is defined by a 
boolean in its page table entry. If  a page is present, a processor can refer to 
it directly; if a page is absent, a reference to it provokes a call of  a 
procedure, which then fetches the page from the backing store. 

When the internal store is full, one of the pages already present must  be 
replaced. The victim of replacement may be a copy of a page on the 
backing store. In this case, it is simply overwritten in the internal store. 
But, if the victim contains original data, it must  be transferred to the 
backing store before it is replaced by another page in the internal store. 

This decision is based on another boolean in the page table entry of the 
victim: It is set to false when the page is placed in the internal store and 
becomes true after an assignment to any of its locations. 

In the following, I explain a simplified algorithm for demand fetching 
of  pages from a drum to a core store. I make the following simplifying 
assumptions: 

(1) Each computat ion can only access a single paged segment. 

(2) Each computat ion is assigned a fixed set of page frames in core and 
on drum. 

(3) Each page is associated with a fixed page frame on drum, but its 
page frame in core varies during execution. 

(4) A computat ion selects a victim of  replacement from its own core 
page frames. 

Algorithm 5.1 shows the data structures used by a computat ion to 
describe the state of its pages and page frames. 

Pages are identified by indices of  type P, while page frames in core and 
on drum are identified by indices of types C and D. 

The segment of  a given computat ion is defined by a page table with an 
entry for each page. 

The page frames assigned to the computat ion in core are defined by a 
core table, which contains a sequence of free page frames (identified by 
core page frame indices) and a queue of  used page frames (identified by 
page indices). 

Algorithm 5.1 also shows how a page is accessed: If the page is not  
present, a victim is selected and the page is transferred to its core frame; 
then, the page is marked as present, but  not original, and its index is 
entered in the set of used pages. 

Algorithm 5.2 defines the selection of  a victim: If the computat ion has 
a free core page frame, that  page frame becomes the victim; otherwise, one 
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of the used pages is selected, and, if it is an original, it is transferred to its 
frame on drum. Finally, the victim is marked as not  present.  

The criteria for selecting a specific victim for replacement are irrelevant 
here. We will return to this question later. 

A L GORI THM 5.1 Demand Paging 

type C = 1 . . number  o f  core page frames; 
D = 1 . . n u m b e r  o f  drum page frames; 
P = 1 . . n u m b e r  o f  pages; 

var page table: array P of  
shared record 

presen t, original: boolean; 
core frame: C; 
drum frame: D; 

end 

core table: shared record 
free: sequence of  C; 
used: queue of  P; 

end 

procedure access(page: P); 
const to core = true; 
region page table(page) do 
if not  present then 
begin 

select victim(core frame); 
transfer(core frame, drum frame, to core); 
present: = true; 
original: = false; 
enter(page, used); 

end 

Drum transfers are controlled by a drum process. It  uses the data 
structure shown in Algorithm 5.3 which contains a queue of user processes 
waiting for page transfers. When a user process needs a page transfer, it 
defines the transfer in a process table entry and enters its index in the 
queue. Then, it activates the drum process by causing a request event and 
waits for a response event associated with its process table entry.  

The index of  the calling process is defined by a standard function:  

funct ion process: Q 
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ALGOR/THM 5.2 Demand Paging (cont.) 

procedure select victim( var core location: C); 
const to drum = false; 
var victim: P; 
region core table do 
f f  empty(free) then 
begin 

remove(victim, used); 
region page table(victim) do 
begin 

if original then 
transfer(core frame, drum frame, to drum); 
present: = false; 
core location := core frame; 

end 
end 
else get(core location, free); 

ALGOR/THM 5.3 Demand Paging (cont.) 

type Q = 1 . .  number o f  processes; 

var v: shared record 
waiting: queue of  Q; 
process table: array Q of 

record 
core frame: C; 
drum frame: D; 
fetch: boolean; 
response: event v; 

end 
request, completion: event v; 

end 

procedure transfer 
(core location: C; drum location: D; to core: boolean); 
region v do 
with process table(process) do 
begin 

core frame:= core location; 
drum frame := drum location; 
fetch: = to core; 
enter(process, waiting); 
cause(request); 
a wait(response); 

end 

181 
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The drum process is defined by Algorithm 5.4. It waits until a request is 
made for a page transfer. Then, it removes the index of a calling process 
and starts a transfer from drum to core, or vice versa. After the completion 
of a transfer, it signals a response to the waiting process and repeats its 
cycle. 

ALGOR/THM 5.4 Demand Paging (cont.) 

"Drum process" 
var customer: Q; 
region v do 
repeat 

while empty(waiting) do await(request); 
remove(customer, waiting); 
with process table(customer) do 
begin 

start input output(core frame, drum frame, fetch); 
await(completion); 
cause(response); 

end 
forever 

Demand fetching of  contiguous and paged segments was pioneered on 
the B5000 and Atlas computers, respectively. 

5.4.2. Process Behavior 

To evaluate the consequences of  demand fetching, we need a model of  
process behavior. We will first s tudy the execution of a single, sequential 
program which exceeds the capacity of the internal store. 

The available store is characterized by three parameters: 

t the access t ime to a word in the internal store 
T the access time to a page on the backing store 
s the fraction of  the program and its data that  is 

kept in the internal store 

The process is characterized by the following function: 

p(s) the average number of page transfers per store reference 
as a function of  the available internal store s 

The effect  of demand fetching is to increase the access t ime per word 
from t to  t + p(s)T. 
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If a process referred evenly to  all its pages, the probabil i ty of  its 
referring to an absent page would be: 

p(s)  = 1 - s (5.4) 

This pattern of  random references is shown in Fig. 5.17. The access 
t ime varies linearly between t + T (when every reference causes a page 
transfer) and t (when the program is kept  entirely in the internal store). 

In practice, processes behave quite differently: They tend to refer 
heavily to a subset of their pages over a period of  time. This pattern of  
localized references is also shown in Fig. 5.17. I believe it was first 
described by  Naur (1965). 

1 ~ Random 

0 1 

• Fig. 5.17. The page transfer probability per store reference 
p as a function of  the fraction of  a progra~n s kept in the 

internal store. 

Locality is caused by  sequential  execu t ion  of  statements stored in 
consecutive locations, by  repeti t ive execu t ion  of  statements stored within 
a few pages, and by  procedures which operate mainly on local variables and 
parameters also stored within a few pages. 

In an analysis o f  existing programs, Fine (1966) found that  a jump 
from one program page to another occurred after the execution of  an 
average of  100 instructions. During such a sequence of  references to the 
same program page, only a few data pages were referenced. 

Locali ty makes it possible to keep only a fraction of a program internal 
and still have it executed with tolerable speed. Demand fetching exploits 
this statistical proper ty  of  programs. 

Measurements o fp ( s )  made by  Coffman and Varian (1968b) for  various 
programs suggest that  its tail can be approximated by  
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p ( s )  = a e - b s  

0 < a < 1 < b and a e - b T  < <  t 

Chap. 5 

(5.5) 

5.4.3. Load Control 

The previous model  enables us to make certain predictions abou t  the 
effect  of  demand fetching on a multiprogramming system. To simplify the 
argument, I assume that:  

(1) the internal store is shared evenly among processes with the same 
statistical behavior; 

(2) the processes run wi thout  interruption until they demand page 
transfers; 

(3) the processor utilization is only degraded when all processes are 
waiting for page transfers; and 

(4) the program execution and page transfers overlap in time. 

Assumption (1) implies that  s and p(s) are identical for all processes; (2) 
implies that  we ignore idle processor t ime caused by  peripheral devices 
other than the backing store; and (3) and (4), that  we ignore the overhead 
of  processor and store multiplexing. 

A demand fetching system can be viewed as a queuing system in which 
processes circulate between a ready queue, waiting for execution,  and a 
page queue, waiting for data transfers. This is shown in Fig. 5.18. 

Backing store Page queue 

I .o 
Ready queue Processor 

Fig. 5.18. Demand fetching viewed as a circular queuing 
system. 
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D 

The backing store can supply at most  one page every T seconds. The 
processor will demand at most  one page every tip(s) seconds. The system 
can therefore be in one of  three possible states: 

" (1) Idle backing store: p(s) < t/T. 
If pages can be supplied faster than they are demanded,  the processes 

will end up  waiting for  the slowest server--the processor. This keeps the 
processor fully utilized and the backing store poorly utilized. Since the 
backing store is inexpensive compared to the processor, this is not  a serious 
problem. 

• (2) Idle processor: p(s) > t/T. 
If pages are demanded faster than they can be supplied, the processes 

will again end up waiting for the slowest server--the backing store. The 
backing store is now constantly busy and the processor is idle most  of  the 
time. This situation, which causes a total  collapse of computing service, is 
called thrashing. ° 

• (3) Balanced system: p(s) = t/T. 
Between these extremes there is a state in which the processor and the 

backing store are both  fully utilized. This is obviously the most  desirable 
state of  operation. The question is: How can an operating system maintain 
this balance? 

The access times, t and T, are largely fixed by  the hardware, and the 
reference pattern p(s) is a function of the given program structure. During 
execution, thrashing can therefore only be avoided by  regulating the 
computat ional  load represented by  s. 

The minimum amount  of  internal storage that  a process needs to 
prevent thrashing is called its'working set w. It is determined by the follow- 
ing equation 

t p(w) = ~  (5.6) 

Using the approximation defined by  equation (5.5}, we find 

where 

1 In ~ (5.7) W = b  r 

t 
r - - -  

aT 

is the so-called access ratio. Equation (5.7) shows that the slower the 
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backing store is compared to  the internal store, the larger the working set 
becomes. 

A typical  numerical example is 

t = 1 psec 

a = 0.1 

b = 1 0  

" For  disks, drums, and slow core stores, the access ratios and working 
sets are of  the following order  of  magnitude: 

backing store T (msec) r w (per cent) 

disk 100 10-4 96 
drum 10 10 -3 69 
slow core 1 10-2 46 

The disk is useless as a paging device since practically all pages must  be 
kept  internal to maintain high processor utilization. The drum and the slow 

2 core store are much better ,  but  still require tha t  ½ to  ~ of  all pages be kept  
internal. 

In o ther  words, al though demand fetching simulates a virtual store 
with a capacity as large as the backing store, all computa t ions  must  be 
assigned a substantial amount  of  real store to  run efficiently.  

In our idealized model,  the processor is utilized 100 per cent as long as 
all processes have their working sets in the internal store (s ~ w). Below the 
balance point  (s < w), one process at most  is running at a time, while all the 
others are waiting for  page transfers. The running process joins the page 

! ebSt seconds; the processor is then idle until  queue after  an average of  a 

the complet ion of  a page transfer af ter  T seconds enables another  process 
to run. So the processor utilization ~7 is 

~7 = r e b' (s ~ w ~ 1) (5.8) 

This equat ion shows that  when the internal store s of  processes is 
reduced below their working sets w, processor utilization decreases 
exponent ia l ly  with s. The small access ratio r = 10 -4 to  10 -2 contr ibutes  to  
the drastic reduction.  

The fraction of  the working set kept  in the internal store is 

S 
X _ - m  

W 
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By inserting this in equation (5.8) and using equation (5.7), we find 

= r e b w x  = r e x I n ( t - 1  ) = r e l n ( r - x  ) 

o r  

r /= r 1-x (0 ~< x ~ 1) (5.9) 

This equation expresses the processor utilization ~ as a funct ion of the 
access ratio r and the fraction 1 - x by which the internal store available to 
a process is reduced below its working set. 

Figure 5.19 illustrates this relationship. The drastic reduction of proc- 
essor utilization, which characterizes thrashing, is apparent. As an example, 
suppose an internal store of 128 K words is divided evenly among the 
working sets of  9 processes. If we now initiate one more process, the 
internal store of  each process is reduced by ~6 of  its working set. This also 
reduces processor utilization from 100 per cent to 30 to 65 per cent, 
depending on the type of backing store used. 

1 0 0 ~ 9 0  r= 10-n 

70 
A 

60 

~ 5o 

~ 40 
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20 

10 

0 10 20 30 40 50 

1 -- x (per cent) 

° Fig. 5.19.  Processor ut i l izat ion r / a s  a func t ion  o f  the 
fraction 1 - x,  by  which the  internal  s tore  o f  each process is 

reduced be low its work ing  set  for  various access ratios r. 

° The only effective remedy against thrashing is to limit the number  of  
processes competing for internal storage. Users cannot  easily predict the 
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dynamic behavior of their programs, so the size of their working sets must 
be evaluated during execution. This can be done as follows: The short-term 
scheduler starts computations in the order defined by the medium-term 
scheduler. When thrashing occurs, the short-term scheduler preempts one or 
more computations with low priorities until a balance point is reached. 
These computations are resumed when those of higher priority have been 
completed. This technique is called load control. 

Variants of load control in paging systems are described by Denning 
(1968), Oppenheimer and Weizer (1968), DeMeis and Weizer (1969), and 
Alderson (1971). Wulf (1969) describes an algorithm used to prevent 
thrashing of contiguous segments in the B5500 system. In THE 
multiprogramming system, the operator is expected to observe thrashing 
and reduce the computational load manually. 

5.4.4. Refinements 

Demand fetching systems can be improved in various ways. Here we 
will briefly evaluate the influence of three factors: 

replacement algorithms 
transfer algorithms 
program structure 

Replacement Algorithms 

When a page must be fetched into a full internal store, one of those 
already present must be replaced. The rule used to select the victim is called 
a replacement algorithm. 

A replacement algorithm should try to minimize the number of page 
transfers. The ideal algorithm would be one that replaces that page which 
will remain unreferenced for the longest period. But, in practice, the 
replacement algorithm does not know the future pattern of references; it 
can only try to predict it from past behavior. 

The simplest replacement algorithm is first-in, first-out, which is used in 
the B5500 system. As Belady (1966) has shown, it performs quite well 
under most circumstances. But sometimes it has the peculiar effect of 
increasing the number of page transfers when the internal store available to 
a computation is increased (Belady, 1969). 

The replacement algorithm least recently used does not have this 
defect. If the internal store available to a computation is increased from f 
to f + 1 page frames, the algorithm will maintain the f + 1 most recently 
used pages internally. Since this set includes the f most recently used pages, 
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the number of page transfers cannot be higher than before. Algorithms 
which have this property are called stack algorithms. 

THE multiprogramming system uses the least recently used algorithm. 
Unfortunately,  it is expensive to implement since it requires that  a time 
variable be stored in every page table entry and updated every time the 
page is referenced. As an approximation to it, some computers associate a 
boolean with every page: It is set to true after every reference and to false 
after a reasonable period of  time. 

Belady (1966) found that  in most cases realizable algorithms, such as 
first-in, first-out and approximations to least recently used, cause only 2 to 
3 times as many page transfers as the ideal, but unrealizable algorithm. This 
has been confirmed by Coffman and Varian (1968b). 

In our model, the effect of improving the replacement algorithm is 
roughly to divide the constant a in equation (5.5) by a factor c of 2 to 3. 
This is again equivalent to multiplying the access ratio r by c. 

According to equation (5.7), this reduces the working set by the 
following fraction: 

h w  = In c {5.10) 

w In ~ 
r 

For r = 10 -4 to 10 -2 and c = 3, the reduction of  w amounts to 12 to 24 
per cent. 

Figure 5.19 shows that  in a thrashing situation, an increase of r by a 
factor of  3 only improves processor utilization by a few per cent. So a good 
replacement algorithm cannot by itself prevent thrashing. 

Transfer Algorithms 

For rotating backing stores, the access time T depends to some extent  
on the order in which page transfers are made. The rule used to select the 
next page to be transferred to or from the backing store among those 
waiting to be transferred is called a transfer algorithm. 

Consider, for example, a drum which can transfer a maximum of M 
pages during one revolution of R seconds. 

If requests for page transfers are honored in first-come, first-served 
order, it will take an average of  R/2  seconds to position the access head in 
front  of  a given page frame and another R]M seconds to transfer the page. 
So we have 

1 1 
T = (~- + ~ )  R (5.11) 
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A better  solution is to associate a page queue with each of  the M drum 
sectors and serve them according to the rule shortest access time next. This 
can (at most) reduce the access time T to R/M. 

The effect  of this improvement  is to multiply the access ratio r by  a 
constant  

M 
c = 1 + -~- (5.12) 

Thus, if a drum surface is divided into 2 to 8 sectors, c will be 2 to  5. 
This is comparable to the effect  o f  improving the replacement algorithm. 

The same result can be achieved by  using c backing store devices 
simultaneously. 

Notice,  that  the use of  multiprocessors can only make thrashing more 
likely by  reducing the average time t between references to the internal 
store. 

Program Structure 

A wise programmer will organize his program to  utilize a backing store 
with sequential or cyclic access efficiently. The principal aim is to divide a 
large program and its data into smaller parts which are executed and 
accessed strictly sequentially to avoid random reference to the backing 
store. 

An excellent example is the GIER Algol compiler described by  Naur 
(1963). It is divided into 10 parts, each of  which performs a single, 
sequential scanning and transformation of  a source program text.  

Experiments by  Comeau (1967) showed that  the number  of  page 
transfers in typical programs could be reduced by  50 per cent  just by  
rearranging the program text  so that  dynamically related procedures would 
be placed within the same pages. 

A simple device to assist the programmer in this task is included in the 
RC 4000 Algol compiler: A standard variable, which can be referenced and 
reset by  an Algol program, is increased by one for each page transfer caused 
by the program during its execution.  

5.4.5. Conclusion 

The most  important  rule of  short-term store allocation is to assign 
reasonable amounts  of  internal storage to computat ions  to enable them to 
run efficiently. When thrashing occurs, the computat ional  load on the 
internal store must  be reduced by preemption.  

Less important  are efficient replacement and transfer algorithms to 
reduce the frequency and waiting time of  page transfers. The programmer 
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can contribute to this reduction by a sensible structuring of program and 
data. 

In the previous analysis we ignored the processor time used to control 
page transfers. It is worth remembering that  in practice, store multiplexing 
reduces processor utilization even under balanced conditions. 

Suppose the internal store consists of a single physical module with an 
access t ime t per word. The transfer of a page containing m words therefore 
"steals" m store cycles from the processor; the initiation and completion of  
this transfer by the processor consume another n store cycles. Under these 
circumstances, processor utilization cannot exceed 

t 
rim,x = 1 - (m + n ) ~ -  

For m = n = 1000 and t / T  = 10 -4 , we find ~max = 0.8. 

5.5. L I T E R A T U R E  

The book by Bell and NeweU (1971) contains reprints of original papers 
on the structure of  the I B M  7094 H,  CDC 6600 ,  B 5 0 0 0 ,  and At las  
computers. 

Denning (1970) wholeheartedly supports demand paging. Hoare and 
McKeag (1971c) take a more conservative view of store management. 

THE multiprogramming system is an example of a demand paging 
system delicately balanced between input /output  processes and user 
computations. It is described in some detail by McKeag (1971b) and Bron 
(1971). 
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SCHEDULING ALGORITHMS 

This chapter analyzes the effect  of  various medium-term scheduling 
algorithms on the average response time to user requests in single processor 
systems. 

In this chapter we will s tudy medium-term scheduling of  a single processor 
by means of  elementary queuing theory.  

Medium-term scheduling decisions are made at various levels: at the 
management level by defining the relative importance of  users; at the 
operator  level by  running certain types of  jobs at prescribed times of  day; 
and at the machine level by  the final allocation of  resources to jobs. 

The ideal objective of scheduling is to  minimize the total  cost of  
computer  service and user waiting time. In practice, the two problems are 
often approached separately. 

Service t ime can be reduced by paying at tention to the processor time 
lost by  operator  intervention, slow peripherals, and resource multiplexing. 
Changes in this direction usually have a drastic influence on the mode  of  
operation offered to all users. The classical batch-processing system is an 
example of  extreme concern about  processor utilization with total  neglect 
of  user response time. On the other  hand, an interactive system responds 
instantly to users at a considerable cost of  resource multiplexing. A 
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spooling system is somewhere in between: It tries to reduce user waiting 
time to a few minutes without degrading equipment utilization seriously. 

The cost of user waiting time is difficult to evaluate. Programmers may 
be unable to proceed with their work until the results of program tests are 
available; the installation may be obliged to pay penalties after certain 
deadlines; delayed results may lose their value completely in real-time 
environments; and, finally, impatient customers may turn to a competing 
system. 

The question of  which customers an installation wants to favor is a 
political one. Bright (1962) mentions an early system in which the priority 
of a job was proportional to the business the user gave the computing 
center per month! In environments where many people are engaged in 
program development and testing, it is often assumed that the cost per time 
unit of waiting for response is the same for all users. In this case, the 
problem is to minimize the sum of user waiting times. Any job will, during 
its execution, delay all other jobs following it in the queue, so the 
important thing is to keep the number of waiting jobs at a minimum. We 
find therefore that most of the scheduling disciplines considered here give 
high priority to jobs with short execution times at the expense of jobs with 
longer ones. 

We begin with a summary of the queuing theory needed for our 
purpose and proceed to derive analytical results for the average waiting 
times of  jobs under the scheduling algorithms first-come first-served, 
shortest job next, highest response ratio next, and round-robin. 
Foreground-background scheduling is discussed informally. The 
assumptions behind these models are not always in agreement with reality, 
but they do give valuable insight into the behavior of particular scheduling 
algorithms and enable the designer to compare their merits qualitatively. 

6.1. QUEUING SYSTEM MODEL 

Figure 6.1 shows a queuing system model of a single processor. 
Jobs arrive at the system when they are submitted for execution. They 
walt in a queue until they can be served by the processor and depart after 
completion of their execution. 

Preemptions 

Arrivals Departures 

Queue Server 

Fig. 6.1. Queuing model of  a single processor system. 
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In a non-preemptive system, jobs are executed one at a t ime to  
completion. The processor will only start the service of  a low priority job  if 
no jobs of  higher priority are present. But once the processor has selected a 
job,  it is commit ted  to serve that  job  to complet ion even if jobs of  higher 
priority arrive during its service. Non-preemptive scheduling has the virtue 
of  simplicity of  implementation and good utilization of  machinery. 

In a preemptive system, several jobs can be in various stages of  
execution. At any moment ,  the processor is serving a single job;  bu t  upon 
arrival of  a job  with higher priority, the job  in service is interrupted and 
returned to the queue. Service of  the higher priority job  is then started. The 
interrupted job  will be resumed later when no jobs of  higher priority are 
present. Preemptive scheduling gives fast response to urgent jobs at the 
price of  increased complexi ty  and overhead. 

In a shared computer  system, jobs of varying service time arrive 
irregularly. From time to time jobs are submit ted faster than they  can be 
executed. So a queue is formed even though the processor has sufficient 
capacity to  serve all users in the long run. As Cox (1961) remarks, 
congestion in a system depends on its irregularities and no t  just  on its 
average properties. 

In mathematics,  irregularities are described in terms of  probabil i ty 
distributions. The aim of  the following is to use elementary probabil i ty 
theory  (for example, see Feller, 1957) to  predict average waiting times on 
the basis of  the following knowledge about  a single-server queuing system: 

the arrival pattern 
the service pattern 
the scheduling algorithm 

6.1.1. The Arrival Pattern 

The arrival of  jobs will be regarded as independent,  random events. 
When jobs are submit ted by a large populat ion of  independent  users, it is 
reasonable to make the following assumptions: 

(1) The number  of  arrivals during a given interval of  time depends only 
on the length of  the interval and not  on the past history of  the system. 

(2) For any small t ime interval (t, t + dt), the probabil i ty of  a single 
arrival is Xdt, where X is a constant,  while the probabil i ty of  more than one 
arrival is negligible. 

These assumptions lead to a Poisson distribution of arrivals. (Examples 
of  arrivals which do not  follow this pattern are customers who are 
discouraged by the sight of  a long queue and decide not  to join it; and jobs 
that  arrive in batches instead of  one at a time.) 
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Under the above assumptions, the probability Po( t+dt )  that  no arrivals 
occur during a time interval of  length t + d t  is equal to the product  of  the 
probability P0(t) tha t  no arrivals occur during the interval t and the 
probability 1 - k d t  that  no arrivals occur during the following interval dt:  

P o ( t  + dr) = Po( t )  (1 - k dt )  

o r  

dP° = - k Po (t)  
d t  

which has the solution 

Po( t )  = e -x t  (6.1) 

since P0 (0) = 1. 
The time between two successive arrivals is called the interarrival t ime;  

the constant X is the arrival rate. 
The probability dF( t )  that  the interarrival time is between t and t + d t  

is 

d F ( t )  = Po( t )  k d t  = X e -X td t  (6.2) 

The dis t r ibu t ion  f u n c t i o n  F ( t )  is defined as the probability that  the 
interarrival time is less than or equal to  t 

F( t )  = f :  d F ( x )  = 1 - e - x t  (6.3) 

This equation shows that  the interarrival time follows an exponential  
distribution with the mean value: 

! 
E( t )  = r i o t  dF( t )  (6.4) 

The expected number  of  arrivals during a period of time T is kT. 
Coffman and Wood (1966) measured interarrival times in the S D C  Q-32 

system. They found that  the assumption of independent  arrivals is 
reasonably justified. The interarrival time distributions all looked more or 
less exponential,  but the observed data showed more short interarrival 
times than did an exponential  curve with the same mean. 

A much more satisfactory approximation to the data was obtained with 
a h y p e r e x p o n e n t i a l  d i s t r ibu t ion  

F ( t )  = 1 - a e - b k t  - (1 - a) e -cxt (6.5) 
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where l f h  is the observed mean while a, b, and c are constants constrained 
as follows 

0 <  a <  1 0 <  b <  1 <  c 

By using equation (6.5) to derive the mean l/X, we find the relation 

a 1 - a  
~ - +  - - = 1  (6.6) 

C 

Figure 6.2 shows the hyperexponential  distribution which Coffman and 
Wood used to fit their average observations. The constants are a = 0.615, 
b = 0.69, and c = 3.5. The interarrival time is expressed in units of its mean 
l/X, which was actually 23 sec. The figure also shows an exponential  
distribution with the same mean. 

1.0 

0.8 

0.6 

0.4 

0.2 

Hyperexponential 

Exponential 

F I I I i ~ I 
0 0.5 1 1.5 2 2.5 3 

Xt 

Fig. 6.2. Distribution of normalized interarrival time (after 
Coffman and Wood, 1966). 

The conclusion must be that  the assumption of Poisson arrivals is a very 
crude approximation which underestimates the frequency of  short 
interarrival times. Unfortunately,  it is only for completely random 
(Poisson) and regular arrivals patterns that  general mathematical solutions 
have been obtained. 

6.1.2. The Service Pattern 

The service times required by jobs will also be regarded as random, 
independent variables. The assumption is often made that  they follow an 
e x p o n e n t i a l  d i s t r ibu t ion .  When this is the case, the probability d F ( t )  tha t  
the service time of  a job is between t and t + d t  can be expressed as 

d F ( t )  = Iz e -ut  dt  (6.7) 
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The probability F(t) that  service time is less than or equal to t is then 

F(t) = . f :  dF(x)  = 1 - e -at (6.8) 

The constant # is called the service rate; its reciprocal l i p  is the mean 
service time. The variable/~t measures the actual service time t in units of  
the mean service time. 

The fraction of  processor time consumed by jobs with service t ime not  
exceeding t is 

G(t) = f : # x  dF(x)  = 1 - (1 + #t) e -a t  (6.9) 

The exponential  distribution is shown in Figs. 6.3 and 6.4. It 
characterizes an installation in which most jobs are short. But, although 
there are very few large jobs, they  use a significant amount  of the processor 
capacity. 
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' ~ Exponential 

• Observations from Univ. o f  Michigan 
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0 1 2 3 4 5 6 7 8 9 10 

pt 

Fig. 6.3. Distribution of normalized service time (after 
Rosin, 1965). 

The mathematical  attraction of the exponential distribution is its 
memoryless property, which can be stated as follows: 

(1) The probability that  a job terminates during a small time interval 
dt is independent of  the amount  of  service time T consumed by the job 
before that  interval. 

(2) If a job is interrupted after T seconds of service, its remaining 
service time, t -  T, will be exponentially distributed with the same mean 
l i p .  

The first assertion is proved by deriving the conditional probability of  
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Fig. 6.4. The fraction of processor time used by jobs with 
service times not exceeding t. 

job  termination during the interval (T, T + dt),  assuming that the service 
time has exceeded T: 

Prob(remaining service time ~ dt) = 

Prob(T < t ~ T + d t ) =  I~ e-UT dt 
Prob(t > T)  e-lZT 

= g d t  ( 6 . 1 0 )  

To prove the second assertion, we need the probabil i ty distribution of  
the remaining service time, t - T, assuming that the service t ime has 
exceeded T: 

Prob(remaining service time ~ A t) = 

Prob(T < t ~ T+ A t )  e - U T  _ e - u ( T + A t )  

Prob(t > T) e -uT 

= 1 - e -uAt (6.11) 

The implication of  the memoryless property is that  a scheduling 
algorithm is unable to predict the remaining service time of  jobs  on the 
basis of  their elapsed service time. Consequently,  priority scheduling must  
be based either on reliable estimates of service times supplied by  users in 
advance or on periodic adjustment  of priorities during execution as a 
function of  elapsed service time. The latter technique, which requires 
preemption of  running jobs, is called quantum controlled scheduling or 
time slicing. 

Rosin (1965) and Walter (1967) analyzed more than 10,000 jobs run at 
a batch-processing installation at the University of  Michigan. Figure 6.3 shows 
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some points from these observations. Student  runs are excluded from the 
data to make the distribution more like those found in other service centers 
engaged in program development and production runs. The average 
execution time was 1.19 min. This does not  include compilation time (0.24 
min), loading time {0.14 min), and operating system time (0.18 rain). 

These results confirm the exponential tendency of service times, but  
again, as Fife (1966) has pointed out,  the distribution is more h y p e r -  
e x p o n e n t i a l .  Figure 6.3 also shows a hyperexponential  approximation 

F ( t )  = 1 - a e -bu t  - (1 - a) e -cu t  (6.12) 

to the observations of  Rosin. The constants used are a = 0.11, b = 0.21, and 
c = 1.88. 

The hyperexponential  distribution can be interpreted as a mixture of 
two exponential  distributions with different means: 

F ( t )  = a (1 - e - b u t )  + (1 - a) (1 - e - cu t )  

The combined effect  is that  many jobs of short service time are mixed with 
a few jobs of  extremely long service time. Consequently,  the tail of  the 
distribution is prolonged considerably compared to an exponential  
distribution with the same mean. 

This is illustrated most dramatically by the curves in Fig. 6.4, which 
define the fraction of processor time G( t )  demanded by jobs with service 
times not  exceeding t: 

G(t )  = f : # x  d F ( x )  

1 - a  = ~ ( 1  - (1 + b p t )  e - b u t  ) + 
o C 

(1 - (1 + clat) e - cu t )  

(6.13) 

When the distribution is exponential,  we can ignore the load 
contributed by jobs with service times greater than 6 times the mean service 
time. But a hyperexponential  distribution forces us to be concerned about  
jobs with 20 to 30 times the mean service time. Another  way of  putt ing 
this is to say that  80 per cent of all jobs are shorter than the mean service 
time, but  require only 30 per cent of the processor capacity. On the 
other hand, the 2 per cent longest jobs account for 25 per cent of the 
load. 

As we shall see later, the more dispersed the distribution of  service time 
is, the longer the average waiting times become. 
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6.1.3. Performance Measures 

In a single-server queuing system with Poisson input and an arbitrary 
service time distribution F(t), the mean number of arrivals during the 
service t ime of  a single job is 

p = f ~  k t dF( t )  = ~ (6.14) 
0 

As long as p < 1, the mean number of arrivals is less than the mean 
number of  departures, and the server can handle the load. But, if p > 1, the 
queue will increase indefinitely in time. 

The queuing processes considered here will always reach a steady state 
in which the probability distributions are time-independent, provided that  
the system has been in operation for some time with p < 1. 

If a queuing system is in a steady state over a period T, it receives an 
average of XT jobs, which are served in an average of kT(1/p) = pT sec. The 
utilization factor p thus represents the average fraction of t ime during 
which the server is busy. 

We will use the following performance measures for a queuing system: 
The mean queue length L is the mean number of jobs waiting in the 

system. It does not  include the job in service. L is a measure of  the backing 
store capacity required to hold arriving jobs. 

The mean waiting time W is the mean time spent by a job in the queue. 
Little (1961) has proved the following relation between the mean 

queue length and the mean waiting time in a queuing system in a steady 
state 

L = XW (6.15) 

This theorem says that  during the average time W that  a job requires to pass 
from one end of  the queue to the other, the average queue length L remains 
constant due to the number of arrivals XW during that  interval. 

Two other measures of  performance are: 
The waiting ratio W/t of a job--the ratio of its mean waiting t ime W to 

its actual service time t. 
The response ratio R / t  of a job--the ratio of its mean response time R 

to its actual service time. Since R = W + t, the response ratio is equal to the 
waiting ratio plus 1. It represents the degradation of processor speed 
experienced by a given job as a result of the presence of other jobs and the 
scheduling algorithm used. 
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6.1.4. A Conservation Law 

Scheduling algorithms differ only in their choice of the users to be 
given preferential treatment. If preemption is used sparingly, the processing 
capacity is practically uninfluenced by such manipulation of service, and 
one would expect some overall measure of waiting times to remain 
constant. In the following, we derive a conservation law that is applicable 
to a large class of scheduling algorithms with limited preemption. 

The conservation law says that for given arrival and service time 
patterns, a particular weighted sum of average waiting l~imes for all jobs is 
invariant to the scheduling algorithm used (Kleinrock, 1965). This means 
that scheduling can only improve the response time of some users at the 
expense of other users. 

We make the following assumptions about the queuing system: 

(1) It contains a single processor which is constantly available and busy 
as long as there are jobs in the system. 

(2) All jobs remain in the system until their service has been 
completed. 

(3) Preemption (if used) does not degrade processor utilization. 

(4) The arrival pattern is a Poisson process. 

(5) The service pattern can be arbitrary in non-preemptive systems, but 
must be exponential in preemptive systems. 

(6) Arrival and service times are independent random variables. 

(7) The system is in steady state equilibrium. 

Assumption (2) implies that preempted jobs are always resumed later 
and that impatient customers do not withdraw their requests. Assumption 
(5) and the memoryless property of the exponential distribution ensure 
that the service pattern is uninfluenced by preemption and resumption. 

As a measure of the amount of incomplete work present in the system 
at a given time t, we introduce the load function u(t). It is defined as the 
time it would take the processor to empty the system of all jobs present at 
time t if no new jobs arrived after that time. 

Each arriving job instantly causes the load function to jump by the 
amount of service time required by that job. Between arrivals, the load 
function decreases linearly by one second (of processing time) per second 
(of real time) until it reaches zero. 

Since jobs are served continuously to completion with negligible use of 
preemption, the scheduling algorithm cannot influence the constant rate of 
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decrease of the load between arrivals. So the load function u(t) depends 
only on the arrival and service patterns, not on the particular scheduling 
algorithm used. 

Let the arrival rate be k and let the service time distribution be F(t) 
with the mean 1//a. We will now observe the system immediately after the 
arrival of a job which we will call the "tagged job." At this point, the 
expected load U is equal to the expected time W 0 required to finish the job 
already in service plus the sum of the expected service times of all waiting 
jobs. 

Consider the group of waiting jobs which have service times between t 
and t + dt. During their expected waiting time Wt, the expected number of 
arrivals within the same group is k W t d F ( t ) .  According to Little's law, 
equation (6.15), this is also the expected number of jobs waiting in this 
group. The expected service time required to complete them is therefore kt 
Wt d F (t). By integrating over the entire range of service times, we find: 

U = W o + fo °° ktWt dF(t)  (6.16) 

If the tagged job arrived while a job of service time t was being 
executed, its expected arrival time would be in the middle of this interval 
with t/2 of the service time to be completed. Since the probability that the 
tagged job arrived under such circumstances is kt dF(t), the mean value of 
the remaining service time must be: 

~k oo 2 
W° ='2 fo t dF( t )  (6.17) 

Notice that W 0 is independent of the scheduling algorithm. This is 
intuitively reasonable since the processor can be engaged with a job from 
any group upon arrival of another job. 

Since the load function is independent of the scheduling algorithm, we 
can find its mean U by considering the simplest possible algorithm 
first-come, first-served. Under this rule, the expected waiting time for any 
job is equal to the expected amount of unfinished work U present when the 
job arrives. By substituting Wt = U in equation (6.16) and using equation 
(6.14), we find 

U = W o +  p U  

o r  

W0 
U =  1 -  p (6.18) 
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Using this result once again in equation (6.16), we find Kleinrock's 
conservation law: 

o o  pWo (6.19) f~ X t  W t d F ( t ) =  1 -  p 

It states t h a t  the sum of average waiting times for all jobs weighted by 
the fraction of processor time required by jobs in each group is invariant to 
the scheduling algorithm. This holds for any queuing system which satisfies 
assumptions (1) to (7). 

The conservation law can also be written as follows: 

P E(t2) (6.20) 
fo ~ t Wt dF(t)  = l _ p 2 

This shows more clearly that  the overall mean waiting time depends on the 
utilization factor p and on the second moment  E(t  2 ) of the service time 
distribution. 

The last factor is particularly interesting: It enables us to evaluate the 
influence of the shape of the service time distribution on the average 
waiting times. E(t  2 ) is a measure of  the dispersion of service times. 

For hyperexponential service times, equation (6.12), we find 

½ =A. E(t2 ) ~2 

where 

d = ~ 2  + 1 - a  c-~--- (6.21) 

Using the parameters a = 0.11, b = 0.21, and c = 1.88 (as in Fig. 6.3), 
we find d = 2.75. Freeman (1968) estimates a similar factor of 3.05 for 
service times observed at the Triangle Universities Computat ion Center. 

If we had used the assumption of  exponential service times-- 
a = b = c = d = 1--the analytical model would have underest imated the 
average waiting times by a factor of  3. This illustrates the point  made 
earlier tha t  congestion depends on the irregularities of arrival and service 
times, and not  just on their average values. 

6.2. NON-PREEMPTIVE SCHEDULING 

With this background, we will analyze specific scheduling algorithms 
divided into two mare classes: non-preemptive and preemptive. In 
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preemptive systems, more than one job  can be in a state of  execution at a 
given time. This influences the design so much that  it seems reasonable to 
stress the distinction between systems with and without  preemption.  

Besides this main classification criterion, there are others, for example, 
whether priorities can be based on reliable estimates o f  service time 
supplied by  users or whether  they must  be evaluated as a funct ion of  the 
actual behavior of  jobs during their execution. 

One would expect  users to  be able to make realistic estimates of  the 
processor time required by  non-trivial programs, especially if they are used 
repeatedly.  In a system that gives high priority to jobs with short estimated 
run times, the normal policy is to terminate jobs which exceed their 
estimated limits; otherwise, users would soon ruin the scheme. In this 
situation most  users prefer to make a conservative guess. Morris (1967) 
found that  users overestimated their storage requirements by  50 per cent  
and says that  "compute  time estimates are much worse than this." Rosin 
(1965) reports that  approximately 6 per cent of  all jobs exceeded their 
t ime estimates. Finally, Walter (1967) remarks that  users tend to estimate 
"nice"  values (0.5, 1, 2, . .  min). This may seem discouraging, bu t  Lynch 
(1967) has shown that  even with a partial indication of  service time, it is 
possible to improve response times considerably for small jobs. Over- 
estimation effectively reduces the loss of  processor time caused by  
termination of  unsuccessful jobs. 

In systems where the users interact with running programs in an 
experimental manner, the typical demand of processor time per interaction 
is only a fraction of a second. Here, it would be unrealistic to expect  a user 
to evaluate his need of  computing time; quite often, he is completely 
unaware of  the structure and speed of  the programs involved. The reaction 
of  the scheduler to this uncertainty is to allocate processor time piecemeal 
to jobs to see how long they actually are. Each job  is given a finite slice of  
time. If it completes service during this slice, it departs from the system; 
otherwise, the scheduler interrupts the job  and returns it to the queue with 
a lower priority. Here it will wait for another time slice. So the choice of  
preemptive scheduling in interactive systems is a consequence of  the 
uncertainty about  service time. The price for this uncertainty is increased 
overhead of  processor and store multiplexing. 

Scheduling models also differ in their assumptions about  the number  of  
input channels. An interactive system with a small number  of  user terminals 
is an example of  a system with a finite input source. Each user occupies a 
terminal as long as he is using the system. Normally, he will issue one 
command at a time, wait for response, think for a while and then make 
another request. This means that  the arrival rate becomes zero in situations 
where all terminal users are waiting for response. On the other  hand, 
non-interactive systems usually do not  limit the rate at which users can 
submit  jobs, so the assumption about  an infinite input source is valid there. 

From a scheduling point  of  view, the difference between present 
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interactive and non-interactive systems can be 
following list of  assumptions: 

non-interactive system 

preemption: limited 
priority source : estimated service time 
input source: infinite 

characterized by the 

interactive system 

frequent 
elapsed service time 
finite 

The following is a study of  non-preemptive scheduling of Poisson input 
from an unlimited source with an arbitrary service time distribution based 
on perfect estimates of service times. It is assumed that  the system includes 
a backing store with direct access and sufficient capacity to hold all waiting 
jobs and that  spooling eliminates idle processor time during program 
execution. 

6.2.1. First-come, First-served 

The first-come, first-served algorithm (FCFS) executes jobs in their 
order of  arrival. It is a discipline that  favors the longest waiting job 
irrespective of  the amount  of  service time demanded by it. The mean 
waiting time for jobs scheduled by this algorithm has already been derived, 
equation (6.18). I prefer to repeat it in the present context:  

W0 
W = - -  (6.22) 

1 - p  

Using d = 2.75, the waiting time #W is plot ted in Fig. 6.5 for two values 
of the utilization factor: p = 0.7, corresponding to a moderate load; and 
p = 0.93, representing a fairly heavy load. The latter case is probably the 
most realistic. Freeman (1968) observed p = 0.92 as a typical value for the 
central computer  in the Triangle Universities Computat ion Center. 

The sharp increase in waiting time as p approaches 1 is evident. If the 
mean service time is assumed to be 1 minute,  jobs wait an average of  6 
minutes when p = 0.7, but 36.5 minutes when p = 0.93. 

Figure 6.5 also shows the waiting ratio W/t. If  this is taken as a measure 
of  performance, we must  conclude that  first-come, first served scheduling 
favors the longer-running jobs at the expense of the shorter-running ones. 
Eighty per cent of  all jobs (those shorter than the mean service time) are 
delayed more than 36.5 times their service time on the average. 

The expected number of jobs in the queue is XW, or 

p2 
L = d (6.23) 

1 - p  
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Fig. 6.5. The expected waiting time Wt and the waiting 
ratio Wt/t  as a function of normalized service time pt for 

the first-come, first-served (FCFS), shortest  job next  (SJN), 
and highest response ratio next  (HRN) scheduling 

algorithms. 

In the  present  example  wi th  p = 0 .93  and d = 2 .75 ,  this  means  that  an 
average o f  34  jobs are wait ing on  the  backing store.  With an average data 
vo lume  o f  3 0 0  input  cards and 500  o u t p u t  lines per job  (see Sec t ion  1 .2 .1 ) ,  
the  input  and o u t p u t  queues  must  on  the  average ho ld  close to  2 mi l l ion  
characters (assuming that  the  t w o  queues  ho ld  the  same number  o f  
jobs) .  



208 SCHEDULING ALGORITHMS Chap. 6 

6.2.2. Shortest Job Next 

Consider now an algorithm that selects the job  with the shortest 
estimated service t ime as the next  one to receive service. 

We will derive the mean waiting t ime Wt for a tagged job  with service 
time t, scheduled according to the shortest job next algorithm (SJN). Wt is 
equal to the mean t ime Ut required to serve all jobs present in the system 
with service times less than or equal to t when the tagged job  arrives, plus 
the sum of  the service times of  all jobs that  arrive with higher priority 
during the waiting t ime Wt. 

It should be clear from the proof  of  the conservation law that  Ut is 
simply the mean system load of  jobs with service t ime x ~< t. So we find 
from equations (6.14) and (6.18): 

W° (6.24) 
Ut = 1 - Pt 

where 

Pt = f :  kxdF(x) (6.25) 

During the expected waiting t ime of the tagged job, the expected 
number  of  arrivals of  jobs with service times between x and x + dx is XWt 
dF(x). If x < t, these jobs are served before the tagged one and thus 
increase its expected waiting time by  Xx WtdF(x) .  All in all, these later 
arrivals increase Wt by  the following amount :  

fo t ~xWtdF(x ) = W t P t  

So we find 

or 

Wt = Ut  + Wt  Pt 

W0 
Wt = (1 - pt) 2 (6.26) 

This equation was first derived by  Phipps (1956).  
Using equations (6.13) and (6.25), we can also express Pt as follows: 

Pt = G(t) p 

where G(t) is the amount  of  processor t ime used by  jobs with service times 
no t  exceeding t. 
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Phipps' equation shows that jobs with a given service time t must  pay 
for the improved service given to all jobs with higher priority. And, whereas 
lvaiting times only increase proportionally to (1 - p)-i for first-come, 
first-served scheduling, the rate of  increase is now (1 - pt) -2, which 
becomes very steep as Pt approaches 1. 

These points are illustrated in Fig. 6.5, which also gives a direct 
comparison of the shortest job next and the first-come, first-served 
algorithms. Even under heavy load (p = 0.93), jobs  requiring less than the 
mean service time of 1 minute now walt less than 4.5 minutes on the 
average. Jobs between 1 and 10 minutes wait less than 4.5 times their 
service time. Response is bet ter  than first-come, first-served for jobs up  to 
10 minutes. Figure 6.3 shows that  this represents 99 per cent of  all jobs. 

The main difficulty with the shortest job next algorithm is the 
long-running jobs. A glance at Fig. 6.4 shows that the longest 1 per cent of  
the jobs cannot  be ignored because they require 20 per cent of  the total  
processor time. Unfortunately,  shorter jobs can effectively prevent longer 
ones from receiving service. With p = 0.93, a job of  30 minutes must  wait 
6.8 hours before it can start. Furthermore,  since preemption is not  used, a 
long-running job, once started, will keep all other jobs waiting for as long as 
it runs. 

6.2.3. Highest Response Ratio Next 

First-come, first-served and shortest job next algorithms bo th  take a 
rather one-sided view of  scheduling. The first algorithm is concerned solely 
with the actual waiting time of  jobs and completely ignores their estimated 
service time; the other one does exactly the opposite.  In the following, we 
will analyze an algorithm which strikes a balance between these extremes. 

The effect  of  sharing a single processor among many users is to make 
the response times of  jobs considerably longer than their service times. 
From the point  of  view of the individual user, the processing rate of  the 
machine appears to be reduced by  a factor equal to 

response time 
service time 

This is called the response ratio of a job. 
It can be argued that all users should experience the same virtual 

processing speed as a result of  their sharing the system. This policy is called 
equitable sharing. It is well-known in preemptive systems with round-robin 
scheduling. For non-preemptive scheduling, the relation between virtual 
and actual machine speeds suggests an algorithm which selects the job  with 
the highest response ratio next (HRN) for service. This algorithm favors 
short jobs, but  it also limits the waiting time of  longer jobs: If a job remains 
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in the system long enough, it will eventually achieve a priority so high that  
it will be served before any other  job.  

I have analyzed and simulated this algorithm elsewhere (Brinch Hansen, 
1971a). Here, I will derive an approximation to the average waiting times of  
short and long jobs. 

Consider first a short job with a service time t and an expected waiting 
t ime Wt. The priority of  an extremely short job  increases so rapidly in time 
that  it can expect  to be served as soon as the job  found in service upon  its 
arrival is completed.  In other  words 

W t "-* W o as t --> 0 

For short  jobs of  slightly longer duration, we would expect  that  the 
effect  o f  response ratio scheduling is to make the increase of  the waiting 
t ime approximately proport ional  to the service time. So we make the 
assumption that  

W t ~ W  o + h t  for smal l t  

where k is a constant.  
We will also assume that  the service time distribution F(t)  is a rapidly 

decreasing funct ion of  the service t with the mean 1//g. More precisely, F(t)  
must be decreasing so rapidly with t that  the error introduced by  using the 
linear approximation of  Wt in the conservation law, equation (6.19), is 
small. So we may assume that  

f o~XtWtdF( t )  ~ f ~ ° X t ( W o  + k t ) d F ( t )  

o r  

P W0 
~ p  W 0 + 2 k  W 0 1 - p  

By solving for k, we find the approximate mean waiting time for small 
jobs: 

p2 t 
Wt ~ W0 + 1 - p 2 for small t (6.27) 

Now consider a very long job with service time t. Since its priority 
increases very slowly, it must  wait until practically all earlier arrivals have 
been served. In other  words, it must  wait  at least an amount  of t ime equal 
to the mean system load U defined by  equation (6.18). 

In addition, a long job  can be delayed by  shorter ones arriving later. For 
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Fig. 6.6. Priority diagram of later arrivals. 

a job with a service time x < t and an expected waiting time Wx < Wt, the 
latest possible arrival time after the arrival of a long job with the service 
time t is A=, as shown in Fig. 6.6. If the shorter job arrived later than this, 
its priority would not reach the priority of the longer job during its 
expected waiting time Wx. 

From this diagram, the following relations are derived 

Wx=W..A 
A x + W x = W t x t 

o r  

X 
Ax = Wt (1 - } - )  

The expected number of jobs with service times between x and x + dx 
arriving during the interval A= is kA=dF(x) .  They will delay the long job 
by the expected amount kxA~dF(x) .  All in all, later arrivals will delay the 
long job by the amount: 

X 
W t f ;  ~x (1 - 7 )  dF(x) 

For large values of t, this is approximately the same as 

~o x 2 W o 
Wtfo k x  (1 - T ) d F ( x ) =  Wt ( p -  -~- ' - )  

By adding the delays caused by earlier and later arrivals, we find for 
very large jobs: 
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W 0 2 W 0 
w, i - : -  + w, (p - - 7 - - - )  

or  

W0 
Wt ~ 9 w ^  for large t (6.28) 

(1  - p )  ( 1  - p + -~--~-) 

Closer inspection shows that  the linear approximation, equation (6.27), is 
a tangent to the non-linear approximation, equation (6.28), in t = 2 Wo/P, 
where they  both have the value Wt = W0/(1 - P). This is the same as the 
expected waiting t ime for the first-come, first-served algorithm. 

I have simulated the highest response ratio next algorithm using the 
hyperexponential  distribution of service t ime shown in Fig. 6.3 (Brinch 
Hansen, 1971a). The results indicate that  it is an excellent approximation 
to use equation (6.27) for t ~ 2Wo/p and equation (6.28) for t > 2Wo/P. 
The accuracy of this approximation seems to improve with increasing 
values of  the utilization factor p. 

Notice that  for extremely large jobs (t ~ ¢¢), the average waiting time 
approaches the limit of  the shortest job next algorithm: Wt = Wo/(1 - p)2. 

The overall mean waiting t ime is approximately 

W ~ fo ~ (W o + kt)dF(t)  

p2 1 
=Wo+ 1 - p  2F 

(6.29) 

which is the value obtained for t = 1/p in equation (6.27). The mean queue 
length is kW. 

The approximate waiting time is shown in Fig. 6.5 for a hyper- 
exponential  distribution of  service t ime with d = 2.75. The highest response 
ratio next algorithm is better  than the first-come, first-served algorithm for 
jobs up to 5.5 times the average job of 1 min. This represents 96 per cent  of  
all jobs. Jobs that  run less than 1 min walt up to 9 min, compared to 4.5 
min with the shortest job next algorithm and 36.5 min with the first-come, 
first-served algorithm under  heavy load, p = 0.93. Response ratio scheduling 
is quite effective in limiting the waiting time of  longer jobs: a job of  30 rain 
waits an average of  2.4 hours compared to 6.8 hours with the shortest job 
next  algorithm. Under response ratio scheduling, sharing is practically 
equitable for jobs requiring from 2 to 30 min. Over this range of  service 
times, the waiting ratio Wt/t only varies from 7.5 to 5. For p = 0.93, the 
average queue has been reduced to 8 jobs, compared to 34 jobs in the 
first-come, first-served system. 
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All in all, response ratio scheduling is an attractive alternative to 
first-come, first-served and shortest job next scheduling in non-preemptive 
systems. It gives fairly rapid response to small jobs while effectively limiting 
the delay of longer jobs. 

6.3. PREEMPTIVE SCHEDULING 

Non-preemptive scheduling can give fast average response to short jobs 
by using priority rules. In doing so, it relies completely on user estimates of 
service time. The main problem is the long-running jobs, which can 
monopolize the system for hours while they run to completion. 

Preemptive systems, which can interrupt a running job and suspend its 
service while a job of higher priority is being done, do not have this 
problem. Preemption makes it possible to achieve guaranteed response to 
short jobs at the price of increased overhead. Preemption complicates the 
design of an operating system considerably, since the system must now 
keep track of several jobs that are in various stages of execution. 

Although several jobs are in a state of execution simultaneously, a 
single processor can still only serve one of them at a time. It is therefore 
uneconomic to let jobs occupy part of the internal store during their idle 
periods. So preemption must be combined with store multiplexing. When 
the current job is interrupted, it is transferred to the backing store and the 
job with the highest priority is placed in the internal store. This exchange 
of jobs in store is called swapping; it is the main source of overhead in 
preemptive systems. 

When reliable estimates of service times are available, preemption can 
be used to improve the performance of the shortest job next algorithm as 
follows: A running job is interrupted when a job arrives with a service 
requirement less than the remaining service of the running job. A somewhat 
simpler scheme to administer is one that limits the number of preempted 
jobs to one: A job with a service time below a certain threshold is placed in 
a foreground queue, while longer jobs enter a background queue. Within 
each queue service is non-preemptive according to the rule shortest job 
next, but jobs in the foreground queue preempt jobs in the background 
queue. Hume (1968) suggests a variant of this scheme in which the 
threshold varies dynamically. In periods of heavy utilization, the threshold 
moves towards smaller jobs, but when the load diminishes, longer jobs are 
allowed in the foreground queue. The purpose of this is to guarantee 
response within 5 min in the foreground queue. 

Another scheme for obtaining fast response to non-interactive jobs was 
used by Irons (1965). His system tries to share a processor equally among 
all jobs being executed. To accomplish this, it allocates the next time slice 
to the job with the shortest elapsed service time. The time slice is varied in 
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proportion to the amount  of  swapping time required at any moment  to 
keep the overhead below a preset limit of 10 per cent. 

I mention these systems as examples of  the use of  preemption in 
non-interactive systems. In the following, however, the discussion is limited 
to interactive systems. 

6.3.1. Round-robin Scheduling 

We will analyze round-robin scheduling of  interactive requests. We 
assume that  the number  of  user terminals n is finite, as shown in Fig. 6.7. A 
user will input one request at a time, wait for response, and examine the 

Terminals Queue Server 

Fig. 6.7. Queuing model of  a single processor with a finite 
number of user terminals (compare with Fig. 6.1). 

result before making his next  request. So the user alternates between a 
thinking state, in which he prepares the next  request, and a waiting state, in 
which he waits for response. These states correspond to the interarrival and 
response times: 

user state time interval 

thinking interarrival time 
waiting response time 

The interarrival t ime will include the time used to input a request and 
output  the response at a terminal. 

We assume tha t  the interarrival and service times of requests are 
exponentially distributed with mean values 1/k and 1//~. For  the CTSS 
system, Scherr (1965) observed a mean interarrival time of 35 sec and a 
mean service time of  approximately 1 sec per request. He found that  the 
day-to-day characteristics of  users changed very little. Coffman and Wood 
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(1966) measured a mean interarrival t ime of  23 sec in the SDC Q-32 
system. For  the same system, Schwartz (1967) repor ted  that  approximately  
84 per cent  of  all requests required less than 1.8 sec of  processor time. The 
access t ime o f  the internal store was about  2 #sec in bo th  systems. Shemer 
(1969) found l f h  = 15 and 1/# = 0.3 seconds in the SDS Sigma 7 system 
with a store access t ime of  0.85 ~sec. 

Here we will use: 

mean interarrival t ime 1 = 15 sec 

1 
mean service t ime -- = 0.5 sec 

as typical values. 
In the first analysis of  this model,  the overhead of  swapping is assumed 

to  be negligible. This is probably only realistic in a very large machine 
which can hold all jobs in its internal store simultaneously. I do no t  
propose it as a realistic model of present interactive systems. It  serves as a 
standard which sets an upper  limit to  obtainable performance.  

Due to  the memoryless proper ty  of  the exponential  distribution, we 
can also ignore the effect  of  the size of  the time quantum used. I am 
referring to  Section 6.1.2, in which it was shown that  the remaining service 
t ime of  jobs which have received Q seconds of  service is exponential ly 
distributed with the original mean l / p ,  independent  of  the length o f  Q. 

The system can be in n + 1 states since 0, 1, 2, . . .  , n terminals can be 
waiting for response. The steady state probabilities of  these states are 
denoted P0,  P l ,  P2, • • •,  P , -  We now look at the system during a small 
t ime interval dt. The state of  the system can be changed by an arrival or a 
departure;  the probabil i ty o f  more than one arrival or departure is 
negligible under  the present assumptions. The probabil i ty tha t  a job 
(" reques t" )  terminates and departs during this interval is ~dt, according to  
equation (6.10). The probabil i ty that  a user in the thinking state generates 
a request  in the same interval is kd t  (see Section 6.1.1, assumption 2). So 
the overall probabil i ty of  an arrival in s t a te ]  - 1 is (n - J + 1) kd t  s i n c e / -  1 
terminals are already waiting for  response. Finally, the probabil i ty tha t  
neither an arrival nor  a departure will occur in state j is 1 - ((n - j )k  + p)dt .  
This leads to the following relations between the steady state probabilities: 

P0 = P0 (1 - n X d t )  + p l p d t  

P1 = P j-1 (n - j + 1) X dt +p/ (1  - ((n - j )X + I~)dt) + Pj+z p d t  

O < j < n  

P ,  = P , - i  Xdt  + p , ( 1  - lzdt) 
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By solving this set of equations, we find 

= n ,  (~)J  
P~ (n - j)! Po 

Since the sum of  the probabilities is 1 

Po +P l  4- . . .  + p ,  

O < / < n  

= 1  

(6.30) 

the probability that  no terminals are waiting is 

Po = j=~o (n--1)! (6.31) 

We can now use this result to find the expected response time R. The 
fraction of  t ime during which a user is thinking is the ratio of the average 
interarrival time 1/k to the circulation time 1/k + R. The circulation time is 
the average interval between two successive requests from the same 
terminal. Each of  the n terminals generates requests at a rate of k per 
second provided the user is in the thinking state. So the average input rate 
of requests to the system is 

1 
X 

nX 
1_+ R 
X 

The average rate at which requests depart from the system is g per 
second when the processor is busy. Since the probability that  the processor 
is busy is 1 - P0,  the average output rate of responses must be 

U(1 - p 0 )  

In the steady state, the average input and output  rates are equal, which 
means that  

= n 1 . (6.32) 
R /~ (1 -p0 )  k 

This queuing model was originally used to describe the servicing by a 
single repairman of  n machines which break down individually after a mean 
of  1/k time units and require a mean repair time of 1/# units each (Cox, 
1961). It was later used by Scherr (1965) to describe an interactive 
computer  system with a limited number  of  terminals. 
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• Fig. 6.8. The average response time R as a function of the 
number of active terminals n. 

Figure 6.8 shows the average response time R as a function of the 
number of active terminals n, assuming that  the average user generates a 
request for 0.5 sec of processor time after 15 sec of thinking. 

Although the response time increases with the overall load, there is no  
point at which the system becomes unstable as a system with an infinite 
input source does when the utilization factor approaches 1. The present 
system is self-regulating because the input rate decreases in proportion to 
the number of  terminals waiting for response. When all terminals are 
waiting, the input rate becomes zero. 

As an alternative measure of system'saturation, Kleinrock (1968) has 
proposed the following. Suppose we replace each service time by its average 
1/g and schedule the arrivals to occur uniformly in time with interarrival 
intervals of exactly 1/X sec. As long as the system gives immediate response, 
each user will require 1//~ sec of  processor time every 1/g + 1/X sec; so the 
maximum number of terminals n* is given by 

1 1 + 

n* P ~ = 1 = I + x  (6.33) 

P 

When this definition is substituted into equation (6.32), we find 

n n* + 1 (6.34) 
pR = 1 - P 0  

In the example shown in Fig. 6.8, the saturation point  n* is 
1 + 15/0.5 = 31 users. For n ~ n*, the response time is short because it is 
rare for more than one request to be inside the system. Queuing can 
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nevertheless occur in this region due to the irregularities of arrival and 
service times. 

In the vicinity of  the saturation point, the response time begins to 
increase sharply. For a large number  of terminals n >> n*, the processor is 
practically always busy, so p 0 ~ 0 and the response time approaches the 
asymptote  

/aR ~ n - n* + 1 (6.35) 

In a saturated system, each additional user increases the response ratio pR 
by1. 

We will now consider the effect of mixing trivial interactive requests 
with longer computat ional  requests in a saturated system. I define a trivial 
request as one tha t  can be completed during a single time quantum Q. The 
effect of  the longer requests is to increase the mean service time to 
1/u > Q. 

It is important  to notice that  the average time quantum q can be 
considerably smaller than the max imum time quantum Q since the response 
to requests may be completed in the middle of a quantum. The probability 
that  the quantum will be less than or equal to  t is 

= t 1 - e -~t  t ~< Q 
F(t)  

! 1 t > Q  
(6.36) 

The mean value of  this truncated exponential  distribution is 

1 
q = ~ (1 - e -uQ)  (6.37) 

The average response time Rq for a trivial request is approximately 
equal to the average t ime quantum q multiplied by the response ratio/JR. 
So, from equations (6.33) and (6.35), we find 

Rq = (n - k ~ )  q (6.38) 

The maximum quantum Q needed by a trivial request depends mainly 
on the processor speed and the characteristics of  interactive programs. The 
maximum tolerable response t ime Rq m a= and the average thinking time 
1/k are psychological characteristics of  the users. It is therefore reasonable 
to consider the parameters Q, Rq m a=, and 1/k as fixed for a given 
installation. Consequently,  the maximum number of interactive users nm ~= 
that  a system can support is primarily a funct ion of their average service 
time requirement l /p :  
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Rq m a x  [d 
n m  - - -  + - -  (6.39) o= q X 

This relationship is shown in Fig. 6.9 using the values Q = 0.1 sec, 
Rq m ax = 2.5 sec, and 1/k = 15 sec. 
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Fig. 6.9. The maximum number of interactive users nma x 
as a function of the average service time per request l i p .  

The effect of  mixing trivial requests with longer computations ( l i p  > 
Q) is a sharp decrease of  nmax. For 1/p > 10 Q, we have approximately 
n m  ax ~ R q  m a = / Q  = 25. At this point, the number of interactive users is 
determined only by human nature (Rq max ) and processor speed (Q). And 
as Simon (1966) aptly remarks, "No scheduling magic can relax this Iron 
law." 

The non-trivial jobs experience a response ratio of 25. Under response 
ratio scheduling with 1/~ = 60 sec, they  would be delayed by a factor of  10 
at  most under heavy loading, as shown in Fig. 6.5. This supports the 
statement made earlier that  interactive systems are able to give fast 
response to trivial requests, but are not  suitable for fast and efficient 
processing of  non-trivial jobs (Section 1.2.4). 

We will now include the effect of s w a p p i n g  in our analysis. Swapping 
reduces processor utilization from 100 per cent to a fraction, 77. We can 
account for this approximately by making the following corrections in the 
previous equations: 
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Scherr found that  with this correction, the predictions of equation 
(6.32) were in excellent agreement with actual measurements and 
simulation of  the CTSS system. This is very encouraging considering that  
the introduction of overhead violates the assumption of exponential  service 
times. 

The overhead of swapping saturates the system with fewer users and 
increases the slope of  the response curve (Fig. 6.8). 

The CTSS system uses contiguous segments. Similar response curves 
have been observed for systems with paged segments (DeMeis, 1969). 

The overhead of  swapping can be characterized by two parameters: the 
average swap time s required to transfer a job to the backing store and place 
another job in the internal store; and the average processor time p spent on 
scheduling and swapping during a time quantum. 

Suppose, for example, that  we have a drum with a waiting time of  10 
msec and a transfer t ime of 5 msec/K words. If an average job consists of  a 
single contiguous segment of 8 K words, the average swap time is s = 2 
(10 + 5 * 8 )=  100 msec. (In a paging system, s is the time required to 
exchange two working sets.) 

If the access t ime to the internal store is 1 ~sec/word, the swapping of  
16 K words will require 16 msec of  store time. To this must be added the 
processor t ime used to control the drum, select the next  job, and so on. A 
reasonable estimate would be an average processor time p = 20 msec per 
t ime quantum. 

In the CTSS system studied by Scherr, only one job at a time is placed 
in the internal store. Swapping and processing are non-overlapped, that  is, 
the processor is idle during the swap interval s. The processor utilization 
is therefore 

W = ~ ( 6 . 4 0 )  q + s  

Figures 6.9 and 6.10 show nm ax and ~ as a function of the average 
service time 1/p using the previous values of  Q, Rq max, l / k ,  s, and p. With 
non-overlapped swapping, processor utilization cannot exceed 50 per cent. 

Performance can be improved considerably by using overlapped 
swapping and processing: The internal store is divided into two areas; while 
a job is processed in one area, another  job is swapped into the other  area; at 
the end of a t ime quantum the roles of the two areas are exchanged. To 
utilize this technique fully, the machine must  be equipped with facilities 
for dynamic relocation. You can easily see this if you  consider cyclical 
swapping of  an odd number  of jobs in two areas. 

When the average processor t ime p + q used by the operating system 
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Fig. 6.10. Processor utilization 77 as a function of the 
average service time per request 1/p. 

and its current job during a t ime quantum is less than the average swap time 
s, the system is swap limited, and we have 

~7 = q- P ~< P + q  ~< s (6.41) 
S 

When the average processor time used during a time quantum exceeds 
the average swap time, the system is processor limited, and we find 

q 
~ ? = - -  p ~< s ~< p + q  (6.42) p + q  

The performance of  overlapped swapping is also shown in Figs. 6.9 and 
6.10. In the processor limited region (1/p > 0.3 sec), processor utilization is 
about  83 per cent. The maximum number of users is reduced correspond- 
ingly compared to the idealized case with no swapping. 

6.3.2. Limited Swapping 

Even when swapping and program execution overlap each other  in time, 
round-robin scheduling still reduces processor utilization considerably 
(about  20 per cent in the example considered previously). The following is 
an informal discussion of methods which limit swapping wi thout  degrading 
interactive response to trivial requests. 

The following methods will be considered: 

dedicated response programs 
multiple-level scheduling 
improved store management 
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In his observation of  the C T S S  system, Scherr (1965) found that about  
50 per cent of  all user requests could be classified as file manipulation, 
program input, and editing. An interactive system that  does no t  distinguish 
between these standard tasks and other  user tasks will spend a considerable 
amount  of  time swapping copies of  the same programs for different jobs. 
An effective solution is to set aside a permanent  store area for dedica ted  
programs which can respond to the most  frequent  file handling and editing 
commands wi thout  swapping. 

Swapping of  non-trivial jobs can be reduced if a job  is given a larger and 
larger t ime quantum each time it is served, thus decreasing the number  of  
passes the job  must  make through the scheduling queue. The simplest 
algorithm uses two priority levels: Upon arrival, a job  is placed at the end 
of  a foreground  queue  with round-robin service; The job  may receive up to 
N -  1 t ime quanta of  Q seconds each in this queue. If the service time 
exceeds this limit, the job  is placed at the end of  a background  queue ,  
which is served either by round-robin scheduling with a large quantum or 
simply by  f irst-come, first-served scheduling to completion.  The foreground 
queue preempts the background queue at the end of  a t ime quantum. 
Background service is only resumed when the foreground queue is empty.  

If a background job  is served to completion,  it can be swapped N times 
at most.  So the average number  of  swaps per job is 

KN = P r o b ( t  > O ) + P r o b ( t  > Q ) +  

= 1 + e -~0  + . . .  + e -#(N-1)Q 

_ 1 - e -~NQ 

1 - e - # °  

. . .  + P r o b ( t  > ( N -  1)Q) 

(6.43) 

Simple round-robin scheduling corresponds to N ~ oo. If we choose N Q  
= 1/#, then 

KN 
- -  = l - e - 1  = 0 . 6 3  
K~ 

--a reduction of  37 per cent. 
In the SDC Q-32 system, the simple round-robin scheduling with 

non-overlapped swapping and execution used in the original version was 
later replaced by  foreground-background  scheduling with three priority 
levels: At level 1, each request  can receive three t ime quanta, each of  0.6 
sec; at level 2, only a single time quantum of 3.6 sec can be obtained;  still 
longer requests are given an unlimited number  of  t ime quanta, each of  1.2 
sec at level 3. This algorithm reduced average swap time by  50 per cent  
{Schwartz, 1964 and 1967). 



Sec. 6.3. PREEMPTIVE SCHEDULING 223 

A more complicated foreground-background scheduler was proposed by  
Corbato (1962) and used in the CTSS system. In this system, the quantum 
size increases exponentially with the priority level i 

Q i=  2 H  Q i = 1 , 2 ,  . . .  , 9  

where Q = 0.5 sec. The initial priority j assigned to a job  upon arrival 
depends on the time S required to swap the job  in and ou t  of  the internal 
store as follows 

S = (2 j-1 - 1) Q 

When a job  has been pushed down to level j + k, the ratio of  its swap time 
to its current time quantum is 

S - ( 1 -  2-q.-I))2 -k 
~j+k 

This equation shows that a job  is always executed for a time greater than or 
equal to its swap time. Furthermore,  the relative swap time of  long jobs 
decreases steadily. 

Shorter jobs may delay longer ones excessively. The CTSS scheduler 
compensates for this by  moving a job to the next  higher priority level when 
it has waited more than 1 minute for service. 

Corbato 's  scheduler has proved difficult to analyze, but  Scherr (1965) 
has demonstrated its advantage over round-robin scheduling by  simulation. 
The introduction of  this algorithm, which gives low priority to users with 
large storage requirements, had a drastic influence on the behavior of  users: 
Within three months the average program size dropped from 9000 to 6000 
words! This is an example of  the countermeasures that  users can and will 
use to improve their priority. Although this tends to defeat  any scheduling 
algorithm in the long run, it can also be used as an effective means of  
changing the characteristics of  jobs deliberately. When longer jobs are split 
into shorter ones which can be scheduled individually, the processor time 
wasted by unsuccessful runs is normally reduced. 

Swapping can also be reduced by  various methods of  store manage- 
ment. The solution used in CTSS and in Irons's system is to allocate 
internal store in such a way that the overlapping regions of jobs are 
minimal. During a swap, only as much of  the internal store is transferred to 
the backing store as is required to make room for the incoming job. 

Another  possibility is to use as backing store a large, slow core store 
which is directly addressable in continuation of  the smaller and faster 
internal store. The long-running jobs can be executed efficiently in the 



224 SCHEDULING ALGORITHMS Chap. 6 

internal store, while trivial requests can be executed directly in the slow 
core store without  swapping. This is the approach taken by Carnegie-Mellon 
University on its IBM 360 /67  system (Vareha, 1969). 

6.4. LITERATURE 

Scheduling methods and their countermeasures is the theme of  a paper 
by Coffman and Kleinrock (1968a). 

Two excellent papers, Estrin and Kleinrock (1967) and McKinney 
(1969), survey various analytical models of interactive systems with infinite 
input sources. 

For a much more complete discussion of scheduling, see the book by 
Conway, Maxwell, and Miller {1967). 

COFFMAN, E. G. and KLEINROCK, L., "Computer scheduling methods and their 
countermeasures," Proc. AFIPS Spring Joint Computer Conf., pp. 11-21, April 1968a. 

CONWAY, R. W., MAXWELL, W. L., and MILLER, L. W., Theory of Scheduling. 
Addison-Wesley, Reading, Massachusetts, 1967. 

ESTRIN, G. and KLEINROCK, L., "Measures, models and measurements for 
time-shared computer utilities," Proc. ACM National Meeting, pp. 85-96, Aug. 1967. 

McKINNEY, J. M., "A survey of analytical time-sharing models," Computing Surveys 1, 
2, pp. 105-16, June 1969. 



RESOURCE PROTECTION 

This chapter discusses the use of automatic methods to control access 
to resources. The main techniques considered are the class concept of 
Simula 67  and the capability concept. 

7.1. INTRODUCTION 

The last problem that will be discussed in this book is the question of 
how an installation protects shared resources against unauthorized usage. 

The word resource covers physical components, processes, procedures, 
and data structures; in short, any object referenced by computations. 
Physical resources and processes will always be represented by data within 
the system defining their identity and state as well as the rights of 
computations to use them, and by procedures defining meaningful 
operations on them. So the protection problem boils down to the following 
question: How can an installation protect data and procedures against 
unauthorized usage? I will therefore define resource protect ion as 
automatic methods  which ensure that data and procedures are accessed 
properly. 

The protection problem is not well-understood at the moment. Various 
aspects of it are solved by seemingly ad hoc methods in present systems. 

225 
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Rather than give a detailed description of  these, I prefer to give a brief 
indication of  the nature of a more systematic approach. But I can only 
present fragments of  a solution. 

Since only users and installation management can define the forms of  
access they wish to enforce for particular resources, we shall look  in vain 
for a general complete  solution to our protect ion problems. Still, we can 
hope to solve some aspects of  them in a uniform, efficient manner. I will 
discuss two aspects of  protection:  type checking, which ensures that  data 
are accessed by  well-defined operations, and security checking, which 
ensures that  these operations are carried ou t  by user computa t ions  
authorized to do so. 

As an example of  this distinction, consider a sequential file: The 
meaningful operations on the file may be rewind, read, and write; but  if the 
file contains valuable (perhaps confidential) data, permission to carry out  
these operations may no t  be granted to every computat ion.  

Resource protect ion is achieved by:  (1) identifying a user and 
establishing his authori ty  to access data; (2) creating an environment  which 
identifies the resources available to his particular computa t ion;  and (3) 
checking that  the computa t ion  remains within its proper environment.  

I shall no t  discuss the problem of user identification in any detail. It is 
often the weakest  part  o f  a protect ion system since it depends on 
identification supplied by the users themselves. Many present file systems 
maintain a directory for each user (or group of  users) defining his 
ownership of  private files and access rights to public files. A user's identi ty 
is of ten established by quotat ion of  a password which is selected by  the 
user himself and can be changed as of ten as desired. Another  technique is 
to associate access rights with particular terminals. Both techniques are 
used in the Cambridge file system (Fraser, 1971). 

In the following, I will concentrate on methods of  representing 
computat ional  environments and checking access to them. Two methods  
will be described: the use of  a class concept to  check resource access at 
compile t ime; and the use of  capabilities to check resource access at run 
time. 

7.2. CLASS CONCEPT 

We will first discuss the close relationship between data and operations 
and use it to define a very important  form of  protection.  

If we consider variables of  primitive types such as integer and boolean, 
it is quite possible that  values of  different types will be represented .by 
identical bit strings at the machine level. For example both  the boolean 
value true and the integer value 1 might be represented by  the bit string 
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000 . . .  001 

in single machine words. 
So data of  different types  are distinguished not  only by  the 

representation of  their values, but  also by the operations associated with 
the types. An integer, for example, is a datum subject only to arithmetic 
operations, comparisons, and assignments involving other  data subject  to 
the same restrictions. 

Now consider structured types. Take for example the variable b in 
Algorithm 3.6. It represents a message buffer that  contains a sequence of  
messages sent, but  not  yet  received. A static picture of  process 
communication can be defined by  assertions about  the relationships of  the 
components  of  the message buffer. But to understand how and when 
messages are exchanged dynamically, one must also s tudy the send and 
receive procedures defined for a message buffer. These operations in turn 
are only meaningful for the particular representation of  the message buffer  
chosen and can only be unders tood precisely by  studying its type  
definition. 

These examples illustrate the point  made by  Dahl (1971): "Data  and 
operations on data seem to be so closely connected in our minds, that  it 
takes elements of  both  kinds to make any concept  useful for understanding 
computing processes." 

Simon (1962) has pointed out  that  the search for state and process 
descriptions of  the same phenomenon is characteristic of  problem solving: 
"These two modes of  apprehending structure are the warp and weft  of  our 
experience. Pictures, blueprints, most  diagrams, chemical structural 
formulae are state descriptions. Recipes, differential equations, equations 
for chemical reactions are process descriptions. The former characterize the 
world as sensed; they provide the criteria for identifying objects, often by  
modeling the objects themselves. The latter characterize the world as acted 
upon;  they provide the means for producing or generating objects having 
the desired characteristics. 

"The distinction between the world as sensed and the world as acted 
upon defines the basic condition for the survival of  adaptive organisms. The 
organism must  develop correlations between goals in the sensed world and 
actions in the world of  process." 

In Section 2.6 on program construction, I have illustrated this 
alternation between a refinement of  data (representing states) and program 
(representing processes). The essence of  this form of  problem solving is the 
following: 

When a programmer needs a concept  such as process communicat ion,  
he first postulates a set of  operations (in this case, send and receive) that  
have the desired effect  at his present level of  thinking. Later, he chooses a 
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specific representation of a data structure (a message buffer), that enables 
him to implement the operations efficiently on the available machine. 

When the programmer is trying to convince himself of the correctness 
of a program (by formal proof or testing), he will tacitly assume that these 
operations (send and receive) are the only ones carried out on data 
structures of this type (message buffers). 

If other statements in his program are able to operate on message 
buffers, he cannot make this assumption. The most extreme case is 
unstructured machine language, which potentially permits each statement 
to influence any other statement, intentionally or by mistake. This makes 
program verification an endless task since one can never be sure, when a 
new component is added to a large program, how this will influence 
previously tested components. 

If, on the other hand, the previous assumption is justified, the 
programmer can convince himself of the correctness of process communica- 
tion by studying only the type definition of a message buffer and the 
procedures send and receive. Once this program component has been shown 
to be correct, the designer can be confident that subsequent addition of 
other components will not invalidate this proof. This makes the task of 
verification grow linearly with the number and size of components--an 
essential requirement for the design of large, reliable programs. 

According to the previous definition, it is an obvious protection 
problem to check that data are accessed by operations consistent with their 
type. To what extent do the structures of present high-level languages 
enable a compiler to check this? 

A decent compiler for an algorithmic language such as Fortran, Algol 
60, or Pascal will check the compatibility of data and operations on them 
for primitive types (Naur, 1963). The compiler can do this because the 
permissible operations on primitive types are part of the language 
definition. 

But in the case of structured types, only the most rudimentary kind of 
checking is possible with these languages. All the compiler can check is that 
data in assignment statements and comparisons for equality are of the same 
type. But, since the languages mentioned do not enable the programmer to 
associate a set of procedures with a type definition, the compiler cannot 
check whether the operations on a message buffer are restricted to send and 
receive procedures as intended by the programmer. This is a serious 
deficiency of most programming languages available today. 

An exception is the Simula 67 language (Dahl, 1968), an extension of 
Algol 60 originally designed for simulation. In Simula 67, the definition of 
a structured data type and the meaningful operations on it form a single 
syntactical unit called a class.* 

*Readers of the Pascal repor t  by  Wirth (1971a) should notice that the Simula class 
concept is completely unrelated to the Pascal class concept. 
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I will briefly describe a simplified, restricted form of the Simula 67 
class concept in a Pascal-inspired notation.  

The notat ion 

c l a s s T = v l : T 1 ; v 2 : T 2 ;  . . .  ; v m : T m ;  

procedure PI (  . . .  ) begin $1 end 
. ° • 

procedure Pn( . . .  ) begin Sn end 

begin S0 end 

defines: (1) a data structure of type T consisting of the components  v l ,  
v2, . . .  , vm of types T1, T2, . . .  , Tin; (2) a set of procedures (or 
functions) P1, P2, . . .  , Pn that  can operate on the data structure; and (3) 
a statement SO that  can define its initial value. 

A variable v of  type T is declared as usual: 

vary:  T 

Upon entry to the context  in which the variable v is declared, storage is 
allocated for its components  vl ,  v2, . . . .  vm, and the initial s tatement  SO 
is carried out  for this variable. 

A call of a procedure P / o n  the variable v is denoted: 

v . P i (  . . .  ) 

Procedure P/ can refer to the components v l ,  v2, . . .  , vrn of v, to its own 
local variables, and to the parameters of the given call. The operations P1, 
P2, . . .  , Pn are the only ones permitted on the variable v. 

An obvious idea is to represent critical regions by the concept shared 
class, implying that  the operations P1, P2, . . .  , Pn on a given variable v of 
type T exclude one another in time. 

The concept message buffering is defined as a shared class in Algorithm 
7.1. Compare this with Algorithm 3.6. A buffer variable b and a message 
variable t are declared and accessed as follows: 

vat b: B; t: T; 
b . s e n d ( t ) ; . . ,  b.receive(t); 

Strictly speaking, assignment to a message parameter m can only be 
made within the class B if its type T is primitive. But it seems reasonable to 
retain the simple type definition 

type T = < t y p e >  

to indicate that  variables of  this type can be accessed directly. 
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ALGORITHM 7.1 

RESOURCE PROTECTION 

Representation of a Message Buffer 
by a Shared Class. 

shared class B = 

bu f f e r :  array 0 . .  m a x - 1  of  T; 
p , c :  O. . m a x - l ;  
ful l :  O. . m a x ;  

procedure s e n d ( m  : T) ;  
begin 

await f u l l  < m a x ;  
b u f f e r ( p ) :  = m ;  
p := (p + 1) rood max; 
fu l l :  = fu l l  + 1; 

e n d  

procedure r e c e i v e ( v a t  m :  T); 
begin 

await f u l l  > 0; 
m := b u f f e r ( c ) ;  
c: = (e + 1) rood m a x ;  
fu l l :  = fu l l  - 1; 

e n d  

begin p :=  0; c: = 0; fu l l := 0 e n d  

Chap. 7 

The class concept  in Simula 67 has several other  aspects, among them a 
mechanism for defining a hierarchy of  classes (Dahl and Hoare, 1971). My 
main purpose here is to show a nota t ion which explicitly restricts 
operations on data and enables a compiler to check that  these restrictions 
are obeyed.  Although such restrictions are not  enforced by  Simula 67, this 
would seem to  be essential for effective protection.  

Many computers  support  a restricted form of shared class at the 
machine level of  programming. I am referring to the basic m o n i t o r  
procedures and data structures which control  the sharing of  processors, 
storage, and peripherals at the lowest  level of  programming, as described in 
Section 4.2.2. This class concept  enforced at run time is implemented as 
follows: The address mapping performed by a central processor prevents 
computat ions  from referring directly to data structures belonging to the 
basic monitor,  but  permits them to call a well-defined set of  moni tor  
procedures. Mutual exclusion in time of  such calls is achieved by  means of  
an arbiter and by  delaying interrupt response. To prevent computa t ions  
from bypassing the moni tor  and referring directly to physical resources, the 
central processor recognizes two states of  execution:  the pr iv i l eged  s t a t e ,  in 
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which all machine instructions can be executed; and the user state, in which 
certain instructions cannot be executed (those that  control program 
interruption, input /output ,  and address mapping). The privileged state is 
entered after a monitor  call; the user state is entered after a moni tor  return. 

In Section 1.2.3 I said, " I t  is now recognized tha t  it is desirable to be 
able to distinguish in a more flexible manner between many levels of  
protection (and not  just two) ."  We have seen that  it is indeed desirable to 
be able to enforce a separate set of  access rules for each data type used. The 
class concept is a general structuring tool applicable at all levels of  
programming, sequential as well as concurrent. 

The class concept was introduced here to protect local data structures 
within a program against inconsistent operations. But the concept is 
applicable also to data structures which are retained within the computer  
after the termination of  computations. 

One example of retained data structures are those used within an 
operating system to control resource sharing among unrelated compu- 
tations. These data structures must be accessed only through well-defined 
procedures; otherwise, the operating system might crash. So an operating 
system defines a set of standard procedures which can be called by 
computations. Since these procedures remain unchanged over reasonable 
periods of time, a compiler should be able to use a description of them to 
perform type checking of calls of them within user programs in advance of 
their execution. 

We are thus led to the idea of maintaining data structures defining 
environments o f  compilation and execution. An environment defines a set 
of retained data structures and procedures accessible to a given 
computation.  

Another example of retained data structures are files stored semi- 
permanently on backing stores. In most present file systems, a computat ion 
can either be denied access to a given file or be permitted to read, write, or 
execute it. This seems a rather crude distinction. In most cases, a data file is 
intended to be used only in a particular manner; for example, a source text  
of  a program is intended to be edited or compiled by a particular compiler; 
most other operations on it may be entirely meaningless from the user's 
point of  view. To maintain the integrity of a file, its creator should 
therefore be able to associate it with a set of procedures through which it 
can be accessed in a meaningful manner. This is possible, for example, in 
the file system for the B5500 computer (McKeag, 1971a). 

Assuming that  this set of  procedures remains unchanged over 
reasonable periods of time, it would again be possible to check the 
consistency of  references to files within user programs at compile time. The 
basic requirement is that  the access rules remain fixed between compilation 
and execution of  programs. 

Such a system differs from present ones in two aspects: (1) a program is 
compiled to be executed in a particular environment; and (2) a compiled 
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program may become invalid if its environment changes. This is acceptable 
only if most programs are compiled shortly before execution or  if they  
operate in a fairly constant  environment.  The benefits of  this approach 
would be an early detect ion of  program errors and a more efficient 
execution because fewer protect ion rules would have to be checked 
dynamically. 

7.3. CAPABILITIES 

Certain access decisions can only be made at run time. Consider, for 
example, a pool  of  identical resources, say line printers. At compile time we 
can check that  printers are accessed only by well-defined standard 
procedures. But the sequential nature of  printers also makes it necessary to 
ensure that  each of  them is used by  at most  one computat ion at a time. So 
at run t ime we must  keep track of  the ownership of  individual printers. 

In general, this means that  the system must  represent computat ional  
environments by  data structures at run time. Dennis and Van Horn (1966) 
have suggested the following technique for doing this: At any momen t  the 
access rights of  a process are defined by  an array of  data elements called 
capabilities. Each capability identifies a resource accessible to the process 
and a set o f  permissible operations on it. 

One can regard capabilities as parameters associated with a process and 
made available to standard procedures controlling resources when the 
process at tempts  to  access these resources. Capabilities are t reated 
differently from other parameters to prevent processes from exceeding 
their authority.  

As an example, the address mapping in most  computers  forces a process 
to  remain within a given set of  segments. Each segment is represented by  a 
capability consisting of  a base address and a length, as explained in Chapter 
5. Some computers  also associate a set of  access rights with each segment 
(for example, permission to read, write, or execute it). The safety of  this 
scheme is guaranteed by the inability of processes to refer directly to 
address maps. 

Another  example of capabilities is the data structures used within a 
monitor to keep track of  resources assigned to individual processes (such as 
the loans granted to  customers by  the banker in Algorithm 2.6). 

The environment of  a process changes dynamically as i t  acquires and 
releases resources. If we consider local data as resources, we find that,  in 
general, the environment changes every time the process calls a procedure 
or returns from one. 

A process may, for example, access shared data structures inside a 
moni tor  procedure,  but  no t  outside it. This dynamic change of  access rights 
is supported in a very minimal sense by  computers  which distinguish 
between two states of  execution:  privileged and unprivileged. 
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A somewhat  more flexible scheme is used in Multics (Graham, 1968), 
which distinguishes eight levels o f  protect ion.  The access rights of  a process 
executing at a given level of  protect ion are a subset  of  the access rights 
granted at lower levels. Each data and procedure segment is associated with 
a range of  protect ion levels. A segment can directly access other segments 
at its own or higher levels, bu t  segments at lower levels can only be accessed 
through well-defined procedures. A similar system has been implemented 
on the H I T A C  5020 computer  (Motobayashi,  1969). 

A practical evaluation of  this technique will require publication of 
performance measures for these systems. The implementation in Multics 
seems to be quite complex (Schroeder, 1972). The scheme requires 
extensive parameter checking (because addresses can be passed as 
parameters from higher to lower levels of  protect ion) as well as parameter 
copying (because segments can be shared with other computat ions  which 
might modify  parameters after the validity checking). 

Capabilities are also used in the RC 4000 system in which a hierarchy 
of  processes share a set of moni tor  procedures. These procedures enable 
processes to schedule other  processes and communicate  with them by 
means of  message buffers. Each process operates in a certain environment 
defined by  capabilities stored within the monitor.  A process can invoke 
operations at other  levels of  protect ion by moni tor  calls (executed in the 
privileged state) and by  messages sent to other  processes (executed in the 
user state with different capabilities). 

It is appealing that this system permits both  complete isolation and 
interaction between different levels of  protect ion (represented by  different 
processes). But, in practice, it is cumbersome that these interactions require 
transmission of  messages by  value. 

In general, the environment of  a process is established by another 
process (an operating system). In the RC 4000 system, there is initially 
only one process, the basic operating system. Upon request  from terminals, 
this process will call the moni tor  and initiate other  processes. These are 
described within the moni tor  as children of  the basic operating system, and 
these processes in turn can create their own children. Thus, a process tree is 
built. 

The question of  process authority is solved by  the simple rule that  a 
process can only schedule its own children and allocate a subset o f  its own 
resources to them. Initially, all resources are assigned to the basic operating 
system at the root  of  the tree. 

When a process receives a message from another process, the moni tor  
supplies the former process with a unique identification of  the latter. In 
theory,  this should enable the receiving process to decide whether  or not  
the sending process has the authori ty to request a given operation. But, in 
practice, it is difficult to establish the authori ty of  processes because the 
system does not  have a uniform concept  of  user authority.  
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In most  implementations (including the RC 4000 system), the 
environment of  a process seldom changes. But conceptually,  the following 
viewpoint is more general: When a process calls a procedure,  the current 
environment of  the process is replaced by  a set of  capabilities which apply 
within that  procedure. Upon return from the procedure,  the previous set of  
capabilites apply again. Thus, capabilities become part of  the stack of  a 
process. 

7.4. CONCLUSION 

We have considered the use of  the class concept  at compile time and the 
use of  capabilities at run time to check that  resources are accessed properly 
by  computat ions.  The essential properties of  these protect ion mechanisms 
are the following: 

A process operates in an environment which defines the set of  resources 
available to it. These resources consist of  data and procedures which are 
directly accessible to  the process, and data and procedures which are '  
indirectly accessible to it (through calls of  directly accessible procedures 
with directly accessible data as parameters). 

Access rights are primarily associated with procedures to ensure the 
consistency of  data structures, bu t  the overall author i ty  of  a computation 
can be restricted merely by  restriction of  its initial environment. 

These relationships between users, procedures, and data should be 
reflected in the structure of  the file system and in the structure of  
individual programs. Efficient use of  these concepts will require a language 
in which the programmer can express the intended protect ion rules so they  
can be recognized and checked automatically.  

The machine language interpreted by  processors during execut ion can 
only represent high-level structure in the crudest manner. Some at tempts  
have been made to refine protect ion mechanisms at the machine level (as in 
Multics), but, on the whole, I am skeptical abou t  a t tempts  to solve 
high-level structuring problems by brute  force at the lowest  levels of  
programming. 

I expect  to see many protect ion rules in future operating systems 
enforced in the cheapest possible manner by type  checking at compile time. 
However, this will require exclusive use of  efficient, well-structured 
languages for programming. 

7.5. LITERATURE 

The use of  the class concept  in Simula 67 for program construct ion is 
illustrated in a paper by  Dahl and Hoare (1971). 

The idea of  associating procedures with data structures is also used in 
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the AED-O language designed by Ross (1969), but  the unrestricted use of  
pointers in this language makes it impossible to check the correspondence. 

The use of  capabilities was originally suggested by Dennis and Van 
Horn (1966) and later developed by Lampson (1969 and 1970). 

The security checks in the Cambridge file system are described by 
Fraser (1971). 

The model of  computational  structures presented by Vanderbilt (1969) 
is most closely related to the view of protection presented here. 
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A CASE STUDY: RC 4 0 0 0  

This chapter describes the phi losophy and structure of  the RC 4000 
multiprogramming system which can be extended with a hierarchy of  
operating systems to suit diverse requirements of  process scheduling and 
resource allocation. The system nucleus simulates an environment in which 
program execution and inpu t /ou tpu t  are handled uniformly as concurrent,  
cooperating processes. A set of  primitives allows dynamic creation and 
control of  a hierarchy of  processes as well as communication among them. 

We have discussed at length various aspects of  concurrent  processes and 
resource management. I will now describe a complete  multiprogramming 
system in some detail to give you  an idea of  how the various pieces fit 
together in a coherent design. 

The system I have chosen was designed for the RC 4000 computer  
manufactured by  Regnecentralen in Denmark. Work on the system began 
towards the end of  1967, and a well-documented reliable version of  it was 
running in the spring of  1969. The conceptual part of the design was due to 
J~rn Jensen, S~ren Lauesen, and myself. We spent almost a year with daily 
discussions trying to formulate objectives, concepts,  and overall structure. 
A presentation of  our proposal was written before its implementation. It 
corresponded closely to the paper published after its complet ion (Brinch 
Hansen, 1970). Having reached a clear understanding of  the problem, we 
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found that  it was an almost trivial task to write and test the system in 
machine language. It was done in half a year by Leif Svalgaard and myself. 

I will first describe the RC 4000  system as we looked upon  it at that  
t ime and then take a critical look at it in the light of  my  present thinking. 
What follows then is a slightly edited version of  the system manual (Brinch 
Hansen, 1969). The presentation is made as self-contained as possible and 
will sometimes repeat  ideas ment ioned in earlier chapters. 

8.1. SYSTEM OBJECTIVES 

The multiprogramming system for the RC 4000  computer  is a tool  for  
the design of  operating systems. It allows dynamic creation of  a hierarchy 
of processes in which diverse medium-term strategies of  process scheduling 
and resource allocation can be implemented.  

For  the designer of  advanced information systems, a vital requirement  
of  any operating system is that  it allow him to  change the mode of  
operation it controls; otherwise, his f reedom of  design can be seriously 
limited. Unfortunately,  this is precisely what  many operating systems do 
no t  allow. Most  of  them are based exclusively on a single mode  of  
operation such as batch processing, spooling, real-time scheduling, or 
conversational access. 

When the need arises, the user of ten finds it hopeless to modi fy  an 
operating system that  has made rigid assumptions in its basic design about  a 
specific mode  of  operation. The alternative--to replace the original 
operating system with a new one--is in most  computers  a serious, if no t  
impossible, mat ter  because the rest of  the software is intimately bound  to 
the conventions required by the original system. 

This unfor tunate  situation indicates that  the main problem in the 
design of  a multiprogramming system is no t  to define functions that  satisfy 
specific operating needs, but  rather to supply a system nucleus that  can be 
extended with new operating systems in an orderly manner. This is the 
primary objective of  the RC 4000 system. 

The basic a t t i tude during the designing was to  make no assumptions 
about  the particular medium-term strategy needed to optimize a given type  
of  installation, bu t  to concentrate on the fundamental  aspects of  the 
control  of  an environment consisting of  cooperating, concurrent  processes. 

The first task was to assign a precise meaning to the process concept ;  
that  is, to introduce unambiguous terminology defining what  a process is 
and how it is implemented on the actual computer .  

The next  step was to select primitives for the synchronization and 
transfer of  data between concurrent  processes. 

The final decisions concerned the rules for dynamic creation, control,  
and removal of  processes. 

The purpose of  the system nucleus is to implement  these fundamental  
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concepts: simulation of  processes; communication between processes; and 
creation, control, and removal of processes. 

8.2. BASIC CONCEPTS 

This section opens a detailed description of  the RC 4000 system. A 
multiprogramming system is viewed as an environment in which program 
execution and input /output  are handled uniformly as cooperating, 
concurrent processes. The purpose of  the nucleus is to bridge the gap 
between the actual hardware and the abstract concept of  multi- 
programming. 

8.2.1. Programs and Internal Processes 

As a first step, we shall assign a precise meaning to the process concept. 
We will distinguish between internal and external processes, roughly 
corresponding to program execution and input /output ,  respectively. 

More precisely, an internal process is the execution of one or more 
interruptable programs in a given store area. An internal process is 
identified by a unique process name. Thus, other processes need not  be 
aware of  the actual location of an internal process in store, but can refer to 
it by name. 

Figure 8.1 illustrates the allocation of the internal store to a monitor (the 
system nucleus) and three internal processes, P, Q, and R. 

Monitor 

Internal 
process P 

Internal 
process Q 

Internal 
process R 

Fig. 8.1. Allocation of store to the 
monitor and three intemM processes. 

Later it will be explained how internal processes are created and how 
programs are placed in their store areas. At this point, it should only be 
noted that  an internal process occupies a contiguous segment with a fixed 
base address during its lifetime. The monitor  maintains a process 
description of  each internal process: It defines the name, store area, and 
current state of  the process. 

At the short-term scheduling level, processor time is shared cyclically 
among all active internal processes. Typically, the monitor  allocates a 
maximum time slice of 25 msec to each internal process in turn. At the end 
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ready 

runn~ 
Fig. 8.2. The ready and running states 
of an internal process. 

of this interval, the process is interrupted and its register values are stored 
in the process description. Following this, the monitor  allocates 25 msec to 
the next  internal process, and so on. The queue of internal processes 
waiting to run is called the ready queue. Figure 8.2 shows the ready and 
running states of  internal processes and the transitions between them. 

A sharp distinction is made between the concepts program and internal 
process. A program is a collection of  instructions describing a process, and 
an internal process is the execution of these instructions in a given store 
area. 

An internal process such as P can involve the execution of  a sequence of  
programs; for example, editing followed by translation and execution of  
an object program. Copies of the same program (for example, an Algol 
compiler) can also be executed simultaneously by two processes, Q and R. 
These examples illustrate the need for a distinction between programs and 
processes. 

8.2.2. Documents and External Processes 

In connection with input /output ,  the monitor  distinguishes between 
peripheral devices, documents,  and external processes: 

A peripheral device is an item of  hardware connected to a data channel 
and identified by a device number. 

A document  is a collection of data stored on a physical medium, for 
exam ple: 

a roll of  paper tape 
a deck of  punched cards 
a printer form 
a reel of magnetic tape 
an area on the backing store 

An external process is the input /ou tput  of  a given document  identified 
by a unique process name. This concept implies that  once a document  has 
been mounted,  internal processes can refer to it by name without  knowing 
the actual device it uses. 
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For each external process, the monitor  maintains a process description 
defining its name, kind, device number, and current state. The process kind 
is an integer defining the type of peripheral device on which the document  
is mounted.  

For each kind of  external process the monitor  contains a procedure 
that  can start and complete input /output  on request from internal processes. 

8.2.3. Monitor 

Multiprogramming and communication between internal and external 
processes are coordinated by the system nucleus--a monitor with complete 
control of input /output ,  store protection, and interrupt response. I do not  
regard the monitor  as an independent process, but rather as a software 
extension of  the hardware structure that  makes the computer  more 
attractive for multiprogramming. Its function is to implement the process 
concept and the primitives that  processes can call to  create and control 
other processes, and communicate with them. 

After system initialization, the monitor  resides permanently in the 
internal store. It is the only program which executes privileged instructions 
in an uninterruptable processor state. 

So far, I have described the multiprogramming system as a set of  
concurrent processes identified by names. The emphasis has been on a clear 
understanding of  the relationships between resources (store and periph- 
erals), data (programs and documents),  and processes (internal and 
external). 

8.3. PROCESS COMMUNICATION 

The following explains the monitor  procedures for the exchange of  data 
between concurrent processes. 

8.3.1. Messages and Answers 

Two concurrent processes can cooperate by sending messages to each 
other. A message consists of eight machine words. Messages are transmitted 
from one process to another by means of message buffers selected from a 
common pool within the monitor.  

The monitor  administers a message queue for each process. Messages are 
linked to this queue when they arrive from other processes. The message 
queue is part of the process description. 

Normally, a process serves its queue in first-come, first-served order. 
After the processing of a message, the receiving process returns an answer 
of eight words to the sending process in the same buffer. 
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Communicat ion between two independent  processes requires tha t  they  
be synchronized during a transfer of data. A process requests synchroni- 
zation by executing a wait operation; this causes a delay of the process 
until another process executes a send operation. 

The term delay means that  an internal process is removed temporarily 
from the ready and running states; the process is said to be activated when 
it is again linked to the ready queue. 

The following monitor  procedures are available for communicat ion 
between internal processes: 

send message(receiver, message, buffer) 
wait message(sender, message, buffer) 
send answer(result, answer, buffer) 
wait answer(result, answer, buffer) 

Send message copies a message into an available buffer selected from 
the pool and delivers it in the queue of  a given receiver. The receiver is 
activated if it  is waiting for a message. The sender continues after being 
informed of  the address of  the message buffer. 

Wait message delays the calling process until a message arrives in its 
queue. When the process is being allowed to proceed, it is supplied with the 
name of  the sender, the contents of  the message, and the address of the 
message buffer. The buffer is removed from the queue and is now ready to 
transmit an answer. 

Send answer copies an answer in to  a buffer in which a message has been 
received and delivers it in the queue of  the original sender. The sender of  
the message is activated if it is waiting for this particular answer. The 
answering process continues immediately.  

Wait answer delays the calling process until  an answer arrives in a given 
buffer. On arrival, the answer is copied into the process and the buffer is 
returned to the pool. The result specifies whether the answer is a response 

ready 

• or 3 

wait ing 

or 4 

running 

1 : send message 
2: wait message 
3: send answer 
4: wait answer 

(a) (b) 

Fig. 8.3. (a) The process states ready, running, and waiting; 
and (b) the primitives that cause the transitions between 

them. 
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from another process or a dummy answer generated by the moni tor  in 
response to a message addressed to a non-existent process. 

Figure 8.3 shows the transitions of internal processes between the ready, 
running, and waiting states. The monitor  distinguishes between two 
possible waiting states for a process: awaiting message and awaiting answer. 
In the latter case, the monitor  also remembers the buffer in which an 
answer is expected. 

empty 

sent 

received 

returned 

I : send message 
2: wait message 
3: send answer 
4: wait answer 

(a) (b) 

Fig. 8.4. (a) The possible states of  a message buffer; and 
(b) the primitives that cause the transitions between them. 

Figure 8.4 shows the life cycle of a message buffer: It begins as an empty 
buffer in the pool. When a message is sent in the buffer, it enters the 
message queue of the receiver. When the message is received, the buffer is 
removed from the queue. When an answer is returned in the buffer, it 
enters the message queue of the original sender. Finally, when the answer is 
received, the buffer returns to the pool in the empty state. 

8.3.2. Advantages of Message Buffering 

The design of  the communication scheme reflects that  the multi- 
programming system is a dynamic environment in which some of  the 
processes may turn out  to be black sheep. 

The system is dynamic in the sense that  processes can appear and 
disappear at any time. Therefore, in general, a process does no t  have a 
complete knowledge of  the existence of  other processes. This is reflected in 
the  procedure wait message, which makes it possible for a process to be 
unaware of  the existence of  other processes until it  receives messages from 
them. 

On the other hand, once a communication has been established 
between two processes (by means of  a message), they  need a common 
identification of  it in order to agree on when it is completed (by means of  
an answer). So we can properly regard the selection of a buffer as the 
creation of  an identification of  a conversation. This also enables two 
processes to exchange more than one message at a time. 
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We must be prepared for the occurrence of erroneous or malicious 
processes in the system (undebugged programs). This is tolerable only if the 
monitor  ensures that  no process can interfere with a conversation between 
two other processes. This is done by storing the identi ty of  the sender and 
receiver in each buffer, and checking it whenever a process at tempts to send 
or wait for an answer in a given buffer. 

Efficiency is obtained by the queuing of buffers, which enables a 
sending process to continue immediately after delivery of a message or an 
answer regardless of whether the receiver is ready to process it or not. 

To make the system dynamic, it is vital that  a process can be removed 
at any time--even if it  is engaged in one or more conversations. When a 
process is being removed, the monitor  leaves all messages from it 
undisturbed in the queues of other processes. When these processes 
terminate their actions by sending answers, the monitor  simply returns the 
buffers to the common pool. 

The reverse situation is also possible: During the removal of  a process, 
the monitor  may find unanswered messages sent to  the process. These are 
returned as d u m m y  answers to the senders. A special instance of this is the 
generation of  a d u m m y  answer to a message addressed to a process tha t  
does not  exist. 

The main drawback of  message buffering is that  it introduces yet  
another resource problem since the common pool contains a finite number  
of  buffers. If a process were allowed to empty  the pool by sending messages 
to ignorant processes which do not  respond with answers, further 
communication within the system would be blocked. We have therefore set 
a limit to the number of  messages a process can send simultaneously. By 
doing this and by allowing a process to transmit an answer in a received 
buffer, we have placed the entire risk of a conversation on the process tha t  
opens it. 

8.3.3. Event Primitives 

The message scheme described so far has certain practical limitations as 
we shall see later, but  it is conceptually consistent. Far more dubious are 
the following procedures introduced as an ad hoc solution to a specific 
programming problem: the design of  that  part of  an operating system 
which communicates with operators through terminals. The original 
motivation was the following: 

The communicat ion procedures enable a conversational process to 
receive messages simultaneously from several other processes. To avoid 
becoming a bott leneck in the system however, a conversational process 
must be prepared to be engaged in more than one conversation at  a time. 
As an example, th ink of a conversational process that  engages itself, on 
request from another process, in a conversation with one of  several 
operators asking him to perform a manual operation (for example, 
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mount ing a magnetic tape). If we restrict a conversational process to  
accepting only one message at a t ime and to completing the requested 
action before receiving the next  message, the consequence is tha t  o ther  
processes (including operators at terminals) can have their  requests for  
response delayed for  a long time. 

As soon as a conversational process has started a lengthy action by 
sending a message to some other  process, it must be able to  receive fur ther  
messages and start o ther  actions. It will then be reminded later of  the 
complet ion of  earlier actions by means of  normal answers. 

In general, a conversational process is now engaged in several requests at  
one time. This introduces a scheduling and resource problem: When the 
process receives a request,  some of  its resources (storage and peripherals) 
can be tied up by already initiated actions. So in some cases the process will 
no t  be able to  honor  new requests before old ones have been completed.  In 
such cases, the process wants to postpone the reception of  some requests 
and leave them pending in the queue, while examining others. 

The procedures wait message and wait answer, which force a process to  
serve its queue in strict order  of arrival and delay itself while its own 
requests to  o ther  processes are completed,  do not  fulfill the  above 
requirements.  

Consequently,  we int roduce two communicat ion procedures tha t  
enable a process to  wait for  the arrival of  the next  message or answer and 
serve its queue in any order: 

wait event(previous buffer, next  buffer, result) 
get event(buffer) 

The term event denotes a message or an answer. In accordance with 
this, the queue of  a process f rom now on will be called the event queue. 

Wait event delays the calling process until  either a message or an answer 
~xrives in its queue after  a given, previously examined buffer. The process is 
supplied with the address of  the next  buffer and a result indicating whether  
it contains a message or an answer. If the previous buffer address was zero, 
the queue is examined f rom the start. The procedure does no t  remove any 
buffer  f rom the queue or in any other  way change its status. 

As an example,  consider an event queue with two pending buffers A 
and B which arrived in that  order: 

The moni tor  calls 

and 

queue = (buffer A,  buffer B) 

wait event(O, buffer) 

wait event(A, buffer) 
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will cause immediate return to  the process with buffer equal to  A and B, 
respectively. But  the call 

wait event(B, buffer) 

will delay the process until another message or answer arrives in the queue 
after buffer  B and will then supply the address of  the newly arrived buffer  
C. 

Get event removes a given buffer from the queue of  the calling process. 
If  the buffer  contains a message, the buffer  is made ready for the sending o f  
an answer. If  the buffer  contains an answer, it is returned to the common 
pool. The copying o f  the message or answer from the buffer  must  be done 
by the process itself before get event is called (a shortcut  which reveals the 
ad hoc nature of  this proposal).  

Algorithm 8.1 illustrates the use of  event procedures within a 
conversational process. 

The process starts by examining its queue: If  it is empty,  the process 
awaits the arrival of  the next  event. If it finds a message, the process checks 

AL GORITHM 8. 1 The Basic Cycle of  a Conversational Process 

vat buffer, previous buffer: B; result: (message, answer); 

repeat 
buffer:= O; 
repeat 

previous buffer:= buffer; 
wait event(previous buffer, buffer, result); 

until result = message & resources available(buffer) 
or result = answer; 

get event(buffer);  
f f  result = message then 
begin 

reserve resources; 
start action; 
send message to some other process; 
save state o f  action; 

end else 
begin "result = answer"  

restore state o f  action; 
complete action; 
release resources; 
send answer to original sender; 

end 
forever 
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whether it has the necessary resources to perform the requested action; if 
not ,  it leaves the message in the queue and examines the next  event. 
However, if the process does possess the necessary resources, it accepts the 
message, reserves the resources, and starts the requested action. As soon as 
this involves the sending of  a message to some other process, the 
conversational process saves data about the state of  the incomplete action 
and proceeds to examine its queue from the start to engage itself in another 
action. 

Whenever the process finds an answer in its queue, it immediately 
accepts it and completes the corresponding action. It can now release the 
resources used and send an answer to the original sender that  made the 
request. After this, it examines the entire queue again to see whether the 
release of  resources has made it possible to  accept pending messages. 

An example of  a process operating in accordance with this scheme is 
the basic operating system S, which creates internal processes on request 
from typewriter terminals. S can be engaged in conversations with several 
terminals at the same time. It will only postpone an operator request if its 
store area is occupied by other requests in progress or if it is already in the 
middle of  an action requested from the same terminal. 

8.4. EXTERNAL PROCESSES 

This section clarifies the meaning of  the external process concept. It 
explains the initiation of  input /output  by means of messages from internal 
processes, dynamic creation, and removal of external processes, as well as 
exclusive access to documents by means of reservation and releasing. 

8.4.1. Input/Output 

Consider the situation shown in Fig. 8.5, in which an internal process P 
inputs a data block from an external process Q (say, a magnetic tape). 

. . . .  t ~ Input First address 

block / Last address 

1 
External Internal 

process Q process P 

Fig. 8.5. Input from an external process Q to an internal 
process P. 
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P starts input  by  sending a message to Q: 

send message(Q, message, buffer) 

The message defines an input /ou tpu t  operation and the first and last 
addresses of  a store area within process P: 

message: operation 
first store address 
last store address 

The moni tor  copies the message into a buffer  and delivers it in the queue of  
process Q. Following this, the moni tor  uses the kind parameter in the 
process description of  process Q to switch to a piece of  code common to all 
magnetic tapes. If the tape station is busy,  the message is merely left  in its 
queue; otherwise, input  is started to  the given store area. On return, 
program execution continues in process P. 

When the tape station completes the input  by  means of  an interrupt,  
the moni tor  generates an answer and delivers it in the queue of  process P 
which in turn receives it by  calling 

wait answer(result, answer, buffer) 

The answer contains status bits sensed from the device and the actual 
length of  the block input: 

answer: status bits 
block length 

After delivery of  the answer, the moni tor  examines the queue of  the 
external process Q and starts its next  operation (unless the queue is empty) .  

Essentially all external processes follow this scheme, which can be 
defined by  the following algorithm: 

"external process" 
repeat 

wait message; 
ff message acceptable then 
begin 

start input output; 
await interrupt; 

end 
produce answer; 
send answer; 

forever 
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With low-speed, character-oriented devices, the monitor  repeats the 
input /ou tput  for each character until a complete block has been 
transferred. (While this is taking place, the time between interrupts is, of  
course, shared among internal processes.) Internal processes can therefore 
regard all input /output  as block-oriented. 

8.4.2. Mutual Exclusion 

The use of  message buffering provides a direct way of sharing an 
external process among a number of internal processes: An external process 
can simply accept messages from any internal process and serve them in 
their order of  arrival. An example of this is the use of a single typewriter 
for the output  of messages to a main operator. 

This method of  sharing a device ensures that  a block of  data is input  or 
output  as an indivisible enti ty.  But when sequential media, such as paper 
tape, punched cards, or magnetic tape, are used, an internal process must 
have exclusive access to the entire document.  This is obtained by calling the 
following monitor  procedure: 

reserve process(name, result) 

The result indicates whether or not  the reservation has been accepted. 
An external process that  handles sequential documents rejects messages 

from all internal processes except the one that  has reserved it. Rejection is 
indicated by the result of  wait answer. 

During the removal of  an internal process, the monitor  removes all 
reservations the process has made. Internal processes can, however, also do 
this explicitly by means of  the monitor  procedure: 

release process(name) 

8.4.3. Process Identification 

From the operator's point of view, an external process is created when 
he mounts a document  on a device and names it. The name must, however, 
be communicated to the monitor  by means of an operating system--an 
internal process that  controls the scheduling of  other internal processes. So 
it is more correct to say that  external processes are created when internal 
processes assign names to peripheral devices. This is done by means of the 
monitor  procedure 

create peripheral process(name, device number, result) 

The monitor  has no way of  ensuring whether a given document  is 
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mounted  on a device. There are also some devices, such as the real-time 
clock, which operate wi thout  documents .  

The name of  an external process can be explicitly removed by a call of  
the moni tor  procedure 

remove process(name, result) 

It is possible to implement  an automatic  removal of  a process name 
when the moni tor  detects operator  intervention in a device. This is done for 
magnetic tapes. 

8.4.4. Replacement of External Processes 

The decision to control inpu t /ou tpu t  by  means of  interrupt procedures 
within the monitor,  instead of  using dedicated internal processes for each 
peripheral device, was made to achieve immediate start of  inpu t /ou tpu t  
after the sending of  messages. In contrast, the activation of  an internal 
process merely implies that  it is linked to the ready queue; after activation, 
several t ime slices can elapse before the internal process actually starts to  
execute instructions. 

The price paid for  the present implementat ion of  external processes is a 
prolongation of  the t ime spent in the uninterruptable state within the 
monitor.  This limits the system's ability to cope with real-time events--data 
that  are lost unless they are input  and processed within a certain time. 

An important  consequence of  the  uniform handling of  internal and 
external processes is that  it allows one  to replace any external process with 
an internal process of  the same name; other  processes that  communicate  
with it are quite unaware of  this replacement.  

Replacement  of  external processes with internal processes makes it 
possible to  enforce more complex rules of  access to documents.  In the 
interest of  security one might, for example, want  to limit the access of  an 
internal process to  one of  several files recorded on a particular magnetic 
tape. This can be ensured by  an internal process that  receives all messages 
to  the tape and decides whether  they should be passed on to it. 

As another example, consider the problem of  testing a real-time system 
before it is connected to  an industrial plant. A convenient way of  doing this 
is to replace analog inputs with an internal process that  simulates relevant 
values of  the actual measuring instruments. 

The ability to replace any process in the system with another process is 
a very useful tool. 

(I am still presenting the system as we looked upon  it in 1969. 
Replacement  of  external processes has indeed been used since, but ,  as I will 
point  ou t  later, there are severe practical restrictions on its usefulness.) 
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8.5. INTERNAL PROCESSES 

This section explains the creation, control,  and removal of  internal 
processes. The emphasis is on the hierarchal structuring of  internal 
processes, which makes it possible to  extend the system with new operating 
systems. The dynamic behavior of  the system is explained in terms of  
process states and the transitions between these. 

8.5.1. Scheduling Primitives 

Internal processes are created on request  from other internal processes 
by means of  the moni tor  procedure: 

create process(name, resources, result) 

The monitor  initializes the process description of  the new internal process 
with its name and a set of  resources selected by the parent process. A part 
of  the resources is a store area, which must be within the parent 's own area 
as shown in Fig. 8.6. Also specified by the parent is a protect ion key, which 
must  be set in all store words of  the child process before it is started. 

Parent 
process 

Child 
process 

Fig. 8.6. Store allocation to a child 
process within its parent process. 

After  creation, the child process is simply a named store area described 
within the monitor.  It  has no t  ye t  been linked to the ready queue. 

The parent process can now load a program into the child process by  
means of  an input /ou tpu t  operation. Following this, the parent can 
initialize the registers of  its child using the moni tor  procedure: 

modify  process(name, registers, result) 

The register values are stored in the process description until the child 
process is being started. As a standard convention adopted  b y  parent 
processes (but  not  enforced by  the monitor),  the initial register values 
inform the child process about  its own process description, its parent, and 
the typewri ter  terminal it can use for operator  communication.  

Finally, the parent can start the execution of  its child by  calling: 
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start process(name, result) 

which sets the protect ion keys within the child and links it to the ready 
queue. The child now shares time slices with other  active processes, 
including its parent. 

On request from a parent process, the moni tor  waits for the complet ion 
of  all inpu t /ou tpu t  initiated by  the child and stops it by removing it f rom 
the ready or running state: 

stop process(name, buffer, result) 

The purpose of  the message buffer  will be made clear in Section 8.10.3. 
In the s topped state, a child process can either be started again or 

completely removed by the parent process: 

remove process(name, result) 

During the removal, the monitor  generates dummy answers to all messages 
sent to the child and releases all external processes used by  it. Finally, the 
protect ion keys are reset to the value used within the parent process. The 
parent can now use the store area to create other  child processes. 

Figure 8.7 shows the process states and the operations that  cause the 
transitions between them. 

removed 

ready ~i ) stopped 
i waiting 

running 

1 : create process 
2: remove process 
3: start process 
4: stop process 
5: wait message (or answer) 
6: send message (or answer) 

(a) (b) 

Fig. 8.7. (a) The states of an interns] process; and (b) the 
primitives that cause the transitions between them. 

According to our philosophy, processes should have complete  f reedom 
to choose their own medium-term strategy of child scheduling. The 
moni tor  only supplies the essential primitives for the initiation and control  
of  processes. Consequently,  the concepts,  program loading and swapping, 
are not  part o f  the nucleus. 

However,  multiplexing of  a common store area among child processes 
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by swapping is possible because the moni tor  does not  check whether 
internal processes overlap one another as long as they remain within the 
store areas of  their parents. Swapping from a process A to another process 
B can be implemented in a parent process as follows: 

stop(A); 
output(A); 
input(B); 
start(B); 

8.5.2. Process Hierarchy 

The purpose of  the monitor is to simulate an environment in which 
program execution and input /ou tpu t  are handled uniformly as cooperating, 
concurrent processes. A set of  moni tor  procedures allows dynamic creation 
and control  of  processes as well as communicat ion between them. 

For a given installation we still need, as part of  the system, programs 
that control  medium-term strategies for operator  communication,  process 
scheduling, and resource allocation. But it is essential for the orderly 
growth of  the system that  these operating systems be implemented as other 
programs. Since the main difference between operating systems and user 
computat ions is one of  jurisdiction, this problem is solved by arranging the 
internal processes in a hierarchy in which parent processes have complete  
control over child processes. 

This is illustrated in Fig. 8.8. After system initialization, the internal 
store contains the moni tor  and an internal process S, which is the basic 
operating system. S can create concurrent processes A, B, C , . . .  on request 

S 

Monitor 

At° E 

B FIG 
H 

(a) (b) 

Fig. 8.8. (a) A family tree of internal processes; and (b) the 
corresponding store allocation. 
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from terminals. These processes can in turn create other  processes D, E, 
F,  . . . .  Thus, while S acts as a primitive operating system for A, B, and C, 
they  in turn act as operating systems for their children, D, E, and F.  

This family tree of  processes can be extended to  any level, subject  only 
to  a limitation of  the total  number  of  processes. The maximum number  of  
internal processes is 23, including the basic operating system S. The store 
protect ion system of the RC 4000 computer  provides mutual  protect ion of  
8 independent  processes. When this number  is exceeded,  one must  rely on 
some of  the processes being error-free or use swapping to prevent them 
from being active at the same time. 

In this multiprogramming system, all procedures executed in the 
privileged processor state are implemented within the monitor.  The latter 
embodies a fixed, short-term policy of  processor multiplexing. Medium- 
term scheduling policies can be introduced at higher levels at which each 
process can control  the scheduling and resource allocation of  its own 
children. 

The only protect ion rules enforced by  the moni tor  are the following: A 
process can only allocate a subset of  its own resources (including storage) 
to its children; and a process can only modi fy ,  start, stop, and remove its 
own children. 

The structure of  the family tree is defined in the process descriptions 
within the monitor.  I emphasize that  the only funct ion of  the tree is to  
define the basic rules of  process control  and resource allocation. Time slices 
are shared evenly among active processes regardless of  their posit ion in the 
hierarchy, and each process can communicate  with all other  processes. 

For  the development  of  operating systems, the most  important  
properties of  the system are the following: 

(1) N e w  operating systems can be implemented as other programs 
without  modification of  the monitor.  The Algol and Fortran languages for 
the RC 4000 computer  contain facilities for calling the moni tor  and 
starting concurrent  processes. So it is possible to write operating systems in 
high-level languages. 

(2) Operating systems can be replaced dynamically,  thus enabling an 
installation to switch among various modes of  operation; several operating 
systems can actually be active simultaneously. 

(3) Standard programs and user programs can be executed under 
different operating systems without  modification, provided communicat ion 
between parents and children is standardized. 

8.6. RESOURCE PROTECTION 

This section describes a set of  moni tor  rules that  enable a parent 
process to control  the allocation of  resources to  its children. 
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In the system, internal processes compete for the following resources: 

processor t ime 
internal storage and protection keys 
message buffers and process descriptions 
peripheral devices 
backing storage 

Initially, the basic operating system S owns all resources. As a basic 
principle enforced by the monitor,  a process can allocate only a subset of 
its own resources to a child process. These are returned to the parent 
process when the child is being removed. 

8.6.1. Processor Allocation 

All active processes are allocated time slices in a cyclical manner. 
Depending on the interrupt frequency of the hardware interval timer, the 
length of a t ime slice can vary between 1.6 and 1638.4 msec. A reasonable 
value is 25.6 msec. With shorter intervals, the fraction of  processor time 
consumed by timer interrupts grows drastically; with longer intervals, the 
delay between the activation and execution of an internal process increases. 

In practice, internal processes often start input /ou tput  and wait for it in 
the middle of  a time slice. This creates a scheduling problem when internal 
processes are activated by answers: Should the monitor  link processes to 
the beginning or to the end of  the ready queue? Linking processes to the 
beginning ensures that  processes can use peripherals with maximum speed, 
but there is a danger that  a process might monopolize the processor by 
communicating frequently with fast devices. Linking them to the end 
prevents this, but  introduces a delay in the ready queue which slows down 
peripherals. 

We introduced a modified form of round-robin scheduling to solve this 
problem. As soon as a process leaves the running state, the monitor  stores 
the actual value of the time quantum used by it. When the process is 
activated again, the monitor  compares this quantum with the maximum 
time slice: As long as this limit is not  exceeded, the process is linked to the 
beginning of  the queue; otherwise, it is linked to the end of  the queue, and 
its time quantum is reset to zero. The same test is applied when the interval 
timer interrupts a running process. 

This short-term policy at tempts to share processor time evenly among 
active internal processes regardless of  their position in the hierarchy. It 
permits a process to be activated immediately until it threatens to 
monopolize the central processor; only then is it pushed into the 
background to give other processes a chance. This is admit tedly a built-in 
strategy at the short-term level. Parent processes can only control the 
allocation of  processor time to their children in larger portions (on the  
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order of  seconds) by means of  the procedures start process and stop 
process. 

For accounting purposes, the monitor  collects the following data for 
each internal process: the time at which the process was created and the 
sum of  t ime quanta used by it; these quantities are called the start t ime and 
the run time, respectively. 

8.6.2. Store Allocation 

An internal process can only create child processes within its own store 
area. The monitor  does not  check whether the store areas of child processes 
overlap one another. This freedom can be used to implement multiplexing 
of a common store area among several processes, as described in Section 
8.5.1. 

The RC 4000 computer  has a rather cumbersome store protection 
mechanism. Each store word contains a protection key of 3 bits. This 
makes it possible to distinguish between eight different store areas which 
can be protected against one another. 

A protect ion register of eight b i t s  defines the store areas accessible to 
the running process. In store and jump operations, the protection key of  
the addressed word is used as an index to select a bit within the protection 
register. This bit defines whether or not  the store word is protected against 
the running process. An a t tempt  to violate store protection will cause a call 
of  an error procedure within the monitor.  

Before the creation of  an internal process, the parent must specify the 
values of  the protection register and the protection key to be used by the 
child. When the child process is started, the monitor  sets the corresponding 
key in all its store words. (This cannot be done during process creation 
because the store area may be multiplexed among children and their 
descendants using different keys.) 

A parent process can only allocate a subset of its own protection keys 
to a child but  it has complete freedom to allocate identical or different 
keys to its children. Store areas with these keys remain accessible to  the 
parent after the creation of  a child. 

8.6.3. Message Buffers and Process Descriptions 

The monitor  has room for only a finite number of  message buffers and 
tables describing internal processes and the so-called area processes (files on 
the backing store used as external processes). A message buffer is selected 
when a message is sent to another process; it is released when the sending 
process receives an answer. A process description is selected when an 
internal process creates another internal process or an area process and 
released when the process is removed. 
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Message buffers and process descriptions only assume an identi ty when 
they are used. As long as they are unused, they can be regarded as 
anonymous pools of resources. Consequently,  it is sufficient to specify the 
maximum number of  each resource that  an internal process can use: The 
so-called buffer claim, internal claim, and area claim are defined by the 
parent when a child process is created. The claims must be a subset of the 
parent's own claims, which are diminished accordingly; they are returned to 
the parent when the child is being removed. 

The buffer claim defines the maximum number of messages that  an 
internal process can exchange simultaneously with other internal and 
external processes. The internal claim limits the number of children an 
internal process can have at one time. The area claim defines the number  of  
backing store areas that  an internal process can access simultaneously. 

The monitor  decreases a claim by one each time a process uses one of  
its resources, and increases it by one when the resource is released again. So 
at any moment ,  the claims define the number of resources tha t  are still 
unused by the process. 

8.6.4. Peripheral Devices 

A distinction has been made between peripheral devices and external 
processes. An external process is created when a name is assigned to a 
device. So it is also true that  peripheral devices only assume an identi ty 
when they are actually used for input /output .  Indeed, the whole idea of 
naming is to give the operator complete freedom in allocating devices. It 
would therefore seem natural to control allocation of peripheral devices to 
internal processes by a complete set of claims--one for each kind of  device. 

In an installation with remote peripherals however, it is unrealistic to  
treat all devices of a given kind as a single, anonymous pool. An operating 
system must be able to force its jobs and operators to remain within a 
certain geographical configuration of devices. The concept configuration 
must be defined in terms of physical devices, and not  in terms of external 
processes since a parent normally does not  know in advance which 
documents its children are going to use. 

Configuration control is exercised as follows: From the point of  view of  
other processes, an internal process is identified by a name. Within the 
monitor  however, an internal process is also identified by a single bit in a 
machine word. A process description of a peripheral device includes a word 
in which each bit indicates whether the corresponding internal process is a 
potential user of the device. Another word indicates the current user that  
has reserved the device to obtain exclusive access to a document.  

The basic operating system S is a potential user of all peripherals. A 
parent process can include or exclude a child as a user of any device, 
provided the parent is also a user of  it: 
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include user(child, device number, result) 
exclude user(child, device number, result) 

During removal of  a child, the monitor  excludes it as a user of all devices. 
All in all, three conditions must be satisfied before an internal process 

can start input /output :  

(1) The device must  be an external process with a unique name. 

(2) The internal process must be a user of the device. 

(3) If the external process controls a sequential document ,  the internal 
process must have reserved it. 

8.6.5. Privileged Operations 

Files on the backing store are described in a catalog, which is also kept 
on the backing store. Clearly, there is a need to be able to prevent an 
internal process from reserving an excessive amount  of space in the catalog 
or on the backing store as such. It  seems difficult,  however, to specify a 
reasonable rule in the form of  a claim that  is defined when a child process is 
created. The main difficulty is that  catalog entries and data areas can 
survive the removal of  the process that  created them; so backing storage is a 
resource a parent process can lose permanently by allocating it to its 
children. 

As a half-hearted solution, we introduced the concept privileged 
monitor procedures. A parent process must supply each of  its children with 
a procedure mask, in which each bit specifies whether the child is allowed 
to call a certain moni tor  procedure. The mask must be a subset of  the 
parent's own mask. 

The privileged operations include all moni tor  procedures that  

(1) change the catalog on the backing store; 

(2) create and remove the names of peripheral devices; and 

(3) change the real-time clock. 

8.7. MONITOR FEATURES 

This section is a survey of  specific monitor  features such as real-time 
synchronization, conversational access, and backing store files. Although 
these are not  essential primitive concepts, they are indispensable features of  
practical multiprogramming systems. 
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8.7.1. Real-time Synchronization 

Real t ime is measured by  an interval  t imer  which interrupts the central 
processor regularly (normally, every 25 msec). The interval t imer is used to  
control processor multiplexing and to implement an external process that  
permits the synchronization of  internal processes with real time. All 
internal processes can send messages to this c lock  process .  At the end of  the 
t ime interval specified in the message, the clock process returns an answer 
to the sender. To avoid a heavy overhead of  clock administration, the clock 
process only examines its queue every second. 

8.7.2. Conversational Access 

A multiprogramming system encourages a conversational mode of  
access in which users interact directly with internal processes f rom 
typewriter  terminals. The external processes for terminals are designed to 
make this possible. 

Initially, all program execution is ordered by  operators communicating 
with the basic operating system. It would be very wasteful if the operating 
system had to examine all terminals regularly for possible operator  
requests. Therefore, our first requirement is that  terminals be able to  
activate internal processes by  sending messages to them (other external 
processes are only able to receive messages). 

It must  of  course also be possible for an internal process to open a 
conversation with a terminal. 

And, finally, a terminal should be able to accept messages simultane- 
ously from several internal processes. This will enable an operator  to 
control more than one internal process from the same terminal. This is 
valuable in a small installation. 

In short, terminals should be independent processes that  can open 
conversations with any internal process, and vice versa. A terminal should 
assist the operator  with the identification of  the internal processes using it. 

An operator opens a conversation by  depressing an interrupt key  on the 
terminal. This causes the moni tor  to assign a line buffer to the terminal. 
The operator  must  then identify the internal process to which his message 
is addressed. Following this, he can input  a message of  one line, which is 
delivered in the queue of  the receiving process. 

A message to the basic operating system S can, for example, be typed  as 
follows: 

to S 
n e w  p b h  run 

(The word in bold face type  is ou tpu t  by  the terminal process in response 
to the key interrupt.) 
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An internal process opens a conversation with a terminal by sending a 
message to it. Before the inpu t /ou tpu t  is started, the terminal identifies the 
internal process to the operator .  This identification is suppressed after the 
first o f  a series of  messages f rom the same process. 

In the following example, two internal processes, A and B, share the 
same terminal for  input /ou tpu t .  Process identifications are in bold face 
type:  

t o  A 
first input line to A 
second input  line to A 
f rom B 
first ou tpu t  line f rom B 
second ou tpu t  line f rom B 
f rom A 
first ou tpu t  line f rom A 

These processes are unaware of  their sharing the same terminal. F rom 
the point  of  view of  internal processes, the identif ication of  user processes 
makes it irrelevant whether  the installation contains one or more  terminals. 
(Of course, one cannot  expect  operators to  feel the same way abou t  it.) 

8.7.3. File System 

The moni tor  supports a semi-permanent storage of  files on a backing 
store consisting o f  one or more drums and disks. The moni tor  makes these 
devices appear to  be a single backing store with blocks of  256 words each. 
This virtual backing store is organized as a collection of  named data areas. 
Each area occupies a number  of  consecutive blocks on a single backing 
store device. A fixed part of  the backing store is reserved for  a catalog 
describing the names and locations of  data areas. 

Data areas are t reated as external  processes by internal processes. 
Inpu t /ou tpu t  is started by messages sent to the areas specifying the desired 
operations,  internal store areas, and relative block numbers within the data 
areas. The identification of  a data area requires a catalog search. To reduce 
the number  of  searches, i npu t /ou tpu t  must  be preceded by an explicit  
creation of  an area process description within the monitor .  

Catalog Entries 

The catalog is a f ixed area on the backing store divided into a number  
of  entries identified by unique names. Each ent ry  is o f  fixed length and 
consists of  a head, which identifies the entry,  and a tail, which contains the 
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rest of  the data. The monitor  distinguishes between entries describing data 
areas on the backing store and entries describing other things. 

An entry is created by calling the monitor  procedure: 

create entry(name, tail, result) 

The first word of the tail defines the size of an area to be reserved and 
described in the entry;  if the size is negative or zero, no area is reserved. 
The rest of the tail contains nine optional parameters, which can be 
selected freely by the internal process. 

Internal processes can look up, change, rename, or remove existing 
entries by means of the procedures: 

look up entry(name, tail, result) 
change entry(name, tail, result) 
rename entry(name, new name, result) 
remove entry(name, result) 

The catalog describes itself as an area in an entry named catalog. 
The search for catalog entries is minimized by using a hashed value of  

names to define the first block to be examined. Each block contains 15 
entries so most catalog searches only require the input of a single block 
unless the catalog has been filled to the brim. 

The allocation of data areas is speeded up by keeping a bit table of 
available blocks within the monitor.  In practice, the creation or 
modification of  an entry therefore only requires input and ou tput  of  a 
single catalog block. 

Catalog Protection 

Since many users share the backing store as a common data base, it is 
vital that  they have means of protecting their files against unintentional  
modification or complete removal. The protection system used is similar to 
the store protection system. 

The head of  each catalog entry is supplied with a catalog key. The rules 
of access within an internal process are defined by a catalog mask set by its 
parent process. Each bit in this mask corresponds to one of 24 possible 
catalog keys: If a bit is one, the internal process can modify or remove 
entries (and the associated areas) with the corresponding key; otherwise, 
the process can only look up these entries. A parent can only assign a 
subset of its own catalog keys to a child process. Initially, the basic 
operating system owns all keys. 

To prevent the catalog and the rest of  the backing store from being 
filled with irrelevant data, the concept temporary entry is introduced. This 
is an entry that  can be removed by another internal process as soon as the 
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internal process that  created the entry has been removed. Typical examples 
are working areas used during program translation and data areas created, 
but not  removed, by erroneous programs. 

This concept is implemented as follows: During the creation of an 
internal process, the monitor  increases a creation number by one and stores 
it within the new process description. Each time an internal process creates 
a catalog entry,  the monitor  includes its creation number in the entry  head 
indicating that  it is temporary.  Internal processes can at any time scan the 
catalog and remove all temporary entries, provided the corresponding 
creators no longer exist within the monitor.  

So, in accordance with the basic philosophy, the monitor  only provides 
the necessary mechanism for the handling of temporary entries and leaves 
the actual strategy of  removal to the hierarchy of processes. 

To ensure the survival of  a catalog entry,  an internal process must call 
the privileged monitor  procedure: 

permanent entry(name, catalog key, result) 

to replace the creation number with a catalog key. A process can, of  course, 
only set one of  its own keys in the catalog; otherwise, it might fill the 
catalog with highly protected entries tha t  could be difficult to detect  and 
remove. 

Area Processes 

Before it is used for input /output ,  a data area must be looked up in the 
catalog and described as an external process within the monitor  by a call of  
the procedure: 

create area process(name, result) 

The area process is created with the same name as the catalog entry.  
Following this, internal processes can send messages with the following 

format  to the area process: 

message: input output  operation 
first store address 
last store address 
first block number 

The tables used to describe area processes within the moni tor  are a 
limited resource controlled by area claims defined by parent processes (see 
Section 8.6.3). 

The backing store is a direct access medium serving as a common data 
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base. To utilize this property fully, internal processes should be able to 
input  simultaneously from the same area (for example, when several copies 
of  an Algol compiler are executed simultaneously). On the other  hand, the 
access to an area must  be exclusive during ou tpu t  when its content  is 
undefined from the point  of  view of  other processes. 

Consequently,  we distinguish between internal processes that  are 
potential users of an area process and the single process that  may  have 
reserved the area for exclusive use. This distinction was also made for 
peripheral devices (Section 8.6.4), but  the rules of  access are different here. 
An internal process is a user o f  an area process after its creation. This 
enables the internal process to perform input from the area as long as no 
other process reserves it. An internal process can reserve an area process if 
its catalog mask permits modification of  the corresponding catalog entry. 
After reservation, the internal process can perform both  input  and output .  

Finally, it should be mentioned that the catalog is permanently 
described as an area process within the monitor.  This enables internal 
processes to input  and scan the catalog sequentially; for example, during 
the removal of  temporary entries. Only the monitor  and the basic operating 
system can, however, perform output  to  the catalog. And the basic 
operating system only does this during system initialization. 

8.8. BASIC OPERATING SYSTEM 

This section illustrates by  means of  examples the functions of  the basic 
operating system that can create and control the execution of  concurrent  
processes on request  f rom typewri ter  terminals. 

8.8.1. Process Control 

After system initialization, the internal store contains the moni tor  and 
the basic operating system S. S enables independent  operators to create and 
control internal processes from typewri ter  terminals. In addition to this, S 
can name peripheral devices and keep track of  the date and time. 

S is the "pater  familias" of  the family tree of  internal processes. 
Initially, it owns all system resources such as storage, protect ion keys, 
peripherals, message buffers, and process description tables. Apart  f rom 
being a permanent  process in the system, S has no special status; it is 
treated by the monitor  like any other  internal process. In particular, S does 
not  execute privileged machine instructions or modify  process descriptions 
within the monitor.  So it is possible to replace S with another  basic 
operating system during system initialization. 

In the following, the creation and control of internal processes f rom 
terminals is explained. An operator  sends a message to the operating system 



264 A CASE STUDY: RC 4000 Cha.o. 8 

S by depressing the interrupt key on a terminal and typing the name S 
followed by  a command line. 

A message, such as the following: 

to S 
new pbh  run 

causes S to create an internal process with the name pbh,  load a standard 
program into it from the backing store, and start its execution.  Following 
this, S outputs  the response: 

ready 

In this case, the process was created with a standard set of  resources, 
which enables it to execute systems programs such as the editor, assembler, 
or Algol compiler. The program loaded into the process was one which will 
input and interpret further job  control statements (the meaning of  these is 
irrelevant to the basic operating system). 

The operator  can also explicitly specify the resources he wants; for 
example, the size of the store area, the number  of  message buffers, and the 
program to be loaded: 

t o S  
new pbh  size 16000 bur 18 prog 0S4000 run 

Resources not  mentioned (such as the number  of  area processes) are still 
given standard values. 

Normally, S chooses the actual location of  storage and the values of  
protect ion keys. The operator  can, however,  specify these absolutely: 

t o S  
new pbh  addr 13500 pr 2, 3, 4 p k  2 run 

This will assign the base address 13500 to the process, set the bits 2, 3, and 
4 in its protect ion register to 1, and set the protect ion key to 2 within its 
store area. But S will check that  this does no t  conflict with store and 
protect ion keys assigned by  it to other  processes. 

After creation and start, a user process can communicate  with the 
terminal according to its own rules: 

from pbh 
. . • • • 

When the operator  wants to s top program execution temporari ly within 
his process, he types: 
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t o S  
s t o p  

He can start it again at any time by the command: 

t o S  
s tart  

If the user process sends a message to operating system S, the process is 
stopped by S, and the following message is output :  

from S 
pause pbh 

At this point,  the operator has the choice of starting the process again 
or removing it completely from the system: 

t o S  
re m o  ve 

It is possible to create and control more than one process from the 
same terminal, for example: 

t o S  
n e w  j j  run  n e w  p b h  run  

But in this case the operator must preface subsequent commands with the 
name of  the process he is referring to: 

t o S  
p r o c  j j  s t o p  

Actually, the operating system remembers the name of the last process 
referred to from a terminal. It  is therefore only necessary to mention the 
process name explicitly each time the operator refers to a new process. 

After its creation, an internal process is included as a user of a standard 
configuration defined within S; but the operator can also explicitly i nc lude  
or e x c l u d e  his process as a user of other devices as well: 

t o S  
inc lude  7, 9, 13 e x c l u d e  5, 4 

where the integers denote device numbers. 
After mounting documents,  the operator 

peripherals, for example: 
can assign names to 
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t o 8  
call  5 = p r i n t e r ,  8 = m a g t a p e  

The operating system prints an error message when it is unable to honor  
a request,  for example: 

t o 8  
n e w  p b h  s i z e  20000 r u n  
n o  core  

In this situation, the operator  can ask 8 to list the m a x i m u m  number  of  
each resource available at present: 

t o 8  
m a x  

max 18000 18 14 2 6 

In this example, the largest available store area has a length of  18,000 
locations; whereas the number  of  message buffers, area process descrip- 
tions, internal process descriptions, and protect ion keys available are 18, 
14, 2, and 6, respectively. 

Finally, the operating system can ou tpu t  a list of  all internal processes 
created by  it. They will be listed in the order in which their store areas 
fol low one another f rom low toward high addresses. Each process is 
described by  its name, first store address, size of  store area, and the 
protect ion key set within the area: 

t o 8  
l is t  
jj 12216 10000 3 
pbh 22216 6000 1 

Commands from a terminal are obeyed  in their order of  arrival. The 
monitor  permits simultaneous input  of  messages f rom all terminals. The 
basic operating system can, however,  only respond simultaneously to  a 
limited number  of  messages. For  each simultaneous conversation, 8 uses a 
working area to  process a command line. When 8 must  wait for console 
output ,  the current value of  its registers and the address of  the message 
buffer involved are stored in a working area before S inspects its event 
queue for other  messages or answers. An answer to 8 causes a retrieval of  
the corresponding working area and a continuation of  the interrupted 
action. 

A message to S is only processed when a working area is available and 
all previous messages f rom the same console have been served (see 
Algorithm 8.1). 
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The main function of  the basic operating system is to receive requests 
from typewri ter  terminals, call the corresponding monitor  procedures 

create process 
start process 
stop process 
remove process 

and transfer programs from the backing store to the internal store. 
The operating system obeys these requests unconditionally as long as 

resources are available. Thus, it is no t  a realistic operating system, bu t  only 
a means of  activating other operating systems after system initialization. 

8.8.2. System Initialization 

The system is delivered as a binary paper tape that  can be input  to the 
internal store by placing it in a paper tape reader and depressing an 
autoload key on the computer .  After loading, the monitor  initializes 
process descriptions of  all peripheral devices, links all message buffers to 
the common pool, assigns all resources to the basic operating system, and 
starts it. 

First, the basic operating system executes a program which can 
initialize the backing store with catalog entries and binary programs input 
from paper tape or magnetic tape. 

These input tapes consist of  commands  and programs with a format  
such as the following: 

newcatalog 
create editor, 10 
load editor 
<edi tor  program> 
o .  • • • 

end 

The command newcatalog causes the creation of  an empty  catalog on 
the backing store. This is done by sending ou tpu t  messages to a standard 
area process called catalog defined within the monitor. Only the basic 
operating system is permitted to use this area process and will only do so 
during system initialization. 

The command create makes the basic operating system call the 
monitor, create a catalog entry named editor, and associate a backing store 
area of  10 blocks with it. 

The command load is obeyed  as follows: First, the basic operating 
system calls the monitor  to create an area process from the catalog entry  
named editor; then, the basic operating system inputs the editor program 
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from the input tape and outputs  it to the backing store area; and, finally, 
the basic operating system calls the monitor  to remove the area process 
again. 

Other commands reflect the remaining monitor  procedures for files. In 
this way, the file system can be initialized with a sequence of  standard 
programs. The end  command terminates the initialization of  the catalog. 
The basic operating system is now ready to receive operator  requests f rom 
terminals. 

If one wishes to load the moni tor  and the basic operating system 
without  changing an existing catalog, the initializing tape need only contain 
the commands: 

oldcatalog 
end 

8.9. SIZE AND PERFORMANCE 

The R C  4 0 0 0  is a 24-bit binary computer  with typical instruction 
execution times of  4 ~sec. It permits a practically unlimited expansion of  
the internal store and a standardized connection of  all kinds of  peripherals. 
Multiprogramming is facilitated by  program interruption, store protection,  
and privileged instructions. 

The implementation of  the system described here makes multi- 
programming feasible with a minimum store of  32 K words, backed by  a 
fast drum or disk. The monitor  includes external processes for a real-time 
clock, typewriters,  paper tape readers and punches, line printers, magnetic 
tapes, and files on the backing store. The size of  the monitor  and the basic 
operating system is as follows: 

primitives 
code for external processes 
process descriptions and buffers 

words 

2400 
1150 
1250 

monitor  4800 
basic operating system 1400 

6200 

The communicat ion primitives are executed in the uninterruptable state 
within the system nucleus. The execut ion time of  these sets a limit on the 
system's response to real-time events: 

msec 

send message 0.6 
wait  message 0.4 
send answer  0.6 
wait  answer  0.4 
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An analysis shows that  the 2 msec required by a complete conversation 
(the sum of  the four primitives) are used as follows: 

per cent 

validity checking 25 
process synchronization 45 
message buffering 30 

The primitives for the creation, start, stop, and removal of processes are 
implemented in an anonymous internal process within the system nucleus 
to avoid intolerably long periods in the uninterruptable state. Typical 
execution times for these are: 

msec 

create process  3 
start  process  26 
s top  process  4 
r emov e  process  30 

The excessive times for the start and removal of an internal process are 
due to the peculiar store protection system of the R C  4000  computer,  
which requires the setting of a protection key in every store word of a 
process. If the machine had been equipped with base and limit registers, 
start  process  and r e m o v e  process  would only have taken 2 and 6 rnsec, 
respectively. 

There were never more than three people involved in the design 
simultaneously. The total  effort  of structural design, programming, testing, 
and documentat ion was about  4 man-years. 

8.10. IMPLEMENTATION DETAILS 

The following is an algorithmic definition of a s impl i f i ed  version of the 
monitor procedures for process communication and scheduling. It omits 
the following details: 

process names 
external processes 
dummy answers 
error reactions 
event primitives 
processor multiplexing 
resource protection (except for message buffers) 

I have also simplified the removal of  a process as follows: All message 
buffers sent by a process are immediately returned to the pool upon 
removal of the process. 
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The simplified algorithms have not  been tested and may contain minor 
errors. Their main purpose is to illustrate implementation techniques. 

8.10.1. Process Communication 

Algorithm 8.2 shows the data structure used within the monitor.  
Internal processes and message buffers are represented by two arrays; the 
buffer pool,  by a sequence of buffer indices. 

ALGORITHM 8.2 The Monitor Data Structure 

type P = 1 . .  max number o f  processes; 
B = 1 . . m a x  number o f  buffers; 
C = array 1 . . 8  of  integer; 

var v: shared 
record 

process: array P o f  
record 

state: (removed, started, . . . ); 
claim: O. .max number of  buffers; 
queue: sequence of  B; 
arrival: event v; 

end 
buffer: array B of  

record  
state: (empty,  sent, received, returned); 
content: C; 
to, from: O. . max number o f  processes; 

e n d  
pool: sequence of  B; 

e n d  

funct ion running: P; 
begin . . .  e n d  

Each process description defines a state, a buffer claim, a message 
queue, and an event variable on which the given process can await the 
arrival of the next  message or answer. 

Each message buffer contains a state, a content (message or answer), 
and an identification of  the processes to and from which the content  is 
sent. 

Initially, all process descriptions (except the one representing the basic 
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operating system) are set in the removed state with zero claims and empty  
queues; and all buffers are entered in the pool  in the empty  state with to 
and from equal to zero. 

A standard function,  running, identifies the internal process that  calls 
the monitor.  

Algorithm 8.3 defines the moni tor  procedure send message. If the 
receiving process exists and the calling process can claim another message 
buffer, one is selected from the pool  and initialized with the indices of  
sender and receiver, as well as with the message itself, and the state is set to 
sent. Finally, the index of  the buffer is entered in the queue of  the receiver 
and an arrival event is caused (unless the receiver is stopped).  

ALGORITHM 8.3 The Monitor Procedure Send Message 

procedure send message 
(receiver: P; message: C; vat index : B); 

region v do 
bagin 

with process(running) do 
i f  process(receiver).state ~ removed & claim > 0 then 
begin 

claim:= claim - 1; 
get(index, pool); 
with buffer(index) do 
begin 

state: = sent; 
content: = message; 
to := receiver; 
from := running; 

end 
with process(receiver) do 
begin 

put( index,  queue); 
if  state = started then cause(arrival); 

end 
end 

end 

Algorithm 8.4 defines the monitor  procedure wait message. As long as 
the queue of  the calling process is empty,  it waits for an arrival. Following 
this, a message buffer is removed from the queue and set in the state 
received after making its content  available to the calling process. 
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ALGORITHM 8.4 

A CASE STUDY: RC 4000 

The Monitor Procedure Wait Message 

procedure wait message 
(vat sender: P; message: C; index: B); 

region v do 
begin 

with process(running) do 
begin 

while empty(queue)  do await(arrival); 
get( index,  queue); 

end 
with buffer(index) do 
begin 

state: = received; 
message: = content;  
sender:= from; 

end 
end 

Chap. 8 

Algorithm 8.5 defines the moni tor  procedure send answer. It checks 
whether  the calling process has received a message in the given buffer; if it 
has, the answer is placed in the buffer and its state is set to returned. 
Finally, an arrival is caused for its original sender (unless it is stopped). 

Algorithm 8.6 defines the monitor  procedure wait answer. It  checks 
whether  the calling process has sent a message in the given buffer. As long 

ALGORITHM 8.5 The Monitor Procedure Send Answer 

procedure send answer 
(answer: C; index: B); 

region v do 
begin 

with buffer(index) do 
if state = received & to = running then 
begin 

state := returned; 
content:= answer; 
to: = O; 
with process(from) do 
if state = started then cause(arrival); 

end 
end 
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as no answer has been returned in the buffer, the calling process waits for 
an arrival. Following this, the buffer claim of  the calling process is increased 
by one, and the buffer is returned to the pool in the empty  state after 
having made its content  available to the calling process. 

ALGORITHM 8.6 The Monitor Procedure Wait Answer 

procedure wait answer 
(vat answer: C; const index: B); 

region v do 
begin 

with buffer(index) do 
if  from = running then 
begin 

while state ¢ returned do 
a wait(process(running), arrival); 
state:= empty;  
answer: = content; 
from:= 0; 
put( index,  pool); 
with process(running) do 
claim := claim + 1; 

end 
end 

8.10.2. Process Scheduling 

More complex are the algorithms which stop and start processes. To 
explain this I refer once more to the family tree shown in Fig. 8.8. 

Suppose process B wants to stop its child F. The purpose of doing this 
is to ensure that  all program execution within the store area of process F is 
stopped. Since a part of  this area has been assigned to children of  F, it is 
necessary to stop not  only the child F, but also all descendants of F. 
However, it is possible that  some of these descendants have already been 
stopped by their own parents. In the present example, process G may still 
be active, while process H may have been stopped by its parent F.  
Consequently, the monitor  should only stop processes F and G. 

Consider now the reverse situation in which process B starts its child F 
again. The purpose is to establish the situation exactly as it was before 
process F was stopped. So the monitor  must be very careful to start only 
those descendants of F that  were stopped along with it. In our example, the 
monitor must start processes F and G, but not  H; otherwise, we will 
confuse F, which still relies on its child H being stopped. 
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To do this correctly, the moni tor  must  distinguish between processes 
that are s topped by their parents and those s topped by  their ancestors. The 
corresponding process states are called stopped directly and stopped 
indirectly, respectively. 

To identify the descendants which should be s topped or started along 
with a given child, the moni tor  must scan the process tree in hierarchal 
order f rom the root  toward the leaves. 

When a process is being created, a search is made for the first available 
entry in the table of  process descriptions. This entry again becomes 
available when the process has been removed. The order in which processes 
are created and removed is unpredictable;  so the order in which processes 
are arranged in this table does no t  reflect the structure of  the process tree. 

We therefore introduce another table which contains the indices of  
existing processes in hierarchal order. In this table, the index of  a parent 
process always precedes the indices of  its child processes. When a child 
process is created, its index is placed at the end of  this table. When a child 
process and its descendants have been removed,  their indices are removed 
from this table by  compacting the remaining indices. 

In the previous example (Fig. 8.8), the processes could have been 
arranged in the two tables in the order shown in Fig. 8.9. 

Process 
descriptions Process 

S hierarch, 

F B 

A A 
C E 

G F 

D G 

B C 

H I o 
E H 

Fig. 8.9. An example of the ordering of processes within 
the table of process descriptions and the table defining 

the process hierarchy corresponding to Fig. 8.8. 

Algorithm 8.7 defines the data structures needed to control  process 
communicat ion and scheduling. Each process description has been 
extended with the identi ty of  the parent process and a boolean indicating 
whether the given process is a candidate for starting, stopping, or removal. 
(Initially, this boolean is false.) 

The basic operating system S is assumed to  have process index 1. Since 
S is never a candidate for starting, stopping, or removal, it is excluded f rom 
the hierarchy table. 
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ALGORITHM 8.7 The Extended Monitor Data Structure 

type  P = 1 . .  max number  o f  processes; 
H = 2 . .  max number  o f  processes; 
B = 1 . . m a x  number  o f  buffers; 
C = array 1 . . 8  of  integer; 

var v: shared 
record  

process: array P of  
record 

state: (removed, started, 
s topped directly, s topped indirectly); 

parent: O. . max number o f  processes; 
candidate: boolean; 
claim: O. . max number  o f  buffers; 
queue: sequence of  B; 
arrival: event v; 

end  
hierarchy: array H of  P; 
buffer: array B of  

record  
state: (empty ,  sent, received, returned); 
content:  C; 
to, from: O. .max number  o f  processes; 

e n d  
pool: sequence of  B; 

e n d  

funct ion running: P; 
b e g i n . . ,  e n d  

Algorithm 8.8 defines the monitor  procedure create process. It checks 
whether the calling process has the resources it wants to assign to its child 
(including a process description). To omit  trivial details, the only resource 
mentioned explicitly here is the buffer claim. Following this, an empty  
process description is assigned to the child, and initialized with the  parent 
index and the resources mentioned while the state is set to stopped 
directly. Finally, the hierarchy table is extended with the child index. (This 
trivial operation is considered a primitive here.) 

Algorithm 8.9 defines the monitor  procedure start process. It checks 
whether the calling process is the parent of  the given child and whether  the 
child is in the state stopped directly; if it is, all existing processes are 
scanned in hierarchal order to identify the candidates for starting: They are 
the child process itself and all processes in the state stopped indirectly 
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A LGORITHM 8.8 

A CASE STUDY: RC 4000 

The Monitor Procedure Create Process 

procedure create process 
(vat child: P; const  resources: B); 

region v do 
begin 

with process(running) do 
if  claim t> resources then 
label done 
begin 

claim := claim - resources; 
for  every child do 
with process(child) do 
if  state = removed then 
begin 

state:= s topped directly; 
parent: = running; 
claim := resources; 
ex tend hierarchy(child); 
exit done; 

end 
end 

end 

Chap. 8 

ALGORITHM 8.9 The Monitor Procedure Start Process 

procedure start process 
(child: P); 

vat h: H;p:  P; 

region v do 
begin 

with process(child) do 
i f  parent = running & state = stopped directly then 
for  every h do 
begin 

p := hierarchy(h); 
with process(p) do 
if  p = child 
or state = stopped indirectly & 

process(parent), candidate then 
begin 

state: = started; 
candidate:= true; 
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resume(p, arrival); 
end 
else candidate: = false; 

end 
end 
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whose parents are themselves candidates. When a candidate has been 
recognized, it is resumed in the state started. Since we have already 
discussed details of  processor multiplexing in Chapter 4, the operation 
resume is considered a primitive here. If the process is waiting for an arrival, 
resume will cause one; otherwise, it will return the process to the ready 
queue. 

Algorithm 8.10 defines the monitor  procedure stop process. It checks 

ALGORITHM 8.10 The Monitor Procedure Stop Process 

procedure stop process 
(child: P); 

va rh :  H; p : P; 

region v do 
begin 

with process(child) do 
i f  parent = running & state ~ stopped directly then 
for every h do 
begin 

p: = hierarchy (h ); 
with process(p) do 
i f  p = child then 
begin 

state := stopped directly; 
candidate := true; 
preempt(p); 

end else 
if  state ~ stopped directly & 

process(parent), candidate then 
begin 

state := stopped indirectly; 
candidate:= true; 
preempt(p); 

end 
else candidate:= false; 

end 
end 
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whether the calling process is the parent of  the given child and whether  the 
child has not already been stopped directly; if it  is not,  all existing 
processes are scanned in hierarchal order to identify the candidates for 
stopping: They are the child process itself and all processes that  are not in 
the state stopped directly and whose parents are themselves candidates. 
When a candidate has been recognized, it is preempted from the ready 
queue (if it is in that  queue).  The short-term scheduling primitive preempt  
is considered a primitive here. 

ALGORITHM 8.11 The Monitor Procedure Remove Process 

procedure remove process 
(child: P); 

vat h: H;p:  P; 
index: B; resources: O. .max number o f  buffers; 

region v do 
begin 

with process(child) do 
i f  parent = running & state = stopped directly then 
begin 

resources:= O; 
for  every h do 
begin 

p := hierarchy(h); 
with process(p) do 
i f  p = child 
or process(parent), candidate then 
begin 

state := removed; 
candidate:= true; 
scan buffers; 
resources:= resources + claim; 
parent: = O; 
claim:= O; 
reset(arrival); 

end 
else candidate: = false; 

end 
with process(running) do 
claim := claim + resources; 
compact hierarchy; 

end 
end 



Sec. 8.10. IMPLEMENTATI ONDETAI  LS 279 

Algorithm 8.11 defines the moni tor  procedure remove process. It  
checks whether the calling process is the parent of  the given child and 
whether the child is in the state stopped directly; if it is, all existing 
processes are scanned in hierarchal order to identify the candidates for 
removal: They are the child process itself and all processes whose parents 
are themselves candidates. When a candidate has been recognized the 
following is done: All message buffers are scanned as shown in Algorithm 
8.12. If a buffer  was sent by the candidate, it is removed from the queue of  

ALGORITHM 8.12 The Monitor Procedure Remove Process (cont.) 

"scan buffers" 

for every index do 
with buffer(index) do 
ff state -~ empty  then 
begin 

if  from = p then 
begin 

claim := claim + 1; 
ff state -~ returned then 
with process(to) do remove(index, queue); 
state:= empty;  
from:= 0; to: = 0; 
put( index,  pool); 

end else 
if  to = p then 
begin 

remove buffer(index, queue); 
state:= returned; 
content:= dummy answer; 
to: = 0; 
with process(from) do 
i f  state = started then cause(arrival); 

end 
end 

the receiver and returned to the pool. If a buffer was sent to the candidate, 
it is removed from the queue of  the latter and returned to the sender with a 
dummy answer. Following this, the process description of  the candidate is 
made available for future creation. Finally, all resources assigned to the 
child and its descendants are returned to the calling process and the 
hierarchy table is compacted (the latter operation is considered a primitive 
here). 
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8.10.3. Preemption and Input/Output 

So far, we have only considered internal processes. In the actual system, 
preemption is complicated by  input /ou tpu t  f rom external processes. This is 
handled as follows: 

When a parent wants to s top a child, the state of  the child is changed to  
awaiting direct stop, and all started descendants of  the child are described 
as awaiting indirect stop. At the same time, these processes are removed 
from the ready queue. 

What remains to be done is to ensure that  all inpu t /ou tpu t  started by  
these processes is terminated. To control  this, each internal process 
description contains an integer called the stop count. The stop count  is 
initialized to zero and increased by  one each time the internal process starts 
input /output .  On arrival of  an answer f rom an external process, the 
monitor  decreases the stop count  by one and examines the state of  the 
internal process. If  the stop count  becomes zero and the process is awaiting 
stop (directly or indirectly), its state is changed to s topped (directly or 
indirectly). 

The call of  stop process is completed only when all involved processes 
have been stopped. This can last for  some time and it may no t  be 
acceptable to the parent (being an operating system with many other  
duties) to be inactive for so long. For  this reason, the stop operat ion is split 
in two parts. The s top procedure 

stop process(name, buffer, result) 

only initializes the stopping of  a child and selects a message buffer for  the 
parent. When the child and its descendants have been completely stopped,  
the moni tor  delivers an answer to the parent in this buffer. So the parent 
can use the procedures wait answer or wait event to wait for  the 
complet ion of  the stop. 

In principle, an internal process cannot  be s topped until all 
input /ou tpu t  requested by it has been completed.  This requirement  is 
inevitable for high-speed devices such as a drum or a magnetic tape station, 
which are beyond  program control  during input /output .  But it is not  
strictly necessary to  enforce this for low-speed devices controlled by  the 
monitor  on a character-by-character basis. In practice, the moni tor  handles 
the stop situation as follows: 

Before an external process starts high-speed input~output, it examines 
the state of  the sending process. If the sender is s topped (or waiting to be 
stopped),  the inpu t /ou tpu t  is not  started; instead, the external process 
returns an answer indicating a block length of  zero. The sender must  then 
repeat the inpu t /ou tpu t  after being restarted. If the sender has no t  been 
stopped, its s top count  is increased and the input /ou tpu t  is started. Note  
that if the stop count  were increased immediately after the sending of  a 



Sec. 8.11. A CRITICAL REVIEW 281 

message, the sending process could only be s topped after the complet ion of  
all previous operations pending in external queues. By delaying the increase 
of the stop count  as much as possible, we ensure that  high-speed peripherals 
at most  prevent the stopping of  internal processes during a single block 
transfer. 

Low-speed devices never increase the stop count.  During output ,  an 
external process fetches one word at a time from the sending process and 
outputs  it character-by-character regardless of  whether the sender is 
s topped meanwhile. Before fetching a word,  the external process examines 
the state of  the sender. If it is s topped (or waiting to  be stopped),  the 
output  is terminated by  an answer defining the actual number  of  characters 
output ;  otherwise, the ou tpu t  continues. During input, an external process 
examines the state of  the sender after each character. If the sender is 
s topped (or waiting to be stopped),  the input is terminated by an answer; 
otherwise, the character is stored and the input  continues. Low-speed 
devices therefore never delay the stopping of  a process. 

8.10.4. Interruptable Monitor Procedures 

Some monitor  procedures are too  long to be executed entirely in the 
uninterruptable state; in particular, those which update the catalog on the 
backing store and create, start, stop, and remove processes. They are called 
as other monitor  procedures, but  behind the scenes they are executed by  an 
anonymous internal process that  only operates in the uninterruptable state 
for short intervals while updating monitor  tables; otherwise, the anony- 
mous process shares processor time with other internal processes. 

When an internal process calls an interruptable moni tor  procedure,  the 
following takes place: The state of  the calling process is changed to 
awaiting monitor response. At the same time, its process description is 
linked to the event queue of  the anonymous  process. The anonymous  
process serves the calling processes one by one and returns them to  the 
ready queue after completion of  their calls. 

So monitor  calls of  long duration (3 to 30 msec) are interruptable as 
other internal processes. From the point  of  view of  a calling process 
however, these monitor  procedures are still indivisible primitives since: (1) 
they are executed only by the anonymous process one at a time in their 
order of  request; and (2) the calling processes are delayed until their 
requests are honored.  

8.11. A CRIT ICAL REVIEW 

I conclude the case s tudy of  the RC 4000 multiprogramming system 
with a critical review of its advantages and disadvantages. 
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8.1 1.1. System Advantages 

Among the more attractive attributes of the system are the following: 

(1) Well-defined objectives. It implements a nucleus which can be 
extended with a variety of operating systems. It has been successfully used 
to design a spooling system and a number of real-time systems which 
supervise industrial plants. 

(2) Simple structure. The monitor implements about 30 operations. 
The concepts involved and their relationships are fully explained in a 
manual of 160 pages. Compared to the actual machine language 
implementation, the manual omits only trivial programming details. 

(3) Moderate size. A monitor of 4800 words and a basic operating 
system of 1400 words is reasonably small by most standards. 

(4) Reliability. Although the monitor was written in machine language, 
its simplicity and moderate size made it possible to develop a set of 
programs which were executed as internal processes and tested the monitor 
systematically, starting with processor multiplexing, followed by process 
communication, and ending with process scheduling. The monitor was 
extended with a procedure of about 20 instructions which would stop the 
system temporarily and output one or two monitor variables (addresses of 
process descriptions or message buffers) in the uninterruptable state each 
time a significant event occurred (such as a preemption or resumption of a 
process, or a change of a message buffer state). This simple test mechanism 
ensured that the response to and recording of an event was executed as a 
critical region. By careful design of the test programs, it was ensured 
that they would be executed as reproducible, concurrent processes. As a 
result, the monitor was practically error-free after a test period of one 
month (Brinch Hansen, 1973). 

(5) Readable documentation. A report entitled "An Undergraduate 
Course on Operating Systems Principles," published by the National 
Academy of Engineering (Cosine report, 1971) recommends that the study 
of operating system concepts be accompanied by a detailed study of a 
particular system embodying these concepts. The report emphasizes that 
"the system should be documented adequately, so that recourse to the 
operating system code is not necessary for a detailed understanding of its 
implementation" and further states that "the committee is aware of only a 
few systems that meet these requirements." One of the three systems 
mentioned in the report is the RC 4000 multiprogramming system. 
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8.1 1.2. System Disadvantages 

Although our at t i tude toward program design was guided by reasonably 
sound principles, our particular solution to the problem at hand was far 
from ideal. The system nucleus is unsatisfactory in the following respects: 

(1) Error detection. Today I question the most  basic assumption of  the 
system: That it tries to make multiprogramming safe at the machine level 
of programming. The monitor  defines a set of  language primitives for 
multiprogramming that may be called by correct or incorrect programs 
written in machine language. We had to make this assumption when the 
system was built because no high-level language available at that  t ime was 
both sufficiently well-structured and efficient for  general programming. 
The resulting lack of  structure in user programs makes it impossible to  
detect  multiprogramming errors at compile time; the moni tor  therefore 
spends a considerable amount  of  processor time verifying the validity of  
calls at run time. Unfortunately,  this checking only catches simple errors of  
parameter values or violations of  protect ion rules, but  gives no assistance 
whatsoever in the detect ion of  t ime-dependent errors. 

(2) Concurrent processes. In retrospect,  I realize that  the event 
primitives were introduced as an ad hoc means of  simulating concurrent  
activities within a common store area. This enables the basic operating 
system to be engaged in conversations with several terminals at the same 
time. It was also used in the implementation of  a spooling system. It would 
have been conceptually more clear to have designed these operating systems 
as a set of  cooperating, internal processes. But the designers of  these 
operating systems felt that  it would have been too  expensive (in terms of  
system resources) to establish several internal processes and too  
cumbersome to share large data structures among them (for reasons 
explained in the following paragraphs). 

(3) Mutual exclusion. The data structure controlled by the monitor  
(consisting of  process descriptions and scheduling queues) is a global shared 
variable. The monitor  ensures mutual  exclusion of  operations on it by  the 
crude method of  interrupt inhibition. This means that  all process 
interactions (including the synchronization of  input /output )  exclude one 
another in time. Since some of them last several milliseconds, this makes 
the moni tor  a bott leneck. To alleviate this problem, we resorted to an ad 
hoc solution by introducing an anonymous  internal process which permits 
processor multiplexing to continue during the most  extensive moni tor  calls. 
But the real problem was that  we did no t  realize the need to establish 
critical regions for an arbitrary number  of  shared variables and, therefore,  
we did not  solve that  problem. This is also evident at higher levels of  
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programming: The only way a set of  cooperating, internal processes can 
achieve mutual  exclusion of  their access to a shared data structure is by  
placing the data structure within one of the processes and accessing it by 
sending messages to that  process--a safe, but  very expensive method  since 
each communicat ion requires 2 msec of  moni tor  time. 

(4) Process communicat ion.  Our desire to solve protect ion problems at 
the machine language level made it necessary to implement a fairly 
restrictive mechanism for process communicat ion within the monitor.  This 
created an artificial resource restriction (a finite number  of  message buffers 
shared by  all processes), an artificial data structure restriction (a fixed 
message length of  eight words for all processes), and an inefficient 
implementation (physical copying of  messages). The problem was simply 
that  we had no clear understanding of the need for establishing arbitrary 
rules of  process synchronization. 

So the language features for multiprogramming implemented by  the 
nucleus--create, start, stop, and remove process, as well as send and wait 
message--are unstructured and somewhat  impractical. It would have been 
far more natural to program operating systems in terms of  concurrent  
statements, shared variables, and critical regions (simple and conditional) as 
proposed in this book.  But this was by no means obvious when the system 
was built. 

(5) Medium-term scheduling. We saw the advantages of being able to 
use an internal process to simulate an external process, bu t  we did not  
make it practical to do so. To avoid transmitting large data blocks as a 
sequence of  small messages, input /ou tpu t  is handled by communicating 
addresses to peripheral devices, which then transfer blocks directly to or 
from the store through a high-speed data channel. The problem of  
preventing process preemption and reassignment of  the store while 
input /ou tpu t  is in progress is solved correctly by  means of  the s top count  
for external processes. But, when an internal process A sends an address to 
another internal process B to enable the latter to access a large data block 
directly within the former, there is no guarantee that  the operating system 
of process A will no t  preempt  it f rom the store while this is being done 
(unless the operating system is process B). Again, this shows that the 
mutual  exclusion problem is unsatisfactorily solved in general. Further- 
more, medium-term scheduling is complicated considerably by our use of  
unstructured multiprogramming features: This forces the moni tor  to 
examine all process descriptions and sometimes also all message buffers 
before an internal process can be started, s topped,  or removed. 

(6) Short-term scheduling. At an early stage in the design, a distinction 
was made between processes that  control  inpu t /ou tpu t  and those that  
perform computat ions.  This distinction between external and internal 
processes was based on differences in process scheduling and store 



Sec. 8.12. L I TE RATU R E 285 

addressing. It had a drastic influence on the real-time characteristics of the 
system. On the one hand, input /output  processes could be activated 
immediately by  interrupts and run without  preemption for several 
milliseconds. On the other hand, due to the use of  fixed round-robin 
scheduling, computat ional  processes could only respond to urgent, external 
events within 10 to 100 msec. The maintenance of  the system was also 
strongly affected by this decision. The input /ou tpu t  processes enjoyed 
privileges of  addressing which enabled them to enter global critical regions 
and execute shared procedures within the nucleus. But the smallest 
modification of  any of  them required reassembly and testing of  the entire 
nucleus. In contrast, computat ional  processes were unable to share 
procedures, but  were easy to implement and test separately. The system 
nucleus was indeed built to create and execute computat ional  processes 
dynamically. We should have treated all processes uniformly at the 
short-term level of  scheduling and made it possible to assign priorities to 
them when they were started. 

(7) File system. The difficulty of establishing arbitrary critical regions 
within processes and exchanging arbitrary data structures between them led 
to the inclusion of too  many functions in the system nucleus--among 
others, the file system. The file system itself has several limitations: It 
requires that  file names be unique throughout  the installation (which is 
impractical); it uses contiguous allocation of  backing storage, (which makes 
it almost impossible to prevent a deadlock of  unrelated computations);  and 
it does not  prevent the loss of  data in the case of  hardware malfunction. 
Since the file system is a part of  the system nucleus, its replacement 
requires reassembly and testing of  the nucleus.*) 

It is, however, to the credit of  the system that all these deficiencies are 
apparent to a keen reader of  the system manual and not  hidden as 
undocumented implementation details. 

8.12. LITERATURE 

The following is a list of  literature describing a number  of  excellent 
operating systems in some detail. 

The Scope operating system for the CDC 6600 computer  is a 
remarkably simple operating system for one of  the fastest machines in the 
world. It permits concurrent execution of  up to seven non-interactive jobs 
at a time. It is described by  Thornton (1964) and Wilson (1971a). 

The Master control program for the B5500 computer  is also a system 

*A later version of the system has removed some of the limitations of the file 
system (Andersen, 1972). 
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for concurrent execution of non-interactive jobs. An unusual aspect of this 
system is that it was written in extended Algol 60. It is described by 
Lonergan (1961) and McKeag (1971a). 

The Titan supervisor, designed at Cambridge University in England and 
described by Fraser (1971) and Wilson (1971b), permits conversational 
access from 26 terminals simultaneously. It is also noteworthy for its 
simple file system. 

Most multiprogramming concepts discussed in this book evolved during 
the design of THE multiprogramming system at the Technological 
University of Eindhoven, The Netherlands; that is, critical regions, 
semaphores, deadlock prevention, and hierarchal program design. Various 
aspects of this system are described by Bron (1971), Dijkstra (1965 and 
1968), and McKeag (1971b). 

The Multics system is a large interactive system which can serve about 
50 users simultaneously. Its development has required 200 man-years. It is 
described in great detail by Organick (1972). 

BRON, C., "Allocation of virtual store in THE multiprogramming system," 
International Seminar on Operating System Techniques, Belfast, Northern Ireland, 
Aug.-Sept. 1971. 

DIJKSTRA, E. W., "Cooperating sequential processes," Technological University, 
Eindhoven, The Netherlands, 1965. (Reprinted in Programming Languages, F. 
Genuys, ed., Academic Press, New York, New York, 1968). 

DIJKSTRA, E. W., "The structure of THE multiprogramming system," Comm. ACM 
11, 5, pp. 341-46, May 1968. 

FRASER, A. G., "The integrity of a disc based file system." International Seminar on 
Operating System Techniques, Belfast, Northern Ireland, Aug..Sept. 1971. 

LONERGAN, W. and KING, P., "Design of the B5000 system," Datamation 7, 5, pp. 
28-32, May 1961. 

McKEAG, R. M., "Burroughs B5500 Master control program," The Queen's University 
of Belfast, Northern Ireland, 1971a. 

McKEAG, R. M., "THE Multiprogramming system," The Queen's University of Belfast, 
Northern Ireland, 1971b. 

ORGANICK, E. I., The Multics System: An Examination of its Structure. MIT Press, 
Cambridge, Massachusetts, 1972. 

THORNTON, J. E., "Parallel operation in the Control Data 6600," Proc. AFIPS Fall 
Joint Computer Conf., pp. 33-40, 1964. 
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WILSON, R., "The Titan supervisor," The Queen's University of Belfast, Northern 
Ireland, 1971b. 
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whether it has the necessary resources to perform the requested action; if 
not ,  it leaves the message in the queue and examines the next  event. 
However, if the process does possess the necessary resources, it accepts the 
message, reserves the resources, and starts the requested action. As soon as 
this involves the sending of  a message to some other process, the 
conversational process saves data about the state of  the incomplete action 
and proceeds to examine its queue from the start to engage itself in another 
action. 

Whenever the process finds an answer in its queue, it immediately 
accepts it and completes the corresponding action. It can now release the 
resources used and send an answer to the original sender that  made the 
request. After this, it examines the entire queue again to see whether the 
release of  resources has made it possible to  accept pending messages. 

An example of  a process operating in accordance with this scheme is 
the basic operating system S, which creates internal processes on request 
from typewriter terminals. S can be engaged in conversations with several 
terminals at the same time. It will only postpone an operator request if its 
store area is occupied by other requests in progress or if it is already in the 
middle of  an action requested from the same terminal. 

8.4. EXTERNAL PROCESSES 

This section clarifies the meaning of  the external process concept. It 
explains the initiation of  input /output  by means of messages from internal 
processes, dynamic creation, and removal of external processes, as well as 
exclusive access to documents by means of reservation and releasing. 

8.4.1. Input/Output 

Consider the situation shown in Fig. 8.5, in which an internal process P 
inputs a data block from an external process Q (say, a magnetic tape). 

. . . .  t ~ Input First address 

block / Last address 

1 
External Internal 

process Q process P 

Fig. 8.5. Input from an external process Q to an internal 
process P. 
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P starts input  by  sending a message to Q: 

send message(Q, message, buffer) 

The message defines an input /ou tpu t  operation and the first and last 
addresses of  a store area within process P: 

message: operation 
first store address 
last store address 

The moni tor  copies the message into a buffer  and delivers it in the queue of  
process Q. Following this, the moni tor  uses the kind parameter in the 
process description of  process Q to switch to a piece of  code common to all 
magnetic tapes. If the tape station is busy,  the message is merely left  in its 
queue; otherwise, input  is started to  the given store area. On return, 
program execution continues in process P. 

When the tape station completes the input  by  means of  an interrupt,  
the moni tor  generates an answer and delivers it in the queue of  process P 
which in turn receives it by  calling 

wait answer(result, answer, buffer) 

The answer contains status bits sensed from the device and the actual 
length of  the block input: 

answer: status bits 
block length 

After delivery of  the answer, the moni tor  examines the queue of  the 
external process Q and starts its next  operation (unless the queue is empty) .  

Essentially all external processes follow this scheme, which can be 
defined by  the following algorithm: 

"external process" 
repeat 

wait message; 
ff message acceptable then 
begin 

start input output; 
await interrupt; 

end 
produce answer; 
send answer; 

forever 
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With low-speed, character-oriented devices, the monitor  repeats the 
input /ou tput  for each character until a complete block has been 
transferred. (While this is taking place, the time between interrupts is, of  
course, shared among internal processes.) Internal processes can therefore 
regard all input /output  as block-oriented. 

8.4.2. Mutual Exclusion 

The use of  message buffering provides a direct way of sharing an 
external process among a number of internal processes: An external process 
can simply accept messages from any internal process and serve them in 
their order of  arrival. An example of this is the use of a single typewriter 
for the output  of messages to a main operator. 

This method of  sharing a device ensures that  a block of  data is input  or 
output  as an indivisible enti ty.  But when sequential media, such as paper 
tape, punched cards, or magnetic tape, are used, an internal process must 
have exclusive access to the entire document.  This is obtained by calling the 
following monitor  procedure: 

reserve process(name, result) 

The result indicates whether or not  the reservation has been accepted. 
An external process that  handles sequential documents rejects messages 

from all internal processes except the one that  has reserved it. Rejection is 
indicated by the result of  wait answer. 

During the removal of  an internal process, the monitor  removes all 
reservations the process has made. Internal processes can, however, also do 
this explicitly by means of  the monitor  procedure: 

release process(name) 

8.4.3. Process Identification 

From the operator's point of view, an external process is created when 
he mounts a document  on a device and names it. The name must, however, 
be communicated to the monitor  by means of an operating system--an 
internal process that  controls the scheduling of  other internal processes. So 
it is more correct to say that  external processes are created when internal 
processes assign names to peripheral devices. This is done by means of the 
monitor  procedure 

create peripheral process(name, device number, result) 

The monitor  has no way of  ensuring whether a given document  is 
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mounted  on a device. There are also some devices, such as the real-time 
clock, which operate wi thout  documents .  

The name of  an external process can be explicitly removed by a call of  
the moni tor  procedure 

remove process(name, result) 

It is possible to implement  an automatic  removal of  a process name 
when the moni tor  detects operator  intervention in a device. This is done for 
magnetic tapes. 

8.4.4. Replacement of External Processes 

The decision to control inpu t /ou tpu t  by  means of  interrupt procedures 
within the monitor,  instead of  using dedicated internal processes for each 
peripheral device, was made to achieve immediate start of  inpu t /ou tpu t  
after the sending of  messages. In contrast, the activation of  an internal 
process merely implies that  it is linked to the ready queue; after activation, 
several t ime slices can elapse before the internal process actually starts to  
execute instructions. 

The price paid for  the present implementat ion of  external processes is a 
prolongation of  the t ime spent in the uninterruptable state within the 
monitor.  This limits the system's ability to cope with real-time events--data 
that  are lost unless they are input  and processed within a certain time. 

An important  consequence of  the  uniform handling of  internal and 
external processes is that  it allows one  to replace any external process with 
an internal process of  the same name; other  processes that  communicate  
with it are quite unaware of  this replacement.  

Replacement  of  external processes with internal processes makes it 
possible to  enforce more complex rules of  access to documents.  In the 
interest of  security one might, for example, want  to limit the access of  an 
internal process to  one of  several files recorded on a particular magnetic 
tape. This can be ensured by  an internal process that  receives all messages 
to  the tape and decides whether  they should be passed on to it. 

As another example, consider the problem of  testing a real-time system 
before it is connected to  an industrial plant. A convenient way of  doing this 
is to replace analog inputs with an internal process that  simulates relevant 
values of  the actual measuring instruments. 

The ability to replace any process in the system with another process is 
a very useful tool. 

(I am still presenting the system as we looked upon  it in 1969. 
Replacement  of  external processes has indeed been used since, but ,  as I will 
point  ou t  later, there are severe practical restrictions on its usefulness.) 



EXERCISES 

The purpose of these exercises is to: 

(1) bring to your attention practical problems encountered in most operating 
systems; 

(2) give you some experience in using the techniques presented in the text; 

(3) give you the pleasure of deriving additional theoretical results; and 

(4) suggest research projects which will increase our understanding of operating 
system concepts. 

CHAPTER 1 

1.1. Study the manual of  an operating system for a computer to which you have 
access and ask yourself the following questions: 
Is the manual easy to read7 
How many pages must I read to understand the system well enough to use it 
efficiently? 
Does the manual clearly explain: the purpose of the system; the effect of its 
operations; the cost of these operations (in terms of storage and execution time); 
the overall internal structure; and the system's main limitations? 
Find out from the operators how frequently the system crashes and for what 
reasons. Start to think about how you would design and document a better 
system. 

1.2. The classical batch-processing system completely ignores the cost of increased 
waiting time for users. Consider a single batch characterized by the following 
parameters: 

M 
T 
N 
S 
W 

average mounting time 
average service time per job 
number of jobs 
unit price of service time 
unit price of waiting time per user 
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1.3. 

1.4. 

EXERCISES 

(a) Show that the optimal batch size which minimizes the cost of service time and 
waiting time per user (within a single batch) is 

• --TM S 
Nopt = W 

(b) In an installation in which M ffi 5 rain, T = 1 min, and S ffi $300/hour, the 
operators choose N = 50. Assuming that this is an optimal choice, find the unit 
cost of user waiting time W? 

The operating systems of some computers in the 1960's were protected against 
destruction by their jobs by being placed in store locations which all programs 
(including the operating system itself) could read from, but none could write into. 
What was the defect of this early protection system? 

A university uses a spooling system to execute student programs written in a 
single high-level language. Measurements show that the execution phase of an 
average job uses the processor as follows: 

job scheduling 3 sec 
compiler loading from drum 2 -- 
compilation 5 -- 
execution 15 -- 

25 sec 

Suggest a method for increasing the throughput of this system. 

1.5. In the Exec H system, users would submit a large number of jobs in the morning. 
These jobs took hours to complete and thereby prevented fast response. Suggest a 
modification of the scheduling policy which would discourage users from doing 
this. 

1.6. "Warm start." The backing store of a spooling system may hold the input and 
output of as many as 10 to 50 jobs at any time. What methods would you 
propose to ensure that the operating system will be able to continue scheduling 
these jobs and printing their output after a breakdown and repair of the central 
processor or the internal store? 

1.7. In the Scope system for the CDC 6600 computer, system resources (processor 
time, storage, and so on) can remain idle while running jobs wait for operators to 
mount magnetic tapes. Suggest a solution to this problem. 

1.8. (Research project) Define protection and scheduling rules for an installation that 
maintains a library of 30,000 magnetic tapes of which 1000 are mounted on 30 
stations each day. (Hint: Take the installation environment into consideration-- 
the manual handling of tapes, their organization on shelves, and the ways in 
which one can collect and utilize data about their expected frequency of usage.) 

1.9. In the CTSS system, a single processor and an internal store are multiplexed 
among user computations by swapping. The amount of internal store required by 
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each job during execution is known. How would you use this information about  
the expected workload to  make swapping more efficient? 

In the original version of  the SDC Q-32 system, swapping reduced processor 
uti l ization by  50 per cent. Suggest a modification of  swapping that  will increase 
processor util ization without  degrading user response. 

How does the solution to Exercise 1.10 complicate store management? 

The CTSS system uses swapping to ensure immediate response to user requests 
from terminals. Measurements showed that  about  one-half of  all user requests 
could be classified as file manipulation, program input, and editing. How would 
you use this information about  the expected workload to improve processor 
util ization at  a reasonable cost  wi thout  degrading user response? 

In the SDC Q-32 system, a significant number  of  jobs required long processing 
time with l i t t le or no interaction. To require that  a user remain at a terminal 
during these periods would clearly be undesirable. Suggest a system feature which 
would enable users to be absent during their computat ions and at the same time 
permit  the terminals to be used by others. 

In the RC 4000 multiprogramming system, all files on the backing store must 
have unique names. In a large installation one cannot  expect  users to solve name 
conflicts among themselves. Suggest a structure of  the file system that  enables 
each user to be unaware of  the names used by other  users unless one of  them 
needs access to a file created by another. 

Consider a simple file system that enables users to create, use, and delete files on 
a disk which is not backed up by magnetic tapes. Suggest a reasonable 
classification of files that can be used to select some of them for automatic 
deletion when the disk is full and more space is needed. Also consider how you 
would implement this algorithm. 

A file system automatically copies files from disk to magnetic tape at regular 
interwls  as an insurance against disk malfunction. However, it  is possible that  
parts of  these tapes cannot be read when they are needed to reestablish"the file 
system after a disk failure. What measures would you propose to ensure that  tape 
errors do not  bring a system restart  to a complete  halt? 

Suggest a simple method of  limiting the periodic copying of  files from disk to  
magnetic tape in Exercise 1.16 as much as possible. (It is not  an acceptable 
solution to increase the interval between successive copy operations since this 
interval is determined mainly by  the reliability of  the disk.) 

Propose a system in which the problem of  protecting fries stored on disk against 
hardware malfunction is viewed consistently as an insurance problem; that  is, 
each user must decide whether to pay a premium for having some of  his fries 
automatical ly copied to magnetic tape at a certain frequency or else run the risk 
of  losing them completely.  

(S. Lauesen) Outline the implementat ion details of  a simple]ob control language 
for a non-interactive system in which named files can be stored ei ther  on a 
backing store or on other  peripherals. A command has the following format:  
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1.20. 

1.21. 

1.22. 

O: = P(I, A,  B, . . .  , Z) 

I t  will cause the execution of  a program P with input  from a file I and ou tput  on 
a file 0 .  A, B . . . . .  Z are optional  parameters (booleans, numbers, or  textstrings) 
that  are meaningful to P only. The user can specify a sequence of  such 
commands,  pass parameters between programs, and specify condit ional  execu- 
tion, for example: 

var correct: boolean; 
source: = edit(source); 
object:= create file( l O); 
object:= algol(source, correct); 
if correct then object; 
delete file(object); 

where edit, create file, algol, and delete file are programs, while source and object 
are data fries (after compilat ion,  object becomes a program •e). 

In a shared computer  system, users are identified by  passwords. Since the list of  
passwords is stored within the operating system, management is worried about  
the possibility that  a malicious user may write a program which examines the 
entire store and finds this list. Assuming that  this is possible, choose an internal 
representation of  passwords that  is useless for external identification. 

A password which identifies a user and on which accounting of  resource usage is 
based may become known to other  users. Suggest a simple method of  detect ing 
possible misuse of  passwords and propose a countermeasure. 

An operating system uses an alphanumeric display to  keep the main opera tor  
informed about  the current status of  the system. Consider what  data would be 
meaningful to him in a spooling system and in a conversational system. Decide 
which of  them would be useful to display continuously and which of  them should 
be available only on request. Make suggestions about  how the operator  might use 
the data  displayed to  interact  with the system and improve its performance on a 
t ime scale comparable to human reaction t ime (of  the order of  minutes). 

CHAPTER 3 

3.1. (C. A. R. Hoare) "Triple buffering." Write an algorithm which can input,  process, 
and ou tput  a sequence of  data elements of  type  T using three buffers--A, B, and 
C--cyclically as follows: 

phase 1: input(A); 
phase 2: process(A); input(B); 
phase 3: output(A); process(B); input(C); 

Overlapping of  input,  processing, and ou tput  in t ime should be achieved by  means 
of  concurrent  s tatements wi thout  the use of  critical regions. Input, process, and 
output can be considered primitive operations; a boolean function more is true if 
the input  sequence contains one or more data elements; otherwise, it  is false. The 
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solution should also work when the input sequence contains 0, 1, or 2 data 
elements. 

What is the maximum factor f by which the execution time can be reduced by the 
triple-buffering scheme of Exercise 3.1 compared to a strictly sequential 
execution of input, processing, and output (ignoring the overhead of concurrent 
statements)? 

The algorithm below is Dekker's solution to the mutual exclusion problem for two 
processes, P1 and P2. Outline an informal argument which shows that: 

vat outside1, outside2: boolean; turn: 1..2; 
begin 

outsidel:= true; outside2:= true; turn:= 1; 
eobegin 
" P I "  repeat 

label enter 
begin 

repeat 
outside1:= false; 
repeat 

if outside2 then exit enter; 
until turn = 2; 
outside l :ffi true; 
repeat until turn ffi 1; 

forever 
end 
P1 inside; 
turn: ffi 2; outsidel:ffi true; 
P1 outside; 

forever 

"P2" repeat 
label enter 
begin 

repeat 
outside2: = false; 
repeat 

if  outside1 then exit enter; 
until turn ffi 1; 
outside2:= true; 
repeat until turn ~- 2; 

forever 
end 
P2 inside; 
turn: = 1; outside2:ffi true; 
P2 outside; 

forever 
coend 

end 
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(1) one process at  most  is inside its critical region at a time; 

(2) if both  processes are trying to  enter  their critical regions simultaneously, 
a decision will be made within a finite t ime as to  which one should be permit ted 
to do so; and 

(3) if a process is s topped outside its critical region, this cannot  influence the  
progress of  the other  process. 

A computer  has an instruction which exchanges the contents  of  two store 
locations. Exchange operations on a given store locat ion exclude one another  in 
time. Comment  on the following solution to the mutual exclusion problem with n 
processes: 

vat free: boolean; turn: array 1 . . n  of  boolean; 
"Initially free is true, and all turns are false" 

"Process i"  
repeat  

repeat  exchange(free, turn(i)) until  turn(i); 
critical region; 
exchange(free, turn(~) ); 
outside region; 

forever 

Propose a language feature which enables concurrent  processes to  exchange large 
messages by reference instead of  by  value. This language feature must  enable a 
compiler  and its run-time system to ensure that:  

(1) a reference either points  to a message element  or  is undefined; 

(2) one process at a t ime at most  can access a given message element; and 

(3) a process cannot  reference a message element  while i t  is within a buffer. 

3.6. Comment  on the following version of  Algori thm 3.7: 

type  B ffi shared record 
buffer: array 0 . . m a x -  1 of  T;  
p ,  c: 0 . .ma x -  1; 
full, empty:  semaphore; 

end 

"Initially p = c = full ffi 0 & empty  = max"  

procedure send(m: T; vat b: B); 
region b do 
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begin 
wait(empty);  
buffer(p): ffi m; 
p:ffi (p + 1) rood max; 
sienat(fuU); 

end 

293 

3.7. 

procedure receive(vat m: T; b: B); 
region b do 
begin 

wait(full); 
m: ffi buffer(c); 
c: ffi (c + 1) mod max; 
signal(empty); 

end 

"Pipeline sys tem."  A stream of  data elements of  type  T produced by  a process P0 
passes through a sequence of  processes, P1, P2, . . .  , P n - 1 ,  which operate on 
the elements in that  order: 

PO ~ PI  -~ P2 . . . .  -~ P n - 1  

Define a generalized message buffer which contains all the partially consumed 
data elements and write an algorithm for process P/,(0 < i < n - 1) 

"Process Pl ~' 
repeat 

receive from predecessor; 
consume element; 
send to successor; 

forever 

3.8. 

(Process P0 receives empty  elements sent by process P n - 1 . )  The algorithm 
should enable the processes to operate directly on messages stored in the buffer  
so that  copying is unnecessary. 

Show that  the processes, P0, P1, . . ,  Pn-1 ,  in Exercise 3.7 cannot be dead- 
locked with respect to the common pipeline. 

3.9. Show that  Algorithms 3.8 and 3.9 maintain the invariant 

D =- (rr = 0 implies  r w  = a w )  & ( a w  ffi 0 implies rr ffi ar) 

which was used to show the absence of  deadlocks. 
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3.10. (p. J. Courtois, F. Heymans, and D. L. Parnas) The following is a solution to a 
variant of  the readers a n d  wri ters  problem in which no p r i o r i t y  is given to waiting 
writers: 

var ar: shared integer;  s: s emaphore ;  
" In i t ia l l y  ar = 0 a n d  s ffi 1 "  

" r eader"  

region ar do 
begin 

ar:= ar + 1; 
if ar ffi 1 then wai t ( s ) ;  

end 
read; 

region ar do 
begin 

ar: ffi a r -  1; 
if ar ffi 0 then signal(s); 

'end 

" w r i t e r "  

wai t (s ) ;  
wr i te ;  
signal(s); 

3.11. 

Use the s e m a p h o r e  invar iant  to prove that  readers and writers exclude each other  
in time and that  writers also exclude one another. 

Cars coming from the north and south must pass a bridge across a river. 
Unfortunately,  there is only one lane on the bridge. So at any moment ,  i t  can be 
crossed only by  one  or  m o r e  cars coming from the same direction (but  not  from 
opposi te  directions). Write an algorithm for a southern and a northern car as they 
arrive at the bridge, cross it, and depart  on the other  side. (See Fig. E3.11.) 

N°r<h i 

Fig. E3.11. 
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Refine the solution to  Exercise 3.11 so that  the direction of  traffic across the 
bridge will change each time 10 cars have crossed from one direction while one or  
more cars were waiting to cross it  from the opposi te  direction. 

Processes P1, P2, . . .  , Pn share a single resource R but,  one process at  most  can 
use it at a time. A process can start  using it immediately if the resource is free; 
otherwise, the process must wait  until the resource has been released by  another  
process. If  one or  more processes are waiting when the resource is released, it  is 
granted to the process with the highest priority.  The priori ty rule is the following: 
Process P/ has priori ty number i (1 ~ i ~ n), with low numbers indicating high 
priority.  Program the procedures used to reserve and release the resource: 

"process Pi" 
reserve(i); 
use resource; 
release; 

In a system with non-preemptive resource allocation, resources can be requested 
and released one at a time. When resources are available and no processes are 
waiting for them, they can be granted to any process. But, when resources are 
being released and one or more processes are waiting for them, those resources are 
granted to waiting processes on the basis of  priorities assigned to  user 
computat ions by installation management. Is this policy feasible? 

(R. C. Holt) 3 processes share 4 resource units which can be reserved and released 
only one at a time. Each process needs a maximum of  2 units. Show that  a 
deadlock cannot occur in this system. 

(R. C. Holt) n processes share m resource units, which can be reserved and 
released only one at a time. The maximum need of  each process does not  exceed 
the capital m, and the sum of  all maximum needs is less than m + n. Show that  a 
deadlock cannot  occur in this system. 

(R. C. Holt) (Rese~reh project) Develop probabilistic models of  resource 
allocation which can predict  the mean t ime between deadlocks and permit  
designers to  determine whether the deadlocks occur so infrequently that  
prevention is unnecessary. 

"The banker's algorithm applied." Write two procedures which enable a customer 
to ask the banker to increase and decrease his loan by a single coin of  a given 
currency (see Algorithm 2.6). (Notice that  the identi ty of coins is relevant to the 
customers.) 

(E. W. Dijkstra) "The dining philosophers." Five philosophers sit around a table. 
Each philosopher alternates between thinking and eating: 

repeat  think; eat forever 

In front of  each philosopher there is a plate with spaghetti. When a philosopher 
wishes to eat, he picks up two forks next  to his plate. There are, however, only 
five forks on the table. (See Fig. E3.19.) 
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Fig. E3.19. 

So a philosopher can only eat when none of his neighbors are eating. Write the 
algorithm for philosopher i (0 ~ i ~ 4). (Hint: Prevent deadlock.) 

3.20. Comment on the following solution to the problem of the dining philosophers 
(see Exercise 3.19): 

var fork: array O..4 of shared boolean; 

"Philosopher ?' 
repeat 

think; 
region fork(i) do 
region fork((i + 1) mod 5) do eat; 

forever 

3.21. Comment on the following solution to the problem of the dining philosophers 
(see Exercise 3.19): 

vat thinking: shared array 0. .4 of boolean; 
"initially all true" 

"Philosopher i" 
repeat 

think; 
region thinking do 
begin 

await thinking((i- 1) mod 5) & 
thinking((i + 1) rood 5); 

thinking(i): ffi false; 
end 
eat; 
region thinking do thinking(i): ffi true; 

forever 
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3.22. Comment on the following solution to the problem of the dining philosophers 
(see Exercise 3.19): A hungry philosopher first picks up his left fork; if his right 
fork is also available, he starts eating; otherwise, he puts down his left fork again 
and repeats the cycle. 

3.23. A spooling system consists of an input process I, a user process P, and an output 
process O connected by two buffers. (See Fig. E3.24.) 

Input buffer Output buffer 

Fig. E3.23. 

The processes exchange data in units of equal size called pages. These pages are 
buffered on a drum using a floating boundary between the input and the output, 
depending on the speed of the processes. The communication primitives used 
ensure that the following resource constraint is satisfied: 

i + o ~< max 

where 

m a x  

i 
o 

maximum number of pages on drum 
number of input pages on drum 
number of output pages on drum 

The following is known about the processes: 

(1) As long as the environment supplies data, process I will eventually input 
it to the drum (provided drum space becomes available). 

(2) As long as input is available on the drum, process P will eventually 
consume it and output a finite amount of data on the drum for each page input 
(provided drum space becomes available). 

(3) As long as output is available on the drum, process O will eventually 
consume it. 

3.24. 

3.25. 

Show that this system can be deadlocked. 

Suggest an additional resource constraint that will prevent the deadlock in 
Exercise 3.23, but still permit the boundary between input and output to vary in 
accordance with the present needs of the processes. 

(C. Bron) In THE multiprogramming system, a drum is divided into input buffers, 
processing areas, and output  buffers with floating boundaries, depending on the 
speed of the processes involved. The current state of the drum can be 
characterized by the following parameters: 
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max 
i 
P 
o 

reso 

resp 

maximum number of pages on drum 
number of input pages on drum 
number of processing pages on drum 
number of output pages on drum 
minimum number of pages reserved for output 
minimum number of pages reserved for processing 

Formulate the necessary resource constraints that guarantee that the drum 
capacity is not exceeded and that a minimum number of pages is reserved 
permanently for output and processing. Illustrate these constraints geometrically 
in an (i, o, p) coordinate system. 

In THE multiprogramming system (see Exercise 3.25), a page can make the 
following state transitions: 

(1) empty ~ input buffer 
(2) input buffer ~ processing area 
(3) processing area ~ output buffer 
(4) output buffer ~ empty 
(5) empty -> processing area 
(6) processing area ~ empty 

(input production) 
(input consumption) 
(output production) 
(output consumption) 
(procedure call) 
(procedure return) 

Define the effect of these transitions in terms of the quantities i, o, and p. Can 
any of them lead to a deadlock if the assumptions made in Exercise 3.23 about 
input processes, user processes, and output processes hold? 

Represent the drum in Exercise 3.23 by an array of pages: 

var drum: array 1..max of page 

and implement the following communication procedures 

send input(p) 
receive input(p) 
send output(p) 
receive output(p) 

(where p: page) such that the resource constraints of Exercises 3.23 and 3.24 are 
satisfied. 

CHAPTER 4 

4.1. 

• 4 . 2 .  

A process that is operating on a shared variable delays all other processes that are 
waiting to do the same. Suggest a method for alleviating this problem. 

A multiprogramming system measures the processor time used by each 
computation. How does this influence the design of the short-term scheduling 
primitives (Algorithms 4.1-4.6)? 
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4.3. To which process would you charge the processor time used to honor an 
interrup~ Present the cases for and against alternatives. 

4.4. In several computers, an interrupt causes the machine state (register values) to be 
stored in fixed locations associated with the given interrupt signal. Under what 
circumstances is this a practical technique? Explain why it is inconvenient in 
general. 

4.5. Choose a representation of  the ready queue and implement processor 
multiplexing according to a round-robin algorithm. 

4.6. Choose a representation of  the ready queue and implement processor 
multiplexing according to a round-robin algorithm with the following additional 
constraint: Processes outside critical regions are only executed when no processes 
are inside critical regions and ready to run. 

4.7. Represent the multi-level queue defined in Section 4.2.5 

t y p e N  ffi 1 . .n ;  
vat q: queue N of T; t; T; p :  ~V~ 
enter(t ,p,  q); 
remove(t,p , q); 

in terms of  records, arrays, and sequences. 

, 4.8. How would you test the correctness of  the short-term scheduling primitives 
(Algorithms 4.1-4.6) in a systematic, reproducible manner? (Hint: Modify the 
algorithms slightly to obtain a recording of  significant events and design a series 
of  processes that will force the basic monitor through all of  its relevant states at 
least once.) 

, 4.9. Write an algorithm which executes the statement 

y : =  (a + b ) / ( c  - d )  + e * f 

by concurrent evaluation of subexpressions. The variables involved are distinct 
integer variables. 
Evaluate whether this is practical to do on a multiprocessor system with the 
following execution times: 

+ - 2/~sec 
* / :ffi 10 #sec 
intermediate result 5/~sec 
cobegin coend 500 ~sec per process 

4.10. (Research project) Design a multiprocessor system consisting of  a number of  
identical processors connected to a common store which is able to continue its 
operation after a hardware malfunction of a single processor. Consider hardware 
and software aspects of  this reliability problem at the lowest level of  
programming. Try also to make the system tolerant of  other kinds of  failure. Do 
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not expect to solve the problem with present machines and programming 
languages. 

CHAPTER 5 

5.1 .  

° 5 .2 .  

5.3. 

, 5 .4 .  

Choose a representation of segments and holes in a store with contiguous 
segments and write reserve and release operations (with compacting) using the 
first fit placement algorithm. 

(D. E. Knuth) "Fifty per cent rule." Consider an internal store shared by 
contiguous segments and show that under equilibrium conditions it contains, on 
the average, half as many holes as segments. 

What guidance does the fifty per cent rule of Exercise 5.2 give toward an efficient 
implementation of a placement algorithm for contiguous segments? 

(P. J. Denning) "Sequential placement with compacting." Consider a store in 
which contiguous segments $1, $2 . . . .  , Sn are placed strictly in their order of 
creation from one end of the store to the other. (See Fig. E5.4.) 

Fig. E5.4. 

5.5 .  

5 .6 .  

When segment Sn+l is being created, it is placed immediately after segment Sn 
even though some of the segments S1, $2, . . .  , Sn may already have been 
delete~. When the boundary between segments (in use or deleted) and the hole 
reaches the other end of the store, the segments in use are compacted. 

(a) Let s and t denote the average length and lifetime of a segment (measured 
in words and store references) and let f denote the fraction of the store which is 
unused under equilibrium conditions. Show that the fraction of time F spent on 
compacting is constrained as follows: 

1 - f  t 
F ; - ~ - ~  where k ~ s -  1 

(Hint: Find the average speed at which the boundary crosses the store and assume 
that copying of a single word requires at least two store references.) 

(b) Find F f o r f  ffi 0.2, t = 1000, ands = 50. 

A computer is shared by computations that all use a modest number of variables 
(compared to the capacity of the internal store); the compiled programs may, 
however, be fairly large. Suggest a simplified and more efficient form of demand 
paging which takes advantage of this knowledge. 

(P. Naur) Suggest a simple experiment which will demonstrate the locality 
principle for a given program in the demand paging system of Exercise 5.5. 
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5.10. 
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5.12. 

5.13. 
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How would you measure thrashing in a single processor system with a single 
backing store in such a way that the system does not register overcommitments of 
very short duration? 

(L. A. Belady, R. A. Nelson, and G. S. Shedler) "Demand paging anomaly." A 
process refers to five pages, A, B, C, D, and E, in the following order: 

A; B; C; D; A; B; E; A; B; C; D; E 

Assume that the replacement algorithm is first-in, first-out and find the number 
of page transfers during this sequence of references starting with an empty 
internal store with 3 and 4 page frames. 

(A. Alderson, W. C. Lynch, and B. Randell) "Load control by externalpriorities." 
Simulate the behavior of a demand paging system which executes a fixed number 
of identical processes indefinitely. The system is characterized by the parameters 
t, T, and s and the functionp(s) = a e -bs as defined in Section 5.4.2. 

(a) Measure the processor utilization ~7 as a function of the number of 
processes n for an internal store of fixed capacity. The simulation should only 
keep track of the number of page frames assigned to each process (but should not 
be concerned with individual page frames). 

(b) Repeat the experiment with the following modification: Assign priorities 
1, 2 . . . .  , n to the n processes and use the following scheduling rule (due to R. 
M. Wharton): Assign the processor to the process of the highest priority that is 
ready to run. When a page must be transferred to a full store on demand from a 
given process, select a page frame from the process of the lowest priority that has 
one (provided the priority of the latter process is less than that of the former). If 
no such process exists, delay the given process (leaving its page frames unchanged) 
until a process of higher priority releases page frames (this will never occur in this 
simple model in which processes continue forever). 

In a demand paging system, it is discovered that a significant amount of processor 
time is lost while computations walt for slow peripherals. The scheduling 
algorithm is therefore modified as follows: When idle processor time has exceeded 
a certain limit, another computation is started. Comment on this proposal. 

A drum consisting of 512 tracks of 1024 words each must be divided into page 
frames of 512 words each. Suggest an arrangement of page frames which ensures 
that there will always be a page frame which can be accessed with a negligible 
waiting time (equal to ~ of the revolution time at most). 

In THE multiprogramming system, processes can be deadlocked with respect to 
the backing store. (See Exercises 3.25 and 3.26.) Suggest a scheduling policy 
which tries to avoid this as long as possible. 

In the SDS 940 computer, the internal store is divided into 16 page frames of 2 K 
words each. The virtual store of a process is a single segment consisting of up to 8 
pages. Address mapping is done by 8 registers which define the base addresses of 
page frames available to the currently running process (some of these addresses 
may be undefined, indication that no frames have been assigned to the correspond- 
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5.14. 

5.15. 

5.16. 

5.17. 

5.18. 

5.19. 
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ing pages). Comment on the usefulness of this machine for (a) sequential computa- 
tions; (b) concurrent computations; and (c) demand paging. 

For a computer with demand paging, the magnetic tapes are bu t t  to transfer 
blocks of variable length to contiguous store locations. Outline the manner in 
which you would handle store allocation in such a system (assuming that it is 
unacceptable to management that blocks on tape can only be smaller than or 
equal to one page). Could the problem be simplified by a different machine 
structure at a reasonable cost? 

(K. Fuchel and S. Heller) In a CDC 6600 installation, a single processor is 
multiplexed among n independent jobs placed in an internal store. When a 
running job awaits the completion of input/output, the processor is assigned to a 
ready job in the internal store. However, if all n jobs walt for input/output at 
the same time, the processor is idle. Measurements show that with an internal 
store of 65 K words, the average number of scheduled jobs n is 2, while the 
processor utilization ~7 is only 36 per cent. Assuming that idle processor time is 
caused only by input/output, find the average probability p that a single job is 
waiting for input/output? 

Use the result of Exercise 5.15 to evaluate the amount of internal store required 
to increase processor utilization to 90 per cent, assuming that the operating 
system and an average job need 10 K and 25 K words, respectively. 

(a) If an internal store contains n independent jobs, each characterized by an 
average input/output probability p as derived in Exercise 5.15, what would the 
utilization W of a processor then be in a dual processor system? 
(b) Evaluate 77 for n = 2 and p = 0.8. 

(Desigv project) Implement concurrent statements, critical regions, and event 
queues efficiently on a computer. If you feel that the available computer is less 
than ideal for this purpose, then use this insight to suggest more appropriate 
machine features. If you cannot carry out such a project for economic reasons, 
take the time to outline the main problems and their solutions. 

(Research project) Develop realistic dynamic models of the store requirements of 
computations and use them to define meaningful comparisons of various store 
management techniques under well-defined circumstances. (Part of the project is 
to find out what these "circumstances" are.) 

CHAPTER 6 

6.1. Consider how you would measure the service time distribution F(t); and the 
service and arrival rates,/~ and ~, continuously during system operation by simple 
means (rather than by laborious analysis of measurements of individual jobs 
collected over an extensive period of time). 

6.2. Interarrival times which follow an exponential distribution 
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6.4. 
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F(x) ffi 1 - e -x where x = k t  

can be simulated by the following statement:  

vat x: real; 
x: ffi -In(random); 

where random is a real function which delivers a random number uniformly 
distributed between 0 and 1. How can the same method be used to  simulate 
service times which follow a hyperexponent iai  distribution?: 

F(x) = 1 - a e -b x _ (1 - a) e -c x where x = # t  

Refine the demand paging model of  Exercise 5.9 to account for different,  finite 
service times and working sets (for example, selected from exponential  and 
uniform distributions). Also make suggestions for the modelling of  input /ou tpu t  
delays caused by slow peripherals and the distr ibution of  page demands over 
drum sectors. 

"Finite input queue." Consider a queuing system with a single processor, Poisson 
input, and exponential  service times which can hold a maximum of  n jobs 
(including the one being served). (See Fig. E6.4.) 

I n l 

Queue Processor 

Fig. E6.4. 

Jobs which arrive when the system is full leave without  returning. The system can 
be in n + 1 states with either 0, 1, . . .  , or n jobs waiting or in service. Le tPo ,  
P l ,  . . . .  Pn denote the steady state probabili t ies of  these states. Find the 
relations between these probabili t ies and show that  

p. (1- p) 
Pn ].- pn+l 

where p = k/p is the uti l ization factor. (Hint: The same technique was used to  
derive equation (6.31).) 

Use the result of  Exercise 6.4 to determine the necessary queue capacity when p 
= 0.93 so that  the probabil i ty  that  a job  will find the queue full upon arrival does 
not  exceed I per  cent, assuming that  an average job occupies 15 K words o f  store. 

"Message buffer." Consider a system in which a sequence of  jobs is executed by  
two processors in series. (See Fig. E6.6.) 
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#1 ~ n - - 1  

Processor 1 Buffer Processor 2 

Fig. E6.6. 

Service times are exponential  with means of  1/p 1 and l /P2 ,  respectively. The 
processors are connected by a buffer which can hold a maximum of  n - 1 
partially completed jobs. When the buffer is full, processor 1. is  delayed until  
processor 2 removes another job from it. We define the performance measure R as 
the ratio of  the throughput  of  jobs with and wi thout  buffering. (If no buffer is 
used, processor 1 is always forced to walt  while processor 2 completes a job,  and 
vice versa.) Use the result of Exercise 6.4 to show that  

i 1-  p n (1 + p )  1 - pn+ l  P ¢ 1 
R = w h e r e  p = p.~- 

2 n P2 
n + l  p = l  

6.7. Consider a spooling system in which a central processor is connected to a line 
printer  by a buffer on a backing store. Use the result of Exercise 6.6 to determine 
the buffer capacity necessary to maintain a throughput  that  is 97 per cent  of  the 
maximum achievable, assuming that  execution and printing times are exponential  
with means 1 and 0.5 min. What is the value of  the performance measure R? 

6.8. The shortest job next algorithm minimizes the average response time. Prove this 
for a batch of  n jobs which arrive at the same time with service times 

6.9. 

6.10. 

6.11. 

tl ~t2 ~ . . .  ~ tn  

ignoring further arrivals. 

Design and carry out  a simulation experiment  which measures the effect of  
inaccurate user estimates of service times on the average waiting t imes in a 
non-preemptive queuing system with a single processor using the shortest job next 
algorithm. 

Use the result of  Exercise 6.2 to simulate the highest response ratio next 
algorithm by a sequential program. Test the accuracy of  the approximations,  
equations (6.27) and (6.28), for various values of  p, using the constants a = 0.11, 
b = 0.21, and c = 1.88. (Hint: To achieve a steady state equilibrium, the  program 
must simulate a reasonable number of  jobs before measurements are collected.) 

(S. Lauesen) "Minimax response ratio scheduling." In a non -p r~mpt ive  single 
processor system, the queue contains three jobs at t ime t immediately after the 
complet ion of a job. These jobs arrived at t imes t l ,  t2, and t3 with est imated run 
times r l ,  r2, and r3. Fig. E6.11 shows the linear increase of  their response ratios 
in time. 
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6.12. 

6.13. 

6.14. 

6.15 

6.16 
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~ / / /  

~ Time 
t 1 t 2 t 3 t 

Fig.  E6.11. 

Use this example to find a variant of response ratio scheduling which minimizes 
the maximum response ratio for a given batch of  jobs ignoring further arrivals. 
(Hint: Decide first which job to schedule as the last one.) 

Compare the performance of  the minimax response ratio algorithm of  Exercise 
6.11 to the highest response ratio next algorithm by a simulation similar to the 
one used to solve Exercise 6.10. 

(P. Mondrup) Prove that the minimax response ratio algorithm of Exercise 6.11 
minimizes the maximum response ratio for a given batch of  jobs. (Hint: Focus 
attention on the job which will achieve the highest response ratio and all jobs 
executed before it. Consider the same subset of  jobs scheduled in any other order 
and observe the response ratio of  the job which is executed as the last one among 
them. Notice that this subset may now be mixed with other jobs from the total 
set.) 

"Guaranteed response ratio scheduling." How can the algorithm of Exercise 6.11 
be used to implement a non-preemptive system that guarantees that response 
ratios never exceed a given limit? (Hint: Upon arrival of  a job, the system must 
decide whether to accept the job or reject it.) 

The algorithm in Exercise 6.14 tends to be unfair to very short jobs. Explain why 
and suggest a remedy. 

"Non-preemptive foreground-background scheduling." In a non-preemptive queu- 
ing system with a single processor, jobs with service times below a threshold 
t enter a foreground queue, while longer jobs enter a background queue. Each 
queue is served in first-come first-served order, but a job in the background queue 
is only started when the foreground queue is empty. Arrivals in both queues are 
Poisson processes. The overall service time distribution F(x) can be arbitrary. The 
arrival rate of  all jobs is denoted k. Show that the average waiting times, W1 and 
W2, for foreground and background jobs are 

Wo w1 
W i = - -  and W2= 

l-Pt l -p  

where p, Wo, and Pt are given by equations (6.14), (6.17), and (6.25), 
respectively. (Hint: Use the conservation law.) 
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6.17. In the foreground-background system of Exercise 6.16, the threshold t must be 
chosen such that the average waiting time W1 in the foreground queue does not 
exceed a given limit Wma x for utilization factors p ~ 1. 

(a) Show that for hyperexponential service times, t is defined by the relation 

6 . 1 8 .  

d 
G(t) < 1 - - -  

where 1 and p are the mean service time and utilization factor for all jobs, while 
P 

G(t) and d are defined by equations (6.13) and (6.21). 1 
(b) Compute t, W1, and W2 for the case in w h i c h -  = 1 min, d ffi 2 . 7 5 ,  p = 

0.93, and Win== ffi 5 rain. 

(L. Kleinrock) "Process sharing." A processor is multiplexed at infinite 
speed among all jobs present in a queuing system with no overhead. (This is an 
idealized model of round-robin scheduling among jobs kept in an internal store 
using time quanta that are very small compared to the mean service time.) Show 
that for Poisson input from an infinite source with exponential service times, the 
mean response time of a job with a service time t is given by: 

t 
R t = l _  p 

6 . 1 9 .  

(Hint: Consider the mean workload U in the system upon arrival of the given 
job.) 

(L. Kleinrock) "Selfish round robin." In a queuing system, new jobs must wait 
for a while before being served. While a job waits, its priority increases linearly 
with time from zero at a rate a. A job waits until its priority reaches the priority 
of the jobs in service; then, it begins to share the processor equally with other 
jobs in service while its priority continues to increase at a slower rate l~. The 
algorithm is called "selfish" because the jobs in service try (in vain) to 
monopolize the processor by increasing their priority continuously. Use Fig. 
E6.19 to show that the mean response time R t for a job of service time t is given 
by: 

1 1 
/.z # 

Rt 1 - p  1 - p '  

where 

p = -  p =p(1--~) o<~  <o~ /z 

assuming that arrival and service times are exponentially distributed with means 
l /k ,  and l /p,  respectively. (Hint: Consider the total system and the two 
subsystems separately.) 
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1 

i 

Time 

Fig. E6.19. 

6.20. (E. G. Coffman and L. Kleinrock) "Shortest elapsed time next ."  A processor is 
multiplexed at infinite speed among all jobs in a queuing system according to 
the rule shortest elapsed time next. Arrival and service times are exponential with 
means 1/k and liP. Show that the mean response time R t for a job with service 
time t is given by 

Wo t t 
R t - -  + 

(1 -  pt) 2 1 -  Pt 

where 

p t  = fo t k x d F ( x )  

Wo t = -~f: h x 2 dF(x) 

ffi t 1 - e  -~x  0 <~ x < t 
F(x) 

{ 1 t ~ < x < o o  

(Hint: A job of service time t will be delayed by all jobs present upon its arrival 
(including the one in service) and by all jobs arriving while it is in the system, 
until these jobs have either been completed or have been served for a maximum 
period t each.) 

6.21. A queuing system uses the scheduling algorithm shortest elapsed time next  in a 
foreground queue. Jobs that have received service for a period T enter a 
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6.22. 

6.23. 

6.24. 

6.25. 

6.26. 

EXERCISES 

background queue in which they are served to completion in first-come, 
first-served order in periods when the foreground queue is empty. Use the method 
of solution from Exercise 6.20 to find the mean response time Rt of long running 
jobs (t > T). 

A university computing center is shared by users from different departments. 
Suggest a scheduling algorithm that guarantees a certain fraction of the processor 
time to each department on a weekly basis. What priority rules would you suggest 
for competing users from one or more departments as long as none of them have 
exceeded their weekly quota? 

An interactive system using round-robin scheduling and swapping tries to give 
guaranteed response to trivial requests as follows: After completing a round-robin 
cycle among all active jobs, the system determines the quantum for the next cycle 
by dividing a maximum response time by the number of jobs requiting service. Is 
this a practical policy? 

Simulations showed that a multi-queue algorithm would reduce the swap time 
from 40 to 20 per cent in the SDC Q-32 system. When it was implemented, this 
did indeed happen, but no corresponding increase of processor utilization was 
observed. Where would you expect to find the reason for this and how would you 
try to improve the processor utilization7 

In a preemptive queuing system with a single processor using foreground- 
background scheduling, long jobs can experience indefinite waiting times when 
the system is heavily used for conversational access. Propose a scheduling 
algorithm which gives rapid response to a moderate number of conversational 
users and at the same time guarantees a certain fraction of the processor time to 
background jobs. 

Suggest a scheduling algorithm which will share a single processor among three 
classes of jobs as proposed in Section 1.4.1: 

(1) Conversational editing and preparation of jobs 

(2) Non-interactive scheduling of small jobs with fast response 

(3) Non-interactive scheduling of large jobs 

with response times of the order of seconds, minutes, and hours, respectively. The 
system may deny service to additional users when it is heavily loaded. 
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CHAPTER 1 

1.2.  (a) The time required to execute a batch is M + N * T, and the cost  of  using the 
processor for this amount  of time and letting N users wait meanwhile is (M + N * 
T) * (S + N * W). So the total  cost of  service time and waiting time per customer 

is 

C = (M+N* T) * ( S + N *  W)/N 

dC 
The result follows by s e t t i n g - ~  = 0. 
(b) 604/hour(!)  

1.3. Since no program (including the operating system) could write into a protected 
location, an operating system was forced to place its variables in unprotected 
locations. 

1.4. Notice that  job scheduling and compiler loading account for 20 per cent  of  the 
execution phase. This can virtually be eliminated by designing the compiler  to 
compile and execute a sequence of  programs (rather than one) each time the 
compiler is scheduled and loaded. Excellent examples are the Fortran compilers 
developed at Purdue University (PUFFT) and the University of Waterloo 
(WATFOR). 

1.5. The countermeasure taken was to cancel any job request which had been waiting 
for more than one hour without  being honored. 

1.7. The problem was solved in the Atlas system by postponing the execution of  a job 
until all its tapes were mounted.  

1.9. The solution used in CTSS is to use the same base address for all jobs in the 
internal store; but,  instead of removing a job completely from the internal store 
at the end of  its time slice, the system only transfers as much of  it to  the backing 
store as is required to make room for the next job. 

1.10. Divide the internal store into two areas and execute a job in one area while 
another job is being swapped into the other  area. This is called overlapped 
swapping and execution. 

309 
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1.11. 

1.12. 

1.13. 

1.14. 

1.17. 

1.20. 

1.21. 

ANSWERS 

It requires program relocation by means of base and limit registers. This is easily 
seen if you consider overlapped swapping and execution of an odd number of 
jobs in two store areas. 

An effective solution is to keep a single copy of the most frequently used 
procedures for frie manipulation, program input, and editing permanently (or 
semi-permanently) in the internal store and thus enable user programs to call 
them directly. If the system does not distinguish between utility programs and 
user programs, it will spend a considerable amount of time swapping multiple 
copies of the former for different users. 

Permit user computations to take input from and deliver output to the frie system 
and permit users to input and output these data at terminals at their own 
convenience before and after execution. 

In the Titan supervisor, each user has his own catalog describing the names and 
locations of fries Owned by him. The locations of user catalogs are defined in a 
master catalog (Fraser, 1971). In the Multics system, this idea is generalized to a 
tree of catalogs with fries as leaves. This enables user groups to establish local 
nomenclature within project components in a hierarchal manner (Daley, 1965). 

Copy only those fries which have been changed since the previous copy operation. 

In the Titan supervisor, passwords quoted by users are scrambled by an algorithm 
and compared with a list of scrambled passwords. The scrambling algorithm is not 
kept secret since there is no economical way of performing the reverse operation. 

When a user successfully quotes a password to the Titan supervisor, he is told the 
date and time at which it was last quoted. If he suspects an infringement, he can 
immediately choose another password. 

CHAPTER 3 

3.1. 

vat last, this, next: T; 
if more then 
begin 

input(next); 
if more then 
begin 

this:ffi next; 
cobegin 

process(this); input(next); 
coend 
while more do 
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begin 
last: ffi this; this: ffi next; 
cobegin 

output(last); process(this); input(next);  
coend 

end 
output(this); 

end 
process(next); 
output(next);  

end 

Let I, P, and O denote the execution times of  the input, processing, and output  
operations. Then we have 

I + P + O  
f= ~<3 max(I, P, O) 

(1) Notice that each process only changes its own variable outside and that 

outside1 implies P1 outside & 
outside2 implies P2 outside 

Since process P1 only enters its critical region when outside2 holds (and vice versa 
for P2), mutual exclusion is guaranteed. 

(2) The variable turn is only changed at the end of  a critical region; it can 
therefore be regarded as a constant when both processes are trying to enter their 
critical regions at the same time. 

If  turn = 1, then process P1 can only cycle in the statement 

repeat 
if outside2 then exit enter; 

until turn ffi 2; 

and process P2 can only cycle in the statement 

repeat until turn = 2; 

But the latter implies that outside2 holds, so P1 will enter its region. A similar 
argument can be made when turn ffi 2. 

(3) If  P1 is stopped outside its critical region, we have 

outside1 
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This will immediately permit  process P2 to enter  its critical region independent  of  
the value of  turn. 

3.4. Before process i enters its critical region, we have 

3.5. 

not  turn(i) 

If  free = true, we have after an exchange operation: 

not  free & turn(i) 

and process i will enter  its critical region. However, if free = false, we have after 
an exchange operation: 

not  free & not  turn(i) 

and process i will not  enter its critical region. So at most one process at a t ime can 
be inside its critical region. And, since exchange operations are executed one at a 
time, the decision as to which process should enter  its critical region first cannot  
be delayed indefinitely. Whether or  not  the scheduling of  critical regions will be 
fair depends entirely on the hardware implementat ion of  exchange operations and 
on the scheduling policy used to execute concurrent processes. The disadvantage 
of  the solution is that  it  uses the busy form of waiting. 

The notat ion 

vat o: pool max of  T; 
b: sequence of  v; 
s, t: ref v; 

declares (1) a pool v consisting of  a maximum number of  message elements of  
type T; (2) a sequence b of  such elements sent by one process to another,  and (3) 
two references, s and t, to message elements. 
An element is reserved, produced,  and sent by  a process P as follows: 

reserve(s); 
with s do produce element; 
send(s, b); 

An element is received, consumed, and released by  a process Q as follows: 

receive(t, b); 
with t do consume element; 
release(t); 

As soon as an element is sent or released, the reference to it is made undefined. 
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The compiler  will cheek that  concurrent processes use disjoint sets of  reference 
variables; and the compiler 's  run-time system will check that  references are 
defined when they are used. 

If  a receiver is waiting for a full buffer element inside a critical region, a sender 
cannot enter  its critical region and signal the availability of  a full buffer  element. 
So the solution can lead to a deadlock. 

The buf fer  is declared to be an array of  shared elements of type T. Another  array 
defines the number of  input  elements available to each process. Each process 
keeps track of  the index j of  the buffer element it is referring to at t he  moment .  

vat buffer: array 0 . . m a x - 1  of  shared T; 
available: shared array 0 . . n -  1 of  0 . . m a x  ; 

"Initialization" 
vat k:  1..n-l;  
region available do 
begin 

available( O ) :ffi max; 
for every k do available(k): ffi 0; 

end 

"Process i" 
vat j: O. . m a x - 1 ;  succ: O. .n-  l ;  
begin 

j:= O; succ:= (i + 1) mod n; 
repeat  

region available do 
await available(i) > O; 
region buffer(j)  do consume element; 
region available do 
begin 

available(i): = available(i) - 1; 
available(succ): ffi available(succ) + 1; 

end 
j :=  (j + 1) mod max; 

forever 
end 

A deadlock is a situation in which 

P0  waits for Pn-  1 & 
P1 waits for P0 & 

Pn-  1 waits for Pn-  2 
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because 

available(O) = O& 
avaiiable(1) ffi O& 

. . . . .  

available(n-I)  = 0 

But if max > O, this condition cannot hold since the critical regions satisfy the 
following invariant: 

n - 1  
available(i) = max 

i=o 

3.10. Let rr and rw denote the number of running readers and running writers. 
Evidently, we have 

(1) O ~ r r &  O ~ r w  

(2) 0 ~ waits(s) ~ signals(s) + 1 

Now suppose rr readers and rw writers are using the resource simultaneously. 
Then we also have 

(3) traits(s) - signals(s) = if rr > 0 then rw + 1 else rw 

since one wait  and one signal operation at most are executed for each group of 
running readers which use the resource for  a continuous period of time. From this 
we find the following invariant: 

0 ~ rr & 0 ~ rw & (if rr > 0 then rw + I else rw) ~ 1 

case I:  
If rr > 0 then rw = O. 

case 2: 
I f r r f f i 0 t h e n 0  ~ rw ~ 1. 

Q . E . D .  

3.11. This is a variant of the readers and writers problem (Algorithm 3.10). No priority 
is specified for southern and northern cars, but  they must exclude each other in 
time on the bridge: 

vat bridge: shared record southern,  northern: integer end 
"Initially both zero"  

"southern ear" 
begin 

region bridge do 
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begin 
await northern = O; 
southern: ffi southern + 1; 

end 
cross bridge; 
region bridge do 
southern:= southern-  1; 

end 

The algorithm for a northern car is symmetrical. 

3.12. The data structure represents the following for cars coming from both directions: 
The number of  cars waiting to cross the bridge; the number of  cars crossing the 
bridge; and the number of  cars which have entered the bridge ahead of  waiting 
cars coming from the opposite direction. 

type direction = record 
waiting, crossing, ahead: integer; 

end 
"Initially all zero" 

vat bridge: shared record 
southern, northern: direction; 

end 

"southern car" 
begin 

region bridge do 
with southern do 
begin 

waiting: = waiting + 1; 
await northern.crossing = 0 & ahead < 10; 
waiting: = wait ing- 1; 
crossing:= crossing + 1; 
if northern.waiting > 0 then 
ahead: = ahead + 1; 

end 
cross bridge; 
region bridge do 
with southern do 
begin 

crossing: ffi crossing- 1; 
if crossing = 0 then 
northern.ahead ffi 0; 

end 
end 
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3.13. A straightforward (but  not  too efficient) implementat ion is the following: 

type I = 1 . .n ;  
vat v: shared record 

free:boolean; 
waiting: array I of boolean; 
grant: array I of event v; 

end 

procedure reserve(i:/); 
region v do 
begin 

if free then 
free:= false else 
begin 

waiting(i): = true; 
await(grant(i)); 

end 
end 

procedure release; 
vat i: I;  
region v do 
label done 
begin 

for every i do 
if waiting(i) then 
begin 

waiting(i): = false; 
cause(grant(i)); 
exit  done 

end 
free:ffi true; 

end 

3.14. 

3.15. 

3.16. 

No, it  is not. External priorities that  only reflect the at t i tude of  management  
toward users cannot  prevent deadlocks. They can be used to determine when 
computat ions  should be started, but  during execution,  additional rules must  be 
used, as is explained in Sections 2.6 and 3.5. 

A deadlock is a state in which all resource units are reserved while one or  more 
processes are waiting indefinitely for more units. But, if all 4 units are reserved, at 
least one process has acquired 2 units. Consequently,  that  process will be able to 
complete  its work and release both units, thus enabling another  process to  
continue. 

Using the terminology of  Section 2.6.1 we have 
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n n n 

(1) ~ need ( i )=  ~ claim(i) + ~ loan(i)  < m + n 
1 1 1 

In a deadlock situation, all resource units are reserved: 

n 

(2) ~ loan(i)  ffi m 
1 

and some processes are waiting for more units indefinitely. But from (1) and (2), 
we find 

n 

(3) Z claim(i)  < n 
1 

This means that  at least one process j has acquired all its resources (claim(]) = O) 
and will be able to complete its task and release all its resources again, thus 
ensuring further progress in the system. SO a deadlock cannot occur. 

3.19. Deadlock is avoided by ensuring that  a hungry philosopher picks up b o t h  forks at  
the same time (instead of one at a time). A shared array defines the number  of  
unused forks next to each plate; each array element is initially equal to 2 and can 
assume the values 0, 1, or 2. 

var forks:  shared array O..4 of  O..2; 

procedure phi losopher( i :  O. .4 ) ; 
vat le f t ,  r ~ h t :  O. .4; 
begin 

lef t:  = ( i -  1) mod 5; 
right:= (i + 1) mod 5; 
repeat  

th ink;  
region f o r k s  do 
begin 

await forks( i )  = 2; 
forks(left):f f i  forks ( le f t )  - 1; 
forks(r ight ) :  ffi forks(r ight )  - 1; 

end 
eat; 
region f o r k s  do 
begin 

forks ( l e f t ) :  ffi f orks ( l e f t )  + 1; 
forks(r ight ) :  = forks(r ight )  + 1; 

end 
forever 

end 
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3.20. 

3.21. 

3.22. 

3.23. 

3.24. 

ANSWERS 

This program leads to a deadlock when all philosophers pick up their left forks at 
the same time and wait for their tight forks to become available. They will then 
starve to death. 

It is possible for two non-adjacent philosophers to alternate in such a manner that 
at any moment at least one of them is eating. Thus, they manage to prevent the 
philosopher between them from ever eating. 

The philosophers can starve while repeatedly picking up and putting down their 
left forks in perfectunison. 

A deadlock occurs when process I has filled the drum with input" (i = max) and 
process I is waiting to transfer more input to the drum, while process P is waiting 
to transfer more output to the drum and process O is waiting to transfer more 
output from the drum. 

Reserve a minimum number of pages (called reso) permanently for output 
buffeting, but permit the number of output pages to exceed this limit when drum 
space is available. The resource constraints now become: 

i + o  ~ max  

i < m a x -  reso 

where 

0 < reso < max  

This is illustrated by Fig. A3.24. 

m a x  

r e s o  ~\\\\\ 
m a x  

Fig. A3.24. 

If process P is waiting to deliver output on the drum, process O will eventually 
consume all previous output and make at least reso pages available for further 
output, thus enabling P to continue. So P cannot be delayed indefinitely by O. 
Process I can be delayed if the drum is full of input/output; but sooner or later, 
all previous input will be consumed by P and the corresponding output will be 
consumed by O, thus enabling I to continue. 
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3.25. Resource constraints: 

(a) 

(b) 

(c) 

(d) 

See also Fig. A3.25. 

i + o + p < max 

i + o ~< rnax - resp 

i + p ~ m a x  - reso 

i ~ max - (reso + resp) 

p 

t I roso 
m a x  

re8o 

/ 

\ 
i I I 1 ~ \  

/ /  b 'l 

Fig. A3.25. 

3.26. 

Typical values used in THE multiprogramming system are max = 1000, resp ~- 
744, and reso = 64. 

The effects of  the state transitions are the following: 

(1) i:ffi i + 1 

(2) i : f f i i -  1; p:ffip+ 1 

(3) p : = p -  1 ; o : = o  + 1 

(4) o:= o - 1 

(5) p : f  p + 1 

(6) p : f  p . -  1 
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ANSWERS 

By examining the resource constraints illustrated in the solution to Exercise 3.25, 
we see the following: 

(6) Procedure returns can take place immediately since they only release 
r e sources .  

(5) Procedure calls may exhaust the drum (p = max - reso) and lead to  
deadlock. 

(4) Output consumption can take place immediately after ou tput  becomes 
available. 

(3) Output production can be delayed temporari ly until  all previous output  
has been consumed and made at least reso pages available for further output .  

(2) Input  consumption can take place immediately after input  becomes 
available. 

So input /ou tput  consumption will continue as long as the user processes do  
not  deadlock themselves by  procedure calls. 

(1) Input production can be delayed until all previous input  and the 
corresponding output  has been consumed. At  this point ,  when i = o = 0, input  can 
be produced provided the user processes have not  exhausted the drum (p < max - 
reso ). 

Conclusion: The uncontrolled amount  of storage assiffned to the user processes 
is the only possible source of a storage deadlock. 

const reso ffi desired value; 
type N ffi 1 . .max;  
vat v: shated record 

drum: array N of page; 
input, output,  empty: sequence of  N; 
i, o: O. .max; 
current: N; 

end 
"Initially all pages are empty and i ffi o ffi 0" 

procedure send input(p: page); 
region v do 
begin 

await i + o < max & i < max - reso; 
get(current, empty); 
drum(current): ffi p; 
put(current, input); 
i: ffi i + 1; 

end 

procedure receive input(vat p: page); 
region v do 
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begin 
await i ~ O; 
get(current, input); 
p : =  drum(current); 
put(current, empty); 
i:= i -  1; 

end 

The procedures send output and receive output await the holding of  i + o ~ max 
and o ~ 0, respectively. Apart  from that,  they are quite similar to send input and 
receive input. 

C H A P T E R  4 

4.1. In THE multiprogramming system, a process is given a higher pr ior i ty  of  
execut ionwhi le  it  is within a critical region. 

4.2. The system must  include a clock that  measures t ime in units comparable to the 
access time of  the internal store. The procedure initiate process must set the 
elapsed processor time for a new child process to zero; the procedure terminate 
process must add the amount  used by the calling process to that  used by  its 
parent process. When a running process is entered in a queue, the interval that  has 
elapsed since it was last continued must be added to its elapsed processor time. 

4.3. Processor t ime spent on an interrupt  that  terminates an action (for example,  
input /output)  started by a particular process ought to be charged to that  process. 
But this fairness may be expensive since it increases the overhead at the lowest 
level of  scheduling. A simpler method is to let  the currently running process pay 
for all interrupts which occur while it is running and hope that  in the long run the 
cost will be evenly distributed among all processes. 

4.4. This technique is based on the assumption that  an interrupted process A will 
continue to run after the response to an interrupt.  But, in general, an interrupt  
may cause the basic moni tor  to preempt  a process A in favor of  another  process, 
B. I t  is now necessary to Copy the execution state of process A from the locations 
associated with the interrupt to the process description associated with A. The 
machine might as well have stored them there in the first place. 

4.5. 

vat ready: sequence of P; 

procedure preempt process; 
vat candidate: P; 
region v do 
begin 

put(process, ready); 
get(candidate, ready); 
continue(candidate); 

end 
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type process description ffi record 
• o o o o  

urgent: boolean; 
end 

"Initially, urgent is false; it is true within critical regions" 

vat ready: record 
foreground, background: sequence of P; 

end 
"Urgent processes enter the foreground queue; 
other processes enter the background queue" 

procedure pree rnp t process; 
v a r  candidate: P; 
region v do 
begin 

with ready do 
begin 

if process table(process), urgent then 
put(process, foreground) else 
put(process, background); 
if not  empty(foreground) then 
get(candidate, foreground) else 
get(candidate, background); 

end 
continue(candidate); 

end 

4.7. 

type Q = record 
level: array N of  sequence of  T; 
top: N; 
waiting: integer; 

end 
"Initially all levels are empty and waiting ffi 0" 

procedure enter(t: T;p: N; vat q: Q); 
begin 

with q do 
begin 

put(t,  level(p)); 
if waiting = 0 then top:=p else 
if p < top then top: = p; 
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waiting: = waiting + 1; 
end 

end 

procedure remove(vat t: T; p: N; q: Q); 
begin 

with q do 
begin 

get(t, level(top)); p:= top; 
waiting: = waiting- 1; 
if waiting > 0 then 
while empty(top) do top: = top + 1; 

end 
end 

The following technique was used to test the RC 4000 multiprogramming system: 
The procedures 

enter(process, queue) continue(process) 

will stop processor multiplexing temporarily and print one or two integers identify- 
ing the process and the queue involved. 
To test processor multiplexing, the system is initialized with two processes, A and 
B: 

cobegin 
"A" repeat forever 
"B" repeat forever 

coend 

and the timer is replaced with an interrupt key. Assuming that the short-term 
scheduling algorithm is round-robin, the test output will have the following 
format (shown here in symbolic form to make it more readable): 

continue A 
* enter A, ready queue 

continue B 
* enter B, ready queue 

continue A 

The lines marked * are the responses to timer interrupts simulated by pushing the 
interrupt key. 
To test the wait and signal operations, the system is started with two processes, C 
and D, in the ready queue (in that order): 
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var v: shared boolean; i: integer; 
cobegin 

"C" begin 
region v do 
for i: = I to some limit do; 

end 
"D"  begin 

region v d o . . .  ; 

end 
coend 

The test output  will appear as follows: 

continue C 
* enter C, ready queue 

continue D 
enter D, semaphore queue 
continue C 
enter D, ready queue 

* enter C, ready queue 
continue D 

"C enters its region" 
"C preempted within its region" 

"D waiting to enter its region" 

"C leaves its region" 
"C preempted outside its region" 
"D enters its region" 

and so on. (See also Bdnch Hansen, 1973.) 

4.9. 

vat y,  a, b, c, d, e, f, g, h, i: integer; 
begin 

cobegin 
g:ffi a + b; 
h : = c -  d; 
i:ffi e * f; 

coend 
y :ffi g/h + i; 

end 

The execution times of  the sequential and concurrent versions of  the statement 
are 51 and 1542/~sec, respectively (!). 

CHAPTER 5 

° 5 . 2 .  Let s and h denote the average number of  segments and holes, respectively. The 
probability that a given segment is followed by a hole in the store (and not by 

1 another segment) is ~ because deletions and creations are equally probable in 
equilibrium. So with s segments in store, the average number of  holes h must be 
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s[2. It is intuitively reasonable that the number of holes must be less than the 
number of segments because neighboring segments can be combined into a single 
hole upon deletion. 

It is advantageous to represent the state of the store by a list of holes because, on 
the average, it will only be half as long as a list of segments. 

(a) Consider a store of c words immediately after compacting when the hole 
consists of f c words. In equilibrium, an average segment of s words is deleted and 
another one is created every t references. So the boundary moves at the speed of 
sit words per reference. Consequently, it crosses the hole after f c t/s references. 
At this point, (1 - f)c words must be compacted; this requires at least 2 (1 -  f)c 
references. So the fraction of time spent on compacting is 

F >/ 2(1-  f~c 
2(1 - f)c + f c t/s 

which reduces to the equation given. 

(b) F = 0.29. 

In the GIER Algol system, stack pages remain fixed in the internal store, whereas 
program pages are transferred to and from a drum on demand. 

Extend the given program P with the following data structure 

vat A: array 1.. max of 
array 1..page length of integer: 

and execute it as the only process on the machine. The amount of store available 
to program P itself can be changed by means of the constant max. 

9 and 10 page transfers, respectively. 

Idle processor time can also be caused by processes waiting for page transfers. In 
that case, the modified algorithm will soon cause thrashing by increasing the 
computational workload. 

In THE multiprogramming system, all frames pass the access heads once, in order 
of (cyclically) increasing frame number during each revolution. (See Fig. A5.11.) 

Track  

0 1 • • • 511 

Word  ~ 

1021 k\ \ \ '%,\ \ 'q&\ \~\ \ \~\ \ \&\ \ \~k\ \ \m\\ \&\ \ \~k\ \ \~\ \&\ \ \ '~.~ 

Frame 
0 1 . . . 511 

512 513 . . .  1023 

Fig. A5.11. 
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The track number  t and the word number w of  the beginning of  frame number f 
are defined as follows: 

t: = f mod 512 w: = f 

where 

0 ~ f ~ 1023 

From the solution to Exercise 3.25, we find that the dangerous boundaries are i = 
max - (reso + resp) and i + p ffi max - reso. Here, further input production (i: = i + 
1) depends on input consumption (i: = i - 1; p:=p + 1) and procedure returns 
(p:ffi p - 1); in short, it depends on activities within user processes, whereas 
output consumption (o: ffi o - 1) is of no help. Unfortunately, it is also possible 
that user processes will do exactly the opposite and lead the system right into a 
deadlock by an excessive number of procedure calls (p:ffi/~ + 1). A possible 
solution is to use load control, that is, to try to stay away from these boundaries 
and prevent the scheduling of further computations if the system comes close to 
them. In THE multiprogramming system, the operator is notified of a tight store 
situation and is expected to act accordingiy. 

(a) sequential computations: The machine can be used to implement a stack not 
exceeding 16 K words efficiently. This is satisfactory for a large class of 
sequential programs. 
(b) concurrent computations: If the machine is used to implement nested 
segments, it would seem to be a serious limitation that a parent process can only 
assign a segment to a child process that is at least 2 K words (= 1 page) smaller 
than its own segment. It is possible, however, to implement a general 
tree-structured stack of non-nested segments by using the page registers to define 
that (linear) part of the stack which is accessible to the currently running process. 
But the requirement that each process be assigned at least 2 K words of internal 
store will certainly limit the usefulness of concurrent statements. One can 
therefore conclude that this machine is not very practical for Concurrent 
computations. Nevertheless, it has been used for that purpose (Lampson, 1966). 

(c) demand paging: It is also doubtful that the machine is adequate for this 
purpose considering that working sets are restricted to eight pages. Most programs 
would need all eight pages in the internal store to run efficiently. 

The probability that n independent jobs are waiting for input/output at the same 
time isp n, so we have 

17 = 1- pn 

or 

p = (I- 71) 11n 

For n = 2 and W = 0.36, we findp = 0.8. In other words, the average job waits for 
input/output 80 per cent of the time. 
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5.16. Since ~ = 1 - pn we have 

tn(1- 7) 
n ~ -  

l n p  

Using fi = 0.9 and p = 0.8, we find n = 10. So we need 10 * 1 + 25 * 10 = 2 6 0  K 
words.  

5.17. I f  all jobs  wait ,  bo th  processors are idle; the  probabi l i ty  o f  this is pn.  And,  if  all 
jobs  excep t  one  wait ,  one  processor  is idle; the  probabi l i ty  o f  this is n pn-1 (1 - 
p) .  So the  ut i l izat ion of  each processor  is 

rl = 1 - (pn + n p n - X ( 1  - p) /2 )  

F o r n  = 2 a n d p  = 0.8, we f i n d r / =  0.2. 

CHAPTER 6 

6.2. The  tr ick is to look  upon  F(x)  as a mix ture  o f  two  exponent ia l  d is t r ibut ions  

F(x)  = a ( 1 -  e -b x)  + (1 - a)(1 - e -c x) 

f rom which jobs  are chosen wi th  probabil i t ies  a and 1 - a. This leads to  the  
fol lowing s ta tement :  

vat x: real; 
if random < a then  x:  = - ln(random)/b 

else x:  = - In(random)/c; 

6.4. The  relat ions be tween  the  s teady state probabil i t ies  are: 

P0 = P 0 ( 1  - kdt)  +pl tJdt  

pj = p j _ l ~ d t + p j ( 1 -  (k+l~)d t )+pj+l lJd t  ( 0 <  j < n) 

Pn = Pn- l  kd t  + Pn(1 - / a d o  

The middle  equa t ion  shows t h a t ,  during a t ime interval dr, the state j can be  
entered  ei ther:  (1) f rom the  state j - 1, af ter  an arrival; (2) f rom the state j ,  if  no  
arrival or  depar ture  occurs;  or  (3) f rom the state j + 1, af ter  a depar ture .  By solving 
these equat ions ,  we  find 

PjfPJPo (0 ~< j ~< n) 

and, since the sum of the probabilities is one, we have 



328 ANSWERS 

1 - P  
P0 1 -  pn+l 

From this, the result for Pn follows immediately.  

6.5. For  p = 0.93 and n ffi 28, we have Pn = 0.01. The store capacity needed is 28 * 15 
= 420 K words. 

6.6. The input  rate to the buffer  is Pl  when it  is not  full so the average input  rate is 

U i ( 1 -  Pn) 

In a steady state, this is equal to the average output  rate. 
Without a buffer, the service rate is 

1 /~1 
1 1 • l . + p  

Pl P2 

So we find 

R f f i ( l + p ) ( 1 - P n )  for p ¢ - I  

The result for p = 1 follows by using L'Hospital ' s  rule. 

1 1 
6.7. Let  ~,'~ and ~ denote  the means of  execution and printing times, respectively. 

The maximum throughput  is Pl (for an infinite buffer). If  the buffer capacity is n 
- 1, the throughput  is p~ (1 - Pn ). For  p = 0.5 and n ffi 4, we find Pn ffi 0.03 and R 
ffi 1.45. 

6.8. n users must  wait  for the execution of  job 1; n - 1 users must wait  for the 
execution of  job 2; and so on. Therefore, the average response t ime is 

6 . 9 .  

6.11. 

( n * t l + ( n -  1 ) * t 2 +  . . .  + tn) /n  

If  we make any changes in this schedule, for example by  exchanging jobs  j and k 
(where j  < k), the average response t ime is increased by  the amount  

(k - i) * (tk - t j ) /n 1> 0 

In other  words, the average response t ime can only increase if the shortest  j ob  
nex t  algorithm is not  used. 

One method described by Conway, Maxwell, and Miller (1967) is to  generate 
actual processing times t (for example,  as proposed in Exercise 6.2) and mult iply 
them by a scaled random number to obtain est imated processing times that  are 
uniformly distr ibuted between (1 - p ) t  and (1 + p ) t  where p is the maximum 
error of  estimates. 

First,  the scheduler computes  the response ratios at  t ime t + r l  + r2 + r3, when all 
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6.13. 

0 

0 

t 1 t 2 t 3 t 

I I I I 
r 2 r 1 r 3 

Fig. A6.11. 

T i m e  

three jobs will have been finished (see Fig. A6.11). At  that  t ime, job 3 will have 
the smallest response ratio of the three; so the scheduler decides to execute this 
job last and proceeds to examine jobs 1 and 2 at t ime t + r l  + r2, when they will 
both  be finished. Here the response ratio of  job  1 is the smaller, and 
consequently,  job 2 is selected for service at t ime t. This algorithm is repeated 
each time a job  is completed to take new arrivals into account. Note  that  this 
algorithm is not  quite the same as h i g h e s t  r e s p o n s e  ra t io  n e x t :  The lat ter  would 
schedule job 1 at time t. Intuitively, it  is clear that  the present algorithm at tempts  
to minimize the maximum response ratio by consistently postponing those jobs 
that  will suffer the least increase of  their response ratios. 

Consider the queue at time t immediately after a departure and ignore further 
arrivals. The waiting jobs are numbered 1 to n in the order in which they will be 
scheduled: 

job: 1 2 . . .  i . . .  n 
arrival time: t l  t2 .... . .  ti  . . .  tn  

service time: r l  r2 . . .  ri • . .  rn 

Among these we assume that  job i will reach the highest response ratio before its 
departure. When the jobs I to i have been executed, t ime becomes 

T i f f i t + r l  + r  2 + . . . + r  i 

and job  i has the response ratio 

R i ( T i )  = ( T  i - t i ) / r  ~ 

The reason for executing job i last in the sequence i to i is that  its response ratio 
will be the lowest one among these jobs at time Ti:  

R i ( T i )  ffi ra in[R1  (T i ) ,  R 2 ( T i )  . . . . .  R i ( T i )  ] 

Consider now the consequences of scheduling the same n jobs in any other  
sequence: 
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job: a b . . .  j . . .  z 
arrival time: ta tb • • • tj  . . . tz 

service time: r a r b . . .  rj . . . r z 

In the new sequence, we select the smallest subsequence of  jobs, a to j, that 
contains all the jobs, 1 to i, of  the original subsequence. (This implies that j o b j  is 
itself one of  the jobs 1 to i.) When the jobs a t o j  have been served, time becomes 

T j = t + r a  + r b  + . . .  + r j  

and job ] reaches the response ratio 

R~( tO)  = ( T~ - t j ) lr~ 

Since the jobs 1 to i are a subset of  the jobs a to ], the sum of  their service times 
Ts - t must be less than or equal to the sum of service times Tj - t. And since 
response ratios increase with time, Ti  ~ T j  implies 

Rj(T~) i> Rj(T~) 

It  is also known that job j is one o£ the jobs 1 to / ,  of  which job i has the smallest 
response ratio at time Ti.  The above inequality can therefore be extended as 
follows: 

R j ( T j )  /> R j ( T i )  ~ R i ( T i )  

In other words, when the scheduling algorithm is changed, there will always be a 
job j that reaches a response ratio R j ( T j ) ,  which is greater than or equal to the 
highest response ratio R~(Ti)  obtained with the original algorithm. 
Notice that this proof is valid in general for priorities which are non-decreasing 
functions of  time. For example, in a f i r s t - come ,  f i r s t - served  system, priorities 
increase linearly with waiting time at the same rate for all jobs. Therefore, the 
present proof shows that the f i r s t - come ,  f i r s t - served  algorithm minimizes the 
maximum waiting time for a given batch of  jobs. 

When a customer arrives with a request for service of  a certain length, the 
scheduler computes the sequence in which jobs would be executed if the request 
were accepted. If  this simulation shows a response ratio exceeding the given limit, 
the request is rejected; otherwise, it is accepted. 

When a very short job is requested, there is a high probability that its response 
ratio will exceed the given limit while the job in service is being completed. You 
can easily see this if you consider average response ratios: If  the very short job 
requires a service time t, then its average response ratio will be W o / t  after the 
completion of  the job in service. Thiswill exceed a limit R if t < W o / R .  For p ffi 
0.93, d ffi 2.75, and R ffi 10 we find ~t  < 0.26. According to Fig. 6.3, this means 
that about 30 per cent of all jobs will be denied service. A reasonable cure would 
be to require that either the response time be less than a certain limit (say 5 min) 
or the response ratio be less than another limit (say 10). 
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6.16. When a foreground job arrives, a job from either queue may be in service; its 
expected completion time is W0. Apart from that, a foreground job can only be 
delayed by other foreground jobs already present. So the equation for W1 follows 
directly from equation (6.22) by replacing p with Pt. 
From the conservation law (6.19), we find: 

oo p w o  
W1 f t kx dF(x) + W2 .f. ~,x dF(x) = 

1 o P 

o r  

pWo 
PtW1 + (p -  pt)W2 = 1 -  p 

From this result, the equation for W2 follows directly by substitution of the 
equation for W1. 

6.17. (a) From Exercise 6.16, we have 

W° ~ Wm~ 
1-Pt 

By using Pt = P G(t), we find 

(  0)1 
G(t) ~. 1 -  Wm,~ P 

Furthermore, we have 

pd 
Wo = 

U 

Using these results for p ~ 1, we find the given relation. 
(b) We require G(t) ~ 0.45. According to Fig. 6.4, this is satisfied for/~t ffi 2.5 or t 
= 2.5 rain. Furthermore, W1 = 4.4 rain and W2 = 63 rain. 

6.18. Let N denote the total number of-jobs present (waiting or in service) when the 
given job arrives and let U denote their mean completion time. Since the service 
times are exponential, the mean completion time per job remains l ip  independent 
of the scheduling algorithm used. This combined with equation (6.18) gives 

U=.. ~ 1 P 
p p l - p  

Or 

N = P 
1 - p  
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And, since all jobs share the processor equally, we have for the newly arrived job 

R t  = ( N  + 1) t 

which can be reduced to the given result. 

6.19. The total number of jobs N waiting or in service when the given job arrives is 
given by 

P 
N = -  

1 - p  

independent of the scheduling algorithm (see Exercise 6.18). From this we derive 
the mean overall response time R by using Little's law (6.15): 

1 
N 

R = ' ~ = i _  p 

Now let W and S t denote the mean times spent waiting and in service by a job of 
service time t. Since priorities are initially based only on elapsed waiting time, W 
is clearly independent of the service time t. Evidently, we have 

R t = W + S t 

Since service is based on processor  sharing, we have from Exercise 6.18: 

,= k_~_ 
St= 1-p' where p P 

By taking the averages of R t  and St ,  we find 

R = W + S  

o r  

W = I _  1 
/.L 1 - p  1 

And from the priority diagram, we find the relation 

6.20. 

1 

which defines k' (and thereby p'). 

Let Tl denote the delay of a newly arrived job with service time t caused by 
earlier arrivals (waiting or in service). The mean time required for the job in 
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service to either complete or reach a service time t is Wto (see Section 6.1.4). In a 
steady state, the mean number of earlier arrivals waiting which have been served 
less than t is kTI, and the mean time required to serve them for a maximum 
period t is 

t 
fo k T l x  dF(x)  = PtTi 

So we have 

T1 = Wo t + pt T1 

or 

wo 
Ti = l _ p t  

Now, let T2 denote the delay caused by later arrivals. During the mean response 
time R t of the given job, the mean number of arrivals is kRt, and the mean time 
required to serve them for a maximum period t is 

t 
T2 = fo k R t x  dF(x)  : P tR t  

By'setting 

R t f  Tl + T2 + t 

the given result follows. 

6.21. A long-running job must wait for the completion of all earlier arrivals. So we have 

Wo 1 p 
T1 

1 - p  p l - p  

The delays caused by later arrivals is 

T2 = PT Rt  

And,  since 

Rt  ffiT1 + T 2 + t  

we find 

1 P t R t ffi ~ + - -  

p (1 -  p ) (1 -  pT ) 1 -  PT t > T  
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Only as long as there are comparatively few users in the system. When the 
quantum is decreased to satisfy more users rapidly two things happen: (1) 
processor utilization decreases; and (2) at a certain point, the quantum becomes 
too small to satisfy most trivial requests. Users will then experience a sudden 
increase of response times because their requests must pass through the 
round-robin queue several times. 

The 20 per cent savings went to idle time caused by slow peripherals (Schwartz, 
1967). The solution used was to increase the number of background jobs (in 
queue 3) by adding 350,000 words of drum storage to the installation. 

The batch/time-sharing system for the SDS Sigma 5 and 7 computers uses a 
particularly simple algorithm (Shemer, 1969): The system always keeps a 
background job in the internal store ready to run. While foreground jobs are being 
swapped, the processor serves the background job. When a swap has been 
completed, the corresponding foreground user is given one quantum (provided 
the background job has already used its quantum). 



VOCABULARY 

The following is a glossary of  the most  basic terms used in the text.  The 
entries are arranged according to the logic of  the subject, with an alphabetic 
index at the end. New terms are printed in bold face type.  References to  
previously defined terms are printed in italics. My main purpose is to be 
consistent in the use of  terminology within the framework of  this book.  I 
am not  seeking general acceptance of  the present vocabulary and have made 
no a t tempt  to list alternative terms for the concepts or distinguish between 
preferred and deprecated terms. 

COMPUTERS AND OPERATING SYSTEMS 

Data. Physical phenomena chosen by convention to represent certain 
aspects of  our conceptual and real world. The meanings we assign to 
data are called their Information. Data are used to transmit information 
between human beings, to store information for future use, and to  
derive new information by  manipulating the data according to  formal 
rules. 

Operation. A rule for deriving a finite set of  data, called the Output ,  f rom 
another  finite set of  data, called the Input.  Once initiated, an operation 
is completed within a finite time. An operation always delivers the same 
ou tpu t  when it is applied to a given input, regardless of  the time 
required to carry it out. 

Computat ion.  A finite set of  operations applied to a finite set o f  data in 
an a t tempt  to solve a problem. If a computat ion solves the given 
problem, it is also called an Algorithm; but  a computat ion can be 
meaningless. 

Process. A computation in which the operations are carried ou t  strictly 
one at a time. 

Program. A description of  a computation in a formal language called a 
Programming Language. 

Computer.  A physical system capable of carrying out  computations by 
interpreting programs. A computer  consists of  a Store, a physical 
componen t  in which data and programs can be retained for future use, 
and one or more Processors, physical components  which can carry out  
processes defined by stored programs. 

335 
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Virtual Machine. A computer  simulated partly by program. 
Operating System. A set of  manual and automatic  procedures that  enable 

a group of  people to share a computer  efficiently. An operating system 
receives requests from users and determines the order in which their 
computat ions  are carried out.  It provides users with long-term storage 
of  programs and data, and protects them against unauthorized usage. 
Finally, it performs accounting of  the cost of  computat ion and assists 
management in measuring performance. 

Non-interactive System. An operating system that  does no t  permit 
computat ions  to interact with the environment of  a computer.  

Interactive System. An operating system that  permits computat ions  to 
interact with the environment of  a computer.  

CONCURRENT PROCESSES 

Concurrent  Processes. Processes that  overlap in time. Concurrent processes 
are called Disjoint if each of  them only refers to Private Data; theyare  
called Interacting if they refer to Common Data. 

Multiprogramrning. Programming techniques used to control  concurrent 
processes. 

Synchronization. A general term for any constraint on the order in 
which operations are carried out.  A synchronizing rule can, for 
example,  specify the  precedence, priority, or mutual  exclusion in time 
of  operations. 

Critical Regions. A set of  operations on a c o m m o n  data structure which 
exclude one another in time. 

Semaphore. A c o m m o n  data structure used to exchange timing signals 
between concurrent processes. 

Message Buffer. A c o m m o n  data structure used to exchange data between 
concurrent processes. 

Monitor. A c o m m o n  data structure and a set of  meaningful operations on 
it that  exclude one another in time and control  the synchronization of  
concurrent processes. 

Running. The state of  a process that  is being executed by  a processor. 
Waiting. The state of  a process that  is suspended temporari ly until a 

synchronizing condition, called an Event, holds. 
Deadlock. A situation in which two or more processes are waiting 

indefinitely for events that  will never occur. 

SCHEDULING 

Job.  A general term for a computat ion requested by  a user. 
Resource. A general term for any object  (processor, store, program, data, 

and so on) shared by  computat ions.  
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Scheduling Algorithm. An algorithm that  determines the order in which 
competing jobs are allowed to use resources. 

Arrival Rate. The average number  of jobs requested per time unit. 
Service Rate.  The average number of  jobs completed per time unit  when 

the system is being used. 
Utilization Factor.  The ratio of  the arrival rate to the service rate. In the 

steady state, the utilization factor represents the average fraction of  
time that the system is being used. 

Service Time. The amount  of  time required to execute a job. 
Waiting Time. The amount  of  time during which a job waits to be 

executed. 
Response Time. The time interval between the request for execution of  a 

job and the return of  its results to a user. The response time is the sum 
of  the waiting time and the service time. 

Response Ratio. The ratio of  the response time to the service time of  a 
job.  The response ratio represents the degradation in execution speed 
experienced by  a given job  as a result of  the presence of  other jobs and 
the scheduling algorithm used. 

Equitable Sharing. A form of scheduling under which the response ratio is 
proport ional  to the number  of jobs present in the system. 

Non-preemptive Scheduling. A form of scheduling in which jobs can use 
resources exclusively until they release them again. 

Preemptive Scheduling. A form of scheduling in which jobs can be 
interrupted and their resources transferred to more urgent jobs. An 
interrupted job  can be either Terminated completely or Resumed later. 

Multiplexing. The sharing of  a single resource among several jobs--one at a 
t ime--by frequent  preemption and resumption. 

Priority. A number  used to establish an order of  precedence among jobs 
competing for resources. Priorities can be either fixed or dynamic. 

Queue. A set of  jobs waiting for a given type  of  resource and ordered 
according to priorities. 

Time Slice. An interval of  time during which a job can use a resource 
without  being preempted. 

Round Robin. Cyclical multiplexing of a resource among jobs with fixed 
time slices. 

PROCESSOR AND STORE MANAGEMENT 

Short-term Scheduling. That part of  a scheduling algorithm that  assigns 
processors and storage to  processes as soon as they become available to  
maintain efficient utilization of  a computer. This level of  programming 
also implements synchronizing operations, which enable processes to 
interact. 

Medium-term Scheduling. That part  of  a scheduling algorithm that  



338 VOCABULARY 

initiates and terminates processes in accordance with the policy of  
computer  management towards users. This level o f  programming 
establishes the identi ty and authori ty  of  users; inputs and analyzes their 
requests; initiates and terminates jobs; performs accounting of  resource 
usage; and maintains system integrity in spite of  hardware malfunction. 

Interrupt.  A timing signal that  causes a processor to  suspend the execut ion 
of  its current process and start another process. 

Store Location.  A store component  that  can represent any one o f  a finite 
set of  data values. 

Store Capacity. The number  of  locations in a store. 
Access Time. The average t ime required to record or obtain the value of  a 

store location. For stores with moving physical media (magnetic tapes, 
drums, and disks), the access time consists of  a Waiting Time, required 
to position the media, and a Transfer time, required to transfer data to 
or f rom the store. 

Internal Store. A store with a moderate  capacity and fast access used to  
hold data and programs during execution.  

Backing Store. A store with a large capacity and slow access used to  hold 
data and programs until they are needed in an internal store. 

Address. A number  used to identify a store location. A Real Address is 
unique within the entire store; a Virtual Address is only unique within a 
part  of  the store. The conversion of  a virtual address into a real address 
is called Address Mapping. 

Store Allocation. The assignment of  store locations to data and programs 
prior to their use. Store allocation can be done: (1) at compile time 
(Fixed Allocation); (2) prior to execution (Dynamic Allocation); or (3) 
during execution (Dynamic Relocation).  

Segment. A set of  data that  can be placed anywhere in a store and 
addressed relative to a common origin. The origin and number  of  
locations of  a segment are called its Base Address and its Length, 
respectively. 

Placement Algorithm. An algorithm that  determines where in an internal 
store segments should be placed prior to their use. 

Contiguous Segmentation. A form of  placement in which each segment is 
placed in store locations with contiguous real addresses. 

Paged Segmentation.  A form of  placement in which the store is divided 
into units of  equal length, called Page Frames, while segments are 
divided into units of  the same length, called Pages. During execution,  a 
page can be placed in any available page frame. 

Compacting. A form of dynamic relocation in which contiguous segments 
are moved to one end of  the store to combine all unused storage at the 
other  end. 

Store Fragmentation.  Unused storage wasted between contiguous seg- 
ments (External Fragmentation) or within paged segments (Internal 
Fragmentation).  
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Demand Fetching. A form of  store multiplexing in which segments are 
kept  on a backing store and only placed in an internal store when 
computations refer to them. 

Locality. The tendency of  processes to refer heavily to a subset  o f  their 
segments over a period of  time. 

Working Set. The minimum amount  of  internal storage needed by  a 
process to utilize a processor efficiently. 

Thrashing. A state in a demand fetching system in which processors 
spend most  of  their time waiting for segments to be transferred from 
the backing store to the internal store. 

Load Control. A method that  prevents thrashing by measuring the 
utilization of  processors and backing storage, and (if necessary) 
preempting processes to reduce the computat ional  load. 

Replacement Algorithm. An algorithm used in a demand fetching system 
to  determine which segment (or which part  of  it) to remove when 
another segment must be placed in a full internal store. 

Transfer Algorithm. An algorithm used in a demand fetching system to 
determine the order in which segments demanded by concurrent 
processes are transferred from a backing store to an internal store. 

Swapping. A form of  store multiplexing in which jobs axe kept  on a 
backing store and periodically transferred entirely to an internal store 
to  be executed for a fixed time slice. 

Resource Protection. The use of  automatic procedures to ensure that  
resources are accessed by  well-defined operations within computations 
authorized to use these resources. 
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