
Shelve in
Networking/Security

User level:
Intermediate–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Building the Infrastructure
for Cloud Security
For cloud users and providers alike, security is an everyday concern, yet
there are very few books covering cloud security as a main subject. This
book will help address this information gap from an Information Technology
solution and usage-centric view of cloud infrastructure security. The book
highlights the fundamental technology components necessary to build
and enable trusted clouds. Here also is an explanation of the security and
compliance challenges organizations face as they migrate mission-critical
applications to the cloud, and how trusted clouds, that have their integrity
rooted in hardware, can address these challenges.

This book provides:

• Use cases and solution reference architectures to enable infrastructure
integrity and the creation of trusted pools leveraging Intel Trusted
Execution Technology (TXT).

• Trusted geo-location management in the cloud, enabling workload and
data location compliance and boundary control usages in the cloud.

• OpenStack-based reference architecture of tenant-controlled virtual
machine and workload protection in the cloud.

• A reference design to enable secure hybrid clouds for a cloud bursting
use case, providing infrastructure visibility and control to organizations.

“A valuable guide to the next generation of cloud security and
hardware based root of trust. More than an explanation of the
what and how, is the explanation of why. And why you can’t
afford to ignore it!”
—Vince Lubsey, Vice President, Product Development, Virtustream Inc.

Yeluri
Castro-Leon

9 781430 261452

53999
ISBN 978-1-4302-6145-2

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors �� xv

About the Technical Reviewers ��� xvii

Acknowledgments �� xix

Foreword �� xxi

Introduction �� xxiii

Chapter 1: Cloud Computing Basics ■ ��� 1

 Chapter 2: The Trusted Cloud: Addressing Security ■
and Compliance �� 19

 Chapter 3: Platform Boot Integrity: Foundation for Trusted ■
Compute Pools �� 37

Chapter 4: Attestation: Proving Trustability ■ ��������������������������������� 65

 Chapter 5: Boundary Control in the Cloud: Geo-Tagging ■
and Asset Tagging �� 93

Chapter 6: Network Security in the Cloud ■ ���������������������������������� 123

Chapter 7: Identity Management and Control for Clouds ■ ����������� 141

 Chapter 8: Trusted Virtual Machines: Ensuring the Integrity ■
of Virtual Machines in the Cloud �� 161

Chapter 9: A Reference Design for Secure Cloud Bursting ■ �������� 179

Index �� 211

xxiii

Introduction

Security is an ever-present consideration for applications and data in the cloud. It is a
concern for executives trying to come up with criteria for migrating an application, for
marketing organizations in trying to position the company in a good light as enlightened
technology adopters, for application architects attempting to build a safe foundation and
operations staff making sure bad guys don’t have a field day. It does not matter whether an
application is a candidate for migration to the cloud or it already runs using cloud-based
components. It does not even matter that an application has managed to run for years in
the cloud without a major breach: an unblemished record does not entitle an organization
to claim to be home free in matters of security; its executives are acutely aware that resting
on their laurels regardless of an unblemished record is an invitation to disaster; and
certainly past performance is no predictor for future gains.

Irrespective of whom you ask, security is arguably the biggest inhibitor for the
broader adoption of cloud computing. Many organizations will need to apply best
practices security standards that set a much higher bar than that for on-premise systems,
in order to dislodge that incumbent on-premise alternative. The migration or adoption of
cloud services then can provide an advantage, in that firms can design, from the ground
up, their new cloud-based infrastructures with security “baked-in;” this is in contrast to
the piecemeal and “after the fact” or “bolted-on” nature of security seen in most data
centers today. But even a baked-in approach has its nuances, as we shall see in Chapter 1.
Cloud service providers are hard at work building a secure infrastructure as the foundation
for enabling multi-tenancy and providing the instrumentation, visibility, and control that
organizations demand. They are beginning to treat security as an integration concern to be
addressed as a service like performance, power consumption, and uptime. This provides
a flexibility and granularity wherein solution architects design in as much security as
their particular situation demands: security for a financial services industry (FSI) or an
enterprise resource planning (ERP) application will be different from security for a bunch
of product brochures, yet they both may use storage services from the same provider,
which demands a high level of integrity, confidentiality, and protection.

Some practices—for instance, using resources in internal private clouds as opposed
to public, third-party hosted clouds—while conferring some tactical advantages do
not address fundamental security issues, such as perimeter walls made of virtual Swiss
cheese where data can pass through anytime. We would like to propose a different
approach: to anchor a security infrastructure in the silicon that runs the volume servers in
almost every data center. However, end users running mobile applications don’t see the
servers. What we’ll do is define a logical chain of trust rooted in hardware, in a manner
not unlike a geometry system built out of a small set of axioms. We use the hardware
to ensure the integrity of the firmware: BIOS code running in the chipset and firmware

■ IntroduCtIon

xxiv

taking care of the server’s housekeeping functions. This provides a solid platform on
which to run software: the hypervisor environment and operating systems. Each software
component is “measured” initially and verified against a “known good” with the root
of trust anchored in the hardware trust chain, thereby providing a trusted platform to
launch applications.

We assume that readers are already familiar with cloud technology and are
interested in a deeper exploration of security aspects. We’ll cover some cloud technology
principles, primarily with the purpose of establishing a vocabulary from which to build a
discussion of security topics (offered here with no tutorial intent). Our goal is to discuss
the principles of cloud security, the challenges companies face as they move into the
cloud, and the infrastructure requirements to address security requirements. The content
is intended for a technical audience and provides architectural, design, and code samples
as needed to show how to provision and deploy trusted clouds. While documentation
for low-level technology components such as trusted platform modules and the
basics of secure boot is not difficult to find from vendor specifications, the contextual
perspective—a usage-centric approach describing how the different components are
integrated into trusted virtualized platforms—has been missing from the literature. This
book is a first attempt at filling this gap through actual proof of concept implementations
and a few initial commercial implementations. The implementation of secure platforms is
an emerging and fast evolving issue. This is not a definitive treatment by a long measure,
and trying to compile one at this early juncture would be unrealistic. Timeliness is a
more pressing consideration, and the authors hope that this material will stimulate the
curiosity of the reader and encourage the community to replicate the results, leading to
new deployments and, in the process, advancing the state of the art.

There are three key trends impacting security in the enterprise and cloud
data centers:

The evolution of IT architectures•	 . This is pertinent especially with
the adoption of virtualization and now cloud computing.
Multi-tenancy and consolidation are driving significant
operational efficiencies, enabling multiple lines of business
and tenants to share the infrastructure. This consolidation and
co-tenancy provide a new dimension and attack vector.
How do you ensure the same level of security and control
in an infrastructure that is not owned and operated by
you? Outsourcing, cross-business, and cross-supply chain
collaboration are breaking through the perimeter of traditional
security models. These new models are blurring the distinction
between data “inside” an organization and that which exists
“outside” of those boundaries. The data itself is the new perimeter.

■ IntroduCtIon

xxv

The sophistication of attacks•	 . No longer are attacks targeted at
software and no longer are the hackers intent on gaining bragging
rights. Attacks are sophisticated and targeted toward gaining
control of assets, and with staying hidden. These attacks have
progressively moved closer to the lower layers of the platform:
firmware, BIOS, and the hypervisor hosting the virtual machine
operating environment. Traditionally, controls in these lower
layers are few, allowing malware to hide. With multi-tenancy and
consolidation through virtualization, taking control of a platform
could provide significant leverage and a large attack surface.
How does an organization get out of this quandary and institute
controls to verify the integrity of the infrastructure on which their
mission-critical applications can run? How do they prove to their
auditors that the security controls and procedures in effect are
still enforced even when their information systems are hosted at a
cloud provider?

The growing legal and regulatory burden•	 . Compliance
requirements have increased significatly for IT practitioners and
line-of-business owners. The cost of securing data and the risks
of unsecured personally identifiable data, intellectual property,
or financial data, as well as the implications of noncompliance to
regulations, are very high. Additionally, the number of regulations
and mandates involved are putting additional burdens on IT
organizations.

Clearly, cloud security is a broad area with cross-cutting concerns that involve
technology, products, and solutions that span mobility, networks security, web security,
messaging security, protection of data or content and storage, identity management,
hypervisor and platform security, firewalls, and audit and compliance, among other
concerns. Looking at security from a tools and products perspective is an interesting
approach. However, an IT practitioner in an enterprise or a cloud service provider
iscompelled to look at usages and needs at the infrastructure level, and to provide a set
of cohesive solutions that address business security concerns and requirements. Equally
intriguing is to look at the usages that a private cloud or a public cloud have so as to
address the following needs:

For service providers to deliver enterprise-grade solutions. What •	
does this compliant cloud look like? What are its attributes and
behaviors?

For developers, service integrators, and operators to deliver •	
protected applications and workloads from and in the cloud.
Irrespective of the type of cloud service, how does a service
developer protect the static and the dynamic workload contents
and data?

For service components and users alike to granularly manage, •	
authenticate, and assign trust for both devices and users.

■ IntroduCtIon

xxvi

Intel has been hard at work with its partners and as fellow travelers in providing
comprehensive solution architectures and a cohesive set of products to not only address
these questions but also deploy e solutions in private clouds, public clouds at scale.
This book brings together the contributions of various Intel technologists, architects,
engineers, and marketing and solution development managers, as well as a few key
architects from our partners.

The book has roughly four parts:

Chapters 1 and 2 cover the context of cloud computing and the •	
idea of security, introducing the concept of trusted clouds. They
discuss the key usage models to enable and instantiate the trusted
infrastructure, which is a foundational for those trusted clouds.
Additionally, these chapters cover the use-models with solution
architectures and component exposition.

Chapters 3, 4, and 5 cover use-cases, solution architectures, and •	
technology components for enabling the trusted infrastructure,
with emphasis on trusted compute, the role of attestation, and
attestation solutions, as well as geo-fencing and boundary control
in the cloud.

Chapters 6 and 7 provide an interesting view of identity •	
management and control in the cloud, as well as network security
in the cloud.

Chapter 8 extends the notion of trust to the virtual machines •	
and workloads, with reference architecture and components
built on top of the trusted compute pools discussed in earlier
chapters. Then, Chapter 9 provides a comprehensive exposition
of secure cloud bursting reference architecture and a real-world
implementation that brings together all the concepts and usages
discussed in the preceeding chapters.

These chapters take us on a rewarding journey. Starting with a set of basic technology
ingredients rooted in hardware, namely the ability to carry out the secure launch of
programs; not just software programs, but also implemented in firmware in server
platforms: the BIOS and the system firmware. We have also added other platform sensors
and devices to the mix, such as TPMs, location sensors. Eventually it will be possible
integrate information from other security related telemetry in the platform: encryption
accelerators, secure random generators for keys, secure containers, compression
accelerators, and other related entities.

With a hardened platform defined it now becomes possible to extend the scope of
the initial set of security features to cloud environments. We extend the initial capability
for boot integrity and protection to the next goal of data protection during its complete
life cycle: data at rest, in motion and during execution. Our initial focus is on the server
platform side. In practical terms we use an approach similar to building a mathematical
system, starting with a small set of assertions or axioms and slowly extending the
scope of the assertions until the scope becomes useful for cloud deployments. On the
compute side we extend the notion of protected boot to hypervisors and operating

■ IntroduCtIon

xxvii

systems running on bare metal followed by the virtual machines running on top of the
hypervisors. Given the intense need in the industry secure platforms, we hope this need
will motivate application vendors and system integrators to extend this chain of trust all
the way to application points of consumption.

The next abstraction beyond trust established by secure boot is to measure the level
of trust for applications running in the platform. This leads to a discussion on attestation
and frameworks and processes to accomplish attestation. Beyond that there are a
number of practical functions needed in working deployments, including geo-location
monitoring and control (geo-fencing), extending trust to workloads, the protected launch
of workloads and ensuring run time integrity of workloads and data.

The cloud presents a much more dynamic environment than previous operating
environments, including consolidated virtualized environments. For instance, virtual
machines may get migrated for performance or business reasons, and within the
framework of secure launch, it is imperative to provide security for these virtual machines
and their data while they move and where they land. This leads to the notion of trusted
compute pools.

Security aspects for networks comes next. One aspect left to be developed is the
role of hardened network appliances taking advantage of secure launch to complement
present safe practices. Identity management is an ever present challenge due to the
distributed nature of the cloud, more so than its prior incarnation in grid computing
because distribution, multi-tenancy and dynamic behaviors are carried out well beyond
the practices of grid computing.

Along with the conceptual discussions we sprinkle in a number of case studies in
the form of proofs of concept and even a few deployments by forward thinking service
providers. For the architects integrating a broad range of technology components beyond
those associated with the secure launch foundation these projects provides invaluable
proofs of existence, an opportunity to identify technology and interface gaps and to
provide very precise feedback to standards organizations. This will help accelerate the
technology learning curve for the industry as a whole, enabling a rapid reduction in the
cost and time to deploy specific implementations.

The compute side is only one aspect of cloud. We’ll need to figure out how to extend
this protection to the network and storage capabilities in the cloud. The experience of
building a trust chain starting from a secure boot foundation helps: network and storage
appliances also run on the same components used to build servers. We believe that if
we follow the same rigorous approach used to build a compute trust chain, it should be
possible to harden network and storage devices to the same degree we attained with the
compute subsystem. From this perspective the long journey is beginning to look more
than like a trailblazing path.

Some readers will shrewdly note that the IT infrastructure in data centers
encompasses more than servers; it also includes networks and storage equipment. The
security constructs discussed in this book relate mostly to application stacks running
on server equipment, and they are still evolving. It must be noted that network and
storage equipment also runs on computing equipment, and therefore one strategy
for securing network and storage equipment will be precisely to build analogous trust
chains applicable to the equipment. These topics are beyond the scope of this book but
are certainly relevant to industry practitioners and therefore are excellent subjects for
subject-matter experts to document in future papers and books.

■ IntroduCtIon

xxviii

The authors acknowledge the enormous amount of work still to be done, but by
the same token, these are enormously exciting areas to explore, with the potential of
delivering equally enormous value to a beleaguered security industry—an industry that
has been rocked by a seemingly endless stream of ever-more sophisticated and brazen
exploits. We invite industry participants in any role, whether executive, architecture,
engineering, system integration, or development, to join us in broadening this path.
Actually, the path to innovation will never end—this is the essence of security. However,
along the way, industry participants will build a much more robust foundation to the
cloud, bringing some well-deserved assurances to customers.

1

Chapter 1

Cloud Computing Basics

In this chapter we go through some basic concepts with the purpose of providing context
for the discussions in the chapters that follow. Here, we review briefly the concept of the
cloud as defined by the U.S. National Institute of Standards and Technology, and the
familiar terms of IaaS, PaaS, and SaaS under the SPI model. What is not often discussed is
that the rise of cloud computing comes from strong historical motivations and addresses
shortcomings of predecessor technologies such as grid computing, the standard enterprise
three-tier architecture, or even the mainframe architecture of many decades ago.

From a security perspective, the main subjects for this book—perimeter and
endpoint protection—were pivotal concepts in security strategies prior to the rise of
cloud technology. Unfortunately these abstractions were inadequate to prevent recurrent
exploits, such as leaks of customer credit card data, even before cloud technology
became widespread in the industry. We’ll see in the next few pages that, unfortunately
for this approach, along with the agility, scalability, and cost advantages of the cloud,
the distributed nature of these third-party-provided services also introduced new risk
factors. Within this scenario we would like to propose a more integrated approach to
enterprise security, one that starts with server platforms in the data center and builds
to the hypervisor operating system and applications that fall under the notion of trusted
compute pools, covered in the chapters that follow.

Defining the Cloud
We will use the U.S. government’s National Institute of Standards and Technology (NIST)
cloud framework for purposes of our discussions in the following chapters. This provides
a convenient, broadly understood frame of reference, without our attempts to treat it
as a definitive definition or to exclude other perspectives. These definitions are stated
somewhat tersely in The NIST Definition of Cloud Computing1 and have been elaborated
by the Cloud Security Alliance.2

1Peter Mell and Timothy Grance, The NIST Definition of Cloud Computing. NIST Special Publication
800-145, September 2011.
2Security Guidance for Critical Areas of Focus in Cloud Computing, Cloud Security Alliance,
rev. 2.1 (2009).

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

2

The model consists of three main layers (see Figure 1-1), laid out in a top-down
fashion: global essential characteristics that apply to all clouds, the service models by
which cloud services are delivered, and how the services are instantiated in the form of
deployment models. There is a reason for this structure that’s rooted in the historical
evolution of computer and network architecture and in the application development and
deployment models. Unfortunately most discussions of the cloud gloss over this aspect.
We assume readers of this book are in a technology leadership role in their respective
fields, and very likely are influential in the future direction of cloud security. Therefore, an
understanding of the dynamics of technology evolution will be helpful for the readers in
these strategic roles. For this purpose, the section that follows covers the historical context
that led to the creation of the cloud.

Figure 1-1. NIST cloud computing definition

The Cloud’s Essential Characteristics
The main motivation behind the pervasive adoption of cloud use today is economic.
Cloud technology allows taking a very expensive asset, such as a $200 million data center,
and delivering its capabilities to individual users for a few dollars per month, or even
for free, in some business models. This feat is achieved through resource pooling, which
is essentially treating an asset like a server as a fungible resource; a resource-intensive
application might take a whole server, or even a cluster of servers, whereas the needs of
users with lighter demands can be packed as hundreds or even thousands to a server.

This dynamic range in the mapping of applications to servers has been achieved
through virtualization technology. Every intervening technology and the organizations
needed to run them represent overhead. However, the gains in efficiency are so large
that this inherent overhead is rarely in question. With applications running on bare-
metal operating systems, it is not unusual to see load factors in the single digits. Cloud
applications running on virtualized environments, however, typically run utilizations up
to 60 to 80 percent, increasing the application yield of a server by several-fold.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

3

Cloud applications are inherently distributed, and hence they are necessarily
delivered over a network. The largest applications may involve millions of users, and
the conveyance method is usually the Internet. An example is media delivery through
Netflix, using infrastructure from Amazon Web Services. Similarly, cloud applications are
expected to have automated interfaces for setup and administration. This usually means
they are accessible on demand through a self-service interface. This is usually the case, for
instance, with email accounts through Google Gmail or Microsoft Outlook.com.

With the self-service model, it is imperative to establish methods for measuring
service. This measuring includes guarantees of service provider performance,
measurement of services delivered for billing purposes, and very important from the
perspective of our discussion, measurement of security along multiple vectors. The
management information exchanged between a service provider and consumers is
defined as service metadata. This information may be facilitated by auxiliary services or
metaservices.

The service provider needs to maintain a service pool large enough to address
the needs of the largest customer during peak demand. The expectation is that, with
a large customer base, most local peaks and valleys will cancel out. In order to get the
same quality of service (QoS), an IT organization would need to size the equipment for
expected peak demand, leading to inefficient use of capital. Under some circumstances,
large providers can smooth out even regional peaks and valleys by coordinating their
geographically disperse data centers, a luxury that mid-size businesses might not be able
to afford.

The expectation for cloud users, then, is that compute, network, and data resources
in the cloud should be provided on short order. This property is known as elasticity. For
instance, virtual machines should be available on demand in seconds, or no more than
minutes, compared to the normal physical server procurement process that could take
anywhere from weeks to years.

At this point, we have covered the what question—namely, the essential
characteristics of the cloud. The next section covers service models, which is essentially
the how question.

The Cloud Service Models
The unit of delivery for cloud technology is a service. NIST defines three service models,
affectionately known as the SPI model, for SaaS, PaaS, and IaaS, or, respectively, software,
platform, and infrastructure services.

Under the SaaS service model, applications run at the service provider or delegate
services under the service network paradigm described below. Users access their
applications through a browser, thin client, or mobile device. Examples are Google Docs,
Gmail, and MySAP.

PaaS refers to cloud-based application development environments, compilers, and
tools. The cloud consumer does not see the hardware or network directly, but is able to
determine the application configuration and the hosting environment configuration.

IaaS usually refers to cloud-based compute, network, and storage resources. These
resources are generally understood to be virtualized. For simplicity, some providers may
require running pre-configured or highly paravirtualized operating system images. This is

http://Outlook.com

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

4

how a pool of physical hosts is able to support 500 or more virtual machines each. Some
providers may provide additional guarantees—for instance, physical hosts shared with no
one else or direct access to a physical host from a pool of hosts.

The bottom layer of the NIST framework addresses where cloud resources are
deployed, which is covered in the next section.

The Cloud Deployment Models
The phrase cloud deployment models refers to the environment or placement of cloud
services as deployed. The quintessential cloud is the multi-tenant public cloud, where
the infrastructure is pooled and made available to all customers. Cloud customers
don’t have a say in the selection of the physical host where their virtual machines land.
This environment is prone to the well-known noisy and nosy neighbor problems, with
multiple customers sharing a physical host.

The noisy neighbor problem might manifest when a customer’s demand on host
resources impacts the performance experienced by another customer running on the
same host; an application with a large memory footprint may cause the application from
another customer to start paging and to run slowly. An application generating intense I/O
traffic may starve another customer trying to use the same resource.

As for the nosy neighbor problem, the hypervisor enforces a high level of isolation
between tenants through the virtual machine abstraction—much higher, for instance,
than inter-process isolation within an operating system. However, there is no absolute
proof that the walls between virtual machines belonging to unrelated customers are
completely airtight. Service-level agreements for public clouds usually do not provide
assurances against tenants sharing a physical host. Without a process to qualify tenants,
a virtual machine running a sensitive financial application could end up sharing the
host with an application that has malicious intent. To minimize the possibility of such
breaches, customers with sensitive workloads will, as a matter of practice, decline to run
them in public cloud environments, choosing instead to run them in corporate-owned
infrastructure. These customers need to forfeit the benefits of the cloud, no matter how
attractive they may seem.

As a partial remedy for the nosy neighbor problem, an entity may operate a cloud for
exclusive use, whether deployed on premises or operated by a third party. These clouds
are said to be private clouds. A variant is a community cloud, operated not by one entity
but by more than one with shared affinities, whether corporate mission, security, policy,
or compliance considerations, or a mix thereof.

The community cloud is the closest to the model under which a predecessor
technology, grid computing, operated. A computing grid was operated by an affinity group.
This environment was geared toward high-performance computing usages, emphasizing
the allocation of multiple nodes—namely, computers or servers to run a job of limited
duration—rather than an application running for indefinite time that might use a
fractional server.

The broad adoption of the NIST definition for cloud computing allows cloud
service providers and consumers alike to establish an initial set of expectations about
management, security, and interoperability, as well as determine the value derived from
use of cloud technology. The next section covers these aspects in more detail.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

5

The Cloud Value Proposition
The NIST service and deployment models—namely public, private, and hybrid—get realized
through published APIs, whether open or proprietary. It is through these APIs that customers
can elicit capabilities related to management, security, and interoperability for cloud
computing. The APIs get developed through diverse industry efforts, including the Open
Cloud Computing Interface Working Group, Amazon EC2 API, VMware’s DMTF-submitted
vCloud API, Rackspace API, and GoGrid’s API, to name just a few. In particular, open,
standard APIs will play a key role in cloud portability, federation, and interoperability, as
will common container formats such as the DMTF’s Open Virtualization Format or OVF, as
specified by the Cloud Security Alliance in the citation above.

Future flexibility, security, and mobility of the resultant solution, as well as its
collaborative capabilities, are first-order considerations in the design of cloud-based
solutions. As a rule of thumb, de-perimeterized solutions have the potential to be more
effective than perimeterized solutions relying on the notion of an enterprise perimeter to
be protected, especially in cloud-based environments that have no clear notion of inside
or outside. The reasons are complex. Some are discussed in the section “New Enterprise
Security Boundaries,” later in this chapter. Careful consideration should also be given to
the choice between proprietary and open solutions, for similar reasons.

The NIST definition emphasizes the flexibility and convenience of the cloud,
enabling customers to take advantage of computing resources and applications that they
do not own for advancing their strategic objectives. It also emphasizes the supporting
technological infrastructure, considered an element of the IT supply chain managed to
respond to new capacity and technological service demands without the need to acquire
or expand in-house complex infrastructures.

Understanding the dependencies and relationships between the cloud computing
deployment and the service models is critical for assessing cloud security risks and
controls. With PaaS and SaaS built on top of IaaS, as described in the NIST model above,
inherited or imported capabilities introduce security issues and risks. In all cloud models,
the risk profile for data and security changes is an essential factor in deciding which
models are appropriate for an organization. The speed of adoption depends on how fast
security and trust in the new cloud models can be established.

Cloud resources can be created, moved, migrated, and multiplied in real time to
meet enterprise computing needs. A trusted cloud can be an application accessible
through the Web or a server provisioned as available when needed. It can involve a
specific set of users accessing it from a specific device on the Internet. The cloud model
delivers convenient, on-demand access to shared pools of hardware and infrastructure,
made possible by sophisticated automation, provisioning, and virtualization
technologies. This model decouples data and software from the servers, networks, and
storage systems. It makes for flexible, convenient, and cost-effective alternatives to
owning and operating an organization’s own servers, storage, networks, and software.

However, it also blurs many of the traditional, physical boundaries that help define
and protect an organization’s data assets. As cloud- and software-defined infrastructure
becomes the new standard, the security that depends on static elements like hardware,
fixed network perimeters, and physical location won’t be guaranteed. Enterprises seeking
the benefits of cloud-based infrastructure delivery need commensurate security and

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

6

compliance. Covering this topic is the objective for this book. The new perimeter is
defined in terms of data, its location, and the cloud resources processing it, given that the
old definition of on-premise assets no longer applies.

Let’s now explore some of the historical drivers of the adoption of cloud technology.

Historical Context
Is it possible to attain levels of service in terms of security, reliability, and performance
for cloud-based applications that rival implementations using corporate-owned
infrastructure? Today it is challenging not only to achieve this goal but also to measure
that success except in a very general sense. For example, consider doing a cost rollup at
the end of a fiscal year. There’s no capability today to establish operational metrics and
service introspection. A goal for security in the cloud, therefore, is not to just match this
baseline but to surpass it. In this book, we’d like to claim that is possible.

Cloud technology enables the disaggregation of compute, network, and storage
resources in a data center into pools of resources, as well as the partitioning and
re-aggregation of these resources according to the needs of consumers down the supply
chain. These capabilities are delivered through a network, as explained earlier in the
chapter. A virtualization layer may be used to smooth out the hardware heterogeneity and
enable configurable software-defined data centers that can deliver a service at a quality
level that is consistent with a pre-agreed SLA.

The vision for enterprise IT is to be able to run varied workloads on a software-defined
data center, with ability for developers, operators, or in fact, any responsible entity to use
self-service unified management tools and automation software. The software-defined
data center must be abstracted from, but still make best use of, physical infrastructure
capability, capacity, and level of resource consumption across multiple data centers and
geographies. For this vision to be realized, it is necessary that enterprise IT have products,
tools, and technologies to provision, monitor, remediate, and report on the service level
of the software-defined data center and the underlying physical infrastructure.

Traditional Three-Tier Architecture
The three-tier architecture shown in Figure 1-2 is well established in data centers
today for application deployment. It is highly scalable, whereby each of the tiers can be
expanded independently by adding more servers to remove choke points as needed, and
without resorting to a forklift upgrade.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

7

Figure 1-2. Three-tier application architecture

While the traditional three-tier architecture did fine in the scalability department, it
was not efficient in terms of cost and asset utilization, however. This was because of the
reality of procuring a physical asset. If new procurement needs to go through a budgetary
cycle, the planning horizon can be anywhere from six months to two years. Meanwhile,
capacity needs to be sized for the expected peak demand, plus a generous allowance
for demand growth over the system’s planning and lifecycle, which may or may not
be realized. This defensive practice leads to chronically low utilization rates, typically
in the 5 to 15 percent range. Managing infrastructure in this overprovisioned manner
represents a sunk investment, with a large portion of the capacity not used during most
of the infrastructure’s planned lifetime. The need for overprovisioning would be greatly
alleviated if supply could somehow be matched with demand in terms of near-real
time—perhaps on a daily or even an hourly basis.

Server consolidation was a technique adopted in data centers starting in the early
2000s, which addressed the low-utilization problem using virtualization technology to
pack applications into fewer physical hosts. While server consolidation was successful at
increasing utilization, it brought significant technical complexity and was a static scheme,
as resource allocation was done only at planning or deployment time. That is, server
consolidation technology offered limited flexibility in changing the machine allocations
during operations, after an application was launched. Altering the resource mix required
significant retooling and application downtime.

Software Evolution: From Stovepipes to Service Networks
The low cost of commodity servers made it easy to launch application instances.
However, little thought was given to how the different applications would interact with
one another. For instance, the information about the employee roster in an organization

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

8

is needed for applications as diverse as human resources, internal phone directory,
expense reporting, and so on. Having separate copies of these resources meant allocating
infrastructure to run these copies, and running an infrastructure was costly in terms of
extra software licensing fees. Having several copies of the same data also introduced the
problem of keeping data synchronized across the different copies.

Note ■ Cloud computing has multiplied the initial gains in efficiency delivered by server
consolidation by allowing dynamic rebalancing of workloads at run time, not just at planning
or deployment time.

The initial state of IT applications circa 2000 ran in stovepipes, shown in Figure 1-3
on the left, with each application running on assigned hardware. Under cloud computing,
capabilities common across multiple stacks, such as the company’s employee database,
are abstracted out in the form of a service or of a limited number of service instances that
would certainly be smaller than the number of application instances. All applications
needing access to the employee database, for instance, get connected to the employee
database service.

Figure 1-3. Transition from stovepipes to a service network ecosystem

Under these circumstances, duplicated stacks characterizing stovepiped applications
now morph into a graph, with each node representing a coalesced capability. The
capability is implemented as a reusable service. The abstract connectivity of the service
components making up an application can be represented as a network—a service
network. The stovepipes, thus, have morphed into service networks, as depicted on the
right side of Figure 1-3. We call these nodes servicelets; they are service components
designed primarily to be building blocks for cloud-based applications, but they are not
necessarily self-contained applications.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

9

Figure 1-4. Application service networks

With that said, we have an emerging service ecosystem with composite applications
that are freely using both internally and third-party servicelets. A strong driver for this
application architecture has been the consumerization of IT and the need to make
existing corporate applications available through mobile devices.

For instance, front-end services have gone through a notable evolution, whereby
the traditional PC web access has been augmented to enable application access
through mobile devices. A number of enterprises have opened applications for public
access, including travel reservation systems, supply chain, and shopping networks. The
capabilities are accessible to third-party developers through API managers that make it
relatively easy to build mobile front ends to cloud capabilities; this is shown in Figure 1-4.
A less elegant version of this scheme is the “lipstick on a pig” approach of retooling
a traditional three-tier application and slapping a REST API on top, to “servitize” the
application and make it accessible as a component for integration into other third-party
applications. As technology evolves, we can expect more elegantly architected servicelets
built from the ground up to function as such.

So, in Figure 1-4 we see a composite application with an internal API built out of
four on-premise services hosted in an on-premise private cloud, the boundary marked
by the large, rounded rectangle. The application uses four additional services offered by
third-party providers and possibly hosted in a public cloud. A fifth service, shown in the
lower right corner, uses a third-party private cloud, possibly shared with other corporate
applications from the same company.

Continuing on the upper left corner of Figure 1-4, note the laptop representing a
client front end for access by nomadic employees. The mobile device on the lower left
represents a mobile app developed by a third-party ISV accessing another application API
posted through an API manager. An example of such an application could be a company’s
e-commerce application. The mobile app users are the company’s customers, able to
check stock and place purchase orders. However, API calls for inventory restocking and
visibility into the supply chain are available only through the internal API. Quietly, behind
the scenes, the security mechanisms to be discussed in the following chapters are acting
to ensure the integrity of the transactions throughout.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

10

In this section we have covered the evolution of application architecture from
application stovepipes to the current service paradigm. IT processes have been evolving
along with the architecture. Process evolution is the subject of the next section.

The Cloud as the New Way of Doing IT
The cloud represents a milestone in technology maturity for the way IT services are
delivered. This has been a common pattern, with more sophisticated technologies taking
the place of earlier ones. The automobile industry is a fitting example. At the dawn of the
industry, the thinking was to replace horses with the internal combustion engine. There
was little realization then of the real changes to come, including a remaking the energy
supply chain based on petroleum and the profound ripple effects on our transportation
systems. Likewise, servicelets will become more than server replacements; they will
be key components for building new IT capabilities unlimited by underlying physical
resources.

Note ■ An important consideration is that the cloud needs to be seen beyond just a
drop-in replacement for the old stovepipes. This strategy of using new technology to
re-implement existing processes would probably work, but can deliver only incremental
benefits, if any at all. The cloud represents a fundamental change in how iT gets done and
delivered. Therefore, it also presents an opportunity for making a clean break with the
past, bringing with it the potential for a quantum jump in asset utilization and, as we hope
to show in this book, in greater security.

Here are some considerations:

•	 Application development time scales are compressing, yet the
scope of these applications keeps expanding, with new user
communities being brought in. IT organizations need to be ready
to use applications and servicelets from which to easily build
customized applications in a fraction of the time it takes today.
Unfortunately, the assets constituting these applications will
be owned by a slew of third parties: the provider may be a SaaS
provider using a deployment assembled by a systems integrator;
the systems integrator will use offerings from different software
vendors; IaaS providers will include network, computing, and
storage resources.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

11

•	 A high degree of operational transparency is required to build
a composite application out of servicelets—that is, in terms of
application quantitative monitoring and control capability.
A composite application built from servicelets must offer
end-to-end service assurance better than the same application
built from traditional, corporate-owned assets. The composite
application needs to be more reliable and secure than incumbent
alternatives if it’s to be accepted. Specific to security, operational
transparency means it can be used as a building block for
auditable IT processes, an essential security requirement.

•	 QoS constitutes an ever-present concern and a barrier; today’s
service offerings do not come even close to reaching this goal,
and that limits the migration of a sizable portion of corporate
applications to cloud. We can look at security as one of the most
important QoS issues for applications, on a par with performance.

On the last point, virtually all service offerings available today are not only opaque
when it comes to providing quantifiable QoS but, when it comes to QoS providers, they
also seem to run in the opposite direction of customer desires and interests. Typical
messsages, including those from large, well-known service providers, have such
unabashed clauses as the following:

“Your access to and use of the services may be suspended . . .
for any reason . . .”

“We will not be liable for direct, indirect or consequential
damages . . .”

“The service offerings are provided ‘as is’ . . . ”

“We shall not be responsible for any service interruptions . . . ”

These customer agreements are written from the perspective of the service provider.
The implicit message is that the customer comes as second priority, and the goal of
the disclaimers is to protect the provider from liability. Clearly, there are supply gaps
in capabilities and unmet customer needs with the current service offerings. Providers
addressing the issue head on, with an improved ability to quantify their security risks and
the capability of providing risk metrics for their service products, will have an advantage
over their competition, even if their products are no more reliable than comparable
offerings. We hope the trusted cloud methods discussed in the following chapters will
help providers deliver a higher level of assurance in differentiated service offerings. We’d
like to think that these disclaimers reflect service providers’ inability, considering the
current state of the art, to deliver the level of security and performance needed, rather
than any attempts to dodge the issue.

Given that most enterprise applications run on servers installed in data centers, the
first step is to take advantage of the sensors and features already available in the server
platforms. The next chapters will show how, through the use of Intel Trusted Execution
Technology (TXT) and geolocation sensors, it is possible to build more secure platforms.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

12

We believe that the adoption, deployment, and application of the emerging
technologies covered in this book will help the industry address current quandaries with
service-level agreements (SLAs) and enable new market entrants. Addressing security
represents a baby step toward cloud service assurance. There is significant work taking place
in other areas, including application performance and power management, which will
provide a trove of material for future books.

Security as a Service
What would be a practical approach to handling security in a composite application
environment? Should it be baked-in—namely, every service component handling its own
security—or should it be bolted on after integration? As explained above, we call these
service components servicelets, designed primarily to function as application building
blocks rather than as full-fledged, self-contained applications.

Unfortunately, neither approach constitutes a workable solution. A baked-in
approach requires the servicelet to anticipate every possible circumstance for every
customer during the product’s lifetime. This comprehensive approach may be overkill
for most applications. It certainly burdens with overwrought security features the service
developer trying to quickly bring a lightweight product to market. The developer may see
this effort as a distraction from the main business. Likewise, a bolted-on approach makes
it difficult both to retrofit security on the servicelet and to implement consistent security
policies across the enterprise.

One possible approach out of this maze is to look at security as a horizontal
capability, to be handled as another service. This approach assumes the notion of a
virtual enterprise service boundary.

New Enterprise Security Boundaries
The notion of a security perimeter for the enterprise is essential for setting up a first line
of defense. The perimeter defines the notion of what is inside and what is outside the
enterprise. Although insider attacks can’t be ruled out, let’s assume for the moment that
we’re dealing with a first line of defense to protect the “inside” from outsider attacks.
In the halcyon days, the inside coincided with a company’s physical assets. A common
approach was to lay out a firewall to protect unauthorized access between the trusted
inside and untrusted outside networks.

Ideally, a firewall can provide centralized control across distributed assets with
uniform and consistent policies. Unfortunately, these halcyon days actually never existed.
Here’s why:

A firewall only stands a chance of stopping threats that attempt to •	
cross the boundary.

Large companies, and even smaller companies after a merger •	
and acquisition, have or end up having a geographically disperse
IT infrastructure. This makes it difficult to set up single-network
entry points and it stretches the notion of what “inside” means.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

13

End User

Virtualized
Infrastructure

Existing Enterprise
Information Systems

Figure 1-5. Traditional security perimeter

The possibility of composite application with externalized •	
solution components literally turns the concept of “inside”
inside out. In an increasingly cloud-oriented world, composite
applications are becoming the rule more than the exception.

Mobile applications have become an integral part of corporate IT. •	
In the mobile world, certain corporate applications get exposed to
third-party consumers, so it’s not just matter of considering what
to do with external components supporting internal applications;
also, internal applications become external from the application-
consumer perspective.

The new enterprise security perimeter has different manifestations depending on the
type of cloud architecture in use—namely, whether private, hybrid, or public under the
NIST classification.

The private cloud model is generally the starting point for many enterprises, as they
try to reduce data center costs by using a virtualized pooled infrastructure. The physical
infrastructure is entirely on the company’s premises; the enterprise security perimeter is
the same as for the traditional, vertically owned infrastructure, as shown in Figure 1-5.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

14

Cloud Service Provider
(SaaS)End User

Virtualized
Infrastructure

Cloud Service Provider
(SaaS)

Cloud Service Provider
(PaaS)

Existing Enterprise
Information Systems

Figure 1-6. Security perimeter in the hybrid cloud

End User

Virtualized
Infrastructure

Cloud Service Provider
(SaaS)

Cloud Service Provider
(SaaS)

Cloud Service Provider
(PaaS)

Existing Enterprise
Information Systems

Figure 1-7. Generalized cloud security perimeter

The next step in sophistication is the hybrid cloud, shown in Figure 1-6. A hybrid
cloud constitutes the more common example of an enterprise using an external cloud
service in a targeted manner for a specific business need. This model is hybrid because the
core business services are left in the enterprise perimeter, and some set of cloud services
are selectively used for achieving specific business goals. There is additional complexity, in
that we have third-party servicelets physically outside the traditional enterprise perimeter.

The last stage of sophistication comes with the use of public clouds, shown in
Figure 1-7. Using public clouds brings greater rewards for the adoption of cloud
technology, but also greater risks. In its pure form, unlike the hybrid cloud scenario,
the initial on-premise business core may become vanishingly small. Only end users
remain in the original perimeter. All enterprise services may get offloaded to external
cloud providers on a strategic and permanent basis. Application components become
externalized, physically and logically.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

15

Yet another layer of complexity is the realization that the enterprise security
perimeter as demarcation for an IT fortress was never a realistic concept. For instance,
allowing employee access to the corporate network through VPN is tantamount to
extending a bubble of the internal network to the worker in the field. However, in
practical situations, that perimeter must be semipermeable, allowing a bidirectional flow
of information.

A case in point is a company’s website. An initial goal may have been to provide
customers with product support information. Beyond that, a CIO might be asked to
integrate the website into the company’s revenue model. Examples might include
supply-chain integration: airlines making their scheduling and reservation systems,
or hotel chains publishing available rooms, not only for direct consumption through
browsers but also as APIs for integration with other applications. Any of these extended
capabilities will have the effect of blurring the security boundaries by bringing in external
players and entities.

Note ■ An iT organization developing an application is not exclusively a servicelet
consumer but also is making the company become a servicelet provider in the pursuit of
incremental revenue. The enterprise security boundary becomes an entity enforcing the
rules for information flow in order to prevent a free-for-all, including corporate secrets flying
out the window.

If anything, the fundamental security concerns that existed with IT delivered out of
corporate-owned assets also apply when IT functions, processes, and capabilities migrate
to the cloud. The biggest challenge is to define, devise, and carry out these concepts
into the new cloud-federated environment in a way that is more or less transparent to
the community of users. An added challenge is that, because of the broader reach of the
cloud, the community of users expands by several orders of magnitude. A classic example
is the airline reservation system, such as the AMR Sabre passenger reservation system,
later spun out as an independent company. Initially it was the purview of corporate staff.
Travel agents in need of information or making reservations phoned to access the airline
information indirectly. Eventually travel agents were able to query and make reservations
directly. Under the self-service model of the cloud today, it is customary for consumers
to make reservations themselves through dozens of cloud-based composite applications
using web-enabled interfaces from personal computers and mobile devices.

Indeed, security imperatives have not changed in the brave new world of cloud
computing. Perimeter management was an early attempt at security management, and it
is still in use today. The cloud brings new challenges, though, such as the nosy neighbor
problem mentioned earlier. To get started in the cloud environments, the concept of
trust in a federated environment needs to be generalized. The old concept of inside vs.
outside the firewall has long been obsolete and provides little comfort. On the one hand,
the federated nature of the cloud brings the challenge of ensuring trust across logically
and geographically distributed components. On the other hand, we believe that the goal
for security in the cloud is to match current levels of security in the enterprise, preferably
by removing some of the outstanding challenges. For instance, the service abstraction

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

16

used internally provides additional opportunities for checks and balances in terms of
governance, risk management, and compliance (GRC) not possible in earlier monolithic
environments.

We see this transition as an opportunity to raise the bar, as is expected when any
new technology displaces the incumbent. Two internal solution components may
trust each other, and therefore their security relationships are said to be implicit. If
these components become servicelets, the implicit relationship becomes explicit:
authentication needs to happen and trust needs to be measured. If these actions can’t be
formalized, though, the provider does not deliver what the customer wants. The natural
response from the provider is to put liability-limiting clauses in place of an SLA. Yet there
is trouble when the state-of-the-art can’t provide what the customer wants. This inability
by service providers to deliver security assurances leads to the brazen disclaimers
mentioned above.

Significant progress has been achieved in service performance management. Making
these contractual relationships explicit in turn makes it possible to deliver predictable
cost and performance in ways that were not possible before. This dynamic introduces the
notion of service metadata, described in Chapter 10. We believe security is about to cross
the same threshold. As we’ve mentioned, this is the journey we are about to embark on
during the next few chapters.

The transition from a corporate-owned infrastructure to a cloud technology poses
a many-layered challenge: every new layer addressed then brings a fresh one to the fore.
Today we are well past the initial technology viability objections, and hence the challenge
du jour is security, with security cited as a main roadblock on the way to cloud adoption.

A Roadmap for Security in the Cloud
Now that we have covered the fundamentals of cloud technology and expressed some
lingering security issues, as well as the dynamics that led to the creation of the cloud, we
can start charting the emerging technology elements and see how they can be integrated
in a way that can enhance security outcomes. From a security perspective, there are
two necessary conditions for the cloud to be accepted as a mainstream medium for
application deployment. We covered the first: essentially embracing its federated nature
and using it to advantage. The second is having an infrastructure that directly supports
the security concerns inherent in the cloud, offering an infrastructure that can be trusted.
In Chapter 2, we go one level deeper, exploring the notion of “trusted cloud.” The trusted
cloud infrastructure is not just about specific features. It also encompasses processes
such as governance, assurance, compliance, and audits.

In Chapter 3, we introduce the notions of trusted infrastructure and trusted
distributed resources under the umbrella of trusted compute pools and enforcement of
security policies steming from a hardware-based root of trust. Chapter 4 deals with the
idea of attestation, an essential operational capability allowing the authentication of
computational resources.

In a federated environment, location may be transparent. In other cases, because
of the distributed nature of the infrastructure, location needs to be explicit: policies
prescribing where data sets and virtual machine can travel, as well as useful ex post facto
audit trails. The topic of geolocation and geotagging is covered in Chapter 5. Chapter 6
surveys security considerations for the network infrastructure that links cloud resources.

CHAPTER 1 ■ Cloud ComPuTing BAsiCs

17

Chapter 7 considers issues of identity management in the cloud. And Chapter 8 discusses
the idea of identity in a federated environment. The latter is not a new problem; federated
identity management was an important feature of the cloud’s predecessor technology,
grid computing. However, as we’ll show, considerations of federation for the cloud are
much different.

Summary
We started this chapter with a set of commonly understood concepts. We also observed
the evolution of security as IT made of corporate-owned assets to that of augmented with
externalized resources. The security model also evolved from an implicit, essentially
“security by obscurity” approach involving internal assets to one that is explicit across
assets crossing corporate boundaries. This federation brings new challenges, but it also
has the possibility of raising the bar in terms of security for corporate applications. This
new beginning can be built upon a foundation of trusted cloud infrastructure, which is
discussed in the rest of this book.

19

Chapter 2

The Trusted Cloud:
Addressing Security and
Compliance

In Chapter 1 we reviewed the essential cloud concepts and took a first look at cloud
security. We noted that the traditional notion of perimeter or endpoint protection
left much to be desired in the traditional architecture with enterprise-owned
assets. Such a notion is even less adequate today when we add the challenges
that application developers, service providers, application architects, data center
operators, and users face in the emerging cloud environment.

In this chapter we’ll bring the level of discourse one notch tighter and focus
on defining the issues that drive cloud security. We’ll go through a set of initial
considerations and common definitions as prescribed by industry standards. We’ll also
look at current pain points in the industry regarding security and the challenges involved
in addressing those pains.

Beyond these considerations, we first take a look at the solution space: the concept
of a trusted infrastructure and usages to be implemented in a trusted cloud, starting
with a trust chain that consists of hardware that supports boot integrity. Then, we take
advantage of that trust chain to implement data protection, equally at rest and in motion
and during application execution, to support application run-time integrity and offer
protection in the top layer.

Finally, we look briefly at some of the “to be” scenarios for users who are able to put
these recommendations into practice.

Security Considerations for the Cloud
One of the biggest barriers to broader adoption of cloud computing is security—the real
and perceived risks of providing, accessing, and controlling services in a multi-tenant
cloud environment. IT managers would like to see higher levels of assurance before they
can declare their cloud-based services and data ready for prime time, similar to the level
of trust they have in corporate-owned infrastructure. Organizations require their compute
platforms to be secure and compliant with relevant rules, regulations, and laws. These

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

20

requirements must be met, whether deployment uses a dedicated service available via a
private cloud or is a service shared with other subscribers via a public cloud. There’s no
margin for error when it comes to security. According to a research study conducted by
the Ponemon Institute and Symantec, the average cost to an organization of a data breach
in 2013 was $5.4 million, and the corresponding cost of lost business came to about
$3 million.1 It is the high cost of such data breaches and the inadequate security monitoring
capabilities offered as part of the cloud services that pose the greatest threats to wider
adoption of cloud computing and that create resistance within organizations to public
cloud services.

From an IT manager’s perspective, cloud computing architectures bypass or work
against traditional security tools and frameworks. The ease with which services are
migrated and deployed in a cloud environment brings significant benefits, but they
are a bane from a compliance and security perspective. Therefore, this chapter focuses
on the security challenges involved in deploying and managing services in a cloud
infrastructure. To serve as an example, we describe work that Intel is doing with partners
and the software vendor ecosystem to enable a security-enhanced platform and solutions
with security anchored and rooted in hardware and firmware. The goal of this effort is to
increase security visibility and control in the cloud.

Cloud computing describes the pooling of an on-demand, self-managed virtual
infrastructure, consumed as a service. This approach abstracts applications from the
complexity of the underlying infrastructure, allowing IT to focus on enabling greater
business value and innovation instead of getting bogged down by technology deployment
details. Organizations welcome the presumed cost savings and business flexibility
associated with cloud deployments. However, IT practitioners unanimously cite
security, control, and IT compliance as primary issues that slow the adoption of cloud
computing. These considerations often denote general concerns about privacy, trust,
change management, configuration management, access controls, auditing, and logging.
Many customers also have specific security requirements that mandate control over data
location, isolation, and integrity. These requirements have traditionally been met through
a fixed hardware infrastructure.

At the current state of cloud computing, the means to verify a service’s compliance
are labor-intensive, inconsistent, non-scalable, or just plain impractical to implement.
The necessary data, APIs, and tools are not available from the provider. Process
mismatches occur when service providers and consumers work under different
operating models. For these reasons, many corporations deploy less critical applications
in the public cloud and restrict their sensitive applications to dedicated hardware
and traditional IT architecture running in a corporate-owned vertical infrastructure.
For business-critical applications and processes, and for sensitive data, third-party
attestations of security controls usually aren’t enough. In such cases, it is absolutely
critical for organizations to be able to ascertain that the underlying cloud infrastructure is
secure enough for the intended use.

1https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-
Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf

https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

21

This requirement thus drives the next frontier of cloud security and compliance:
implementing a level of transparency at the lowest layers of the cloud, through the
development of standards, instrumentation, tools, and linkages to monitor and prove
that the IaaS cloud’s physical and virtual servers are actually performing as they should
be and that they meet defined security criteria. The expectation is that the security of a
cloud service should match or exceed the equivalent in house capabilities before it can be
considered an appropriate replacement.

Today, security mechanisms in the lower stack layers (for example, hardware,
firmware, and hypervisors) are almost absent. The demand for security is higher for
externally sourced services. In particular, the requirements for transparency are higher:
while certain monitoring and logging capabilities might not have been deemed necessary
for an in-house component, they become absolute necessities when sourced from
third parties to support operations, meet SLA compliance, and have audit trails should
litigation and forensics become necessary. On the positive side, the use of cloud services
will likely drive the re-architecturing of crusty applications with much higher levels of
transparency and scalability with, we hope, moderate cost impact due to the greater
efficiency the cloud brings.

Cloud providers and the IT community are working earnestly to address these
requirements, allowing cloud services to be deployed and managed with predictable
outcomes, with controls and policies in place to monitor trust and compliance of these
services in cloud infrastructures. Specifically, Intel Corporation and other technology
companies have come together to enable a highly secure cloud infrastructure based on
a hardware root of trust, providing tamper-proof measurements of physical and virtual
components in the computing stack, including hypervisors. These collaborations are
working to develop a framework that integrates the secure hardware measurements
provided by the hardware root of trust with adjoining virtualization and cloud
management software. The intent is to improve visibility, control, and compliance for
cloud services. For example, making the trust and integrity of the cloud servers visible
will allow cloud orchestrators to provide improved controls of on boarding services for
their more sensitive workloads, offering more secure hardware and subsequently better
control over the migration of workloads and greater ability to deliver on security policies.

Security requirements for cloud use are still works in progress, let alone firming
up the security aspects proper. Let’s look at some of the security issues being captured,
defined, and specified by the government and standards organizations.

Cloud Security, Trust, and Assurance
There is significant focus on and activity across various standards organizations and
forums to define the challenges facing cloud security, as well as solutions to those
challenges. The Cloud Security Alliance (CSA), NIST, and the Open Cloud Computing
Interface (OCCI) are examples of organizations promoting cloud security standards. The
Open Data Center Alliance (ODCA), an alliance of customers, recognizes that security
is the biggest challenge organizations face as they plan for migration to cloud services.
The ODCA is developing usage models that provide standardized definitions for security
in the cloud services and detailed procedures for service providers to demonstrate
compliance with those standards. These attempts seek to give organizations an ability to
validate adherence to security standards within the cloud services.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

22

Here are some important considerations dominating the current work on cloud
security:

•	 Visibility, compliance, and monitoring. Ways are needed to
provide seamless access to security controls, conditions, and
operating states within a cloud’s virtualization and hardware
layers for auditability and at the bottom-most infrastructure layers
of the cloud security providers. The measured evidence enables
organizations to comply with security policies and with regulated
data standards and controls such as FISMA and DPA (NIST 2005).

•	 Data discovery and protection. Cloud computing places data in
new and different places—not just user data but also application
and VM data (source). Key issues include data location and
segregation, data footprints, backup, and recovery.

•	 Architecture. Standardized infrastructure and applications
provide opportunities to exploit a single vulnerability many times
over. This is the BORE (Break Once, Run Everywhere) principle at
work. Considerations for the architecture include:

•	 Protection. Protecting against attacks with standardized
infrastructure when the same vulnerability can exist at many
places, owing to the standardization.

•	 Support for multi-tenant environments. Ensuring that
systems and applications from different tenants are isolated
from one another appropriately.

•	 Security policies. Making sure that security policies are
accurately and fully implemented across cloud architectures.

•	 Identity management. Identity management (IdM) is described
as “the management of individual identities, their authentication,
authorization, roles, and privileges/permissions within or across
system and enterprise boundaries, with the goal of increasing
security and productivity while decreasing cost, downtime, and
repetitive tasks.” From a cloud security perspective, questions like,
“How do you control passwords and access tokens in the cloud?”
and “How do you federate identity in the cloud?” are very real,
thorny questions for cloud providers and subscribers.

•	 Automation and policy orchestration. The efficiency, scale,
flexibility, and cost-effectiveness that cloud computing brings
are because of the automation—the ability to rapidly deploy
resources, and to scale up and scale down with processes,
applications, and services provisioned securely “on demand.”
A high degree of automation and policy evaluation and
orchestration are required so that security controls and
protections are handled correctly, with minimal errors and
minimal intervention needed.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

23

Trends Affecting Data Center Security
The industry working groups that are addressing the issues identified above are carrying
on their activities with some degree of urgency, driven as they are by a number of
circumstances and events. There are three overriding security considerations applicable
to data centers, namely:

New types of attacks•	

Changes in IT systems architecture as a transformation to the •	
cloud environment takes place

Increased governmental and international compliance •	
requirements because of the exploits

The nature and types of attacks on information systems are changing dramatically.
That is, the threat landscape is changing. Attackers are evolving from being hackers
working on their own and looking for personal fame into organized, sophisticated
attackers targeting specific types of data and seeking to gain and retain control of assets.
These attacks are concerted, stealthy, and organized. The attacks have predominantly
targeted operating systems and application environments, but new attacks are no longer
confined to software and operating systems. Increasingly, they are moving lower down
in the solution stacks to the platform, and they are affecting entities such as the BIOS,
various firmware sites in the platform, and the hypervisor running on the bare-metal
system. The attackers find it is easy to hide there, and the number of controls at that level
is still minimal, so leverage is significant. Imagine, in a multi-tenant cloud environment,
what impact malware can have if it gets control of a hypervisor.

Similarly, the evolving IT architecture is creating new security challenges. Risks
exist anywhere there are connected systems. It does not help that servers, whether in
a traditional data center or in a cloud implementation, were designed to be connected
systems. Today, there is an undeniable trend toward virtualization, outsourcing, and
cross-business and cross-supply chain collaboration, which blurs the boundaries
between data “inside” an organization and data “outside” that organization. Drawing
perimeters around these abstract and dynamic models is quite a challenge, and that
may not even be practical anymore. The traditional perimeter-defined models aren’t
as effective as they once were. Perhaps they never were, but the cloud brings these
issues to the point they can’t be ignored anymore. The power of that cloud computing
and virtualization lies in the abstraction, whereby workloads can migrate for efficiency,
reliability, and optimization.

This fungibility of infrastructure, therefore, compounds the security and compliance
problems. A vertically owned infrastructure at least provided the possibility of running
critical applications with high security and with successfully meeting compliance
requirements. But this view becomes unfeasible in a multi-tenant environment. With the
loss of visibility comes the question of how to verify the integrity of the infrastructure on
which an organization’s workloads are instantiated and run.

Adding to the burden of securing more data in these abstract models is a growing
legal or regulatory compliance demand to secure personally identifiable data, intellectual

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

24

property, or financial data. The risks (and costs) of non-compliance continue to grow.
The Federal Information Security Management Act (FISMA) and the Federal Risk
and Authorization Management Program (FedRAMP) are two examples of how non-
compliance prevents the cloud service providers from competing in the public sector.
But even if cloud providers aren’t planning to compete in the public sector by offering
government agencies their cloud services, it’s still important that they have at least a basic
understanding of both programs. That’s because the federal government is the largest
single producer, collector, consumer, and disseminator of information in the United
States. Any changes in regulatory requirements that affect government agencies will also
have the potential of significantly affecting the commercial sector. These trends have
major bearing on the security and compliance challenges that organizations face as they
consider migrating their workloads to the cloud.

As mentioned, corporate-owned infrastructure can presumably provide a security
advantage by virtue of its being inside the enterprise perimeter. The first defense is
security by obscurity. Resources inside the enterprise, especially inside a physical
perimeter, are difficult for intruders to reach. The second defense is genetic diversity.
Given that IT processes vary from company to company, an action that breaches one
company’s security may not work for another company’s. However, these presumed
advantages are unintended, and therefore difficult to quantify; in practice, they offer little
comfort or utility.

Security and Compliance Challenges
The four basic security and compliance challenges that organizations face are as follows:

•	 Governance. Cloud computing abstracts the infrastructure, and
in order to prove compliance and satisfy audit requirements,
organizations rely on the cloud providers to supply logs, reports,
and attestation. When companies outsource parts of their IT
infrastructure to cloud providers, they effectively give up some
control of their information infrastructure and processes, even
as they are required to bear greater responsibility for data
confidentiality and compliance. While enterprises still get to
define how their information is handled, who gets access to that
information, and under what conditions in their private or hybrid
clouds, they must largely take cloud providers at their word that
their SLA trusting security policies and conditions are being
met. Even then, service customers may have to compromise
to have the capabilities that cloud providers can deliver. The
organization’s ability to monitor actual activities and verify
security conditions within the cloud is usually very limited,
and there are no standards or commercial tools to validate
conformance to policies and SLAs.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

25

•	 Co-Tenancy and Noisy or Adversarial Neighbors. Cloud
computing introduces new risks resulting from multi-tenancy, an
environment in which different users within a cloud share physical
resources to run their virtual machines. Creating secure partitions
between co-residental virtual machines has proved challenging
for many cloud providers. Results range from the unintentional,
noisy-neighbor syndrome whereby workloads that consume more
than their fair share of compute, storage, or I/O resources starve
the other virtual tenants on that host; to the deliberately malicious
efforts, such as when malware is injected into the virtualization
layer, enabling hostile parties to monitor and control any of
the virtual machines residing on the system. To test this idea,
researchers at UCSD and MIT were able to pinpoint the physical
server used by programs running on the EC2 cloud, and then
extract small amounts of data from these programs by inserting
their own software and launching a side-channel attack.2

•	 Architecture and Applications. Cloud services are typically
virtualized, which adds a hypervisor layer to a traditional IT
application stack. This new layer introduces opportunities for
improvements in security and compliance, but it also creates
new attack surfaces and different risk exposure. Organizations
must evaluate the new monitoring opportunities and the risks
presented by the hypervisor layer, and account for them in their
policy definition and compliance reporting.

•	 Data. Cloud services raise access and protection issues for user
data and applications, including source code. Who has access, and
what is left behind when an organization scales down a service?
How is corporate confidential data protected from the virtual
infrastructure administrators and cloud co-tenants? Encryption
of data, at rest, in transit, and eventually in use, becomes a basic
requirement, yet it comes with a performance cost (penalty).
If we truly want to encrypt everywhere, how is it done in a
cost-effective and efficient manner? Finally, data destruction
at end of life is a subject not often discussed. There are clear
regulations on how long data has to be retained. The assumption
is that data gets destroyed or disposed of once the retention period
expires. Examples of these regulations include Sarbanes-Oxley
Act (SOX), Section 802: seven years (U.S. Security and Exchange
Commission 2003); HIPAA, 45 C.F.R. §164.530(j): six years; and
FACTA Disposal Rule (Federal Trade Commission 2005).

2S. Curry, J. Darbyshire, Douglas Fisher, et al., RSA Security Brief, March 2010. Also, T. Ristenpart,
E. Tromer, et al., Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds, CCS’09, Chicago.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

26

With many organizations using cloud services today for non-mission-critical
operations or for low-confidentiality applications, security and compliance challenges
seem manageable, but this is a policy of avoidance. These services don’t deal with
data and applications governed by strict information security policies such as health
regulations, FISMA regulations, and the Data Protection Act in Europe. But the security
and compliance challenges mentioned above would become central to cloud providers
and subscribers once these higher-value business functions and data begin migrating
to private cloud and hybrid clouds. Industry pundits believe that the cloud value
proposition will increasingly drive the migration of these higher value applications, as
well as information and business processes, to cloud infrastructures. As more and more
sensitive data and business-critical processes move to these cloud environments, the
implications for security officers in these organizations will be to provide a transparent
and compliant framework for information security, with monitoring.

So how do IT people address these challenges and requirements? With the concept
of trusted clouds. This answer addresses many of these challenges and provides the
ability for organizations to migrate both regular and mission-critical applications so as to
leverage the benefits of cloud computing.

Trusted Clouds
There are many definitions and industry descriptions for the term trusted cloud, but at the
core these definitions all have four foundational pillars:

A trusted computing infrastructure•	

A trusted cloud identity and access management•	

Trusted software and applications•	

Operations and risk management•	

Each of these pillars is broad and goes deep, with a rich cohort of technologies,
patterns of development, and of course security considerations. It is not possible to cover
all of them in one book. Since this book deals with the infrastructure for cloud security,
we focus on the first pillar, the trusted infrastructure, and leave the others for future
work. (Identity and access management are covered very briefly within the context of
the trusted infrastructure.) But before we delve into this subject, let’s review some key
security concepts to ensure clarity in the discussion. These terms lay the foundation for
what visibility, compliance, and monitoring entail, and we start with baseline definitions
for trust and assurance.

•	 Trust. The assurance and confidence that people, data, entities,
information, and processes will function or behave in expected
ways. Trust may be human-to-human, machine-to-machine
(e.g., handshake protocols negotiated within certain protocols),
human-to-machine (e.g., when a consumer reviews a digital
signature advisory notice on a website), or machine-to-human.
At a deeper level, trust might be regarded as a consequence of
progress toward achieving security or privacy objectives.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

27

•	 Assurance. Evidence or grounds for confidence that the security
controls implemented within an information system are effective
in their application. Assurance can be shown in:

Actions taken by developers, implementers, and operators •	
in the specification, design, development, implementation,
operation, and maintenance of security controls.

Actions taken by security control assessors to determine the •	
extent to which those controls are implemented correctly,
operating as intended, and producing the desired outcomes
with respect to meeting the security requirements for the
system.

With these definitions established, let’s now take a look at the trusted computing
infrastructure, where computing infrastructure embraces three domains: compute,
storage, and network.

Trusted Computing Infrastructure
Trusted computing infrastructure systems consistently behave in expected ways, with
hardware and software working together to enforce these behaviors. The behaviors are
consistent across compute on servers, storage, and network elements in the data center.

In the traditional infrastructure, hardware is a bystander to security measures, as
most of the malware prevention, detection, and remediation is handled by software in the
operating system, applications, or services layers. This approach is no longer adequate,
however, as software layers have become more easily circumvented or corrupted. To
deliver on the promise of trusted clouds, a better approach is the creation of a root of
trust at the most foundational layer of a system—that is, in the hardware. Then, that root
of trust grows upward, into and through the operating system, applications, and services
layers. This new security approach is known as hardware-based or hardware-assisted
security, and it becomes the basis for enabling the trusted clouds.

Trusted computing relies on cryptographic and measurement techniques to
enforce a selected behavior by authenticating the launch and authorizing processes.
This authentication allows an entity to verify that only authorized code runs on a system.
Though this typically covers initial booting, it may also include applications and scripts.
Establishing trust for a particular component implies also an ability to establish trust for
that component relative to other trusted components. This transitive trust path is known
as the chain of trust, with the initial component being the root of trust.

A system of geometry is built on a set of postulates assumed to be true. Likewise, a
trusted computing infrastructure starts with a root of trust that contains a set of trusted
elemental functions assumed to be immune from physical and other attacks. Since an
important requirement for trust is that conditions be tamper-proof, cryptography or some
immutable unique signature is used to identify a component. The hardware platform is
usually a good proxy for the root of trust; for most attackers, the risk, cost, and difficulty of
tampering with hardware exceeds the potential benefits of attempting to do so.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

28

With the use of hardware as the initial root of trust, you can then measure (which
means taking a hash, like an MD5 or SHA1, of the image of component or components)
the software, such as the hypervisor or operating system, to determine whether
unauthorized modifications have been made to it. In this way, a chain of trust relative
to the hardware can be established. Trust techniques include hardware encryption,
signing, machine authentication, secure key storage, and attestation. Encryption and
signing are well-known techniques, but these are hardened by the placement of keys in
protected hardware storage. Machine authentication provides a user with a higher level
of assurance, as the machine is indicated as known and authenticated. Attestation, which
is covered in Chapter 4, provides the means for a third party (also called a trusted third
party) to affirm that loaded firmware and software are correct, true, or genuine. This is
particularly important for cloud architectures based on virtualization.

Trusted Cloud Usage Models
In this abstracted and fungible cloud environment, the focus needs to be on enabling
security across the three infrastructure domains. Only then can an enterprise have
an infrastructure that is trusted to enable the broad migration of critical applications.
Mitigating risk becomes more complex, as cloud use introduces an ever-expanding,
transient chain of custody for sensitive data and applications. Only when security is
addressed in a transparent and auditable way can enterprises and developers have:

Confidence that their applications and workloads are equally safe •	
in multi-tenant clouds

Greater visibility and control of the operational state of the •	
infrastructure, to balance the loss of physical control that comes
with this abstracted environment

Capability to continuously monitor for compliance•	

Cloud consumers may not articulate the needs in this fashion. From their
perspective, there are key mega-needs, such as:

How can I trust the cloud enough to use it?•	

How can I protect my application and workloads in the •	
cloud—and from the cloud?

How can I broker between device and cloud services to ensure •	
trust and security?

A cloud provider has to address these questions in a meaningful way for its
tenants. These needs translate into a set of foundational usage models for trusted
clouds that apply across the three infrastructure domains, as shown in Figure 2-1.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

29

OS/VMM & Servers

VMs/Workloads

Manag
ement

Compute Network Storage

Data Protection – At Rest, In Motion, In Execution

versOS/VMM & Serv

Boot Integrity & Protection

ManagM
ement

Run-Time Integrity & Protection

Figure 2-1. A framework for the trusted cloud

 1. Boot integrity and protection

 2. Data governance and protection, at rest, in motion, and
during execution

 3. Run-time integrity and protection

The scope and semantics of these usage models changes across the three
infrastructure domains, but the purpose and intent are the same. How they manifest and
are implemented in each of the domains could differ. For example, data protection in the
context of the compute domain entails protection (both confidentiality and integrity)
of the virtual machines at rest, in motion, and during execution; this applies to their
configuration, state, secrets, keys, certificates, and other entities stored within. The same
data-protection usage for the network domain has a different focus; it is on protection
of the network flows, network isolation, confidentiality on the pipe, tenant-specific IPS,
IDS, firewalls, deep packet inspection, and so on. In the storage domain, data protection
pinpoints strong isolation/segregation, confidentiality, sovereignty, and integrity. Data
confidentiality, which is a key part of data protection across the three domains, uses the
same technological components and solutions—that is, encryption.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

30

As a solution provider, methodical development and instantiation of these usage
models across all the domains will provide the necessary assurance for organizations
migrating their critical applications to a cloud infrastructure, and will enable
establishment of the foundational pillar for trusted clouds.

In the rest of this chapter, we provide an exposition of the usage models listed above.
We include enough definition of these four usage models for them to provide a broad
overview. Subsequent chapters go into greater detail on each of these models and offer
solutions, including the solution architecture and a reference implementation using
commercial software and management components.

The Boot Integrity Usage Model
Boot integrity represents the first step toward achieving a trusted infrastructure. This
model applies equally well to the compute, network, and storage domains. As illustrated
in Figure 2-1, every network switch, router, or storage controller (in a SAN or NAS) runs
a compute layer operating specialized OS to provide networking and storage functions,
so this model enables a service provider to make claims about the boot integrity of the
network, storage, and compute platforms, as well as the operating system and hypervisor
instances running in them. As discussed earlier, boot integrity supported in the hardware
makes the system robust and less vulnerable to tampering and targeted attacks. It enables
an infrastructure service provider to make quantifiable claims about the boot-time
integrity of the pre-launch and the launch components. This provides a means, therefore,
to observe and measure the integrity of the infrastructure. In a cloud infrastructure, these
security features refer to the virtualization technology in use, which comprises two layers:

The boot integrity of the BIOS, firmware, and hypervisor. We •	
identify this capability as trusted platform boot.

The boot integrity of the virtual machines that host the workloads •	
and applications. We want these applications to run on trusted
virtual machines.

Understanding the Value of Platform Boot Integrity
To attain trusted computing, cloud users need systems hardened against emerging
threats such as rootkits. Historically, many have viewed these threats as someone else’s
problem or as a purely hypothetical issue. This position is untenable in view of today’s
threats.

The stealthy, low-level threats are real and they occur in actual operating
environments. The recent Mebromi BIOS rootkit low-level attack on a shipping platform
was an eye-opener, as it took the industry by surprise. Unfortunately, as is often the case,
it takes an actual exploit to change the mindset and drive change. And indeed, there
are many more IT managers and security professionals taking action to improve the
situation. As of 2012, a growing number of entities, including the U.S. National Institute
of Standards and Technologies (NIST), are developing recommendations for protecting
a system’s boot integrity. These recommendations contain measures for securing very
basic, but highly privileged platform components.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

31

Given the crucial role played by the hypervisor as essential software responsible
for managing the underlying hardware and allocating resources such as processor,
disk, memory, and I/O to the guest virtual machines and arbitrating the accesses and
privileges among guests, it is imperative to have the highest levels of assurance so that it
is uncompromised. This was the rationale for conducting the survey shown in Figure 2-2.
With this growing awareness and concern has come a corresponding growth in vendors
looking to define the solutions.

Figure 2-2. Survey results showing concerns over hypervisor integrity across regions

For the various devices/nodes across the infrastructure domains (compute, storage,
and network), the integrity of the pre-launch and launch environment can be asserted
anytime during the execution’s lifecycle. This is done by verifying that the identity and
values of the components have not changed unless there has been a reset or a reboot of
the platform by the controlling software. This assertion of integrity is deferred to a trusted
third party that fulfills the role of a trust authority, and the verification process is known
as trust attestation. The trust authority service is an essential component of a trusted
cloud solution architecture.

The Trusted Virtual Machine Launch Usage Model
A trusted platform boot capability provides a safe launch environment for provisioning
virtual machines running workloads. This environment has the mechanisms to evaluate
the integrity of pre-launch and launch components on a platform, from the BIOS to the
operating system and hypervisor. The service provider thus attests to the trust-ability

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

32

of the launch environment. However, no specific claims can be made about the virtual
machines being launched, other than indicating that they are being launched on a
measured and attested hypervisor platform. Although virtual machine monitors (VMM)
or hypervisors are naturally good at isolating workloads from each other because they
mediate all access to physical resources by virtual machines, they cannot by themselves
attest and assert the state of the virtual machine that is launched.

The trusted virtual machine launch usage model applies the same level of trust-
ability to the pre-launch and launch environment of the virtual machines and workloads.
Each virtual machine launched on a virtual machine manager and hypervisor platform
benefits from a hardware root of trust by storing the launch measurements of the virtual
machines’ sealing and remote attestation capabilities. However, this requires virtualizing
the TPM, with a virtual TPM (vTPM) for each of the virtual machines. Each of these
virtual TPM vTPM instances then emulates the functions of a hardware TPM. Currently,
there are no real virtualized TPM implementations available, owing to the challenges
related to virtualizing the TPM. The difficulty lies not in providing the low-level TPM
instructions but in ensuring that the security properties are supported and established
with an appropriate level of trust. Specifically, we have to extend the chain of trust from
the physical TPM to each virtual TPM by carefully managing the signing keys, certificates,
and lifecycle of all necessary elements. An added dimension is the mobility of the virtual
machines and how these virtual TPMs would migrate with the virtual machines.

There are other ways of enabling a measured launch of virtual machines, such as
storing the measurements in memory as part of a trusted hypervisor platform without
the use of virtual TPMs but still ensuring that the chain of trust is extended from the
physical TPM. Irrespective of the design approach, day-to-day operations on virtual
machines—such as suspend and resume, creating snapshots of running virtual machines,
and playing them back on other platforms or live migration of virtual machines—become
challenging to implement.

There are no real production-quality implementations of these architectures.
There are few academic and research implementations of vTPMs and other memory
structure–based approaches, each with its own pros and cons. Trusted virtual machine
usages are still evolving at the time of this writing; hence it’s not possible to be definitive.
Chapter 8 covers aspects of the measured VM launch and some architectural elements.
Chapter 3 covers in depth the matter of boot integrity and trusted boot of platforms and
the hypervisors, as well as the associated trusted compute pools concept that aggregates
systems so specific policies can be applied to those pools. The discussion also includes
the solution architecture, and a snapshot of industry efforts to support the enabling
of trusted compute pools. Chapter 4 covers the trust attestation or remote attestation
architecture, including a reference implementation.

The Data Protection Usage Model
This usage model is about protecting data in the cloud that is at rest, in motion, and
undergoing execution. It applies uniformly across infrastructure domains (compute,
storage, and network). On the compute domain, the protection is for the virtual machines
and workloads that have the applications, configurations, state, keys, secrets, and needed
mechanisms to ensure confidentiality and integrity.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

33

For virtual machine and workload data protection, cloud user organizations need
a method to securely place workloads into the cloud, as well as store and use data there.
Current provisioning and bursting models include either storing the virtual machine and
application images and data in the clear (unencrypted), or having these images and data
encrypted by the keys controlled by the service provider—keys which are likely applied
uniformly to all the tenants. But increasingly, virtual machine images—effectively,
containers for operating system and application images, configuration files, data, and
other entities—need confidentiality protection in a multi-tenant cloud environment.
That is, images need to be encrypted by keys under tenant control, and also decrypted
for provisioning by the keys under tenant control in a manner that is transparent to the
cloud service provider. The usage model also calls for not only leveraging hardware for
encryption and decryption but also ensuring that the service or entity acquiring the
decryption keys does it on a need-to-know basis, is trusted and attested, and is running
on a platform whose boot integrity has been attested. This provides a more effective last
line of defense to protect from misuse or abuse by other tenants or cloud administrators.
Chapter 8 covers this usage model for virtual machine protection, including a reference
architecture and implementation.

The Run-time Integrity and Attestation Usage Model
Having a trusted foundation for the platform is extremely important. Roots of trust in
hardware, and with a credible static and binary remote attestation process, ensure that
a service provider can make assertions about the boot integrity of the platforms on
which the tenant workloads execute. But that is only half the answer. The integrity of the
platform could be assured at boot time, and remote attestation can measure and attest
the state of healthiness at that point—only for integrity to be degraded and compromised
at run time for a variety of reasons, such as configuration errors or, worse, the presence of
run-time rootkits. These mechanisms compromise the integrity of the platforms and yet
static binary remote attestation doesn’t catch them; instead, this situation calls for remote
run-time attestation. However, for this solution to be viable, there needs to be a way of
representing and approximating the run-time integrity of the system via a set of policies
or properties. A system or platform stays healthy only to the extent that these properties
stay healthy.

Determining what constitutes the minimum and sufficient set of properties that
indicate the run-time health of a hypervisor or virtual machine monitor is a tough
computer science problem that has long track record of research in software integrity. For
example, if the integrity properties cover the system call table—the call table being the
basis for measurement, monitoring, and attestation—a new rootkit can be deployed that
manipulates other function pointers, such as device driver jump tables, and it will stay
undetected. Clearly, there are no commercial implementations, since the threat vectors
are too many to consider and modeling the threats, as well as mitigation, is still an active
research area.

One promising research effort has been to define what are called “scoped invariants”
as an important class of integrity properties. According to the authors of this research,
scoped invariants are code or data with a constant value in some context (scope). For

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

34

example, one scoped invariant is the Interrupt Descriptor Table (IDT) entry for page fault,
containing a constant function pointer once the virtual machine monitor or operating
system finishes initialization. Scoped invariants are building blocks for more general
integrity properties, and they are amenable to integrity checking. A case study was
done to identify a core set of scoped invariants of the open-source Xen virtual machine
monitor. In addition to the IDT, another core invariant property was demonstrated in this
research; the addressable memory limit of a guest OS must not include Xen’s code and
data, and this proved indispensable for Xen’s guest isolation mechanism. Violation of this
property can let an attacker modify a single byte in the Global Descriptor Table (GDT) to
achieve a virtual machine escape goal.

At the current state of the art, run-time integrity monitoring and attestation is a
broad and complex topic, and commercial implementations are still works in progress at
many system and security organizations.

Trusted Cloud Value Proposition for Cloud Tenants
While a tenant organization’s compliance and security policies won’t change when IT
processes migrate to the cloud, the way that organization enforces those policies and
proves compliance will change significantly. For most compliance officers and infosec
(information security) professionals, the cloud becomes, for practical purposes, a black
box. In contrast, a cloud tenant that is landing a workload in a trusted pool can expect the
following:

The assurance that the compute, network, and storage elements •	
in that segment of the cloud or the virtualized data center are
trusted. The service provider or the management infrastructure
asserts the integrity of the security and trust of these elements.

The assurance that the information (data and content) s stored, •	
processed, and migrated is always protected for confidentiality,
integrity, and privacy.

The assurance that workloads and applications are not tampered •	
with, and that the infrastructure will launch and execute what
is expected, and can provide a chain of trust that is rooted in
hardware.

The assurance that the devices and users accessing the workloads •	
and services in these trusted clouds are authenticated, and that
the workloads run on hardware with demonstrated integrity;
likewise, for the controlling software. This ensures that services
are being accessed over a reliable and secure network and
location.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

35

The Advantages of Cloud Services on a Trusted
Computing Chain
The advantages to delivering cloud services on computing resources that have a
demonstrated chain of trust rooted in hardware include:

•	 Reducing the risks for co-residency. It ensures that the
infrastructure is trusted and has demonstrated integrity. This
prevents the launch and execution of untrusted components.
It protects not only against malware but also from benign
conditions, such as the improper migration or deployment
of virtual machines. To illustrate, if a cloud orchestrator (like
OpenStack) attempts to move virtual machines from an
unsecured computing platform to a trusted one, the policy
management software will prevent the incoming virtual machines
from landing, since the action originated from an unsecured
platform.

•	 Preventing the unsafe transit of secure virtual machines. In the
same way that virtual machines arriving from an unsecured
platform are not allowed to move to secured platforms, virtual
machines originating on secured platforms are not allowed
to move to unsecured ones. For instance, if an administrator
attempted to transfer a secured virtual machine to a new server,
the virtualization management console would first perform
a policy check on the outgoing virtual machine and then
measure the security configurations of the new server against
accepted standards. If the new server does not meet the secure
standards required to host the virtual machine, the virtualization
management console or security policy engine prevents the
virtual machine from migrating and logs the attempt.

•	 Maximizing and scaling operational efficiency by creating trusted
pools of systems. Once platform trustworthiness can be measured,
cloud providers can put such measurements to use by building
trusted pools of systems, all with identical security profiles.
Hypervisors can then make more efficient use of secure clouds,
moving virtual machines with similar security profiles within
zones of identically secured systems for load balancing and
other administrative purposes—all the while protecting data in
conformance with regulated standards and policies.

The authors believe that ubiquitous adoption of trusted computing chains will
address a number of fundamental user concerns about cloud security that currently
prevent many applications from being deployed in a cloud setting, thereby barring them
from realizing the potential cost reductions that could stem from using cloud technology
and limiting the greater business impact that would come from broader deployment.

CHAPTER 2 ■ THE TRusTEd Cloud: AddREssing sECuRiTy And ComPliAnCE

36

Summary
We covered the challenges of cloud security and compliance, as well as introduced the
concept of trusted clouds. We discussed the needs for trusted clouds and introduced four
usage models to enable a trusted computing infrastructure, the foundation for trusted
clouds. These models provide a foundation for enhanced security that can evolve with
new technologies from Intel and others in the hardware and software ecosystem.

There are no silver bullets for security, such as a single technology solving all
problems, because the matter of security is a multifaceted one. But it is clear that a new
set of security capabilities is needed, and that starts at the most foundational elements.
Trusted platforms provide such a foundation. These platforms can provide:

Increased visibility of critical controlling software in the cloud •	
environment through attestation capabilities.

A new control point capable of identifying and enforcing local •	
known good configurations of the host operating environment,
and able to report the resultant launch trust status to cloud and
security management software for subsequent use.

In the next few chapters we will discuss each of the usage models in detail, including
some solution architectures and technologies to bring them to reality.

37

Chapter 3

Platform Boot Integrity:
Foundation for Trusted
Compute Pools

In Chapter 2, we introduced the concept of trusted clouds and the key usage models to enable
a trusted infrastructure. We provided a brief exposition of the boot integrity usage model, and
its applicability across the three infrastructure domains—compute, storage, and network. In
this chapter we will take a deeper look into ensuring the boot integrity of a compute platform,
which boils down to ensuring the integrity of a number of platform components: the pre-
launch and launch components covering firmware, BIOS, and hypervisor. Boot integrity is
foundational in embodying the concept of a trusted infrastructure.

This chapter provides an introduction to the concept of roots of trust in a trusted
computing platform, the measured boot process, and the attestation that are critical
steps for ensuring boot integrity. It also provides an overview of Intel’s Trusted Executed
Technology (TXT), an example of root of trust technology for asserting platform boot
integrity. Complementary to this is the concept of trusted compute pools, which is a
logical or physical grouping of computing platforms with demonstrated platform boot
integrity. Trusted compute pools embody the integrity of the virtual infrastructure, which
can then enable granular controls, an essential requirement for virtualized data centers.
Here, also, we present a solution reference architecture for building a trusted compute
pool in a virtualized data center, and provide a case study of its implementation at the
Taiwan Stock Exchange, with a number of typical use cases and the solution components
of a successful implementation of trusted compute pools.

The Building blocks for Trusted Clouds
Organizations using or planning to use cloud services are starting to require that cloud
service providers offer improved security at the hardware layer and greater transparency
of system activities within and below the hypervisor. This means that cloud providers
should be able to:

Give organizations greater visibility into the security states of the •	
hardware platforms running the IaaS for their private clouds.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

38

Produce automated and standardized reports on the •	
configuration of the physical and virtual infrastructure hosting the
customers’ virtual machines and data.

Set policy concerning the physical location of the servers on •	
which the virtual machines are running, and control of the
placement and migration of these virtual machines to acceptable
locations based on such policy specifications (as some FISMA
and DPA requirements dictate).

Provide measured evidence that their services infrastructure •	
complies with security policies and meets regulated data standards.

What is needed is a set of building blocks for the development of “trustworthy
clouds.” These building blocks consist of:

A chain of trust rooted in hardware that extends to the hypervisor.•	

A hardening of the virtualization environment using known best •	
methods.

Provision of visibility for compliance and audit purposes.•	

Trust as an integral part of policy management for cloud activity.•	

A leveraging of infrastructure and services to address data •	
protection requirements.

Automation to bring it all together and achieve economies of •	
scale and management efficiency.

Cloud providers and other members of the IT community are carrying out research
and development to address this need. A growing ecosystem of technology companies
is collaborating to develop a new, interoperable trusted computing infrastructure. The
goal is to reduce the risk of attack, such as come from virtual rootkits, by building a
hardware-based root of trust founded on the assumption that a hardware-based,
bottom-up approach can make this infrastructure more impervious to exploits than does
today's mostly software-based approach.

Platform Boot Integrity
As described in the previous chapter, a trusted computing platform is said to have
platform boot integrity—or boot integrity, for short—if the key controlling components
(namely firmware, BIOS, and hypervisors) have demonstrated integrity. Two steps are
needed to assert the integrity of the pre-launch and launch components:

 1. A measured boot process.

 2. Assurance and enforcement of the executed components
as trusted components. This process is called attestation;
without this, there is no assurance that the platform is in a
trusted state.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

39

Before we describe these two steps, we have to look at roots of trust on a platform, as
this is fundamental to a trusted computing platform.

Roots of Trust–RTM, RTR, and RTS in the Intel
TXT Platform
Hardware-based roots of trust, when coupled with an enabled operating system,
hypervisor, and solutions, lay the foundation for a more secure computing platform. This
secure platform ensures hypervisor and VMM integrity at boot from rootkits and other
low-level attacks. It establishes the trustworthiness of the server and the host platforms.

There are three roots of trust in a trusted platform:

Root of trust for measurement (RTM)•	

Root of trust for reporting (RTR)•	

Root of trust for storage (RTS)•	

RTM, RTR, and RTS are the system elements that must be trusted, because
misbehavior in these normally would not be detectable in the higher layers. In an Intel
TXT-enabled platform, the RTM is the Intel microcode, the Core-RTM (CRTM). An RTM
is the first component to send integrity-relevant information (measurements) to the RTS.
Trust in this component, thus, is the basis for trust in all the other measurements. The
RTS contains the component identities (measurements) and other sensitive information.
A trusted platform module (TPM) provides the RTS and RTR capabilities in a trusted
computing platform.

A trustworthy CRTM reliably measures the integrity of the next piece of code following
in the boot sequence. The result of this measurement is extended into the platform
configuration register (PCR) in the TPM before the control is transferred to the next
program in the sequence. If each component in the sequence in turn measures the next
before handing off control, there’s a chain of trust established. If this measurement chain
continues throughout the entire boot sequence, the resulting PCR values transitively
reflect the measurement of all files used.

In the unlikely event that one of the components in the chain gets compromised, it is
re-measured before its execution during the next reboot. Even if the control is transferred
to the malicious software, and the malicious software attempts to fake the measurements,
it will have to run a cryptographic gauntlet, where the fake measurements extended to
PCR would equal the value it would have had after an uncompromised boot. Thus, the
cryptographic strength of the SHA-1 hashing algorithm makes it computationally unlikely
for the tampered code to calculate an extension value that would “adjust” the PCR values.

Now that we have expplained what RTM and RTS are, let’s look at the measured boot
process, which is one of the two steps listed above that are used to assert the integrity of
the pre-launch and launch components of a platform.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

40

Figure 3-1. Measured boot process

Measured Boot Process
A measured boot process, as shown in the Figure 3-1, is a boot sequence starting at a root
of trust for measurement (RTM) initiating a series of measurements consisting of all the
relevant trusted compute base (TCB) components into the root of trust for storage (RTS).
The measured boot performs no evaluation or verification of any of the component’s
identities.

There are two ways defined by the trusted compute group (TCG) to establish this
trust during boot:

Static root of trust (S-RTM)•	

Dynamic root of trust (D-RTM)•	

Figure 3-2 depicts these two boot models and the associated trust chains. As the
name Static Root of Trust for Measurement (S-RTM) suggests, the entire trust begins with
the static, immutable piece of code, which is called the core root of trust for measurement
(CRTM). On ordinary computing platforms, BIOS is the first component to be executed.
Therefore, the trusted platform needs an additional entity to measure the BIOS and
act as a CRTM. This entity is a fundamental trusted building block (TBB) that remains
unchanged during the lifetime of the platform. The CRTM can be an integrated part of the
BIOS itself (e.g., Microsoft Windows 8), like a BIOS boot block. The CRTM can also be a
set of CPU instructions that are normally stored within a chip on the motherboard. This
latter method can be more resistant to tampering, as exemplified by the Intel TXT.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

41

In the static root of trust method, all trust starts with a fixed or immutable piece
of trusted code in the BIOS. This trusted piece of code measures the next piece of code
to be executed and extends a platform configuration register (PCR) in the TPM based
on the measurement before that control is transferred to the next program. If each new
program in turn measures the next one before transferring control, there’s a chain of trust
established. If this measurement chain continues through the entire boot sequence, the
resultant PCR values will reflect the measurement of all files used. This “measurement
before execution” model therefore leads to a chain of trust that’s observable by a remote
party wanting to assess the trustworthiness of a system. Hence, S-RTM enables trust on
the entire boot chain, including the master boot record, boot loader, kernel, drivers, and
all files referenced or executed during boot. These are all parts of a trusted computing
base (TCB). In other words, a TCB encompasses the sum of all the components that affect
a system’s assurance.

However, S-RTM has two shortcomings:

•	 Scalability and Inclusivity. The number of components in a boot
chain is large. Each component’s trusted computing base (TCB),
and hence security, depends on the many layers of code that have
been executed earlier in the chain. Windows and Linux have an
ill-defined TCB and therefore they require all executable content
to be measured, including executables, libraries, and shell scripts.
Components determining the chain of trust (including TCB)
are subject to frequent patching and updating with their myriad
configuration variations. Also, the launch order of elements in the
chain may vary, leading to different measurement values in PCRs.
Keeping track of the expected values for integrity measurements
becomes a nettlesome task.

Figure 3-2. S-RTM and D-RTM trusted chains

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

42

•	 Uncontrolled Scope. The execution of an S-RTM sequence
pulls in code for the evaluation of an OS TCB that’s unrelated
to the operation of the platform. This forces mostly unnecesary
evaluations of software and firmware, including BIOS
components loaded and run during the boot process, only to be
discarded just to verify the integrity of the TCB.

These shortcomings were identified by the TCG. The newer TCG 1.2 specifications
define a new mechanism for an authenticated boot: dynamic root of trust for
measurement, or D-RTM.

Dynamic root of trust for measurement (D-RTM) reduces the complexity of the
TCB, making the evaluation of the platform state more tractable. With D-RTM, the
trust properties of the components are ignored until a secure event, such as an enabled
hypervisor launch, triggers and initializes the system, starting the initial root of trust
measurement. Components that were staged before the D-RTM secure event are
excluded from the TCB and not allowed to execute after the trust properties of the system
are established. D-RTM is much more streamlined compared to S-RTM.

The server platforms used in virtualization and cloud data centers present
challenging boot scenarios where D-RTM alone won't suffice. The TCB in a true D-RTM
implementation will not include the system management modules (SMM), which are
needed to support server RAS (reliability, availability, scalability) features. SMM is part
of the pre-boot BIOS, and a pure D-RTM implementation excludes these items. Intel TXT
provides a hybrid implementation of S-RTM and D-RTM, as described above, to establish
trust during the boot process. The book Intel Trusted Execution Technology for Server
Platforms from Apress has exhaustive coverage of S-RTM and D-RTM.

Attestation
The second step in ensuring boot integrity of a platform is to guarantee that the executed
and launched components are trusted components. This process is called attestation,
and without this step there is no assurance that the platform is in a trusted state. Why is
attestation important from a cloud perspective? There are two main considerations for
use cases to be instantiated and delivered in a cloud:

How would the entity needing this information know if a specific •	
platform is Intel TXT enabled, or if a specific server has a defined
or compliant BIOS or VMM running on it (i.e., can it be trusted)?

Why should the entity requesting this information (which, in a •	
cloud environment, could be a resource scheduler or orchestrator
trying to schedule a service on a set of available nodes or servers)
trust the response from the platform?

An attestation service provides definitive answers to these questions. Chapter 4
covers attestation in detail, including description of a reference attestation platform
for Intel-based platforms, code-named Mt. Wilson. But here is a quick summary of the
capability.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

43

Attestation ratchets up the notion of roots of trust by making the information from
various roots of trust visible and usable by other entities. In a TPM-based implementation
of RTS and RTR, it provides a digital signature of platform configuration registers (PCR),
with a set of registers in a TPM extended with specific measurements for various launch
modules of the software and the requestor validating the signature and the PCR contents.
To validate, first the requestor invokes, via an agent on the host or device, the TPM_Quote
command, specifying an attestation identity key to perform the digital signature on
the set of PCRs to quote, and a cryptographic nonce to ensure freshness of the digital
signature. Next, the attestation service validates the signature and determines the trust
of the launched server by comparing the measurements from the TPM quote with
known-good measurements. It is a critical IT operations challenge to manage the
known-good measurement for hypervisors, operating systems, and BIOS software to ensure
they are all protected from tampering and spoofing. This capability can be internal to a
company, offered by a service provider, or delivered remotely as a service by a trusted
third party (TTP). The process is described in detail in Chapter 4.

The measured boot and the attestation thus enable a server/host to demonstrate
its boot integrity. Failure of a measured boot process or attestation can initiate a series
of remediation steps that are managed and controlled by the policies in the data center.
Barring any hardware or configuration issues, then, a failed attestation would mean one
of following two conditions:

Someone or something has tampered with one or more launch •	
components.

A wrong version (compared to the known-good or whitelist) of •	
BIOS, OS, drivers, and so on has been installed and attempted to
launch at the server/host.

Security tools like security information and event management (SIEMs), compliance
tools, and configuration checkers would flag these alerts to drive the appropriate
remediation actions. In short, having the ability to assert the integrity of a platform is both
valuable and necessary. With a set of platforms that have demonstrated integrity, they can
be aggregated to do interesting things. This aggregation of platforms is what we refer to as a
trusted compute pool (TCP).

Trusted Compute Pools
The notion of a trusted compute pool (TCP) relies on the establishment and propagation
of a new data center management attribute: platform trust. Platform trust derives
directly from the boot integrity demonstrated by the server. TCP is a leading approach to
aggregate trusted systems and to segregate them from untrusted resources, which results
in a split between higher value, more sensitive workloads and commodity application
workloads. The principles of TCP operation (see Figure 3-3) are to:

Create a cloud subsystem that meets the specific and varying •	
security requirements of users.

Control administrative access to subsystems so that the right •	
workloads get deployed and maintained there.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

44

Secure, federated, and multi-factored authentication of users and •	
devices accessing the services.

Continuous monitoring and, on detection of a change in host •	
trust or geolocation, generation of alerts and implementation of
configured remediation measures.

Audits of that segment of the cloud that enables users to verify •	
compliance.

Figure 3-3. Trusted compute pools

These trusted pools allow IT to gain the benefits of the dynamic cloud environment
while enforcing higher levels of protection for their more critical and security-sensitive
workloads. The resources tagged green in Figure 3-3 are trusted, and the resources
tagged red are untrusted, as they have not asserted their boot integrity. Critical policies
can be defined such that security-sensitive cloud services can be launched only on these
resources or migrated only to other trusted platforms within these pools. Also, use of
TCPs eliminates the need for air-gapped (i.e., isolated from the rest of the data center)
clusters of servers.

TCP Principles of Operation
How is a trusted compute pool created? Platform trust is the primary attribute used by
management orchestration and operational software to create a trusted pool. Initially,
platform trust is achieved through the use of a trusted platform launch (which, for
server platforms, is based on TXT). Once this initial platform trust is established, TCP
incorporates additional protections, including visibility of the integrity of the infrastructure
and control of the placement and migration of workloads. Figure 3-4 shows a progression
of TCP functionality with increasing levels of trust and compliance.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

45

Figure 3-4. Progression of trusted compute pool usage

When a trusted pool is created, systems and workloads can be tagged with specific
security policies, enabling the monitoring, control, and audits for the placement and
migration of workloads into, across, and outside the pool. The most obvious premise
behind this is that highly confidential and sensitive applications and workloads must be
constrained by policy to run only on systems that have proved to be trusted.

The rest of this section of the chapter describes the flows involved in supporting each
of the use cases represented in Figure 3-5.

Figure 3-5. Core use cases for trusted compute pools

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

46

Pool Creation
This is the first step in TCP, involving the creation of a group of platforms with a common
level of trust. Pool creation involves the following steps:

 1. Virtualization management and orchestration software
identifies and enumerates the platforms with demonstrated
and attested platform boot integrity.

 2. Virtualization management software incorporates the
platforms into a trusted pool.

Workload Placement
Once a trusted pool of platforms has been created, workloads can be selected to be
placed on that pool based on their security requirements. A typical flow for workload
placement would involve the following:

 1. A cloud subscriber requests the workload be placed in a
trusted pool.

 2. Security management tools identify and tag workloads for
classification according to certain security properties.

 3. Security management tools match platform trust to workload
classification according to existing policies.

 4. Orchestrator and scheduler software determines the best
server to place the workload within the trusted pool, pursuant
to existing server selection and security policies. The
scheduler requests an attestation of the integrity of the server
before the workload is placed on the server, to reaffirm its
boot integrity.

 5. A compliance record is created to register the launch of
the workload in the trusted pool. This record is tied to the
hardware root of trust of the server, and can be associated
with a set of security controls to meet compliance
requirements.

Workload Migration
Infrastructure as a service (IaaS) cloud multi-tenant environments typically use
virtualization capability to migrate virtual machines across physical hosts. When it
comes to security-sensitive workloads, it is desirable, or perhaps even essential, to meet
customer requirements that these migrations occur only between prequalified trusted
platforms. A flow representing how to achieve this goal in a TCP environment might
occur as follows:

 1. A migration of workload is triggered either manually or based
on resource orchestrator/scheduler policies.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

47

 2. The resource scheduler determines the set of servers that best
meets the policy, based on the security standards associated
with the workload. (The scheduler requests an attestation of
the integrity of the target host.) The first server in the set that
meets the integrity requirements is picked.

 3. The orchestration software migrates the workload to the new
server.

 4. A compliance record is created to register the migration of
the workload to this new location, including the attestation of
integrity at the time of selection.

Compliance Reporting for a Workload/Cloud Service
Being able to prove to an auditing entity that the security requirements of a given
workload have been fulfilled is just as important as actually fulfilling those requirements.
A flow for compliance reporting might be as follows:

 1. The compliance tool enumerates all the virtual machines in
the service or workload.

 2. The compliance tool evaluates the security controls for each
virtual machine; these controls include determining the trail
of hosts and the migration of records throughout the virtual
machine lifecycle.

 3. A report is generated to provide proof that security properties
associated with the workload running on TCP have been met.
This verifiable proof is linked to the hardware root of trust
(provided by TXT) in the participating hosts.

Solution Reference Architecture for the TCP
The Intel TXT-enabled launch is not sufficient to support the TCP uses mentioned in
the previous section. Measurement and attestation tell the data center and security
management software whether a given host can be trusted, but there is more to it than that.
Exposing, transporting, storing, and ultimately consuming platform trust measurements
in support of the use cases is an integration challenge across different software and
management elements. Successfully doing this requires a well-defined and seamless
integration model of multiple security management and data center/cloud management
software components; in other words, there needs to be an underlying solution
architecture.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

48

Figure 3-6 depicts a reference architecture for these trusted compute pool usages. It
prescribes four distinct layers, with each layer serving one of the four functions:

 1. Reporting of the source of the platform trust/boot integrity
measurements

 2. Interface with the boot integrity information via secure
protocols

 3. Verifification/appraisal of the boot integrity measurements

 4. Consumer of the boot integrity verification for policy
enforcement, compliance reporting, and remediation

Portals & Cloud Manager Service Provider
Created

E.g., McAfee ePO,
RSA Archer, HyTrust

HTA

E.g., vCenter,
OpenStack

E.g., ESX, Xen,
KVM

E.g., HP, DELL,
IBM, Cisco

ConfigMgr
+ SIEM

Verifier/
Attestation

(MTW)

Other
Management/
Provisioning

Systems
Virtual Management Services

Intel Server w/ Intel TXT

OS/VMM

APIs

Policy
Engines

GRC

BIOS

TPM

Figure 3-6. Solution architecture for the trusted compute pools

Here’s a brief overview of the four layers of this software architecture, starting from
the base and moving upward.

Hardware Layer
At the base of the architecture we have the physical server hardware. For virtualization
and the cloud computing environment, the hardware typically consists of x86
architecture-based servers. These are servers hosting the virtualization and cloud
workloads. Intel TXT enables trusted compute pool usages. (See sidebar for a brief
introduction to the technology.) In addition to having TXT-enabled CPUs and chipsets,
there needs to be Intel Virtualization Technology (VT) and a trusted platform module,

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

49

or TPM. TXT needs support in the BIOS, as well. By default, TXT and TPM are not
enabled in the BIOS in the current generation of servers. Unfortunately, the method for
turning on TXT and TPM support varies by vendor; there is no standard for carrying out
this operation. There are, however, well-published documents on how to enable TXT
and TPM for various OEM vendors, available from Intel and few security management
companies supporting Intel TXT.

One of the challenges in scale deployments and enablement of TXT is meeting the
need for physical access and the assertion of presence to enable the TPM and TXT
on a server platform via the BIOS interface. This limits automation and large-scale
enablement. Though each of the OEM provides custom implementation and interfaces
for doing this, unless there are architectural solutions such as a physical presence
interface (PPI), the provisioning and configuration task won’t become any simpler.

Operating System / Hypervisor Layer
Moving up the stack, the second layer is the OS/hypervisor. To participate in a measured
launch, an OS or hypervisor has to be enabled for TXT. The changes related to TXT are
in the initialization code, and also during termination and shutdown. Additionally,
basic enablement means that the operating system or hypervisor can invoke the
secure launch process. This entails including a pre-kernel module that can ensure the
right SINIT (authenticated code modules from Intel) module is selected and assure the
orderly evaluation of the launch components of the software. Intel provides a reference
implementation called Trusted Boot (tboot) for the pre-kernel module that can be
integrated into OS/hypervisors toward enabling for Intel TXT, and it is the maintainer of
this open-source “tboot” project.

Tboot is by far the most widely used mechanism offered by software vendors
to enable their OS or hypervisor. SINIT modules on server platforms are generally
embedded in the platform BIOS, and are processor- and chipset generation-specific.
The tboot components provided by Intel are integrated into the operating systems or
hypervisors (by the respective ISVs) and work across multiple generations of platforms.
This makes sense, as it allows the most qualified party (in this case, the ISV) to determine
which modules are essential for the trusted compute base (TCB) of their software, and
therefore which modules to include in the measured launch and in which order.

Tboot technology is included in multiple open-source operating system/hypervisor
environments from Linux, to Xen/KVM, to a number of commercial products, such as
Red Hat and Citrix XenServer. Other vendors, like VMware, have implemented their own
tboot-like functions. It is interesting to note that the percentage of TCB measured by
vendors as part of the launch process varies significantly. As of this writing, VMware by far
has the most coverage of the TCB. Other OS/VMM vendors have the core kernel and few
modules measured. All of these vendors have been actively working toward increasing
the amount of TCB that they measure. For detailed coverage of the measured launch
environments (MLE) developer guidance, check out the book Intel Trusted Execution
Technology for Server Platforms from Apress.

With TXT and TPM correctly configured and enabled in hardware, when a
TXT-enabled OS/hypervisor is launched, the platform goes through a measured D-RTM
launch. Just to refresh your understanding of the TXT launch process, when a TXT launch
happens, what you have is a measured launch of the firmware, BIOS, and controlling

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

50

software like an OS or VMM. These measurements (which are the identities of the
various components), as part of the launch process are stored in the various registers in
the TPM (RTS and RTR) called PCRs (platform configuration registers) and are verified
with an attestation system. TCG PC Spec provides the semantics for where the various
measurements are stored in the TPM.

Virtualization/Cloud Management and
Verification/Attestation Layer
This is the critical management and orchestration layer in a data center that controls
the provisioning, deployment, and lifecycle management of the workloads and virtual
machines. This layer serves one of four functions for the trusted compute pool use cases:

 1. Provides a secure interface to the measured launch
measurements on each of the servers

 2. Provides an attestation mechanism to evaluate platform trust
and assert its integrity

 3. Consumes the trust information, essentially helping to
identify which platforms are trusted and which ones are not

 4. Makes use of this information to establish an enhanced
security capability through policy definition and enforcement
linked to platform trust

There are significant differences in terms of interfaces provided to support platform
trust. Some, such as Citrix, have developed explicit APIs natively to their hypervisor
software (Xen APIs) to provide TCG-compliant access to the launch measurements in
the TPM. These APIs are available for any management software to use—for evaluation,
attestation, reporting, alerting, and so on—and they maintain the integrity of the
measurements. Others, such as VMWare, have tied access to these measurements to their
primary virtualization resource management software—vCenter, in this case. VMware
provides access to the measurements via run-time vCenter APIs, which when invoked
instantiate a TCG-compliant remote attestation protocol to request the measurements
for the attesting server/device. None of the virtualization and cloud management
software vendors provides verification/attestation software for verification of the
measurements. Since attestation is a relatively new concept, it is not yet integral to most
of the virtualization and cloud management software. Having attestation services provided
through the operating system or hypervisor would establish the function across many
enterprise and cloud customers—thereby unlocking the most valuable use models.

Intel in collaboration with security ISVs have developed attestation software
for attestation verification. This attestation software is a multi-hypervisor, multi-OS
verification/attestation program providing a secure assertion of the hypervisor and
platform integrity that is verified against a set of known-good, golden measurements,
or whitelist values. Following the key tenet of cloud technology with regard to
programmability and automation, the attestation platform exposes all its functionality via
well-defined REST & SOAP APIs for querying trust assertions, as well as for provisioning,

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

51

management, and whitelisting. The attestation process and the Intel attestation platform
are covered in detail in Chapter 4. The trust assertion from the attestation/verification
software is used by the cloud management software and the security management tools
that are in the next layer of the architecture.

Security Management Layer
The security management layer is the top layer, where the platform trust assertion
from the previous layer is requested and consumed. This security applications layer
includes some classes of traditional security applications focused on event reporting and
managing compliance and risk. Because the technologies and trusted compute pools
involve platform integrity and trust, workload control, and policy enforcement, it makes
perfect sense to have such applications aware of and enabled to detect, report, and act on
the trust information available from the Intel TXT–enabled platforms.

In the context of the TCP use model, the security management tools of interest are:

Workload/VM policy management•	

SIEM/configuration management/monitoring•	

GRC/compliance•	

These tools are critical for mainstreaming trust and elements of cloud security into
any overall corporate security management systems. This is a crucial requirement, as
IT managers do not want a new suite of tools for managing cloud security; they would
very much rather see existing tools extended to include the new cloud and virtualized
architectures as they adopt them. The primary motivation for these security management
tools is to ensure that they have the visibility to platform trust and a set of control
functions to management the lifecycle of the VMs/workloads. Though initially the
monitoring and enforcement of trust might be periodic, over time we envision that these
tools will provide continuous monitoring and enforcement of policies based on trust.

VM/Workload Policy Management
These tools provide the mechanism to specify and define the granular security
requirements for the virtual machines and workloads, and to enforce these requirements
during the lifetime of those virtual machines. Defining a security policy for a workload
runs the gamut from the trivial, such as asserting “I want to run on trusted servers,” to
the sophisticated. For an example of the latter, a policy definition could include “Run on
servers with trust level X and only on servers that are in geolocation Y, and don’t co-exist
with Z type of workloads.” Today, there is no canon for policy definition, nor standards
for tagging the workloads. Each of the policy management ISVs carries a particular
language of definition and execution environments, with these definitions likely not to be
portable or interoperable with other vendor offerings. As these capabilities mature, it is
imperative that policy definitions and other matters of semantics become standardized
and interoperable across vendors.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

52

Policy tools also provide an interface to feed the following information to other
security management tools in this layer of the stack, like the security event management
and GRC tools. They provide:

Auditable information about the policies that have been •	
evaluated

Evidence considered during policy evaluation•	

Whitelists/manifests/known-good measurements considered for •	
decision making

Reports of decisions made, such as launch or deny workload •	
creation or migration in a certain pool of compute servers

This information is provided in different formats while preserving integrity and
maintaining the chain of trust. Hytrust VPA and McAfee ePO are examples of policy
management tools for trusted compute pools.

GRC Tools—Compliance in the Cloud
GRC tools set requirements for platform trust and integrity based on workload
requirements and security standards, followed by an assessment of the environment to
determine security controls in place and to dashboard actual conditions against policy
to determine compliance. SIEM tools allow trust events to be captured, reported, logged,
and processed for correlation to determined responses or heuristics to indicate whether
a larger attack is occurring. Although not every organization will need the high level of
security afforded by a trusted computing environment, every organization using cloud
services will benefit from the vastly improved control and transparency that a measured
chain of trust enables.

Simply being able to verify conditions in the cloud services, down the stack through
the hypervisor, brings significant value to users with its visibility into actual states and
activities within the cloud and in its improved governance for cloud resources. Internal
and private clouds built on a measured chain of trust will:

Strengthen an organization’s ability to enforce differentiated •	
policies in private clouds

Enhance monitoring for compliance at all layers within the cloud•	

Streamline the auditing process•	

Allow for more flexible usage and billing for secure computing •	
resources

Organizations often see the completion of a regulatory audit as the end goal of their
compliance efforts. The reality is that compliance is a continuous cycle that starts with
technical and operational decisions on how to address control requirements. It's an

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

53

Figure 3-7. GRC dashboard showing compliance to platform trust

accomplishment to have auditors give a thumbs-up to your technical and administrative
controls. That goal notwithstanding, passing subsequent audits requires continuous
maintenance and reporting on those controls. Cloud teams hold the key to making that
happen in a scalable, automated manner. The most effective approach to achieving
continuous compliance is to define and implement policies, guidelines, standards,
and tools that secure the organization’s computing systems as a whole, with an eye
toward regulatory guidance, standards, and mandates themselves. Ensuring that
the corresponding security controls meet or exceed the standards prescribed by the
governing body will help ensure a successful audit.

RSA was one of the first ecosystem participants to demonstrate the value of platform
trust for GRC uses, with a joint Intel–VMware-RSA demonstration at the RSA Security
Show in 2010. Figure 3-7 shows a dashboard view of the status of a security control tied
to platform trust. Intel is working with a number of other providers in these market
segments to provide customers with ample choice of solutions and capabilities.

Now that we have laid out the details of the solution architecture for trusted compute
pools, let's focus on a specific example and walk through one solution stack with a
reference implementation of the use cases, so as to put these new concepts on a solid
footing.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

54

Reference Implementation: The Taiwan Stock
Exchange Case Study
The Taiwan Exchange Stock Exchange Corporation (TWSE) is a stock exchange in
Taiwan that supports the trading of 758 listed companies. Its primary business drivers are
developing new financial products and boosting the number of services it offers. Cloud
computing will be part of its ability to do so, but it realizes that strong security controls
must first be part of the picture.

A fundamental business and technical requirement for the cloud infrastructure under
construction at the TWSE infrastructure is to provide secure systems and trusted compute
environments. It has established as crucial the ability to integrate software application
solutions that provide TWSE with overall trust and security for its cloud infrastructure and
that exploit hardware-based security and include roots of trust and platform attestation.
The goals for the proof of concept built for this case study were to enable:

Greater visibility into the security states of the hardware platforms •	
running the infrastructure as a service (IaaS) for their private clouds.

Production of automated, standardized reports on the •	
configuration of the physical and virtual infrastructure hosting
customer virtual machines and data.

Controls based on the physical location of the server’s virtual •	
machines and control any migration of these virtual machines
onto acceptable servers per policy specified.

Generation of measured evidence that their services •	
infrastructure complies with security policies and with regulated
data standards.

To explore the capabilities and challenges of implementing such an infrastructure,
TWSE engaged Intel and other key ecosystem partners to develop a multi-phased proof of
concept (PoC) implementation of a more secure cloud based on familiar tools, platforms,
and software. The basic capabilities under the proof of concept include:

Measured boot for servers, with platform attestation•	

Ability to create trusted compute pools•	

Security-controlled workload placement in the trusted compute •	
pools

Security controlled workload migration into trusted compute •	
pools

Integration and extension of security and platform trust with •	
McAfee ePolicy Orchestrator* (McAfee ePO)

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

55

Solution Architecture for TWSE
For the proof of concept, a number of systems and solutions were selected based on
TWSE’s current and future business directions and needs. They map directly onto the
solution reference architecture layers discussed in the earlier section. As shown in
Figure 3-8, these include:

•	 Cloud system and infrastructure supported by Cisco. This includes
a Cisco UCS server with Intel Xeon processor E5 family and Intel
TXT-enabled, equipped with the optional Cisco TPM part. Three
blades were used to establish a mix of trusted and untrusted
platforms in the PoC environment.

•	 Virtualization solutions supported by VMware. VMware ESXi 5.1
provides fullly integrated support for Intel TXT and enables
remote platform attestation measurements to detect possible
malicious changes to BIOS and other critical base-software
components of the servers. VMware ESXi 5.1, in conjunction
with TXT, measures the critical components of the hypervisor
stack when the system boots and it stores these measurements
in the platform configuration registers (PCR) of the TPM on the
platform.

•	 Trust and policy management supported by HyTrust and HyTrust
Appliance. HyTrust Appliance 3.5 provides extensive support
for Intel TXT; the HyTrust Appliance verifies the integrity of
the physical hardware of the host to ensure that the underlying
platform is fully trusted and can implement policies based on this
information. It can ensure that specified workloads are permitted
to be instantiated only on specific hosts or clusters, the essence
of TCP. It also intercepts all administrative access and change
requests, determines whether a request is in accordance with the
organization’s defined policy, and permits or denies the request
as appropriate. The HyTrust Appliance is not a physical piece of
hardware; it is a VMware vSphere*compatible virtual appliance
deployed alongside the rest of the virtual infrastructure. Finally,
it provides direct sharing of trust and security information with
McAfee ePolicy Orchestrator (McAfee ePO).

•	 Security management solution supported by McAfee. McAfee
ePO unifies security management through an open platform,
simplifies risk and compliance management, and provides
security intelligence across endpoints, networks, data, and
compliance solutions. It helps to manage security, streamline and
automate compliance processes, and increase overall visibility
across security management activities. McAfee with HyTrust ePO
extensions enable communication with the HyTrust Appliance.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

56

Figure 3-8. TWSE proof of concept solution components

Trusted Compute Pool Use Case Instantiation
Although all of the Cisco blades in this PoC were fully Intel TXT-capable, it was important
to have a contrast between trusted and untrusted servers so as to differentiate trusted
pools and prove the controls and status reporting mechanisms. For this reason, Intel
TXT was disabled in the system BIOS configuration settings in one of the Cisco UCS
blades to prohibit the system from executing a trusted launch. HyTrust Appliance
had full integration of remote attestation capabilities. From VMWare ESXi side, the
measured elements included the VMkernel, kernel modules, drivers, native management
applications that run on ESXi, and any boot-time configuration options. As shown in
Figure 3-9, the trust status dashboard of the HyTrust Appliance shows an unknown BIOS
trust status, unknown VMM status, and overall unknown status for the second Cisco UCS
blade as a consequence of disabling the Intel TXT support.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

57

Remote Attestation with HyTrust
The HyTrust Appliance provides extensive support for Intel TXT, plus policy control
functionality for this use case—essentially establishing the parameters and policies
for a trusted compute pool. As shown in Figure 3-10, the HyTrust Appliance provides
management of critical platform attestation functionality, whitelisting of known-good
measurements, and trust operation and report dashboards for trusted compute pools,
as well as a broad set of other virtualization security controls for workloads, servers, and
administrators. The HyTrust Appliance and these solutions were used to detect, measure,
and report the trust of both the server platforms and the hypervisor, and to implement
workload controls (VM migration, etc.) based on the required platform trust attributes.

Figure 3-9. HyTrust trust attestation service dashboard indicating two trusted hosts and
one untrusted host

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

58

To summarize, the remote attestation process provides an independent evaluation
of the integrity measurements of the firmware, BIOS, and the VMM against known-
good (whitelist) program components, and it securely makes that assertion available to
the HyTrust Appliance policy enforcement and reporting components. The evaluation
of the measurements is comprehensive and covers the core of the BIOS, the BIOS
configurations, the VMM kernel, and various VMM modules loaded as part of the
VMware ESXi launch. Figure 3-11 shows a snapshot of the actual measurements of an
ESXi Server with the known-good or whitelist values.

Figure 3-10. HyTrust Appliance with remote trust attestation architecture

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

59

Use Case Example: Creating Trusted Compute Pools
and Workload Migration
Knowing the trust status of both the servers and the hypervisor highlighted the platform
trust information to TWSE, as well as defined an appropriate set of operational policies
and controls. The reference implementation demonstrated the operational details of the
trusted compute pools use cases as follows:

Creation of trusted compute pools•	

Workload placement in the trusted compute pools•	

Workload migration into the trusted compute pools•	

Dashboard reporting with McAfee ePolicy Orchestrator* •	
(McAfee ePO*)

The HyTrust Appliance enabled the team to intercept all administrative requests for
the virtual infrastructure, determine whether the request was in accordance with defined
policy, permit or deny that request, and record all administrative access and change
requests.

To apply effective end-to-end trust policies for the cloud infrastructure, the team did
the following:

Created trusted compute pools with Intel TXT•	

Identified and labeled the sensitive workloads that required •	
protection

Configured the trust policies to establish trust requirements•	

Figure 3-11. Trust attestation service - trust report view

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

60

Assigned and managed workload migration based on defined •	
trust polices

Enforced trust policies end-to-end•	

Recorded all activities, including audit, and compliance; and •	
provided reports

Integrated and Extended Security and Platform Trust
with McAfee ePO
A TWSE requirement was the integration and reporting of all security events and
enforcement decisions to a SIEM and GRC system. This gave TWSE another common
and aggregated management view of its cloud infrastructure. The PoC used the HyTrust
Appliance to extend and integrate the trust information for each hypervisor and the
virtualized resource functionality to the McAfee ePO console.

The direct integration of the HyTrust Appliance dashboard showed users the Intel
TXT trust status of the host on which each VM was running. HyTrust Appliance assessed
compliance by comparing a host’s current configuration with a hardening configuration
template that was customized based on TWSE requirements. It then provided assessment
data to the master ePO dashboard for reporting and analysis. HyTrust Appliance gave
McAfee ePO a record of all administrative activities, including a unique user ID, and
operations attempted by the privileged user, including denied or failed attempts.
Figure 3-12 shows the aggregated view of trust within the McAfee ePO dashboard.

Figure 3-12. McAfee ePO displaying administrator activity and trust status captured by
HyTrust Appliance

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

61

Figure 3-13 shows a drilldown view of the trust information in the McAfee ePO
system as provided by the seamless integration between the HyTrust Appliance and the
McAfee policy orchestrator.

Figure 3-13. McAfee ePO displaying a drilldown of the server trust status from the HyTrust
Appliance

McAfee ePO’s flexible automation capability streamlined the workflows, dramatically
reducing the cost and complexity of security and compliance administration.

INteL tXt arChIteCtUraL OVerVIeW

Intel TXT is a set of enhanced hardware components designed to protect sensitive
information from software-based attacks. Intel TXT features include capabilities in
the microprocessor, chipset, I/o subsystems, and other platform components. When
coupled with an enabled operating system, hypervisor, and enabled applications,
these capabilities provide confidentiality and integrity of data in a time of
increasingly hostile environments.

Intel TXT incorporates a number of secure processing innovations (see figure 3-14),
including:

•	 Protected execution. lets applications run in isolated environments
so that no unauthorized software on the platform can observe or
tamper with the operational information. Each of these isolated
environments executes with the use of dedicated resources
managed by the platform.

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

62

•	 Sealed storage. Provides the ability to encrypt and store keys, data,
and other sensitive information within the hardware. This can be
decrypted only by the same environment as encrypted it.

•	 Attestation. Enables a system to provide assurance that the
protected environment has been correctly invoked and takes a
measurement of the software running in the protected space.
The information exchanged during this process is known as the
attestation identity key credential, and is used to establish mutual
trust between parties.

•	 Protected launch. Provides the controlled launch and registration
of critical system software components in a protected execution
environment.

•	 Trusted extensions integrated into silicon (processor and chipset).
Allow for the orderly quiescence of all activities on the platform
such that a tamper-resistant environment is enabled for the
measurement and verification processes; and allows for protection
of platform secrets in the case of “reset” and other disruptive
attacks.

•	 Authenticated code modules (ACm). Authenticate platform-specific
code to the chipset and execute in an isolated environment within
the processor and the trusted environment (authenticated code
mode) enabled by AC modules to perform secure tasks.

Figure 3-14. Intel Trusted Execution Technology components

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

63

Intel TXT Principles of Operation

Intel TXT works through the creation of a measured launch environment (mlE)
enabling an accurate comparison of all the critical elements of the launch environment
against a known-good source. Intel TXT creates a cryptographically unique identifier
for each approved launch-enabled component and then provides a hardware-based
enforcement mechanism to block the launch of the code that does not match that
which is authenticated or, alternatively, indicates when an expected trusted launch
has not happened. This hardware-based solution provides the foundation on which
IT administrators can build trusted platform solutions to protect against aggressive
software-based attacks and to better control their virtualized or cloud environments.

figure 3-15 illustrates two different scenarios. In the first, the measurements match
the expected values, so the launch of the BIos, firmware, and Vmm are allowed. In
the second, the system has been compromised by a rootkit hypervisor, which has
attempted to install itself below the hypervisor to gain access to the platform. In this
case, the Intel TXT-enabled, mlE-calculated hash system measurements differ from
the expected value, owing to the insertion of the rootkit. Therefore, the measured
environment will not match the expected value and, based on the launch policy, Intel
TXT could abort the launch of the hypervisor or report an untrusted launch into the
virtualization or cloud management infrastructure for subsequent use.

Figure 3-15. How Intel Trusted Execution Technology protects the launch environment

CHAPTER 3 ■ PlATfoRm BooT InTEgRITy: foundATIon foR TRusTEd ComPuTE Pools

64

Summary
In this chapter, we introduced the concept of platform boot integrity and trust. We
covered the roots of trust in a trusted compute platform, and the two measured boot
models, S-RTM and D-RTM. We introduced the concept of attestation as a critical
requirement to assert the boot integrity, and presented the notion of trusted compute
pools, including the use cases and the solution reference architecture for enabling
trusted compute pools. By reviewing one solution stack and a reference implementation,
we reinforced the concept and showed how to enable and use trusted compute
pools. Platform trust is the new data center management attribute that can be used to
orchestrate and manage the resources of virtualization and cloud data centers so as to
meet the corresponding security challenges and requirements.

Looking ahead, Chapter 4 is a deep dive into attestation and view of a commercial
implementation of a remote attestation software solution. In addition to platform trust
and hardware roots of trust, more and more organizations and service providers are
interested in providing visibility of and control to the physical location of the servers
where the workloads and data are actually residing and executing. These controls are
critical for federal agencies and regulated industries. Chapter 5 will introduce a new
concept and control called hardware-assisted asset tag, which can be used to provide
isolation, segregation, placement, and migration control of workload execution in multi-
tenant cloud environments. Additionally, as a specialization of asset tags, geolocation/
geotagging can be enabled to definitively provide visibility of the physical geolocation of
the server, which can enable many controls that requirement hardware-based roots of
trust to assert the location of the workloads and data. These attributes and the associated
controls are dependent on the assertion of the boot integrity of the platform, and hence
they become a great adjacency to trusted compute pools and boot integrity.

65

Chapter 4

Attestation: Proving
Trustability

In the last few chapters we have looked at the first stages in a process toward establishing
trust between systems. First, the establishment of roots of trust and the measured boot
components; and second, the collection of evidence throughout the measurement
process. We reviewed the different roots of trust in a compute platform—namely, the
RTM, RTS, and RTR—and how the measured boot process (S-RTM and D-RTM) uses
the RTM to measure and store the evidence in the RTS. The next stage in this process
is the presentation of this evidence through attestation protocols and appraisal of the
evidence that asserts the integrity of a platform. This stage is referred to as attestation and
verification in this book, and it is our objective for this chapter.

We introduce the concept of attestation in this chapter, along with an attestation
framework that defines a logical view of the assertion layers leading to attestation of specific
target entities or components. The attestation provides evidence of trust and can include
any device or target system participating in the trust chain. Additionally, the chapter covers
one commercial implementation of the attestation solution authored by Intel and security
management independent software vendors, code-named Mt. Wilson. We provide details
about the solution architecture, attestation application programming interfaces (APIs),
integration of these APIs into a security management function, and workload orchestration
tools for decision making. We hope application developers and security specialists will gain
a solid understanding of the inner workings of attestation solutions to the level of being able
to carry out integration projects and even extend the paradigm.

Attestation
Attestation is a critical component for trusted computing environments, providing an
essential proof of trustability and the means for conducting audits for target computing
devices. That is, attestation allows a program or platform to authenticate itself. Remote
attestation is a means for a system to make reliable statements about the pre-launch and
launch components in a distributed system. A remote party can then make authorization
decisions based on that information. The concept of attestation is still evolving, and
hence the research community has not reached a common understanding of what it

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

66

means. However, here is a practical definition for the purpose of working with trusted
clouds. The Trusted Computing Group (TCG) defines attestation as:

The process of vouching for the accuracy of information. External entities
can attest to shielded locations, protected capabilities, and Roots of
Trust. A platform can attest to its description of platform characteristics
that affect the integrity (trustworthiness) of a platform. Both forms of
attestation require reliable evidence of the attesting entity.

There are two properties that have to be addressed to assert this trust.

1. Measurement properties. Includes the degree of completeness
for measuring the launch and running state of the targeted
device or system, and the freshness of the measurements—
that is, how recent the measurements are.

2. Attestation properties. Includes the authenticity of the
evidence to the decision process, and a measure of semantic
explicitness describing the appropriateness of the evidence to
the decision-making process.

These two properties help us classify the remote attestation techniques. Most of the
existing remote attestation techniques can be categorized into one of the two types.

•	 Static remote attestation techniques rely on the signatures or
hashes of the firmware and binaries for determining the integrity
of the platform state. Static remote attestation can’t be extended
to measure the behavior of a platform. Furthermore, even if the
hash of the boot state (static state) does not reveal any tampering,
it does not follow that the run-time behavior of the application
will be trustworthy.

•	 Dynamic remote attestation techniques use monitoring instead
of measuring the application binary. Dynamic remote attestation
techniques are relatively difficult to integrate into existing
operating systems and software applications, because there is
no unequivocal reference point; that is, there is no commonly
agreed upon definition of what constitutes trustworthy behavior
in an operating system, virtual machine monitor, or application.
Benchmarks for trustworthy behavior, defined in existing remote
attestation techniques, are either vague or incomplete, with only
a portion of the activities performed by an application during
its execution monitored. The benchmarks don’t apply to virtual
machine monitors because the benchmark requirements are not
yet well understood.

Both static and dynamic remote attestation are relevant to virtualization and cloud
computing. As described in the previous chapters, the trusted compute pool uses models
that begin with the boot integrity of the platform, asserted with the static attestation
techniques. Meanwhile, asserting run-time integrity needs dynamic attestation
techniques. Static attestation techniques are beginning to be adopted in practical cloud

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

67

computing deployments. The static techniques provide a good foundation toward
reaching a trusted infrastructure. Dynamic remote attestation is complementary and
brings significant value by enforcing security; hence, we can expect a strong drive for
adoption. However, in order to achieve the vision and goals of a trusted infrastructure,
it is an imperative to have a dynamic remote attestation facility in working order.

For context, we provide a brief overview in this chapter of remote attestation
techniques discussed in the research community, including reference implementations
where available. Please note that, other than Integrity Measurement Architecture, none
of the schemes has seen wide adoption, if any at all.

Integrity Measurement Architecture
Integrity Measurement Architecture (IMA) is a classic static remote attestation model
developed by IBM1 for measurement and reporting of the integrity of Linux-based
systems. It takes a hash of the binaries of the software code that run on any system, and
compares them against known-good hashes to assert that the system is high integrity.
IMA extends the trusted boot process of the TCG beyond the bootstrapping of the
Linux loader, to the chain of trust from the TPM, to applications running on the system.
Through extensions to the kernel of the Linux system, IMA measures the code that’s
loaded into memory for execution by taking a SHA-1 hash of the code prior to that
execution. A measurement archive is maintained for measurements previously taken.

Integrity Measurement Architecture was the first practical implementation of a
TCG-based remote attestation technique. It allows a challenger to verify a platform
status by measuring the executables running on that platform. IMA forms the basis for
many remote attestation techniques that followed the original implementation. The
requirement for using IMA is to download a kernel patch from IBM. The prototype of
IMA was implemented as a Linux Security Module on RedHat 9.0 Linux distribution and
kernel version 2.6.5.

Policy Reduced Integrity Measurement Architecture
Policy Reduced Integrity Measurement Architecture (PRIMA) is a variation of IMA.
According to the authors of this architecture,2 the static code and load-time measurement
cannot be used to assess the run-time behavior. This architecture introduces the concept
of measured security context or label of the subject, in addition to static code. The code/
data digest also includes a role field so that additional identification of subjects and
objects can be done. This approach allows remote attestation to be made on the basis of
secure information-flow models. The approach is rather low level and cannot be used
for distributed services in an organization or the information flows that occur within the
organization and in outside world. There are no known implementations in a commonly
available operating system environment.

1See http://researcher.watson.ibm.com/researcher/files/us-msteiner/ima.sailer_
usenix_security_2004_slides.pdf
2Trent Jaeger et al., “PRIMA: PolicyReduced Integrity Measurement Architecture, SACMAT2006,
June 7–9, 2006, Lake Tahoe, California. ACM 1 59593 354 9/06/0006.

http://researcher.watson.ibm.com/researcher/files/us-msteiner/ima.sailer_usenix_security_2004_slides.pdf
http://researcher.watson.ibm.com/researcher/files/us-msteiner/ima.sailer_usenix_security_2004_slides.pdf

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

68

Semantic Remote Attestation
Semantic Remote Attestation is an attempt at creating a platform-independent remote
attestation technique.3 The core idea is that of a trusted virtual machine (TVM) capable
of enforcing the requirements for those applications running within this virtual
machine. The model establishes trust on the TVM and uses this trust to enforce security
requirements. It attempts to measure the behavior of the code running inside a trusted
virtual machine. The architecture is an incremental improvement over the original
remote attestation techniques and is more flexible compared with binary attestation
techniques with regard to expressiveness. This model of attestation has not been
implemented, or at least published, owing to the complexity of defining and analyzing the
notion of trust.

The Attestation Process
Given the discussion in the above section about the state and maturity of attestation
techniques, let’s look at the details of the static attestation protocol and the overall
integrity measurement flow.

The integrity measurement flow describes the steps required to measure the
platform integrity measurements. It includes:

A means of generating and collecting the measurements through •	
an RTM.

A means of storing the measurements that is either tamper •	
resistant or tamper evident, with a TPM for RTS and RTR.

A means of conveying the measurements to a challenger via the •	
attestation agents, as described in the attestation protocol below.

A means of analyzing the measured result, and a means of •	
asserting the trustability of the machine based on the results of
that determination through a trust assessment authority or trust
attestation authority (TAA).

Remote Attestation Protocol
Figure 4-1 illustrates the attestation protocol providing the means for conveying
measurements to the challenger. The endpoint attesting device must have a means of
measuring the BIOS firmware, low-level device drivers, operating system, virtual machine
monitor components, and be able to forward those measurements to the attestation
authority. The attesting device must do this while protecting the integrity, authenticity,
nonrepudiation, and some cases, the confidentiality of those measurements.

3Vivek Haldar et al., Semantic Remote Attestation: a Virtual Machine Directed Approach to Trusted
Computing, VM2004 Proceedings of the 3rd conference on Virtual Machine Research and Technology
Symposium, vol. 3 (Berkeley, CA: USENIX Association).

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

69

TPM

OS

Attestation
Agent Challenger

Verifier

1. 160 bit Nonce, NC
2.

 T
PM

Qu
ot

e
Re

qu
es

t
 (N

C,
 P

CR
 li

st
)

3.
 T

PM
 Q

uo
te

 R
es

po
ns

e

Si
g

(P
CR

, N
C)

AI
K

4. { Sig (PCR, NC), SML, AIKcert }
AIK

5.
 In

te
gr

ity
Ve

rif
ic

at
io

n

a. Ver (Sig (PCR, NC), AIK) = true / false
AIK pub

b. , c. Compare (PCR, SML == Golden Measurements)

Figure 4-1. Remote attestation protocol

Let’s walk through the steps of the remote attestation protocol:

1. The challenger, at the request of a requester, creates a
nonpredictable nonce (NC) and sends it to the attestation
agent on the attesting node, along with the selected list of
platform configuration registers (PCRs).

2. The attestation agent sends that request to the TPM as a
TPMQuote request with the nonce, and the PCR list.

3. In reponse to the TPMQuote request, the TPM loads the
attestation identity key from protected storage in the TPM
by using the storage root key (SRK), performs a TPM Quote
command, which is used to sign the selected PCRs and
the provided nonce (NC) with the private key, AIKpriv.
Additionally, the attesting agent retrieves the stored
measurement log (SML).

4. Called the integrity response, the attesting agent sends the
response consisting of the signed quote, signed nonce (NC),
and the SML to the challenger. The attesting agent also
delivers the AIK credential, which consists of the AIKpub that
was signed by a privacy CA.

5. The challenger validates if the AIK credential was signed by
a trusted privacy CA thus belonging to a genuine TPM. The
challenger also verifies whether AIKpub is still valid by checking
the certificate revocation list of the trusted issuing party.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

70

6. The challenger verifies the signature of the quote and checks
the freshness of the quote.

7. Based on the received stored measurement log and the PCR
values, the challenger processes the SML, compares the
individual module hashes that are extended to the PCRs
against the known-good or golden values, and recomputes
the received PCR values. If the individual values match the
golden values, and if the computed values match the signed
aggregate, the remote node is asserted to be in a trusted state.

This protocol is highly resistant to replay attacks, tampering, and masquerading.
How does this remote attestation protocol get implemented and manifested in an IT

environment? Figure 4-2 illustrates a sample IT architecture supporting the generation,
forwarding, and analysis of platform boot integrity measurements, as well as assertion of the
trustability of the attestation at each decision point via a trust assertion authority, or TAA. These
solutions come from a set of compatible components available from a variety of suppliers.

Policy Enforcement
Engine

Whitelist
Repository

Appraiser/Verifier

Trust Dashboard

Golden Measurements/
Good known/whitelists OEM Supplied

OS/VMM
Vendor Supplied

User-generated
(Secure Enclave)

ISV Service

Trust Agent

Collection
AgentRequester

Host/EndPoint Device

Whitelist Sources

Trust Attestation
Authority (TAA)

Figure 4-2. Trust attestation authority

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

71

Flow for Integrity Measurement
In assessing the measurements, the TAA references a set of properties. These properties
represent attributes and measurements for the BIOS and the operating system and virtual
machine monitors. These measurements are referred to as golden measurements or
whitelists, and are:

Provided and verified and validated through certificates by the •	
original equipment manufacturer (OEM))

Provided and vouched for by an ISV Service•	

Collected by an authenticated administrator on first boot in an •	
isolated or enclave type of environment

The process for carrying out the integrity measurement and verification is as follows:

1. When a new instance of a BIOS or an operating system or
virtual machine monitor is made available, an initial set of
trusted measurements (golden measurements) is taken on the
image. These measurements are provided either through third
parties such as an OEM, operating system, virtual machine
monitor supplier, or through a trusted whitelist service
provider to the trust authority, It may also be generated at
initial provisioning by system administrators.

2. An RTM such as Intel TXT is used to take the measurement of
the software components during server or device boot.

3. The measurements are stored in the TPM. A log from which
the measurements can be reconstructed is stored in memory
for transmission to the verifier to allow reconstruction of the
measurements.

4. The TAA generates an authenticated request for
measurements from the server/device, in response to an
action by any requester, or the endpoint device requesting a
service. This action follows the attestation protocol previously
described. The trust agent receives this request and passes
it to the TPM to obtain a TPMQuote for the requested PCR
measurments. TPMQuote, along with the measurement log,
are packaged as an integrity report, using the TCG Integrity
Reporting Schema.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

72

5. The trust agent transmits the data to the TAA’s verifier. The
TAA verifies the signature over the hashes by inspecting both
the public key used to sign them and the signature itself,
which will ensure that the nonce sent to the trust agent is the
same one as the one used in the TPMQuote. It then compares
those signed measurements with the golden measurements
obtained earlier. There is more than a simple comparison.
Depending upon the sophistication of the verifier, it can
use the system measurement log (SML) to re-compute the
aggregate measurements from the individual measurements,
and then verify them against the golden measurements.

6. The results of the comparison, collated with other such
comparisons from other machines and digitally signed, may
be displayed via a user interface, such as a management
console or dashboard, to the administrator or it can be
provided through an API to an automated enforcement, policy
engines, and orchestrators. Solutions use the results to apply,
manage, enforce, and report on the trust level of the systems.

A First Commercial Attestation Implementation:
The Intel Trust Attestation Platform
To provide a path toward broad use of trusted compute pools and to exemplify the vision
of trusted infrastructure and cloud computing, Intel developed a remote attestation
solution capable of working across a broad range of hardware and operating system and
virtual machine monitor platforms: the Intel Trust Attestation Platform (TAP). The goals
of the Intel Trust Attestation Platform are threefold:

Provide a production-quality implementation of remote •	
attestation and a trust assessment authority capable of providing
verification and assessment across a broad range of devices. The
Intel Trust Attestation Platform features high availability and
security of the attestation platform and its interfaces.

Provide stable and simplistic northbound and southbound •	
application programming interfaces (APIs) for attestation
information requesters, and for interfacing with different sources
of integrity measurements. These are trust APIs, designed to
encourage multiple interoperable attestation solutions from a
variety of security-management independent software vendors.
The interoperability and diversity minimize the occurrence of
vendor lock-in.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

73

Develop the attestation platform as a true extensible and •	
pluggable framework providing fertile ground for the deployment
of innovative third-party attestation techniques and models.
Initially, the solution supports a TPM-based static attestation
model, and is already being extended to support dynamic
attestation techniques for asserting the boot integrity of virtual
machines, as well as the run-time integrity of operating systems
and hypervisors.

Figure 4-3 captures the high-level architecture of the Intel Trust Attestation Platform.
Consistent with the cloud approach, the Intel Trust Attestation Platform features a loosely
coupled architecture with a flexible software backplane and fabric with core capabilities
and services, including a set of slots to plug in various attestation blades for different
types of attestation provided by Intel and third-party independent software vendors. Here
are the key aspects of the architecture:

Sehedulers/
Orchestrators

Query

Authentication

BIOS/VMM
Attestation

TPM/Trust
Agents

GLC
Agents/API

TBD
Agents/API

TBD
Agents/API

Run Time
Integrity

Asset Tag/
(1.5)

Trusted VMs
(2.0)

Attestation
Cache

Access
Control

Credential
Mgt

Provisioning Reporting Mgt

Se
cu

rit
y

Au
to

m
at

io
n

System Mgt
Tools

APIs

Common Services

Attestation Engines

Attestation Sources

Security
Tools

Compliance
Tools

Portals/
Admin

Figure 4-3. Intel Trust Attestation Platform

An •	 API layer acting as primary interface for:

• Endpoint devices needing to carry out an attestation before a
request for services

• Entities requesting integrity verification for policy
enforcement and visibility into the trust of the infrastructure

• Access to compliance and security monitoring tools

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

74

A •	 common services layer for the attestation service and platform
to enable authentication, authorization, and access control (AAA)
for the API calls, and a flexible and extensible data model for the
attestation platform repository accessible via APIs.

An •	 attestation blade supporting a variety of attestation types
implemented as plug-ins. The attestation blade is an element
of a set of pluggable components integrated into the attestation
platform taking advantage of the fabric and core functionality of
the platform, including interfaces, security, and common services.
As shown in Figure 4-3, each blade has two distinct components:

• A measurement and attestation agent capable of collecting
measurements from an endpoint device or server.

• A verification module that uses the attestation platform
services, and provides custom verification logic for an
attestation capability instance, using the northbound APIs
of the attestation platform, thereby exposing an assertion
function and making it available to policy enforcers and
other requesting entities.

Mt. Wilson Platform
Mt. Wilson is the code name for the Intel Trust Attestation platform that has the TPM-
based boot attestation functionality. It is the first attestation blade that was released as
part of the attestation platform. Mt. Wilson provides a secure mechanism for customers
and data center operators to attest the integrity of Intel-based systems enabled with
Intel’s Trusted Execution Technology (TXT) for RTM, along with third-party trusted
platform modules (TPMs). The TPM stores and reports the platform measurements,
including BIOS firmware and hypervisor software on servers. The architecture of the
blade, described in more detail later in this chapter, is applicable to any TPM-based
integrity measurement and reporting architecture.

We have assembled proof of existence working prototypes of a boot integrity
attestation blade with Microsoft Windows 8, and corresponding TPM using a BIOS boot
block as the RTM. We also have constructed a proof point with Citrix XenClient XT using
Intel TXT on the client. A subset of the Mt. Wilson functionality has been shared with the
open-source community under the name Open Attestation (OAT).

Mt. Wilson is a fast-evolving platform with new features and capabilities developed
and released as the community gains experience with the technology. Here is a snapshot
of key capabilities in the current Mt. Wilson solution.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

75

Table 4-1. Mt. Wilson Key Capabilities

Attestation Support PCR and module-based attestation and verification for
VMware ESXi 5.1 and above, and for Xen, KVM with
RHEL, SuSE, and Ubuntu Linux

APIs REST interfaces for query, reporting, management, and
provisioning functions;

REST interfaces for whitelist definition and management

Security Digest-style API authentication and validation using RSA
keys (<signed http authorization header >)

SAML-based API responses with signed SAML assertions

SSL communication and mutual authentication of
communication endpoints

Auditability Secure logging of requests, responses, transactions
for auditability, forensics including logging APIs, and
support for CEF format for consumption into SIEM tools

Deployability Automated installation of host trust agents and all
Mt.Wilson components

Solution validation with Hewlett Packard, Dell, Cisco
hardware, etc.

Availability Deployed as Xen/KVM/VMW, virtual machines
including high availability and fault tolerance for key
components for VMware

Automation and Productivity
Tools

API client: utility wrapper code for API invocation and
response processing

Reference integration with OpenStack extensions to
flavors, dashboard, scheduler

Reference trust dashboard with API integration with
Mt. Wilson

The rest of this chapter will provide a comprehensive view of this attestation blade,
starting with the architecture and design components to support server operating
systems and virtual machine monitors, followed by the core attestation related API
definitions and security considerations. Sample source code examples are provided in the
last section of this chapter to show how to:

Register the servers with Mt. Wilson•	

Request the trust assertions (using the trust APIs)•	

Whitelist the golden measurements that are used in the appraisal •	
and verification

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

76

Mt. Wilson Architecture
Mt. Wilson, as shown in Figure 4-4, has two main components: the trust agent (TA) and
the trust attestation authority (TAA.)

Mt. Wilson

ESXi

ESXi

ESXi

VMware
vCenter

Xen

Linux/
KVM

Trust
Agent

Trust
Agent

R
E
S
T

Gather platform
status (TCG,XML)

Client
Devices

Trust
Agent R

E
S
T

Provide platform trust status
for trusted pools,
Compliance, etc

• Software Hashes for Modules
• “Known Good” PCR Values
• Control Policies Etc.
• Trust Definition for MLE

Privacy CAAttestation
Server

Attestation
Cache

MLE + White List
Management

Provisioning +
Automation

-Mt. Wilson

Key
Management

Trust Challengers (Portals, Orchestrators, Policy
Engines, Compliance Tools, SIEMs, etc.)

Figure 4-4. Mt. Wilson architecture

The trust agent runs on the device or host that is attesting with the trust attestation
authority. The trust agent is the collector, and securely uploads the integrity measurements
(fetched using the TPMQuote command) and the integrity event log from the TPM. The
trust agent is not required in a VMWare environment, since vCenter provides specific APIs
(called TrustAttestationReport) and capabilities that provide the functionality. More
specifically, vCenter Agent and VMWare vCenter Server enable the necessary handshake,
verification of the platform certificates, and invocation of the TPM commands, in response
to any entity invoking the TrustAttestationReport web services API.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

77

The trust attestation authority is the core attestation and assessor with a number of
key services:

•	 Attestation Server: This is the primary service providing the
APIs for the trust attestation authority. It has the function of
interfacing with the attesting hosts, requesting the specific host
for its measurements following the remote attestation protocol,
and verifying certificates, signatures, and logs requests and
responses for tracking and auditability. A key role of the attesation
server is to appraise the measurements from the device/host,
which involves comparing these measurements against golden
measurements, whitelists, and known-good values. The whitelists
are the final TPM PCR extensions for each of the PCRs of the TPM
and granular SHA-1 hashes of the various loadable modules of
the measured launch environment (MLE). The appraisal includes
verifying the individual module hashes from the SML (event log)
against the whitelists of the module hashes and recomputing the
PCR values from the event log entries. The recomputed PCR value
has to match the value sent from the device (which shows that the
log is not compromised) and match the whitelist/known-good. In
today’s implementation across hypervisor and operating system
vendors, there are variations in approaches to measuring the
TCB. For instance, VMware has made great strides in measuring
a high percentage of their TCB. Open-source operating system
and hypervisor providers have, for the most part, reused the Intel
reference tboot implementation, and consequently measure a
small part of the TCB, mostly the kernels. As the need for trust
increases in the cloud data centers, vendors have been expressing
a willingness to broaden the amount of measured TCB.

•	 Whitelist Management: This service provides APIs to define the
various MLEs in the environment, their attributes, policy-driven
trust definition, and the whitelists for the modules or PCRs.
Whitelist measurements are usually retrieved from hosts built and
configured in an isolated environment/enclave, or provided by
the OEM and VMV/OS vendors. The MLEs and the corresponding
whitelist measurements need to be configured to specific versions
of BIOS and hypervisor.

•	 Host Management: This service provides APIs to register the
hosts to be attested with the system. For successful attestation, the
whitelists for the BIOS and hypervisor running on the host need
to be preconfigured in the Mt. Wilson system, prior to registration
of the host that would attest.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

78

•	 Privacy CA: Provides the attestation certificate for the open-
source hypervisor hosts and validation of the same. The certificate
authority needs to support the OCSP protocol for certificate
validation. This capability is subsumed by VMware vCenter Server
in the VMWare environment. Management of Citrix XenServer
does not need privacy CA since it supports direct anonymous
attestation (DAA).

In the next section, we drill into the attestation server and understand the functions
and the attestation process flows.

The Mt. Wilson Attestation Process
Figure 4-5 illustrates the attestation architecture in Mt. Wilson, with a drilldown of the
attestation server component described in the previous session and depicted in Figure 4-4.
The Mt. Wilson attestation process comprises three flows:

Whitelist/good
known

Trust Attestation Server

Trust Agent

Sealed SSL Cert
Signed by AIK

TPM Quote
Signed by AIK

Expected PCR/module
Values
For the host

Registered
Hosts

AIK Certificate
For the host

SAML Assertion
Signed by Attestation
Service
(IP Addr, AIK, SSL Cert,
attributes)

TPM

PCR Quote
Signed by AIK

Verify Quote
Signature

Compare
PCRs/modules to
Expected Values

Re
qu

es
te

r

REST APIs

Verify SSL
Signature

Host

PCA & EK Signer

Host
Registration AIK Cert,

TA SSL Cert

2

1

1

2

2

1 AIK Provisioning & Registration

Attestation2

2

API Client
AuthenticationRe

qu
es

te
r

Figure 4-5. The Mt. Wilson attestation architecture

1. Provisioning the attestation identity keys (AIKs) and ensuring
successful validation of the host

2. Registration of the host with Mt. Wilson

3. Actual attestation request and response

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

79

Attestation Identity Key Provisioning
The attestation identity key provisioning process is done in four steps.

1. TPM on the host is validated. According to the TCG
specifications, compliant systems should contain an
endorsement credential and a platform credential. These two
credentials are installed by the OEM to certify that the TPM’s
endorsement key and the entire TCG subsystem are genuine.
However, in practice these credentials are often missing. As a
workaround, system administrators may inspect a system and
generate equivalent credentials locally after being satisfied
that the system is genuine. The trust agent software provides
a password-protected mechanism in conjunction with the
privacy CA service for the system administrator to easily
generate and install the equivalent credentials. Additional
credentials, known as the conformance credential and
validation credential, are also possible but are seen even less
in practice, and are not covered during the attestation identity
key provisioning and host registration.

2. The AIK is created by the platform and certified by the privacy CA.
This transforms the platform verification problem into an RSA
encryption problem. It is critical for the system administrator
to conduct an adequate inspection to ensure that the TPM is
genuine and that Intel TXT is properly enabled on platforms
that are missing the endorsement credential and the platform
credential because, once the AIK is certified by the privacy CA,
remote attestation services will trust TPM quotes signed with the
corresponding AIK private key. The AIK certificate is imported
into Mt. Wilson when the host is registered.

3. An RSA key pair and transport layer security (TLS) certificate
are generated. These are for the trust agent to use for
incoming attestation requests. Mt. Wilson provides a
mechanism to import the trust agent TLS certificate on a
per-host basis and verifies all attestation connections to that
host using the same certificate.

4. A second RSA key pair and TLS certificate are generated on
the platform. The private key bound to the TPM and the
TLS certificate indicates the specifics of the TPM binding.
This key pair facilitates applications of the trusted compute
pool relying on attestation of the platform to authorize
certain actions by providing a mechanism assure a third
party that, when it connects to the attested platform, it is the
same platform in the same trusted state as was attested. Mt.
Wilson provides a mechanism to import the bound or sealed
TLS certificate after a host is registered and to provide that
certificate to its clients.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

80

Host Registration and Attestation Identity Key Certificate
Provisioning
Figure 4-6 depicts the sequence diagram showing the steps for host registration and the
management of attestation identity key certificates. As mentioned earlier, these steps are
applicable only for hosts running on Xen or KVM.

Attestation
Server

Trust Agent Privacy CA

Host
Registration
Utility/Mgt
Software

AddHost

Generate Identity

Create new AIK
Encrypt EC & AIK w/ PCA AIk Signing Key (pub)

Generate Identity
Decrypt for EC & AIK
Verify EC with MTW EK

Signing Key (prv)
Generate AIK Cert; signed with

PCA AIK Signing Key
Encrypt with EC

Encrypted AIK Cert

Decrypt AIK Cert

AIK Certificate over SSL

Register Host and
AIK Certificate in DB

Status

Figure 4-6. Flow of authority identity key certificate provisioning

The host registration process begins with an API request to •	
the attestation server. This request may come from a system
administrator using a management portal, or from an automated
system in charge of managing hosts in the data center.

The attestation server sends an attestation identity key •	
provisioning request to the trust agent on the host using a TLS
connection secured by the trust agent TLS certificate.

The trust agent uses the TPM to create a new AIK private and •	
public key pair. It sends the AIK public key and the endorsement
credential to the privacy CA, encrypted using the privacy CA’s
public key to ensure privacy.

The privacy CA decrypts the AIK public key and endorsement •	
credential using its private key. It then generates a random
challenge and encrypts it using the public key certified by the
endorsement credential. It sends this challenge to the host.

The host decrypts the challenge using the endorsement key, •	
a private key corresponding to the endorsement credential. It
re-encrypts the challenge using the privacy CA’s public key for
privacy and sends the re-encrypted challenge to the privacy CA.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

81

The privacy CA decrypts the challenge to verify it is correct, then •	
certifies the host’s AIK public key. The privacy CA sends the AIK
certificate to the host, encrypted using the public key in the host’s
endorsement credential.

The host decrypts the AIK certificate using its endorsement key.•	

The host sends the AIK certificate to the attestation server over •	
the trust agent TLS connection.

The attestation server registers the host and stores the AIK •	
certificate in the database.

The attestation server responds to the system administrator •	
or automated system, indicating the success or failure of the
registration process.

Requesting Platform Trust
This is the invocation of the trust APIs by an entity requesting trust information. The
API request is authenticated and the input parameters are validated and then handed
to the appraiser component of the attestation server. The appraiser follows the remote
attestation protocol to challenge the platform for the integrity measurements. Once
the verification is done, Mt. Wilson summarizes all these steps by generating a SAML
assertion of the platform compliance with its trust policy. Details of the SAML assertion
and the security and integrity of the exchange are covered later in this chapter.

Security of Mt. Wilson
Security is integral to the Mt. Wilson platform. The ultimate objective of an adversary of
Mt. Wilson would be to subvert and control the outcome of the attestation by:

Spoofing the trust agent to attain a fake TPM quote•	

Compromising the Mt. Wilson attestation server to subvert signed •	
content

Spoofing the Mt. Wilson attestation server to fake a signed content•	

Hacking the whitelists•	

Compromising the data on the network and repositories•	

Figure 4-7 shows the threat model considered during the design of Mt. Wilson,
with articulation of the consequences when the adversary accomplishes the attack and
possible mitigations implemented. We summarize the mitigating actions against the
threats listed above.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

82

Figure 4-7. Mt. Wilson threat analysis

Registered API client calls (signed with their private key) •	
can be verified by the Mt. Wilson attestation server using the
corresponding public key. These keys get generated and stored
by the API client during the registration process. Users are
encouraged to secure their private keys using a password-based
mechanism, at minimum. The Mt. Wilson Java API Client Library
includes convenient functions for this purpose, using the Java Key
store format to secure the private keys.

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

83

The communication channels between the hosts and the users •	
are encrypted using SSL. When a new user registers with Mt.
Wilson, the Mt. Wilson SSL TLS certificate is verified and stored by
the user to secure subsequent communication between the user
and Mt. Wilson. The trust agent stores its SSL TLS certificate with
Mt. Wilson upon registration of a new host to secure all future
communication between Mt. Wilson and the trust agent.

Trust agents store their TLS private keys in a password-protected •	
Java Keystore file.

Users are allowed to call into APIs based on their existing roles. •	
Users request roles during registration with Mt. Wilson and these
are approved by the Mt. Wilson administrator.

The attestation status of the hosts is returned as signed SAML •	
assertions that can be verified by the end consumer. The
Mt. Wilson SAML certificate is stored by users when they register
with Mt. Wilson in order to later verify SAML assertions.

A public and private key pair is the preferred authentication •	
mechanism for management of the whitelist and host trust
policies.

Mt. Wilson Trust, Whitelisting, and
Management APIs
Mt. Wilson provides a rich set of APIs for all interactions with it. In fact, the primary
communication with the Mt. Wilson attestation authority is via authenticated APIs. There
are five categories of APIs:

1. Provisioning APIs, for registering hosts and requesting AIKs.

2. Query APIs, the trust APIs that requesting entities (requesters/
API clients) invoke to get a trust assertion.

3. Reporting APIs, providing details about hosts registered with
Mt. Wilson, including the current measurements and the
whitelists.

4. Automation APIs, allowing an administrator to easily register
all hosts within a VMware cluster or create an MLE using a
known-good host in a trusted environment.

5. Management APIs, enabling registering users, managing
their authorized roles, and downloading various certificates
managed by Mt. Wilson.

Calls to the API must be sent over SSL TLS. All APIs are REST-based. Mt. Wilson APIs
use a client-server model without third-party intervention to provide authentication. The
authentication model is very similar to OAuth 1.0 and HTTP Digest, and it provides a

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

84

stateless scheme for use with clusters and load balancers. However, it does not work with
URL-rewriting proxies because the URL is covered by the client’s signature. Every API
client—that is, any entity invoking the APIs, such as portals, schedulers, other subsystems
or policy engines—needs two RSA keys, as follows:

•	 API signing key. The public portion of the API signing key is stored
in the Mt. Wilson keystore. The API client retains the private
portion of this key in an encrypted and secure keystore

•	 SAML assertion validation key. This is the public portion of the
Mt. Wilson SAML signing key and is stored with the API client

An API client registers with Mt.Wilson via a credential •	
management server to acquire the RSA keys. A Mt.Wilson
instance can register a number of API clients.

Mt. Wilson APIs
Figures 4-8 and 4-9 show the core APIs for the Mt. Wilson provisioning and trust query
API and the management and whitelisting API.

Figure 4-8. Provisioning and trust query API

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

85

To facilitate interoperability, consistency, and seamless integration, we expect the
industry to converge toward a standardized set of APIs related to attestation. We offer
these as a starting point for the industry to help drive interoperability across different
attestation solution implementations.

The API Request Specification
All API calls are http requests with one required header: “Authorization: X509
<authentication-info>”. Any unauthorized request is challenged with a standard
header: “WWW-Authenticate: X509 <challenge-info>”.

Each API request includes the following parameters:

Fingerprint (base64-encoded SHA-256 digest of the client API •	
certificate)

Signature method (RSA-SHA256)•	

Time stamp from standard http Date header (RFC 822 date •	
format)

Client nonce (base64-encoded) in http X-Nonce header•	

http request method•	

Signature over the above and also:•	

Figure 4-9. Management and whitelisting API

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

86

• Original request URL including query string

• http message body (required, use empty string if not
applicable)

• Any other custom headers specified besides Date and
X-Nonce in the “headers” field of the Authorization line, in
the order specified

• Signature created using client’s RSA private key, and it is
base64-encoded

Strongest method is RSA-SHA256•	

Figure 4-10 is an example of a sample API request using authentication.

WWW-Authenticate: X509 realm="Attestation"

GET /reports/trust?hostname=example
Host: attestationservice.example.com
Authorization: X509

realm="Attestation",
algorithm="SHA256withRSA",
fingerprint="0685bd9184jfhq2bafweK...",
headers="Date,X-Nonce"
signature="wOJIO9A2W5mFwDgiDvZbTSMK%2FPY%3D"

X-Nonce: 0123456789abcdef
Date: Sun, 06 Nov 1994 08:49:37 GMT

Figure 4-10. API request including authentication

API Response
Mt. Wilson asserts all API responses. Responses are signed SAML assertions. Assertions
are signed with the Mt.Wilson RSA SAML signing key. There is one SAML signing key for
each installation of Mt.Wilson. An API client validates the signature with the SAML public
key and uses the trust information. Here is an example of an API invocation with a SAML
assertion. This Java example uses the Apache HttpClient library to obtain the SAML
assertion for “192.168.1.121” by sending a GET request to Mt. Wilson:

ApiClient api = KeystoreUtil.clientForUserInDirectory(directory, username,
password, server);
String samlForHost = api.getSamlForHost(new Hostname("192.168.1.121"));

Here’s how to interpret the SAML response:

TrustAssertion trustAssertion = api.verifyTrustAssertion(samlForHost);
if(trustAssertion.isValid())
 for(String attr : trustAssertion.getAttributeNames())
 System.out.println("Attr: "+attr+":"+trustAssertion.
getStringAttribute(attr));

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

87

Attributes for subject’s trust status in the SAML response are:

•	 Trusted: True if both Trusted_BIOS and Trusted_VMM are true.

•	 Trusted_BIOS: True if the BIOS measurements on the subject
match the whitelist (known-good values)

•	 Trusted_VMM: True if the VMM measurements on the subject
match the whitelist (known-good values)

Attributes for subject’s measured launch environment in the SAML response are:

BIOS_Name, BIOS_Version, BIOS_OEM, VMM_Name, VMM_Version, VMM_OSName, VMM_OSVersion

Mt. Wilson API Usage
There are two options for the requesters of attestation information to call into
Mt. Wilson APIs. A direct invocation of the REST APIs is the most basic approach to
use and integrate with Mt. Wilson. The user is required to implement the complete API
request specifications. This would mean pre-processing the creation and handling of keys
and authentication, and post-processing of information for a successful API invocation,
and the correct processing of the responses. An API toolkit (called API Client Library) is
available to simplify the invocation of the APIs, with bindings for different languages like
Java, C#, and Python. This toolkit encapsulates multiple API calls, creation and handling
of RSA keys and certificates, and authentication and processing of API responses (which
are SAML signed assertions). Using this toolkit, the users can make Java (or C# or Python)
function calls to communicate with the system. The sample code and examples that are
used in this chapter use the Java binding of the API toolkit.

There are three different options for the .jar file:

1. Zip file containing the api-client .jar and related dependencies

2. Single .jar with dependencies

3. Single .jar with dependencies shaded to prevent conflicts with
other libraries

Deploying Mt. Wilson
There are multiple models for deploying attestation components in a data center. Ideally,
attestation is transparent to applications, carrying its function quietly in the background.
In practice, it’s far from that. How unobtrusive attestation technology is depends upon
the deployment method. Some of the possible models include:

Dedicated virtual appliances•	

Dedicated physical appliances•	

Integrated as a function in security application software•	

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

88

Integrated in cloud and virtualization management software•	

Offered as a component of a cloud service•	

Integrated as a attestation of a service•	

Mt. Wilson is delivered today as a virtual appliance, and it is being integrated
into security software applications such as HyTrust’s Cloud Control, as well as cloud
management software such as Virtustream’s xStream. An initial approach for adoption
is to package and deliver Mt. Wilson software as a separate appliance with cloud
management and security management independent software vendor offerings. As the
usage and experiences increase with increased design and development of attestation-
based solutions, other models with tighter integration will become possible.

As attestation APIs become standardized and integral to the interactions and
operations of a trusted cloud infrastructure, there is opportunity for providing value-
added services on top of the core attestation APIs. This could lead security management
and cloud service providers to offer attestation as a service, with granular control to the
usage and evolution of the APIs.

Mt. Wilson Programming Examples
In this section, we look at how to invoke the attestation APIs to get trust information
about a server in a data center. Figure 4-11 shows the high-level steps involved in setting
up the system and configuring it for use.

Figure 4-11. Mt. Wilson high-level programming steps

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

89

After the installation of the Mt.Wilson server and trust agent on the hosts, required
only for Xen or KVM hosts, users need to include the .jar file provided as part of the API
toolkit in their project and import the following packages:

import com.intel.mtwilson.*;
import com.intel.mtwilson.crypto.*;
import com.intel.mtwilson.datatypes.*;
import java.io.File;
import java.net.URL;

API Client Registration Process
Before the user can make any API calls into the system, the user has to register and the
access has to be approved. Below are steps for how to register with Mt. Wilson and how
to make API calls after the registration has been accepted. The following code creates a
keystore “test1.jks” in the home directory. The keystore contains an RSA keypair that is used
to authenticate the API calls to the system. The keystore would also contain the Mt. Wilson
SSL certificate and SAML signing certificate, which are downloaded from the server.

File directory = new File(System.getProperty("user.home", "."));
String username = "test1"; // you choose a username
String password = "changeit"; // you choose a password
URL server = new URL("https://mtwilson.example.com:8181"); // attestation server
String[] roles = new String[] { "Attestation", "Whitelist" };
KeystoreUtil.createUserInDirectory(directory, username, password, server,
roles);

After the request is created, the user has to contact the system administrator to
approve the access request (offline step). After the request is approved, based upon the
roles the user has, appropriate APIs can be executed, such as maintaining a whitelist,
adding hosts, and obtaining a trust assertion on one or more hosts.

To use the API, the user needs first to create an ApiClient object configured with
the credentials and the attestation server. Notice that the variables directory, username,
password, and servers are the same as what was used during registration.

File directory = new File(System.getProperty("user.home", "."));
String username = "test1"; // username created during registration
String password = "changeit"; // password created during registration
URL server = new URL("https://mtwilson.example.com:8181");
ApiClient apiClientObj = KeystoreUtil.clientForUserInDirectory(directory,
username, password, server);

Once an APIClient object is created, the user can use that to configure whitelists and
also to register the hosts with Mt. Wilson so that they attest when challenged.

https://mtwilson.example.com:8181/
https://mtwilson.example.com:8181/

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

90

Whitelisting and Host Registration
Here’s some sample code for how to create a whitelist and register the host with Mt.
Wilson—for VMware ESXi hosts:

TxtHostRecord gkvHostObj = new TxtHostRecord();
gkvHostObj.HostName = "hostname-in-vcenter";
gkvHostObj.AddOn_Connection_String =
"vmware:https://vcenter.example.com:443/sdk;Username;Password";
boolean configureWhiteList = apiClientObj.configureWhiteList(gkvHostObj);

boolean registerHost = apiClientObj.registerHost(gkvHostObj);

Verify Trust: Trust Attestation
Once hosts are registered with Mt Wilson, it is now possible to request a trust assertion in
SAML format using getSamlForHost. You can verify the signature on the assertion and get
easy access to the details using verifyTrustAssertion.

Note ■ if you are directly calling into the REsT APis, you have to implement the
verification of the sAMl assertion using the sAMl certificate that needs to be downloaded
explicity. The APi toolkit downloads this certificate as part of the registration itself.

String samlForHost = apiClientObj.getSamlForHost(new Hostname("hostname-in-
vcenter"));
TrustAssertion trustAssertion = apiClientObj.verifyTrustAssertion(samlForHost);
if(trustAssertion.isValid()) {
for(String attr : trustAssertion.getAttributeNames())
 System.out.println("Attr:"+attr+":"+trustAssertion.
getStringAttribute(attr));
}

As shown in this above example, using the API Client Library is a very simple way of
using the Mt. Wilson attestation mechanism. The Mt. Wilson software is being licensed
by many ISV and CSPs to integrate trust into the software and service offerings. More and
more organizations are moving to clouds, and they are asking for assurance of trust of the
platform on which their workloads are running; they are also asking the CSPs to provide
proof of a chain of trust. The attestation solution is fast becoming a critical security
component in the security toolset. For developers favoring a DIY approach, the open-
source OpenAttestation (OAT) is a good starting point for attestation.

https://vcenter.example.com/sdk;Username;Password

CHAPTER 4 ■ ATTEsTATion: PRoving TRusTAbiliTy

91

Note ■ oAT is the open-source version of Mt. Wilson code, and is provided and maintained
by intel Corporation. you can download the documentation, code, and installation/deployment
scripts from the oAT website.

Summary
In this chapter we covered attestation as a foundational function of trusted computing
environments that provides proof of trustability and auditability of trust for various
computing devices. We covered the TCG remote attestation protocol, and we described
the vision and architecture of Intel’s Trust Attestation Platform, followed by a detailed
look one of the first attestation solutions, called Mt. Wilson. The chapter reviewed
the security architecture and the attestation APIs, and explained how requesters of
trust and attestation information can invoke these APIs and process the assertions for
decision making. There are many usages in data centers that would utilize the attestation
information. As shown in the previous chapter, attestation is used in the creation of
trusted compute pools and the attestation-based policy enforcement in these pools.
Thus, attestation can be used to provide granular trust-based access control to consumer
and BYOD devices, and the kind of services they can access within the cloud data centers.
Attestation as a security management component will become an integral component of
virtualization and cloud management, and it’s becoming a critical requirement in cloud
data centers to assert the integrity and compliance of platforms and systems. ISVs and
security management vendors may also start offering it as a SaaS offering. We believe that,
over time, value-added capabilities will emerge around the attestation function and will
enable monetization possibilities.

Chapter 5 will introduce a new concept and control, called hardware-assisted asset tag,
which can be used to provide isolation, segregation, placement, and migration control of
workload execution in multi-tenant cloud environments. Additionally, as a specialization
of asset tags, geolocation/geo-tagging can be enabled to definitively provide increased
visibility to the physical geolocation of the server, which may enable many controls
that require hardware-based roots of trust to assert the location of workloads and
data. These attributes and the associated controls are dependent on the boot integrity
assertion of the platform; hence, they become a great adjacency to trusted compute
pools and boot integrity.

93

Chapter 5

Boundary Control in
the Cloud: Geo-Tagging
and Asset Tagging

Chapters 3 and 4 focused on platform boot integrity, trusted compute pools, and the
attestation architecture. They covered the reference architecture for how organizations
and service providers can deploy trusted pools as the enabler for trusted clouds. Data and
workload locality and data sovereignty are top-line issues for organizations considering
migrating their workloads and data into the cloud. A fundamental capability that is
needed is to reliably identify the location of physical servers on which the data and
workloads reside. Additionally, organizations would need to produce audit trails of data
and workload movement, as well as carry out effective forensics when the occasion
demands it. In particular, the asset location identification and attestation capability
needs to be verifiable, auditable, and preferably anchored in hardware. These capabilities
enable workload and data boundary control in the cloud, effectively conferring users
control over where workloads and data are created, where they are run, and where they
migrate to for performance, optimization, reliability, and high-availability purposes.

Geolocation and geo-fencing, and the higher level concept of asset tagging, are
technology components and associated usages that enable monitoring and control
of data processing and workload movement, and they are the subject of this chapter.
Geolocation and geo-fencing constitute fitting adjacencies to trusted compute pools
usages, and provide a critical security control point to assess and enforce in a data center.
Asset tagging is still an emergent industry practice. So, we’ll start with some definitions to
provide the context, followed by a discussion of enabling the logical control points. The
next step is to link asset tagging with the trusted compute pools usages discussed in
the earlier chapters. Asset tagging is highly synergistic with trusted compute pools,
and the capability adds significant value to any trusted data center operations and
compute pools deployment. We will elaborate on this idea as we describe a reference
implementation in the last part of this chapter.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

94

Geolocation
As the NIST Interagency Report 7904 clearly delineates, shared cloud computing
technologies, designed to be agile and flexible, transparently use geographically
distributed resources to process workloads for their customers.1 However, there
are security and privacy considerations in allowing workloads—namely data and
applications—to run in geographically dispersed locations with unrestricted workload
migration. Even with controls governing the location of the launch of a workload, without
additional controls and restrictions in place that workload could move from cloud servers
located in one geographic location to servers located in another geographic location.
Each country has laws protecting data security, privacy, and other aspects of information
technology (IT). An organization may decide that it needs to restrict which cloud service
providers and servers it uses based on their locations so as to ensure compliance. An
example of such a requirement is to use only cloud servers physically located within the
same country as the organization.

Determining the physical location of an object, such as a cloud computing server, is
generally known as geolocation. It can be a logical description of geographic information,
such as country or city, or it can be GPS-based latitude and longitude information.
Geolocation can be accomplished in many ways, with varying degrees of accuracy, but
traditional geolocation methods are not secure and they are presently enforced through
management and operational controls not easily automated and scaled; therefore,
traditional geolocation methods cannot be trusted to meet cloud security needs. NIST IR
7904 describes geolocation as follows:

Geolocation enables identification of a cloud server’s approximate
location by adding that information to the server’s root of trust. The
hardware root of trust is seeded by the organization with the host’s unique
identifier and platform metadata stored in tamperproof hardware. This
information is accessed using secure protocols to assert the integrity of
the platform and confirm the location of the host.2

Geo-tagging constitutes the process of defining, creating, and provisioning a set of
geolocation objects to a computing device securely. An interesting and very relevant
application of the geo-tag is the enforcement of boundary control based on geo-tags; the
concept is called geo-fencing.

Geo-fencing
The concept of geo-fencing is not new. It has been applied successfully in industries
such as mobile computing, supply chain management, and transportation logistics.
Geo-fencing is about defining geographical or virtual boundaries using a variety of GPS,

1Erin K. Banks et al., “Trusted Geolocation in the Cloud: Proof of Concept Implementation” (draft),
NIST Interagency Report 7904, U.S. Dept. of Commerce, December 2012.
2http://nist.gov\publications\drafts\ir7904\draft_nistir_7904.pdf

http://nist.gov\publications\drafts\ir7904\draft_nistir_7904.pdf

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

95

RFID technologies, and geolocation attributes. Geo-fencing is also about ensuring that
the boundaries are not violated; but if they are violated, that appropriate remediations
are enforced. Applications supporting geo-fencing allow an administrator to set rules and
apply triggers so that when a device, or workload, or data attempts to cross a boundary
so defined by the administrator, the action is blocked and appropriate alerts are sent out
for further investigation. Many geo-fencing applications employ mashup concepts, such
as incorporating Google Earth, thus allowing administrators to define their boundaries
using a satellite view of a specific geographic area. Other applications define the
boundaries by longitude and latitude or through user-created and web-based maps.

In traditional data centers, workloads and data are pretty static and have a hard
binding to the physical information systems on which they reside and execute. However,
with virtualization and cloud computing, this is clearly no longer the case. Geolocation
can be an attribute for a virtual machine. The ease with which a virtual machine can
move has created intense interest in instituting mechanisms to track and control these
movements, however. The power and appeal of cloud computing for IT is its agility,
efficiency, and mobility of workloads in order to meet the service-level agreements
for customers, and also to improve total cost of ownership for service operators. The
mobility and agility are possible because of the abstraction and decoupling of the
physical hardware from the virtual machines running on top. However, the mobility that
allows workloads and data to move in an unrestricted fashion also brings concerns about
violating security and privacy policies. Geo-fencing thus becomes an extremely useful
capability in cloud computing environments. Geo-fencing usages in cloud computing
environments take advantage of the geolocation attribute as described above. (We
define and describe geolocation in exhaustive detail in the later sections.) This expanded
usage involves attaching geolocation attributes to workloads or data. With the attributes
in place, it is possible to create desired geo-fencing policies and set up the associated
monitoring and control mechanisms at multiple levels in the cloud infrastructure.

Here are some potential use cases for geo-fencing, in virtualization and cloud
computing:

•	 Government security requirements. Many countries and their
governments require that data and workloads stay within
designated country and geographic boundaries. For instance,
certain data may not be allowed to leave the sovereign territory, with
exceptions being made for embassies and safe-harbor countries.

•	 E-commerce. Retailers may want to optimize their business
processes to improve taxation outcomes—for instance, in the
United States, for interstate commerce where tax rates vary by state
or to gain special tax benefits, such as hosting sites in export only
zone. Geo-fencing allows restrictions where workloads and data are
stored in the cloud and provides audit trails detailing where those
workloads and data have been. Retail applications go beyond the
brick-and-mortar stores when the consumables are digital, such
as video, audio, images, software, books, and more. Banking is
another regulated industry, and customer data sometimes enjoys
greater privileges owing to international agreements.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

96

•	 Research. Companies may restrict what categories of research
are carried out in particular geographic locations, so as to be
compliant with local regulations or for intellectual property
management purposes. For example, stem cell research and
pharmacological research fall into this category.

There are many other examples of situations in which geo-fencing is applicable, such
as in finance, health care, and other regulated industries. An expansion of the geo-tagging
concept is that of asset tagging, whereby the attribute associated with the device or a
server is a functional asset descriptor.

Asset Tagging
Geo-tagging can be generalized to be any arbitrary datum about a server. Given a trusted
source of information about a server, trusted compute pools with asset tagging enable
organizations to enforce running workloads only on trusted servers tagged with specific
attributes. For example, an organization might be willing to pay a premium for dedicated
trusted servers with bonus points for a capability to segregate workloads by department,
each of which may have different policies regarding trusted platforms. The organization
can provision an asset tag to each server, indicating the department to which that server is
assigned. The organization can then extend its overall trusted computing policy to restrict
workload execution to servers carrying a specific asset tag. There are many such potential
usage models for asset tagging:

•	 SLA-based zoning of data center assets. This would include tagging
compute, storage, and network devices serving specific SLA
zones, as in “bronze,” “platinum,” and “gold.” The partitioning can
be linked to security, performance, availability, or reliability goals,
in any combination.

•	 Sarbanes-Oxley audits. The visibility and verifiability of asset tags
augmented by the assurance from hardware-based roots of trust
for any Sarbanes-Oxley–related audits can save IT operations a
significant amount of time and resources.

•	 Workload segregation. This is useful where tenants request
segregation of workloads from other tenants or workloads or
workload types.

Note ■ An asset tag is a geo-tag when the attributes of the tag represent geolocation.
For the rest of this chapter, we will use geo-tag to represent an asset tag with geolocation
attributes. Asset tagging and geo-tagging are terms used interchangeably, from an
architecture and provisioning process perspective.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

97

Trusted Compute Pools Usage with Geo-Tagging
Cloud service providers who implement trusted compute pools (TCP) and their
customers are requiring additional boundaries beyond platform trust to assure control
of their workloads. A high-priority boundary condition to enforce is one based on the
specific physical location of a host, such that workload placement can be:

Monitored and enforced based on customer policies for boundary •	
controls

Verified and provided in audit and compliance reports to tenants to •	
meet their internal and regulatory needs for data security reporting

There are a few ways of attaching geolocation attributes to a platform. For instance,
geolocation can be arranged through a trusted platform module (TPM) security chip
based on a Trusted Computing Group standard. This approach aligns naturally with
trusted compute pools as the foundation for use case capabilities requiring established
platform trust status and physical location with verification and reporting. That is exactly
what trusted compute pools provide. Cloud service providers are expected to extend
their current trusted compute pools solutions with trusted location controls to provide
additional granularity of control above platform trust.

Trusted compute pools with geo-tagging enable organizations to ensure their
workloads are executed only on trusted servers located in authorized geographical
areas. For example, as depicted in Figure 5-1, an organization like U.S. government with
multiple geographically distributed data centers, might require that certain virtual servers
be located in U.S. data centers. Such controls are specified or supported by a growing
body of customer requests and regulatory mandates, such as the ability to separate
customers or workload types to address region-specific data protection requirements, as
defined in FISMA SP800-53 and NIST IR 7409. The controls also support expected needs
for eased auditability and verifiability pursuant to compliance mandates.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

98

NIST, in partnership with industry participants, published an interagency report,
NIST IR 7904, documenting trusted compute pool usages with geolocation descriptors,
as well as the geo-fencing policy enforcement in multi-tenant cloud computing
environments. Figure 5-2 illustrates the IR 7904.

Figure 5-2. NIST IR 7904 – trusted geolocation in the cloud

Figure 5-1. Geolocation and geo-fencing

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

99

Stage 1: Platform Attestation and Safe Hypervisor Launch
This initial stage provides a basic assurance of platform trustworthiness and enables
faster detection of security issues. There are three steps to this stage:

1. Configure the server. Set up the cloud server platform as
being trusted, including configuring the hardware, BIOS, and
hypervisor.

2. Verify the hypervisor. Before each hypervisor launch, verify
the trustworthiness of the cloud server platform set up in the
previous step. Remote attestation is the way the integrity of
the launch of the platform is verified.

3. Continually monitor the hypervisor. During execution,
frequently repeat the measurements done in step 2 to
continually ensure trustworthiness. These measurements
should then become an ongoing part of a continuous
monitoring process.

Figure 5-3. The three stages for establishing a trusted compute pool with trusted geolocation

Establishing a trusted compute pool with a trusted geolocation in a cloud comprises
three main stages, as shown in Figure 5-3. First, each compute platform must be attested
as trustworthy, enabling a safe hypervisor. Second, the cloud system must ensure
that workload migration occurs only between trusted resources. And third, trusted
geolocation is ensured with continuous monitoring and enforcement of geolocation
restrictions. Let’s look closer at each of these stages.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

100

Stage 2: Trust-Based Secure Migration
Ensure that workloads are deployed and then are migrated only among trusted server
platforms within the cloud. There are two steps to this stage:

1. Deploy to trusted platforms. Apply the verification tests
established in stage 1, step 3 and only deploy a workload to
those platforms deemed trustworthy.

2. Migrate to trusted platforms. Once a workload is deployed,
ensure that it migrates only to hosts with comparable trust
levels. This is determined by applying the verification tests
from stage 1, step 3 on both the workload’s current server and
the server to migrate the workload to. Migration is allowed
only if both servers pass their audits.

Stage 3: Trust- and Geolocation-Based Secure Migration
Build on previous stage by ensuring that workloads migrate only to trusted server
platforms while also taking geolocation restrictions into consideration. There are three
steps to this stage:

1. Verify geolocation information. Ensure that any platform to be
included in the trusted geolocation pool has its geolocation
set as part of its initial configuration in stage 1, step 1. This
is a cryptographic hash within the hardware cryptographic
module in BIOS. Ensure that the geolocation information can
be verified and audited readily.

2. Enforce geolocation restrictions. Add a geolocation check to
the pre-deployment and pre-migration verification in stage 2,
steps 2 and 3 before deploying or migrating a workload.

3. Add geolocation to monitoring. Add geolocation checks to
the continuous monitoring put in place in stage 1, step 3 to
ensure trustworthiness of the platforms. This process should
audit the geolocation of the cloud server platform against
geolocation policy restrictions.

Adding Geo-Tagging to the Trusted Compute
Pools Solution
As we discussed in the introduction to this chapter, geo-tagging and asset tagging will
deliver increased value to trusted compute pools usages in data center operations and
for customers. Geo-tagging and asset tagging bring valuable additional security controls
to the data center, as well. Supporting geo-tagging and asset tagging, and implementing
geo-fencing require some functional changes to the original trusted compute pools
architecture that was introduced in Chapter 3. Figure 5-4 provides a summary of these
changes, and in the next sections we explain the changes at each layer of the architecture.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

101

Hardware Layer (Servers)
There are no changes required at this layer; the trusted platform module (TPM) takes care
of secure storage for the geo-tags. Through a secure provisioning process, the geo-tag is
provisioned into a nonvolatile index (NVRAM index) in the TPM, and the trusted boot
process extends the contents of the specific index into a PCR in the TPM. PCR22 has
been selected to capture the geo-tag attributes. As per the TCG client specifications,
PCR22 is allocated for OS/VMM use, and in the case of VMWare ESX, Citrix XenServer,
open-source Xen, and KVM implementations, it is not used for any other function,
hence it was a logical choice to extend the geo-tag attributes. (Geo-tag provisioning and
management will be covered in the following sections.) Entities above the stack use the
TPMQuote process to fetch this PCR value for attestation and decision making, and
this was covered in Chapter 4.

Note ■ Re the nVRAM index for geo-tagging: For TPM 1.2 compliant devices, the
nVRAM index is 20 bytes to accommodate a sHA-1 hash value. The current index used for
storing the geo-tag is index 0x40000010, and is created with AuTHWRiTE permissions. As
TPM 2.0 begins to deploy, the geo-tag index will need to accommodate a sHA-256 hash
value of 32 bytes in length. The same nVRAM index cannot be used for the sHA-256 value
and hence the solution will require a different index. The trusted boot process (tboot) might
require modification for TPM2.0 implementation to extend PCR22 from the new 32-byte
index location.

Figure 5-4. Trusted compute pools solution architecture with geo-tagging

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

102

Hypervisor and Operating System Layer
As we discussed in Chapter 3, operating systems and hypervisors participating in a
trusted compute pool require servers provisioned with Intel TXT. Tboot is by far the most
widely used mechanism to serve as a foundation for software vendors enabling their
operating system or hypervisor. The tboot code extends PCR22 from the NVRAM index
during the measured boot process. VMware ESX has been supporting tboot extensions
to read the NVRAM index and extend PCR22 since ESX 5.1. As of this writing, the
open-source tboot code has also been extended to extend PCR22 from the NVRAM index.
This is the only incremental change at this layer to support these usages.

Virtualization, Cloud Management, and the Verification
and Attestation Layer
To recap, the key functions of this layer are:

Providing a •	 secure interface to the measured launch
measurements on each of the servers.

Providing an •	 attestation mechanism to evaluate platform trust and
assert its integrity.

Consuming the •	 trust information, essentially helping to identify
which platforms are trusted and which ones are not.

Making use of this information to establish an •	 enhanced security
capability through policy definition and enforcement linked to
platform trust.

The main functional change needed to extend TCP with geo-tagging support
involves the attestation capability. The attestation server verifies the platform geo-tag and
geolocation by comparing the attributes and the geo-tag certificate against a known-good
geo-tag fingerprint for that server or device in addition to evaluating platform trust and
verifying the integrity measurements of the launch in the original TCP. The attestation
subsystem comprises additional APIs for geo-tag attestation, and the capture and storage
of known-good geo-tags for the host. The SAML assertion for the attestation subsystem
provided to the requester now includes geolocation assertion. We will dig deeper into this
and also explain the additional APIs in Mt. Wilson to accommodate geo-tagging.

The resource scheduler in this layer makes decisions on the placement and
migration of virtual machines and workloads. The location policy for data and virtual
machines is evaluated and enforced at the security management layer, and the results are
provided to the resource scheduler to make security decisions.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

103

Note ■ The functionality of trusted compute pools (TCP) as described in Chapter 3 has been
implemented in openstack as scheduler filters. These extensions, and the Horizon dashboard
and APi extensions to tag Flavors with “Trust” policies, have been part of openstack since the
Folsom release. As of this writing, a reference implementation demonstrating openstack TCP
filter extensions to use the geo-tag or asset tag attributes is available. Extensions to Horizon
and Flavor attributes are also provided as reference implementations. The expectation is that
these will become part of core openstack distribution in the near future.

Security Management Layer
Policy managers, security monitoring tools, and compliance and risk management tools
make their security decisions based on platform trust and geolocation assertions from
the layers below. Policy tools use the geolocation assertions to control the creation,
launching, and migration of the workloads and data to carry out geo-fencing policies. Policy
management tools need to implement mechanisms to tag virtual machines and data with
specific geolocation policies. For instance, the tags identify a virtual machine as run only on
data centers within the continental United States or as belongs to the Finance Department.

The actual mechanisms for policy enforcement depend on how the orchestrator and
scheduler software are architected. In OpenStack, policy management is integrated into
the orchestrator as pluggable filters. These filters consume the attestation assertion from
the attestation service and make decisions to identify and select the appropriate target
platforms to instantiate virtual machines. With VMware, a HyTrust Appliance functions
as a gateway between VMware VCenter and VMware ESXi hosts. The HyTrust Appliance
evaluates the policy against the attestation information, including the geo-tag descriptor
for a potential target ESXi host.

The outcome of a policy evaluation is either to proceed with the launch or migration
of the virtual machine on the target host, or to deny the request to launch owing to a
geolocation policy violation. Policy enforcement and control information is passed
on to a security information and event management (SIEM) or governance and to risk
compliance (GRC) solutions for reporting and audit compliance. If the solutions used
already support trusted compute pool controls, simple extensions will suffice to read,
understand, and display the compliance with geo-tagging security controls.

Provisioning and Lifecycle Management for Geo-Tags
The main capabilities needed to support geo-tagging in trusted compute pools are
tag provisioning and lifecycle management. The capabilities allow securely creating,
selecting, provisioning, and lifecycle management of geo-tags that enables the layers
above to make decisions, carry out reporting, and evaluate tags against security controls.
The associated process defines the geo-tag workflow lifecycle, covered in the next two
sections, including architectural considerations.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

104

Intel Corporation provides reference implementation for tag provisioning and
lifecycle management. The reference implementation doesn’t dictate what the contents
for geo-tags or asset-tags should be. Cloud service providers or enterprise end users have
the option of determining the appropriate tag taxonomy for their customers. The lifecycle
of geo-tag provisioning and management is covered in the next section.

Geo-Tag Workflow and Lifecycle
The geo-tagging lifecycle consists of seven discrete steps, as depicted in Figure 5-5:
tag creation, whitelisting, re-provisioning and deployment, in-validation, validation,
attestation, and re-provisioning. Let’s go over each.

Figure 5-5. The geo-tagging management lifecycle

Tag Creation
A tag, as shown in Figure 5-6, is an attribute that has a name and one or more values.
The values can be “user-defined,” like united states, or san jose or Finance. Values can
be “pre-defined,” like country or state or postal codes from USG/NIST databases. Values
can be dynamic, like latitude/longitude/altitude from a GPS system. The dynamic values
would be fetched during the actual provisioning of the tag onto an asset. The tags can
be geolocation objects or asset descriptors as well. In this context, an asset is a compute
node like a server, end-user device, storage, or network device. The tag creation step
involves creating a taxonomy of tags—a set of acceptable name-value pairs applicable to
an organization.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

105

Tag Whitelisting
Typically, a business analyst at an organization or a suborganization creates this
taxonomy of acceptable tags at the corporate level. A subset of tags is then selected for a
particular business function. The subset defines the whitelist of the tags for that business
function, and compliance is evaluated and enforced against that whitelist. A policy
creation and definition tool uses this whitelist to associate the geo-tags with the VMs or
workloads, and also to enforce the policy.

Tag Provisioning
There are two distinct steps in tag provisioning:

 Tag selection
This is the process of selecting one or more tags from the whitelist that would be bound
to an asset. In most cases, a selection is applied to many assets. The selection has a name
that is a unique descriptor of the purpose of those tags and the list of associated tags.
This construct becomes the unit of deployment of these tags onto various computing
assets. The binding of this selection to a specific asset (a computing device) is an asset
tag. To ensure that the tags in the selection are associated with an unique physical asset,
the selection is bound to a unique hardware attribute of the asset that is usable as a
universally unique identifier (UUID), such as a motherboard identifier. As dicussed in the
earlier sections, an asset tag that has geolocation attributes is a geo-tag.

To ensure cryptographically secure binding associated to the intended asset, we
define the concept of an asset certificate. An asset certificate is a document containing a
digital signature of the tags in the selection, with the binding to the asset with the UUID.
The certificate is digitally signed by a trusted authority and maintained for verification
and attestation as X.509 attribute certificate or SAML certificate. A SHA-1 Hash (SHA-2
in the future with TPM2.0) of the asset certificate is what that gets provisioned into a
secure location on the asset as the asset tag or a geo-tag (the latter, if the attributes are
geolocation attributes). Figure 5-7 illustrates how the asset tag is created from an asset
certificate, which in turn is created with the tag selection and the UUID of the asset.

Figure 5-6. Tags defined

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

106

Tag deployment
This encompasses the secure deployment of that asset tag onto the asset. We recommend
using the trusted platform module (TPM) for securely storing the geo-tags and asset tags
on the platform, taking advantage of the hardware roots of trust with attestation.
Figure 5-8 shows the template of what an asset certificate looks like. A SH1-hash of this
is written in the TPM NVRAM index during the provisioning process. At the end of a
successful provisioning process, the asset certificate and the geo-tag (the fingerprint) are
securely imported into the attestation authority (like a Mt. Wilson) for attestation during
policy execution and enforcement.

Figure 5-8. Asset tag certificate fields

Figure 5-7. Asset tags

Figure 5-9 illustrates the tag creation and provisioning steps. It shows the two actors
and the functions they perform to define, select, and provision the asset tag and/or
geo-tag to the TPM. Tag re-provisioning essentially follows the same process as
provisioning. It is triggered by an invalidation event, where the asset tag on the asset is
invalidated. (Invalidation is covered in the next section.)

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

107

Validation and Invalidation of Asset Tags and Geo-Tags
This is a mandatory step in the geo-tagging lifecycle to prevent misuse and spoofing of
the geo-tags, either accidentally or maliciously. Validation can be carried as a manual
process, but ideally it should be intelligent, proactive, and automated. Automated
processes enable deployment scaling and security automation, offering an extra
backstop against provisioning and deployment errors or even malfeasance. Local and
remote methods allow automated and auditable validation and invalidation, as well
as modification of tags, on individual and groups of assets. Here are some automation
mechanisms that have been considered in the development of the reference architecture:

Heuristic analysis models using external comparison, such as •	
near-neighbor tag analysis, GPS inputs

Marking geo-tag certificates signed by an unknown authority as •	
untrusted

Marking expired geo-tags as untrusted and expired•	

Marking geo-tags with UUID mismatches as untrusted•	

Automated hardware-based mechanisms to monitor power cable •	
connections to the device, or network heartbeat or deadman
mechanisms to assess the validity of the geo-tags

Validation and invalidation capabilities would be pretty rudimentary in the initial
implementations of the geo-tagging solutions, and they can support one or all of the
first four mechanisms listed above. The expectation is that over time the automated
hardware-based mechanisms would be broadly supported so the geo-tags become highly
tamper resistant and can enable automated compliance with policy controls.

Actor: Business Analyst Actor: Sys Admin/Asset Mgt Tech

Definition Selection Provisioning Attestation

Tag
Taxonomy

Tag
Whitelist(s)

asset tag provisioning
• Select tags for hosts
• Selected tag associated

to host
• Asset cert creation
• Cert & its attributes

written in Mt. Wilson
• Hash of asset cert

written to NVRAM

tag selection;
• List of acceptable
tags

Asset Tag
Provisioning

Mt. Wilson
Attestation

tag creation/management
• Name/Value pair/s.

Ex: Country – USA, UK, PRC
State – AZ, CA, AK
Customer – Coke, Pepsi

asset tag attestation
• Host registration
• Tag attestation
• SAML assertion and

trust report generated

Figure 5-9. Steps for tag creation and provisioning

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

108

Attestation of Geo-Tags
Attestation of geo-tags involves ensuring that the geo-tag fingerprint that is reported
from the server or device is what is expected for that server or device. When a
geo-tag is provisioned to the server, it is also stored in the attestation server as the golden
fingerprint. During operation of the data center environment, the geo-tag fingerprint as
reported by the server is verified against the golden one, and an assertion is generated
about the trustability of the geo-tag. The orchestration, policy, and compliance tools use
this assertion to make decisions in the cloud. The geo-tag attestation process piggybacks
on the platform boot integrity attestation architecture that was covered in Chapter 4.
Two new APIs have been added to the attestation authority to address the needs for
geo-tagging and asset tagging. These attestation server changes and extensions are
covered in the attestation service section later in the chapter.

Architecture for Geo-Tag Provisioning
Figure 5-10 shows an abstract architecture for defining, provisioning, monitoring, and
enforcing geo-tags in a trusted compute pools host.

Monitoring Service
(Nagios)

Geo-Tag Invalidation
Plugin*

Tag Mgt
Service

Tag API

Geo-Tag Provisioning
Service

Provisioning API

Tag DB

Attestation Service

Quote

Policy Engine

Ta
g

Se
le

ct
io

ns

Ta
g

va
lid

/in
va

lid

Geo-Location
System

Coordinates

Country/State/ DBPlace names

asset tag
Import, revoke

Provisioning Agent

Host

TPM
Geo -tag

MTW Trust Agent
Quote

Geo -Tag
Invalidation

Asset-Tag
Invalidation

External Tag Source

Provisioning API

Tag
DB

whitelists

Attestation

Tag
Mgt
Tool

Tag Prov
Tool

Tag
Mgt

Tool*

Tag Prov
Tool*

Figure 5-10. Geo-tag solution architecture

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

109

There are four key components of the solution architecture:

1. Tag provisioning service

2. Tag provisioning agent

3. Tag management service and management tool

4. Attestation service

Let’s cover each in sequence.

Tag Provisioning Service
The tag provisioning service implements tag creation—creating asset tag certificates
when tags are bound to the UUID of a host—and communicates with the tag provisioning
agent on the host to securely deploy and write the geo-tag to the TPM. An asset tag
authority (ATA) can be part of the tag provisioning service for automatic approval of
certificate requests, or it may reside in external software, polling the tag provisioning
service for pending requests and posting certificates for approved requests back to the tag
provisioning service. There must be at least one asset tag authority in a working asset tag
system. The public key certificates of external authorities must be imported to verify the
certificates they create.

The tag provisioning service exposes a set of RESTful APIs for the various entities to
interface and integrate with it. Callers are fully authenticated to ensure that legitimate
entities are invoking these APIs.

There are two set of APIs for this service:

•	 Tag provisioning APIs, for the tag selection tool and provisioning
agent to request and create an asset certificate, and to search
existing certificate requests or provisioned certificates.

•	 Invalidation APIs, for monitoring and policy enforcement engines
in the data center to invalidate existing asset certificates.

Table 5-1 shows the tag provisioning API. These APIs include functions to create,
fetch, delete, search, and revoke asset certificates.

Table 5-1. RESTful Tag Provisioning APIs

API Name Parameters Description

POST /certificate-
requests

{tags[{ uuid|url|name, value
}+], authority? }

Create certificate

GET /certificate-
requests/{id}

{id, url, tags[], status,
certificate-url? + }

Read one or more certificate

DELETE /certificate-
request/{id}

{id} Delete certificate

(continued)

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

110

Tag Provisioning Agent
The tag provisioning agent provides an API for deploying asset tags to the TPM on the asset.
This API is only available on systems where the provisioning agent can run to accept asset
tags in push mode. For systems where that is not possible or desirable, the provisioning
agent can be activated whenever the administrator needs to provision and deploy an asset
tag and request the asset tag from the tag provisioning service in pull mode.

The tag provisioning agent needs authorization to interact with the TPM and
write the geo-tag into the NVRAM index. This means it needs the ownership password
to acquire ownership of the TPM and write the index. The security of the ownership
password, the authentication of the provisioning agent to get access to the ownership
password, and the authentication of the provisioning agent with the tag provisioning
service is a critical design element of the solution. In the Intel reference implementation,
the ownership password is in a configuration file on the host with root access, and
the configuration file is encrypted with a symmetric password used by the system
administration during provisioning.

Tag Management Service and Management Tool
The tag management service and management tool are primarily required to create the
tags—the name-value pairs of the tag taxonomy selected and used to create the asset
certificates and the geo-tags and asset tags. These components are an optional part of the
geo-tagging architecture; the architecture and workflows do not depend on the existence
of these two components. The architecture allows integration of third-party tag-creation
tools, such as the HyTrust Appliance. The architecture also provides a well-defined

API Name Parameters Description

GET /certificate-
requests?criteria

{id} Search certificate
id={id}
id={id},{id},…
tagNameEqualTo={name}
tagNameContains={text}
tagValueEqualTo={name}
tagValueContains={text}

POST /certificate-
revocations

{id} Revoke certificate

GET /certificate-
revocations/{id}

{id} View revoked certificate

Table 5-1. (continued)

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

111

XML file to codify the tag selection to be used with the provisioning. Provisioning tools
can take the file as input to complete the geo-tag provisioning. Alternative tag creation
and management tools provide the selected tags in the XML configuration file for the
provisioning tools to import and create the asset certificates and the geo-tags with
binding to the individual hosts.

The reference tag management service provides the APIs and functionality to store
the tag taxonomy and allow other software to access it to create and store the tags. The tag
management service provides APIs for creating attribute definitions (the attribute name
and possible values for the attribute); for searching the taxonomy for attributes having a
specific name or possible value; for managing relationships between attributes; and for
managing any local policies associated with the provisioning of attributes.

The relationship between attributes may be hierarchical, such as country-state-city
or datacenter-room-aisle-rack, or flat, such as price and location. A policy associated
with provisioning the attributes could be that an asset certificate containing the customer
attribute Coca-Cola cannot also contain the customer attribute Pepsi at the same time;
or that an asset certificate containing the department attribute Finance Server must also
contain the country attribute United States. Table 5-2 shows the tag management service
API in its reference implementation.

Table 5-2. RESTful Tag Management API

API Name Parameters Description

POST /tags { oid?, name,
values[]? }

Create single or multiple tag definition

POST /tags/{id}/
values

[value+] Add values to existing tag definition

PUT /tags/{id}/
values

[value+] Update values for existing tag definition;
[] empty array deletes all values for existing tag
definition

GET /tags/ {id} Read/load tag contents by ID

GET /tags?criteria criteria Search tag definitions
Examples:
Id = {id}; nameEqualTo{name};nameContains=
{text};valueEqualTo={name};valueContains={text}

POST /rdf-triples {subject,
predicate,
object}

Create relationship between tags
Example: { subject: Country, predicate: contains,
object: State }

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

112

Attestation Service
The attestation service is an extension of the trust attestation service code-named Mt.
Wilson, covered in Chapter 4. These extensions effectively add another plank to the
attestation platform providing the geo-tag and asset tag attestation capabilities. That is,
the attestation service adds asset tag verification information to its security assertions. It
keeps an audit log of asset tag certificates associated with specific compute nodes, and
it maintains copies of the asset tag certificates. This allows the attestation service to log
not just when an asset tag is updated in an asset but also any changes made to the set of
attributes associated with that asset from one asset tag to the next. Thus, the attestation
service must apply integrity protection to its repository of trusted asset tag authorities to
prevent tampering.

The Mt. Wilson attestation service adds two new APIs that support the geo-tag
implementation.

API: importAssetTagCertificate

This API is invoked by the tag provisioning service when a new asset tag certificate
is created and is provisioned into the TPM. The certificate is mapped to the host
information in Mt. Wilson during the host registration step.

API: revokeAssetTagCertificate

This is also invoked by the tag provisioning services when a geo-tag or asset tag
certificate is revoked (expired, invalidated, decommissioned). On the Mt. Wilson side, it is
disassociated from the host and is also deprecated in the certificate store.

From the attestation side, the SAML security assertion from a trust attestation
request adds one additional assertion section, as shown here. In this example, the
security assertion is asserting that the geo-tag or asset tag has been verified for a
specific server, host, or device as indicated by the UUID of the host, carrying highlighted
attributes (name-value pairs). Note the multiple types of attributes from the tag
definitions, geo-tags, and tenant descriptors. This SAML assertion is digitally signed by
the Mt. Wilson attestation authority to guarantee the integrity of the assertion. (Chapter 4
covered the attestation components and the SAML assertion contents and its integrity.)

<saml2:Attribute Name="Asset_Tag">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type=
"xs:anyType">attested(true)</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="ATAG :Country ">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">US</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="ATAG :State">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

113

xsi:type="xs:string">CA</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="ATAG :City">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">Folsom</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="ATAG :Tenant">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">Coke</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="ATAG :Tenant">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">Pepsi</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="ATAG :UUID">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">e64d9248-59d9-e111-b527-001e67576c61</
saml2:AttributeValue>
 </saml2:Attribute>

The first attribute section of the example SAML code above asserts that the geo-tag
fingerprint on the host has been verified against the expected/known-good fingerprint
in the attestation authority. The next set of attribute sections of the SAML provides the
various attributes and the descriptors that are asserted by this SAML certificate. These
are the various geo-tags and/or asset tags presented by the host and verified against
the attestation authority. The last section in the example is the assertion of the UUID of
the host. This SAML certificate is provided to any entity or component that would make
decisions about VM and data placement, migration, and access decisions.

Now that we have covered the various architectural components of the geo-tagging
architecture, let’s look at the tag provisioning models and process.

Geo-Tag Provisioning Process
We envision two models for geo-tag provisioning in virtualized data center environments.
As indicated in Table 5-3, depending on the type of operating system or virtual machine
monitor, one or both options are available.

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

114

Push Model
Provisioning under the push model, shown in Figure 5-11, is initiated remotely
by a provisioning tool. After mutual authentication between the provisioning agent and
the provisioning tool, the geo-tag, which is the SHA-1 hash of the host’s asset certificate, is
pushed to the running host and the geo-tag is written (or updated) in the NVRAM index.
A reboot of the host or server is needed to complete provisioning. This option is available
for Xen, KVM, and Citrix XenServer hypervisor environments, but not for VMware.
VMWare ESXi takes exclusive ownership of the TPM once it is installed and running, and
no other entity can manipulate the TPM thereafter.

Table 5-3. Geo-Tag Provisioning Model

Provisioning Mode KVM Xen ESXi Hyper-V

“push” tags to
running host

Yes, requires
provisioning
agent

Yes, using
XenAPI

No ?

PXE Boot Yes Yes Yes Yes

Figure 5-11. Push mode for geo-tag provisioning

Pull Model
Pull provisioning, shown in Figure 5-12, is initiated by modifying the boot order on the
host and launching a custom PXE boot image to provision the geo-tag. For hosts with
VMware ESX, the action needs to be carried out prior to installing or running ESX on
the host. The PXE script is built to launch the provisioning agent to interact with the tag

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

115

provisioning service for creating the asset certificate and the geo-tag, and their storage to
the TPM. The location of the tags is provided to the PXE script to allow the tag provisioning
service to create certificates for the geo-tags. The PXE script can then initiate a reboot
to start running the hypervisor on the host or start installing the operating system or
hypervisor. Figure 5-12 shows the PXE-based pull model for provisioning geo-tags.

Figure 5-12. Pull mode for geo-tag provisioning

Table 5-4 summarizes the key steps of the pull model.

Table 5-4. Steps for Geo-Tag Provisioning

Step Geo-Tag Provisioning with PXE

0 With the tag management tool, the business analyst selects tags to be associated
with hosts and uploads them in the form of a pre-defined XML tag specification
file format to the network location as the PXE image, or stores them in the
repository of the tag management service. This is referred to as “tag selections.”
The XML is optional encrypted and the keys are provided to the tag provisioning
service with appropriate authentication.

1 The system administrator launches the PXE image for provisioning the geo-tag
on the targeted host.

2 The PXE image is launched and it then starts the provisioning script, which
starts the provisioning agent.

3 The provisioning agent and the tag provisioning service mutually authenticate
each other using SSL/TLS certificates.

(continued)

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

116

As we have seen in this section, there are two models supported for provisioning
geo-tags to assets. The two provisioning models have very different deployment
considerations, however. The pull model requires changes to the boot options on the
hosts, with modified PXE configuration options to launch the tag PXE boot image. This
PXE image is used with iPXE (or equivalent) on a provisioning network to boot to the
provisioning image remotely. The model requires the hosts to be on a provisioning
network prior to installation, configuration, and launch of the OS/VMM, and they are
moved later to the production management network. On the other hand, the push model
can happen on the production management network with appropriate authentication of
the provisioning tools. Both of these models have a place in a virtual environment and
in cloud data centers. The pull model is applicable to all the OS/VMM platforms, but the
push model is not available for VMWare ESXi hosts, owing to the way ESXi handles TPMs
on the compute platforms.

In the next section, we will look at reference implementation of a complete geo-tag
solution, including the definition of tags, selection, and attestation.

Reference Implementation
This section describes a reference implementation highlighting the tag provisioning,
management, and attestation steps. The purpose of this implementation is to facilitate
knowledge sharing and also to demonstrate the possible visualization of the functionality to
partners. The expectation is that ISVs and CSPs will provide their specific implementation
for tag provisioning and management in a way that seamlessly integrates with their
respective solution environments and interfaces. Key screenshots from the reference
implementation are included to illustrate the various steps in the geo-tag solution.

Step Geo-Tag Provisioning with PXE

4 The provisioning agent requests the asset tag from the tag provisioning service.
The UUID of the host and URI for tag selections is passed to it.

5 Depending on the policy at the tag provisioning service, if a valid and latest asset
certificate is available for that host, it is returned to the provisioning agent , or
else the provisioning service creates an asset certificate for the host using the
URI for the “selected tag” and the UUID of the host.

6 The asset certificate is downloaded to the tag provisioning agent, and the
SHA-1 hash of the certificate, which is the asset tag, is created by the provisioning
agent. Alternatively, the asset tag is downloaded to the provisioning agent. This
depends on implementation of the provisioning service.

7 The provisioning agent writes (or over-writes) the geo-tag to NVRAM index of
the TPM, after the appropriate ownership of the TPM has been acquired.

Table 5-4. (continued)

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

117

Step 1
This is the tag definition step, where organizations create the tag taxonomy and a tag
whitelist to be used for geo-tagging or asset tagging purposes.

Tag creation is the core function of the asset tag service. A tag is an arbitrary name for
a classification, which has one or more potential values. For example, a tag named State
might have values like California or New York, while a tag named Department might have
values like Accounting, Sales, and so on. As shown in Figure 5-13, a set of tags forms a tag
taxonomy. The whitelist for a given domain or function is drawn from this taxonomy, to
be provisioned to a host or an asset (generically). For example, you might have a server
tagged with a selection like State: California; Department: Accounting.

Figure 5-13. Tag taxanomy

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

118

Step 2
This is the selection step, whereby a specific set of tags for a business function are picked
from the whitelist, as shown in Figure 5-14. In this example, the selection is named
“default” and has six tags selected that would be provisioned to one or more hosts. As
part of the tag provisioning service and API design, automation and scalability have been
given deliberate attention. There are well-documented configuration options provided
for the tag provisioning service that fully automate the asset certificate creation, geo-tag
and/or asset tag generation, provision the tag to the TPM, and register it with Mt. Wilson.

Figure 5-14. Tag whitelist selection

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

119

Step 3
This is the provisioning step, whereby an asset tag or geo-tag is created by associating one
or more of the selection attributes with the asset’s UUID, as shown in Figure 5-15; this
could be either the push or the pull model for provisioning. As shown in Figure 5-15, the
tag provisioning service creates the asset certificate, and the provisioning agent in either
of the two models writes the tag to the specific TPM NVRAM index.

Figure 5-15. Asset certificate, asset tag and geo-tag creation and provisioning

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

120

Step 4
The last step is to provide visibility and attestation for the tags and certificates, as shown
in Figure 5-16. Once the host is registered with Mt. Wilson (after the host has been
provisioned with asset tags), the Mt. Wilson trust dashboard displays the tags provisioned
to the host and allows Mt. Wilson to attest to the validity of the asset certificate, as well
as assert the geo-tag. Essentially, the geo-tag and/or asset tag fingerprint reported by the
host is compared and verified to be the same as the expected fingerprint stored in the Mt.
Wilson environment. If they are the same, the location attestation is affirmed; if not, it is
marked as untrusted. As described in the attestation section, there are multiple reasons
for failing the attestation: bad certificate, different fingerprint compared to the expected,
and so on. Figure 5-16 also shows the current PCR22 value (where the tag is extended)
and the expected value of the PCR22, as well as the SAML assertion that indicates the
results of the verification.

Figure 5-16. Asset tag verification and example of SAML assertion for asset tag—Mt. Wilson
extensions

As of this writing, the geo-tag provisioning and management solution, as well as
the reference implementation, have been provided to many Intel ISVs and CSP partners
to enable geo-fencing, workload segregation, and other interesting solutions for cloud
computing usage models. Given the significant interest in these uses, the expectation is
that many ISVs and CSPs will complete the eventual enablement and integration of these
capabilities into their services and product offerings, and they begin to offer them as core
services to their customers.

CHAPTER 5 ■ BoundARy ConTRol in THE Cloud: GEo-TAGGinG And AssET TAGGinG

121

Summary
Boundary control of workloads and data in the cloud through asset tagging and
geo-tagging constitutes a critical requirement for organizations as they consider moving
their business-critical applications and data to the cloud. Capabilities with trusted
compute pools usage models take organizations a long way toward attaining the visibility
and transparency they need for confirming the integrity of their cloud infrastructure
through a hardware roots of trust. Organizations also gain control of the placement and
migration of their workloads. Asset tagging and geo-tagging as described in this chapter
are highly complementary to the trusted pool usages, because they enable organizations
to securely provision an asset and geolocation descriptors to platforms with desired
location properties. Cloud service providers and IT organizations building private clouds
can provide the boundary control for workloads and data in their clouds with extensions
to the trusted compute pools solution architecture, as described in this chapter. The
controls are rooted in hardware, and are auditable and enforceable. The trusted compute
pools solution architecture, with tag provisioning and lifecycle management of the
constituent services, provides significant additional capabilities to address customer
needs. In this chapter we presented a reference architecture and an implementation for
these asset tag provisioning and lifecycle management components, with details on tag
definition and specification, APIs for tag management and provisioning, and extensions
to the Mt. Wilson attestation service to attest the geo-tags.

Geo-fencing is just one and the most obvious many possible usages that can be
enabled with a hardware roots of trust-based asset tag or geo-tag information. Usages like
SLA-based zoning of data center assets, Sarbanes-Oxley audits, and workload segregation
can be enabled by thistagging mechanism, resulting in better compliance and higher
quality of service that is rooted in hardware. As the solution stack becomes pervasive in
the data center, the expectation is that many such usages of this tagging could be explored
to provide proof of locality, of both physical and virtual data center assets.

In the next chapter, we shift gears a bit and focus attention on network security,
the synergy of trusted infrastructure, and how it is essential to have hardware-assisted
security in network devices to provide network security in the cloud.

123

Chapter 6

Network Security in
the Cloud

The cloud can’t exist without a network. It is the network that glues cloud-based
applications to its users. It is the network that connects applications to the Internet,
making them widely available. It is also the network that provides redundant paths
between cloud-based applications and users, which makes them business worthy and
reliable. Finally, the network can provide a number of security functions that further
enable end-to-end security in the cloud.

Boot integrity of the network infrastructure is a prerequisite to trust and enables
security functions in the network. The concepts, architecture, and technology
components we discussed in the previous chapters on platform trust, attestation, and
asset tagging are all equally applicable to the network infrastructure. In this chapter, we
look beyond the integrity of the server platforms, and cover concepts relating to network
security functions and their essential role in enabling trusted clouds. We look at how
companies like M2Mi are automating the many steps required to enable the network
security functions via high-level programmatic APIs, and we show how this automation
is having a direct impact on the security, scale, and automation of clouds. We will also
briefly examine software-defined networks (SDN), an emerging technology bringing
solutions that seem to address some of key requirements of cloud computing and that has
implications for network security.

As mentioned in previous chapters, cloud computing provides an on-demand virtual
infrastructure enabling consumers of the cloud to easily manage their applications. One
of the goals of cloud computing is to provide services that abstract the complexity of the
cloud and make it simple to manage applications contained within the cloud. Application
owners should be able to easily manage their applications without having to know the
complexity or the details of the cloud and how is constructed. One of the most important
components of the cloud is the network, so we begin with that.

The Cloud Network
The network can be thought of as the glue that holds cloud applications and users together.
If the network is the glue, then one might ask how it works. What would a cloud-based
network look like? Let’s address these questions by examining what a basic network is and
work our way to some complex examples found in modern cloud-based networks.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

124

Network Security Components
The most basic network consists of computers connected to a switch, as shown in
Figure 6-1. In this case the computers’ network port has a cable that connects to a switch.
The network switch is the device that enables communications between computers in the
network. This simple type of network is commonly found in homes and/or small offices.

Figure 6-1. Computers connect to the network through a switch

Figure 6-2. Simple network with a switch and a firewall

If we wish to connect this network to the Internet, then we need to add possibly two
network devices. The first device is a firewall, which is used to protect the network from
malicious attacks. The second device is a router, used to forward network traffic from
the local network to the Internet. Quite often the functions of the firewall and router are
consolidated in one device. This scheme is depicted in Figure 6-2.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

125

The main concerns and functions of networks are to allow communication between
devices connected to the network. In a modern data center hosting a cloud computing
environment, the network is much more complex. Nonetheless, it is composed of many
of the devices found in a simpler network, except they are in greater numbers and have
increased functionality. For example, in a data center there would be a large number
of racks housing servers. The servers are connected to switches contained at the top
of each rack. These are commonly referred to as access switches, or top of rack (TOR)
switches; see Figure 6-3. These switches are normally deployed in pairs to provide failover
capability and redundancy.

Top of Rack

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Core Layer

Firewall

Figure 6-3. Network racks connected to distribution switches

There could be tens, hundreds, and even thousands of these racks distributed in
a data center. The access switches are connected in turn to distribution switches,
otherwise known as aggregation switches. These switches aggregate the access switch
connections and provide the pathway out of the network into a firewall or a router.

There are a number of optional, but commonly found components in cloud-centric
networks, such as load balancers, intrusion detection devices, and application delivery
controllers (ADCs). The idea behind these components is to inspect network traffic and
perform a function upon it. Let’s look at each of these briefly.

Load Balancers
The main function of load balancers is to balance traffic between web servers and
application clients. For example, a website could be composed of several web servers in
order to handle a high number of client requests and provide redundancy in case one
fails. The load balancer distributes the client requests among the web servers, based on
a distribution algorithm such as a round robin or web server load.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

126

Intrusion Detection Devices
These devices monitor the network by looking for malicious malware such as viruses
or cyber-attacks attempting to penetrate sensitive systems. When these attacks are
discovered, an intrusion detection system can log the event and notify network
administrators, or it could possibly take an action to prevent the attack, such as creating
a firewall policy rule to block attacks.

Application Delivery Controllers
These devices can be considered an evolution of load balancers. They can load balance
network traffic and perform advanced tasks such as inspecting traffic to detect and avoid
IP fragmentation, data rate shaping, SSL offloading, and analyzing data and transactions
in real time. They can also protect against targeted attacks like cross-site scripting, SQL
injection, cookie poisoning, forceful browsing and invalid input.

End-to-End Security in a Cloud
When an architect designs a data center to host a public, private, or hybrid cloud, a
primary consideration is end-to-end security. The architect analyzes security all the way
from application clients, such as a laptops and hand-held devices, to the data center,
where applications are housed. The path of the client requests is noted, and how the data
traverses the devices, hosts, virtual machines, and backend storage is studied.

For example, a typical web application could flow as follows: From a web browser
through a firewall over the Internet, it arrives at a data center’s router, passes through
a firewall and distribution switch, to reach a load balancer and application delivery
controller. The load balancer redirects the traffic to an application server or web server
running in a virtual machine; the application receiving the traffic may then access
backend data based on the nature of the traffic. This flow is shown in Figure 6-4.

Virtual Machines

Access Switches
Load Balancers

Distribution Switches

FirewallRouter
Internet

FirewallUser

Figure 6-4. Trajectory of a user request

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

127

While this chain may seem excessively lengthy, it is actually just one of many traffic
flows to consider. An architect will diagram and note all possible network and data flows
and track them. The architect then looks at each participant of the end-to-end flow
and considers how each step needs to be secured, as well as thinks about what would
happen to the others if its security were compromised. For example, a security architect
may consider how to secure the backend block storage used by databases and virtual
machines. Backup, application, and administrative access to the block storage are
examined. After analyzing the network flow, the architect may decide to encrypt selected
data and apply enhanced firewall rules to restrict access.

Network security: End-to-End security: Firewalls
In the example above, we have explored the components of a network. The network in
which an application resides must be secure if that application is to be secure. There are
a number of means by which this is accomplished.

Firewalls and routers are the front-line defense in a network. Most modern routers
have firewall capabilities, such as screening for malformed packets and blocking
inappropriate protocols and ports. Modern firewalls can filter inbound traffic and
sessions, and apply policies that block unwanted traffic.

Firewalls can also support dedicated virtual private networks (VPNs) for remote
office connectivity and encrypt traffic between branch offices.

Network security: End-to-End security: VLANs
Virtual local area networks, otherwise known as VLANs, allow the segmentation of
network traffic over a network. VLANs are typically assigned based on requirements such
as application, bandwidth, or user access. For example, in a private cloud there could be
VLANs for the engineering, human resources, and accounting divisions. Another example
is a dedicated VLAN that is used by system and network administrators for managing
servers and network devices.

There are a number of ways to lock down and secure VLANs so they don’t become
compromised:

Strictly controllling physical security, physical access to network, •	
and server hardware.

Not using VLAN1 as the primary network data VLAN; this is the •	
default VLAN, therefore it is easily compromised.

Disabling high-risk protocols on any switch or firewall network •	
port that does not require them; for example, protocols such as
CDP and PAgP do not need to be enabled on all ports.

Pruning VLANs not in use; this will prevent unwanted access from •	
a rogue computer on the network.

Controlling inter-VLAN routing by using firewall policies.•	

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

128

End-to-End Security for Site-to-Site VPNs
Many companies use public clouds to achieve certain cloud benefits or they consolidate
IT resources into a private cloud. Both require that companies be able to connect private
and public clouds. The secure and logical way to do this is by using virtual private
networks (VPNs). These connections are commonly referred to as site-to-site VPNs.

The basic concept of a site-to-site VPN is that it extends a private network across a
public network such as the Internet. In the case of cloud computing, a VPN can connect
to a remote cloud located in a remote corporate data center, or to a publicly hosted cloud
provider such as Rackspace, Amazon, or Softlayer, as shown in Figure 6-5.

Local Network Remote Network

Remote
Firewall

Local
Firewall

VPN Network Connection

Figure 6-5. Joining remote network into the local network using a VPN

Local Network Remote Network

Local
Firewall

VPN Network Connection

Software-
Based

Firewall

Figure 6-6. Joining a remote network to the local network using a software VPN

A VPN provides a tunnel connection between specified VPN endpoints, usually
firewalls. These connections are typically authenticated and then secured using
encryption techniques. This prevents networked traffic from being analyzed via sniffing
techniques. For example, an attacker could possibly see the traffic at the packet level, but
after analyzing it, would only see encrypted traffic.

The legacy methods to establish VPNs were to use hardware-based firewalls or
routers. In cloud computing environments, it is now becoming more common to use
software-based appliances to establish VPNs, which allows greater flexibility, fine-grained
security, and quick configuration and provisioning times, as shown in Figure 6-6.

The two most common site-to-site VPNs used for connecting to remote clouds are
IPSEC and SSL/TLSEC. IPSEC is a Layer 3 VPN with an encrypted Layer 3 tunnel between
the peers. SSL is a higher layer security protocol than IPSEC, working at the application
layer rather than at the network layer.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

129

Site-to-site VPNs were typically built using IPSEC, but now SSL-based VPNs are
becoming popular. Major vendors such as Citrix and VMWare provide SSL VPN products
to enable remote cloud access. Also, firewall vendors such as Vyatta and Juniper offer
software appliances that can be used to enable VPNs and provide a higher level of
security through advanced firewall features.

Network security:End-to-End security: Hypervisors
and Virtual Machines
One concern within modern data centers is that of securing virtual machines. In public
and private clouds, these virtual machines may share the same network and compute
resources, not only between company departments but also between separate companies
in a public/hybrid cloud environment.

Hypervisor Security
In a cloud, each server has a hypervisor virtualization layer installed, such as Xen,
VMWare, KVM, and Hyper-V. As discussed in Chapter 3, an important component for
securing a cloud is to establish trust across virtual machines. This is accomplished by
using servers that have trusted platform hardware modules that allow the server to verify
the boot process of the server’s management domain virtual machine. The objective is to
protect virtual machines against attacks such as kernel rootkits or viruses. Boot integrity
and attestation have been covered in Chapter 3 and Chapter 4.

Another important way to secure the hypervisor is by locking down management
access to the hypervisor. A best practice is to reserve a VLAN to isolate access to the
management interface. This separates management traffic from data or application
traffic.

The same could be said for all the guest virtual machines: traffic is isolated from
other guest virtual machines. If one of the guests is compromised by an attacker, it may
inject malicious traffic into the network. Inter-VLAN routing should not be performed by
the virtual switch in the hypervisor. Best practice is to force traffic up to the firewall and
allow the firewall to control inter-VLAN routing. This protects guests from one another in
a multitenant cloud, as shown in Figure 6-7.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

130

Resources shared by the hypervisor and guests should be removed or restricted.
Features such as shared folders can be exploited by attackers, moving from a virtual
machine guest to gain access to the hypervisor by placing executable files on the shared
resource and then executing them.

Virtual Machine Guest Security
Virtual machine guest security is similar to hardening an operating system. Accounts
need to be restricted, and the operating system is maintained up to date and patched.
The main concern with virtual machine guests is that virtual machines live in a shared
environment. Therefore, extra steps should be taken to protect them from potentially
nosy guests. A virtual machine guest, for instance, should restrict traffic from other virtual
machine guests and only allow traffic from intended sources. Virtual machine guests
should carry internal firewalls configurable to allow only the protocols necessary for the
applications installed to function correctly. For example, this includes HTTP or HTTPs
traffic from the Internet, SQL traffic to a backend database, and management traffic via
SSH from an administrative VLAN.

Secure Storage: Mission-critical applications used in public or hybrid clouds require
a higher level of security to comply with corporate security policies or to meet other
compliance requirements. For instance, data in shared networked storage environments
needs to be encrypted. Users need to know where data is before figuring out how to
protect it. Therefore, a complete and accurate inventory of systems, software, and data
located in the cloud is necessary at all times. Encrypted data is intrinsically protected, so
policies should enforce automatic encryption of data before it is stored or moved to the
cloud. In the case of a hybrid cloud, connections between the internal network and the
cloud should also be encrypted.

Virtual Appliances: Network security devices such as firewalls, switches, and
load balancers at one time could be found only in hardware. Now vendors have started
to supply appliances in prepackaged virtual machines. This allows users to spin up

Figure 6-7. Virtualization layer managing guest virtual machines

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

131

instances of their software when specific capabilities are needed. For example, if a new
group of applications is deployed, a new load balancer may need to be created along with
it. If a new network segment is created dynamically, a new firewall may need to be created
to support that. In the opposite case, if a network segment is deprovisioned, then the
firewall could be spun down.

Software-Defined Security in the Cloud
Another concept that has evolved in association with cloud computing is the software-
defined networks (SDN). Applications in the cloud can be dynamic in size, location, and
lifetime. This puts increased pressure on coming up with the means to secure the cloud in
this challenging environment. Software-defined security was conceived to address these
concerns.

The term software defined security evolved from software defined networking (SDN).
SDN was conceived to solve similar problems found in dynamic, challenging networks
like those in cloud computing. So there is a bit of overlap between the two, since both
address matters of security in the network space.

Initially, software-defined networking focused on making the network control plane
programmable through application programing interfaces (APIs) and protocols. The
concept evolved to meet the needs of a dynamic IT infrastructure. Provisioning storage,
virtual machines, switches, load balancers, and firewalls in such environments required
APIs so they could be automated through workflows and orchestration engines.

SDN OVERVIEW

SdN is an approach to computer networking in which the control plane for network
switches is extracted and centralized on one or more servers. Figure 6-8 illustrates
this concept. The data plane is illustrated in the figure by APi and switch Silicon,
whereas the control plane is illustrated by Network intelligence and oS. in traditional
networking, every switch has both a data plane and a control plane. in SdN,
switches only have a data plane and support for communicating with a remote (and
centralized) control plane. The original protocol defined for this communication is
called openFlow, although recently other protocols have been introduced by certain
networking vendors.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

132

The software representing the centralized control plane is known as the SdN
controller and runs on a server platform, illustrated in Figure 6-8.

SdN provides the following advantages:

Unmatched Network Agility: Programmability and automation provide dramatic
improvements in service agility and provisioning time.

Choice in Networking Hardware: Standards-based openFlow switches provide
choice in networking hardware for the first time ever.

Optimized Network Operations: Automation of network provisioning tasks and
integration with data center resource orchestration platforms drives dramatic
reduction in network operation tasks and requirements.

Centralized view of the network

Figure 6-9 illustrates usage models that have been identified as getting significant
benefits from SdN.

Figure 6-8. Traditional Networking vs. SDN

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

133

The SdN network virtualization usage model provides tenants with their own
virtual (and isolated) networks while running on top of a common physical network
infrastructure. The virtual appliance usage model enables the instantiation of
security on demand in order to fulfill the specific needs of a virtual machines or
group of virtual machines.

Specific advantages of these two usage models in cloud multitenant (iaaS) data
centers include:

A VPN would be created support for unrestricted VM migration •	
(i.e., VM migration across subnets)

improved visibility (for network management software) of intra-node •	
traffic (i.e., VM to VM running on the same node)

improved virtual network management by allowing tenants to •	
manage their virtual networks without interfering with the cloud
provider or other tenants

improved flexibility to deploy virtual security appliances •	
(e.g., firewalls, intrusion detection/prevention systems, etc.)

Taking advantage of SdN in cloud multi-tenant (iaaS) data centers does not require
changing physical network switches. All of the advantages mentioned above can be
obtained by adding SdN support to virtual switches (software switches that allow
virtual machines to communicate inside and outside the physical server) and putting
in place an SdN controller that communicates with the virtual switches and that
provides interfaces for a virtualization management infrastructure to create and
manage virtual networks.

Figure 6-9. SDN use cases

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

134

SdN makes it easier to intercept traffic directed to a virtual machine and redirect it
to a security appliance such as a firewall or an intrusion detection and prevention
system. Given that trusted compute pools prescribe and enable higher levels of
protection for critical workloads, a tenant’s security personnel might like:

Tenant-defined and specified iPS/idS/firewalls security appliances •	
for their workloads and applications, rather than the generic ones
that the Cloud Service Provider supplies.

Security appliances run on trusted compute pools to ensure •	
integrity, protections, and control policies.

There are two major concepts for security and software-defined networks. The first
is APIs, used to make changes to network and hardware elements found in a data center.
The second is orchestration, namely taking these APIs and putting them to use in a logical
manner.

•	 APIs. There are a number of APIs and software solutions that
support the notion of SDN. Vendors such as Juniper, Cisco, and
VMWare all supply pre-packaged APIs to enable the control and
management of their hardware and software. The APIs can be
used by developers to manage, orchestrate, and automate their
cloud resources.

•	 Orchestration. Security tasks in the cloud typically require the
invocation of a number of APIs to fulfill a set of tasks. For example,
when a new virtual machine instance is created, a security policy
will need to be provisioned in order to allow traffic to flow to it.
The following is an example orchestration initiated after the new
virtual machine instance is created:

• A load balancer may need to be created or updated to
accommodate the new virtual machine instance.

• VLANs may need to be created to allow traffic to the virtual
machine.

• The firewall’s rules are updated to regulate traffic to it.

• Monitoring rules can be added to observe traffic and
user access.

Ideally, orchestration should be atomic in the sense of transactions: if the task fails
at any point during the orchestration, a smooth rollback of the API executions that did
manage to complete in the chain of API invocations would be completed transparently.

All of these concepts and network technology elements play a critical role in
real-world cloud computing environments built on cloud management software like
OpenStack, Eucalyptus, Amazon AWS, Virtustream xStream, and so on. OpenStack,
discussed in the next section, will be introducing a first-order mapping to the network
security primitives and components we have discussed in the previous sections.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

135

OpenStack
OpenStack is the leading open-source package for managing cloud environments.
Knowledge of the basics of OpenStack provides understanding of what’s needed to
manage and secure a cloud computing environment.

OpenStack is a Python-based cloud computing management application developed
collaboratively by Rackspace and NASA. Later, as the technology grew in popularity,
companies such as Dell, Red Hat, HP, Intel, IBM, and Citrix got involved and started
contributing to the project. OpenStack is a collection of open-source components
delivering a massively scalable cloud operating system. It can be thought of as a service
(IaaS) software package designed to manage end-to-end cloud infrastructure.

The management of cloud infrastructure can be quite complicated, since it is composed
of a number of different resources: servers, hypervisors, storage, hard drives, network, and
racks. OpenStack was designed to manage all these resources in a modular fashion.

OpenStack consists of a set of inter-related projects that address the various
resources of a cloud computing platform. Its services are interoperable with existing
cloud services like AWS, which heightens its appeal. As of this writing, there are seven
projects: Nova, Swift, Glance, Cinder, Neutron, Horizon and Keystone, with a few more in
proposal and blueprint development:

•	 Nova provides the ability to provision virtual servers on demand.

•	 Swift is similar to Amazon’s S3, a highly scalable and durable
object storage system used to store data accessible through
RESTful HTTP APIs.

•	 Glance Image Service provides services for discovering,
registering, and retrieving virtual machine images.

•	 Cinder provides block storage for virtual environments. This
is similar to Amazons EC2’s Elastic Block storage, where the
block storage volumes are network-attached and can persist
independently from the life of an instance.

•	 Neutron provides networking as a service functionality to
OpenStack. This involves configuring network components such
as virtual switches, firewalls, hardware switches, load balancers,
and more.

•	 Horizon Dashboard is the web-based dashboard for exposing the
cloud management capabilities of OpenStack.

•	 Keystone provides identity, token, catalog, and policy services for
projects in the OpenStack family. For example, before a Glance
call is made, authentication is processed by Keystone. Glance
depends on Keystone and the OpenStack Identity API to handle
authentication of client requests.

•	 Ceilometer was created to allow the metering of cloud
environments. Metering includes virtual machine instances, CPU
and RAM usage, network data I/O, and block storage hourly usage.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

136

OpenStack Network Security
OpenStack has essential security features. For example, OpenStack’s APIs allows exposing
firewall, load balancer, switch, and intrusion detection system (IDS) capabilities as
infrastructure services. Specifically:

•	 LB-aaS or load balancing is an important capability. For example,
if an additional virtual machine instance is spun up to meet
increased load, then it can be added to an application pool on a
load balancer through an API.

•	 VPN-aaS or VPN is another popular feature. Picture a new
network segment provisioned for a tenant at a remote cloud.
A VPN needs to be created after provisioning to enable a secure
connection from the tenant’s data center to the network segment
at the cloud provider.

•	 Firewall-aaS or firewall allows tenants to customize firewall rules
to meet their application security needs and match corporate
security and compliance requirements.

•	 VLAN-aaS or VLAN offers tenants the ability to expand their cloud
network resources. Often, more IP addresses are needed and
logical separation of network resources is required. In this case,
a new network segment and VLAN need to be provisioned on
demand. VLAN as a service exposes this functionality as an API.

Furthermore, each of these services can be exposed to tenants under a cloud security
model. For example, a tenant may be able to create a VPN to its network segment, but
not allowed to see VPN resources of other tenants. An administrator may have the ability
to see created VPNs, but would be unable to delete it unless special permissions were
in place. OpenStack’s architecture was designed to provide fine-grained management
of cloud resources. It allows cloud administrators and architects to apply role-based
controls to network functions and services, as shown in Figure 6-10.

Nova
(Compute)

Neutron
(Networking)

Glance
(Images)

Cinder
(Block Storage)

Swift
(ObectStorage)

Keystone
(Identity)

Horizon
(Dashboard)

Authentication

Figure 6-10. Access to cloud services are managed using roles and privileges

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

137

This gives OpenStack the capability to virtualize network functions. In the case of
network security, items such as switch, NAT, DHCP, load balancing, network interface
configuration, and firewall security policies can be quickly and securely instantiated.

Network Security Capabilities and Examples
M2Mi Corporation provides cloud network services. The company offers a set of
appliances callable by applications like OpenStack through its APIs, providing higher
level management, workflow, and analytics tools. The API allows engineers to request
specific actions, make changes, or request data without having to have knowledge of
vendor-specific capabilities. For example, suppose a new network segment is needed
to be provisioned for a new set of applications. Tasks such as segment allocation, DNS
provisioning, VLAN provisioning, and network security policy creation are carried out in
an orderly manner. The APIs can autodetect device types and perform the above actions
as necessary. The API relationships are shown in Figure 6-11.

Figure 6-11. Protecting the cloud using M2M automation from M2Mi

For example, perhaps a new virtual machine is about to be provisioned and will
use VLAN 150. A network administrator typically checks on whether the VLAN already
exists on the switch, and if so, on the customers or applications using it. If it isn't there,
then the administrator can create it in the switch’s VLAN database. The next step enables
the VLAN on the physical port connecting the switch to the virtual machine’s server. In
a data center, this is typically a trunked port, which means the network port can support
multiple VLANs with the same physical port. Also, the switch will likely have multiple
connections to the physical server using an 802.3ad link aggregated channel. See
Figure 6-12.

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

138

Let’s take a look at the commands that would enable the VLAN on the switch. The
following commands will illustrate the simplest use case, where there is only one cable
connecting the server to the switch. The first command to be sent to a switch will check to
see which VLANs have been created on the switch:

switch# show vlan brief
VLAN Name Status Ports
---- ------------------------ --------- ----------------------------
 Gi1/46, Gi1/48
1 default active Gi1/23, Gi1/24, Gi1/25
137 VLAN0139 active
140 VLAN0140 active
141 VLAN0141 active
142 VLAN0142 active

This command shows that the VLANs 139 through 142 have previously been created.
VLAN 143 would need to be added to VLAN database on the switch:

switch# configure terminal
switch(config)# vlan 143
switch(config-vlan)# name CustomerA

Note that a name can be used for the VLAN. This is used as a tracking mechanism
to associate the VLAN with a logical name. Often, data centers will use an application's
name or owner as the VLANs name. The next step is to create the VLAN on the port. In
this case, the port on the switch that connects to the server is Gi1/5:

switch# configure terminal
switch(config)# interface Gi1/5
switch(config-if)# switchport trunk allowed vlan 143
switch(config-if)#

The final step is to check the interface to make sure the VLAN was added.

Figure 6-12. VLAN trunking

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

139

Switch# Show interface Gi1/5
Name: Gi1/5
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
 ...

Trunking VLANs enabled: 140-143. If adding and removing VLANs is a regular
occurrence, then it is desirable to automate the process. The M2Mi APIs provide a VLAN
orchestration call that allows all the previous steps to be accomplished in one simple
one call:

addVLAN("143","Customer A","cisco10.example.com");

This call sends the following request to the server:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:jax="http://jaxws.switches.cisco.m2mi.com/">
 <soapenv:Header/>
 <soapenv:Body>
 <jax:VLANOrchestration>
 <!--Optional:-->
 <vlanID>143</vla8nID>
 <!--Optional:-->
 <vlanName>Customer A</vlanName>
 <!--Optional:-->
 <port>Gi1/5</port>
 <!--Optional:-->
 <hostname>cisco10.example.com</hostname>
 </jax:VLANOrchestration>
 </soapenv:Body>
</soapenv:Envelope>

The idea is to automate several of the manual steps and remove the element of
human error from the configuration. There are other advantages to using APIs. For
instance, invocation of the APIs can be limited by users or groups, providing a complete
audit trail of all commands that were sent to a device.

Summary
Implementing network security in the cloud requires an in-depth analysis of the
hardware and software found in the data center hosting the cloud. There are additional
considerations for hybrid cloud or public clouds, with more factors to consider involved
in an analysis, such as security issues when traversing the Internet and the quality of the
security in the remote data center hosting the cloud.

http://example.com/
http://schemas.xmlsoap.org/soap/envelope/
http://jaxws.switches.cisco.m2mi.com/
http://example.com/

CHAPTER 6 ■ NETwoRk SECuRiTy iN THE Cloud

140

Security in the cloud is based on best practices evolved over years in order to meet
new threats and adapt to new hacking technologies. These best practices can be applied
to cloud computing, and a number of companies provide services out of the box to
enhance cloud computing security. While many see cloud computing as a technical
revolution, the security applied to it is based on hard experience, evolved from known
protective measures and standard operating practices. Practices include encrypting
data at rest, separation of concerns through delegated administration, application
fingerprinting, secure logging, secure backups, auditing, and threat identification.

141

Chapter 7

Identity Management
and Control for Clouds

In the last few chapters we covered the technologies, usage models, and capabilities that
are required to enable trusted infrastructure in the cloud–one of the foundation pillars for
trusted clouds. We looked at the concepts, solution architectures, and ISV components
that establish and propagate platform trust, attestation, and boundary control, all of
which are required to enable the trusted clouds. The other foundational pillar to enable
them is identity management, and that is the focus on this chapter.

Identity management encompasses the management of individual identities and
their authentication, authorization, roles, and privileges and permissions within or across
system and enterprise boundaries, with the goal of increasing security and productivity
while decreasing cost, downtime, and repetitive tasks. Identity management thus
constitutes an essential capability for attaining trusted clouds. From a cloud security
perspective, and given the distributed nature of the cloud, questions like, “How do I
control passwords and access tokens in the cloud?” and “How do I federate identity in the
cloud?” are very real and thorny ones for cloud providers and subscribers. In this chapter,
we will provide a broad introduction to identity, survey the challenges and requirements
for identity management systems, and describe a set of technologies from Intel and
McAfee that address identity requirements.

The emerging cloud infrastructure connects remote parties worldwide through
the use of large-scale networks and through a diverse and complex set of hardware and
software technologies. Activities in various domains, such as e-commerce, entertainment,
social networking, collaboration, and health care are increasingly being implemented
by diverse sets of resources and services. These resources and services are engaged at
various levels within those domains. The interactions between different parties at remote
locations may be (and sometimes should be) based on the information that’s needed to
carry out specific transactions with little knowledge about each other beyond that.

To better support these activities and collaborations, it is essential there be an
information technology infrastructure with a simple-to-use identity management system.
We expect, for example, that personal preferences and profiles of individuals be readily
available as a cloud service when shopping over the Internet or with the use of mobile
devices. Extensive use of cloud services involving sensitive computation and storage
should be done without the need for individuals to repeatedly enter user credentials. In
this scenario, the technology for digital identity management (IdM) is fundamental in
customizing the user experience, underpinning accountability in the transactions, and

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

142

complying with regulatory controls. For this technology to fully deploy its potential, it is
crucial we investigate and understand the concept of digital identity. This in turn helps in
developing solutions for the protection of digital identity in IdM systems, solutions that
ensure such information is not misused and individuals’ privacy is guaranteed. Moreover,
several strong authentication techniques aimed at protecting digital identity from misuse
and access control rely on multi-factor identity verification and strong identity factors.

Phillip Windley defines digital identity as “the data that uniquely describes a person
or a thing and contains information about the subject’s relationships.”1 We like this
definition because it allows for practical ways to assert identity. Identity may simply be
a collection of attributes that together disambiguates someone, or it may be a digital
identifier with known unique properties.

Note that identity plays a role in many contexts, interactions, and transactions of
everyday life. Examples of “contexts” include personal, social, work, government and
e-commerce. The interpretation and view of the same identity information may vary
based on other contextual information, thus increasing the complexity of the problem of
managing such identities. Moreover, the policies, control, and management of the same
identity information may differ based on:

Identities owned and controlled by users or data subjects•	

Identities controlled by third parties or cloud service providers •	
but known to data subjects

Identities controlled by third parties, such as credit rating •	
agencies and unknown to data subjects

Analysis of the multi-dimensional aspects of the management of identity
information and other related details regarding IdM components is important while
assessing which identity solution best fits consumers’ or business users’ interaction with
cloud services. In this chapter we focus on methodologies of IdM, and especially Intel
technologies. We will not explore why users submit or share information in the various
mentioned ways and for what purposes. That limitation notwithstanding, such legal,
social, and behavioral contexts may be important when considering the management and
use of identity information.

Identity Challenges
There are a number of obligatory considerations in the architecture of almost any identity
system. These include issue identity, identity usage, identity modification, and identity
revocation. Based on the simple identity credential lifecycle illustrated in Figure 7-1,
we can identify some general shortcomings in current approaches to managing identity
information.

1Phillip J. Windley, Digital Identity O’Reilly Media, 2005), 8–9.

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

143

A limitation of current systems is that no information is provided about whether
the strong and weak identifiers being enrolled and stored at the identity provider (IdPs)
have been verified to be correct with respect to validity and ownership, as well as any
indication of the strength of this verification. If an IdP has such information, then
service providers are in a position to make a more accurate judgment concerning the
trustworthiness of such identity information.

Furthermore, most IdM systems lack flexible enrollment mechanisms for the
individuals who want to enroll in their systems. Enrollment can be in person at a physical
location of an IdP or online. Current systems, however, do not provide alternative
mechanisms for individuals to enroll. Moreover, the types of identity attributes that can
be enrolled in most systems are restricted, based upon the nature of the IdP organization.

Identity Usages
A major drawback of current systems is that no specific techniques are provided to
protect against the misuse of identity attributes stored at the IdPs and service providers.
Even the notion of misuse is still being investigated and the solutions are in early stage of
maturity. By “misuse” we refer to when dishonest individuals register fake attributes or
impersonate other individuals of the federation, leading to the threat of identity theft.

To mitigate this threat, an upcoming trend is to require strong authentication. Strong
authentication often refers to systems that require multiple factors, possibly issued by
different sources, to identify users when they access certain services and applications.
However, current approaches to strong authentication, such as those deployed by banks,
enterprises, and government institutions, are neither flexible nor fine-grained. In many
cases, strong authentication simply means requiring two forms of identity tokens—for
example, password and biometric. Through prior knowledge of these token requirements,
an adversary can steal and compromise that required identity information. Moreover, if
the same tokens are repeatedly used for strong authentication at various service providers,

Figure 7-1. Shortcomings of current federated IdM approaches in the credential lifecycle

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

144

then the chances of these tokens being compromised increase. Yet, individuals should be
able to choose any combination of identity attributes to perform strong authentication,
provided the authentication policies defined by the verifying party are satisfied.

A recurrent issue in identity usage is the inability of some individuals to disclose
minimal identity data about themselves to the service provider and IdPs, as per required
to obtain the service requested. Digital identifiers have uniqueness properties that
disambiguate someone or something within some domain of reference. For example,
virtually every average-size company has two or more people with the same first and last
names. Smaller companies have fewer name–space collisions; larger companies have
more. To minimize the occurrence of these name–space collisions, identity management
systems typically create unique digital identifiers. Interestingly, the identity management
system could create a digital identifier that is globally unique, meaning that the identifier is
not only unique within the company, but also may be unique at every other organization.
This suggests that globally unique identifiers can be used to track and correlate activities
between multiple organizations. Of course, such identifiers would be more than minimal,
able to disambiguate individuals beyond what is required for the employer’s use.

There are, likewise, several security and privacy concerns related to the extraneous
identity information of the individuals stored at service providers and IdPs. Moreover,
such data may be aggregated or used in a manner that could potentially violate the
privacy requirements of those individuals.

Approaches need to be developed to address how biometric data can be used in
an IdM system. Use of biometrics as an integral part of individual identity is gaining
importance. At the same time, because of the nature of biometric data, it is not easy to use
such data in a way similar to the traditional attributes. In theory, it should be possible to
use biometric data together with other identity attributes to provide greater protection
against identity attribute misuse. Biometric identifiers are designed to be globally unique.
DNA biometrics are universally unique—it is believed that no human being has exactly
the same DNA sequence as any other human who has ever lived or who will ever live.2

Another type of identity data becoming increasingly important in current systems is
that related to individuals’ histories of online activity. If this history can be verified and
used for evaluating properties about an individual—for example, his or her reputation—then
this data becomes part of that individual’s identity. Consider a scenario in which an
individual frequently buys books from an online store. This purchasing history can be
encoded as an identity attribute of that individual, which in turn can be used to evaluate
the person’s reputation as a buyer. This history-based data needs to be better supported
in current IdM systems. Companies like Amazon, Netflix, and Apple are using these
types of attributes to classify customer buying habits and nature, in order to present a
customized shopping experience.

Identity Modification
There are different approaches to take when it comes to finding mechanisms for the
notification of changes in attributes. However, further investigation is required to
develop flexible mechanisms for updating or modifying user-controlled enrolled identity

2Encyclopedia of Espionage, Intelligence, and Security Internet service. http://www.faqs.org/
espionage/De-Eb/DNA-Sequences-Unique.html#b.

http://www.faqs.org/espionage/De-Eb/DNA-Sequences-Unique.html%23b.
http://www.faqs.org/espionage/De-Eb/DNA-Sequences-Unique.html%23b.

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

145

attributes. As the information is shared within the federation, updates performed on one
system do not ensure consistency across the federation. Additionally, systems may fail to
prevent malicious updates by attackers impersonating honest individuals.

Identity Revocation
Current federated IdM systems lack practical and effective revocation mechanisms. To
enable consistency and maintain correctness of identity information, revocation should
be feasible. Revocation feasibility for biometrics can be problematic, though. People
can’t simply change their fingerprints, irises, or DNA. Revocation in provider-centric
systems, in which the IdP provides the required credential to the user each time, is
relatively simple to achieve, however. A cryptographic digital identity can be mapped to
a biometric identifier to create a credential with a manageable lifecycle. Such credentials
are typically short term, and cannot be used without consulting the issuer again. If,
however, the credentials are stored with the user, such as a long-term credential issued by
the appropriate authority, then building a revocation system becomes more challenging
and critical.

Identity Management System Requirements
In emerging paradigms of identity systems (such as user-centric identity) there are
several distinct properties of the identity attributes that must be maintained. A key
property is that of user control. While reasoning about the security and privacy properties
of user control, we refer to the OECD countries. The OECD guidelines are widely accepted
and they are the cornerstone of fair information practices and regulations designed to
protect personal information around the world. In addition, Cameron’s Laws of Identity
are a recent set of prevalent guidelines regarding digital identity management.3 They
both aim at explaining the successes and failures of digital identity systems. In addition,
design principles and rules to achieve several security and dependability properties
are included. Figure 7-2 shows the properties of our taxonomy related to user control,
illustrated as nodes. Taken together, these basic properties define what we mean by
security and privacy in our solution.

3http://msdn.microsoft.com/en-us/library/ms996456.aspx.

http://msdn.microsoft.com/en-us/library/ms996456.aspx

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

146

Basic User Control Properties
The basic properties related to the identity attributes either apply to the entire IdM
system, to transactions in the system, or to the identity information and credentials of
the entities involved. Although this classification is not exclusive, the semantics of the
properties highlight which of the three they are relevant to. Table 7-1 briefly describes
these properties.

Figure 7-2. Taxonomy of user control properties for identity attributes

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

147

Table 7-1. Basic Properties Achieving Security and Privacy

Property Description

Confidentiality This deals with the protection of information from
unauthorized disclosure. This property applies to identity
information and transactions in the system. Identity
information should be accessible only by the intended
recipients.

Revocation Revocation of identity information is required to maintain the
validity of information in the system. It should ensure that once
invalid information is recognized, it is not used for identity
verification purposes.

Integrity This requires data not be altered in an unauthorized way.

Unlinkability Ability to unlink two or more users or transactions so that an
attacker, after having observed the transactions, cannot gain
additional information by linking onto those transactions.
Unlinkability prevents (illegitimate) merging of user profiles.

User Choice The individual can choose among multiple IdPs and determine
which attributes to release.

Verifiability The individual can verify that the IdP provides the correct
identity data about him or herself and according to that
individual’s intention. As such, an individual giving consent for
what data is revealed, for what purpose, and to whom means
that the individual’s view of the transaction corresponds
to the actual transaction and that the individual has agreed to
execution of the transaction.

Non-replay This prevents unauthorized parties from successfully using an
individual’s identity data to conduct new transactions.
Non-replay is one prerequisite for obtaining the
non-repudiation property.

Non-repudiation The sending of non-repudiatable identity data cannot be
denied by its sender and the ownership of the identity data
cannot be denied.

Stealing Protection This concerns the protection against unauthorized entities
illegitimately retrieving an individual’s data items. Stealing
protection is required to achieve properties such as
non-repudiation.

Selective release Identity information can be released at a fine-granular level,
as controlled by the individual. In this way, an individual can
provide only the identity information that needs to be released
for a service, without having to release additional information.

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

148

Key Requirements for an Identity Management
Solution
The key requirements for an identity management system to ensure security and privacy
of the identity data are as follows.

Accountability
Accountability refers to an ability to hold entities responsible for their actions in user
transactions and for their use of identity information at the service provider and IdP. IdM
systems have typically been focused on underpinning the accountability in business
relationships and checking adherence to regulatory controls. In user-centric systems,
the identity information of a user may be provided via the user’s client. Therefore, it is
required that, in addition to guaranteeing the integrity of the identity data, there should
be accountability in providing such data. Accountability also becomes a significant
issue if the user is to stay anonymous, as accountability and anonymity are, per se,
contradictory properties. Nevertheless, conditional release of identity information
can help in obtaining accountability in anonymous transactions. The eighth OECD
accountability principle is devoted to understanding accountability, especially as it
relates to privacy.

Notification
Notification Identity management (IdM):notification is desirable as a means for
improving security by enhanced user control. Users should be able to receive and retrieve
notifications regarding the usage of their credentials, so as to identify security breaches,
and to estimate the extent of their compromised user identity information previously
shared with external entities. It is desirable to allow users to collect data, whether under
receive (push model) or retrieve (pull model) notifications regarding the usage of identity
data. The sixth and seventh OECD principles of openness and individual participation
can potentially be satisfied using comprehensive notification mechanisms.

Note ■ Privacy legislation often requires notification of individuals impacted by release of
privacy-sensitive personally identifiable information (PII). Identity credentials may be
considered PII. notification also helps individuals manage their privacy.

Anonymity
In transactions, anonymity deals with subjects remaining anonymous within an
anonymity set—that is, with not being identifiable within some context or “set.” In
this context, something is more anonymous when it can be hidden in a population of
otherwise indistinguishable members. A white sheep in a herd of white sheep is more

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

149

anonymous than a black sheep in that same herd of white sheep. Thus, anonymity is a
specific notion related to data minimization, obtainable when the released attributes are
not identifying the user.

Anonymity is supported by unlinkable transactions. Without such unlinkability, the
anonymity set shrinks quickly when executing several transactions. Pseudonymity, or the
use of pseudonyms as user identifiers, is a concept related to anonymity.4 It plays a critical
role in providing unlinkability and data minimization. There has been extensive work on
the concept of pseudonymity, from both conceptual and implementation perspectives.

Note that conditional anonymity—that is, anonymity that holds only as long as a
well-defined condition has not been fulfilled—can be based on conditional release of the
identity information. In this way, the mechanisms providing for anonymity remain useful,
as they are complemented by mechanisms for realizing accountability.

Data Minimization
Data minimization deals with minimal data release within a transaction. This can be
achieved by having appropriate policy system support, by having unlinkable transactions,
and by having a data release system that allows for selective and conditional release of
identity information. This approach corresponds to the first OECD principle relating to
collection limitation. It is also reflected in the European Data Protection Directive 95/46/EC
and the national data protection laws within the European Union.

Attribute Security
The attribute security property reflects a comprehensive view of the security of a user’s
attributes. The main focus is on the correctness of attributes in the view of a service
provider, meaning that the attributes belong to the person executing the transactions.
This requires the attribute information to be integrity protected. Additionally, protections
against stealing, and mechanisms to prevent sharing must be in place in order to
stop another person from maliciously impersonating a user’s identity. Furthermore,
revocation of identity information must be feasible. Attributes in certain cases must be
kept confidential with respect to parties other than the ones involved in the transaction.

Attribute Privacy
Attribute privacy refers to giving the user control over the attribute data. This is supported
by system assurance and by allowing for user-chosen IdPs. Both those properties
account for user-centric decisions regarding which IdP to trust. Anonymity and
dependent properties very likely contribute to attribute privacy in that they help avoid
the unnecessary release of (identifying) information. Data minimization also directly
provides privacy.

4http://en.wikipedia.org/wiki/Pseudonymity.

http://en.wikipedia.org/wiki/Pseudonymity

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

150

An orthogonal property essential for reaching attribute privacy is support of privacy
policy management, enforcement, and agreement. User control over attributed data
helps the user remain anonymous outside the context or domain in which the identity
is being used. Preventing disclosure of privacy sensitive information outside the context
where it is needed is important; once this information is disclosed, it can’t be reclaimed.
Confidentiality measures ensure that privacy-sensitive attributes are not unintentionally
disclosed to any party.

Identity Representations and Case Studies
There are various types of identity tokens used for device and user identification and for
access control. Key examples are illustrated in Figure 7-3. From a security perspective,
the prevalent method of conveying identity information that is certified by a trusted third
party is through certificates.

Figure 7-3. Types of identity tokens

Based upon the representation of certified digital identity information, the resulting
system may or may not satisfy one or more of the properties covered in the previous
section. In the following, we discuss technical mechanisms that can be used to obtain
an identity management system with the properties described in our taxonomy. We
refer to three different core mechanisms. Note that what follows is not a complete survey
of mechanisms but, rather, focuses on the more interesting properties relevant to the
representation of certified digital identity information.

PKI Certificates
Standard certificates, like X.509, allow, in conjunction with a private signing key, a user
to prove that attributes have been issued to him or her. The certificate contains attributes
and a public key signed by the IdP (the issuer of the certificate). Note that in a typical IT
enterprise, such certificates are used for managing users and client machines in order
to establish secure channels between two enterprise entities, for provisioning, and for
updating user machines or profiles.

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

151

To assert the attributes of a certificate to a relying party, the user engages in a
challenge-response protocol with the relying party. This protocol requires the certificate
to be sent to the relying party and a signature made with the private key. The step reveals
all attributes of the certificate to the recipient. Technically, certificates are based on
standard digital signature schemes such as RSA and are represented by standards like
X.509,5 which define the formats of the certificates.

Traditional certificate-based technologies allow for constructing systems in which
a certificate is issued once and can be used repeatedly by users to reveal the attributes
contained in the certificate. Thus, this technology allows for off-line IdPs. The tokens are
generated by the user without involvement of the IdP, making this method flexible with
respect to this aspect. This technology is, for example, used in multiple ID card proposals
and public key infrastructure-based systems.

Security and Privacy Discussion
In the discussion of security requirements, note that the integrity of such schemes
is accounted for by the user attributes being included in the certificate signed by the
IdP, using standard signature schemes, and e being provided each time the attributes
are asserted to a relying party. Confidentiality of attribute information is achieved by
using encryption schemes in conjunction with public key infrastructure (PKI). Stealing
prevention methods for standard certificate systems target protection of the master
private key, as the certificates are made available to relying parties anyway. The following
mechanisms can be used, also in a combined fashion:

Binding all certificates to one master private key of the user and •	
mandating appropriate protection of this key—for example, in
a hardware token. As this requires the hardware token be used
in each transaction, the portability of such tokens becomes
important.

Applying operating system mechanisms to prevent a user from •	
sharing his or her key.

Using multi-factor authentication makes it harder to share the •	
token—for example, if it is derived from the biometrics of the user.

Finally, revocability can be achieved by the prominent mechanism of certificate
revocation lists (CRLs) and associated protocols. This requires an additional protocol to
be run in order to obtain the latest revocation list.

With respect to the privacy requirements, verifiability holds as a user can inspect the
certificate and thus has control over the attribute information being revealed. Conditional
release cannot be realized in the setting in which the protocols operate, as an IdP is
not involved in the transactions. Technically, of course, protocols could be conceived
that involve the IdP in a transaction to obtain the conditional release property, but by
discussing this we would leave the basic paradigm of the system.

5http://en.wikipedia.org/wiki/X.509.

http://en.wikipedia.org/wiki/X.509

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

152

Selective disclosure is not possible in a setting that uses standard certificates, as
these certificates always have to be revealed as a whole and no subset of their attributes
can be revealed because of the properties of the employed standard signature schemes
like RSA or DSA. Finally, unlinkability may not be achievable in this setting. This is
because transactions done with multiple IdPs, or multiple transactions with one IdP, are
linkable, as the same certificate bit string is being provided in every transaction.

Limitations
The main problem with using standard user-side certificates is the lack of overall privacy
properties, and thus the strong trust assumptions that we have to make on the relying
parties. Assuming stronger trust in a relying party may not be realistic, relying parties may
benefit from gathering extraneous users identity information. The U.S. National Institute
of Science and Technology (NIST) has defined comprehensive criteria for understanding
and evaluating identity management systems.6 Those criteria demonstrate how the
principles of identity management may be applied when evaluating identity management
systems for purchase or use.

Identity Federation
There are several enterprise identity usages that require nonemployee accounts,
business-to-business (B2B) interactions, and interaction and use of data from multiple
applications that may exist across different networks. Identity federation is a term used
when organizations form trust relationships whereby identities or assertions of an
identity can be shared by all applications within the federation. It is critical that business
partners involved in a federation build a trust relationship with one another. This
trust relationship, defined by business, technical, and legal agreements, describes the
applications that are involved, the user profile information that is to be shared, and the
responsibilities of all parties to manage and protect user identities.7

Several standardization initiatives for identity federation are being developed across
the world. Among them, Kantara Initiative (http://kantarainitiative.org/)
and WS-Federation (http://en.wikipedia.org/wiki/WS-Federation) are two
significant efforts. These initiatives define an identity federation framework that allows
assurance-levels mapping for various service providers. For example, the Kantara
Identity Assurance Accreditation and Certification Program assesses applicants against
its assessment criteria, including alignment with the NIST 800-63 Levels of Assurance
(http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf) and
it grants successful candidates of the program the right to use the Kantara Initiative
Mark, a symbol of trustworthy identity and credential management services at specified
assurance levels. It also collaborates with Open Identity Exchange (OIX) and other
related initiatives to allow an interoperable digital trust framework to promote adoption
of a robust online trust ecosystem. Similarly, WS-Federation was created with goal

6csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf.
7http://assets1.csc.com/cybersecurity/downloads/FIM_White_Paper_Identity_
Federation_Concepts.pdf.

http://kantarainitiative.org/
http://en.wikipedia.org/wiki/WS-Federation
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://assets1.csc.com/cybersecurity/downloads/FIM_White_Paper_Identity_Federation_Concepts.pdf
http://assets1.csc.com/cybersecurity/downloads/FIM_White_Paper_Identity_Federation_Concepts.pdf

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

153

of standardizing the way companies share principals and machine identities among
disparate authentication and authorization systems that cross corporate boundaries.
This translates to mechanisms and specifications that enable federation of identity
attributes, authentication, and authorization information, but it does not include trust
establishment and verification protocols.

The common objectives for federation proposals have been primarily to reduce the
number of user-business interactions and exchanges of information such that critical
private information is used only by appropriate parties. There is a need to ensure that user
information is available to the SPs on demand, online and with low delay. Thus, user data
is more up to date and consistent compared to the situation where each principal has to
maintain its data in multiple places. Federations reduce costs and redundancy because
the member organizations do not have to acquire, store, and maintain authorization
information about all their partners’ users. Also, both the federation initiatives try to
preserve privacy, as only data required to use a service is transmitted to a business partner.

Single Sign-On
Single sign-on (SSO) improves security and usability. With SSO, user accounts and
passwords are not reused across multiple sites or servers. SSO also improves usability by
limiting the number of times the user must re-authenticate. Popular SSO systems include
Kerberos, ActiveDirectory, SAML, and OpenID. The SSO systems work by converting the
user authentication event into an access credential that is cryptographically protected.
An access manager located at a remote server or within the same platform verifies the
credential, rather than performing an authentication challenge with the user. The SSO
credentials grant access for a period of time; that access is rescinded upon credential
expiry. These systems make security and usability trade-offs that can be undesirable,
however. If the credential timeout value is too long, malware can reuse the credential to
prolong access that is otherwise unauthorized. If the timeout value is too short, the user
must re-authenticate to continue the session.

An example of an SSO system is the McAfee Cloud SSO. It ensures that strong
authentication is used for the customer’s cloud-based software as a service (SaaS)
applications, and helps allow SSO access to the cloud-based applications while
complying with enterprise security policies. This solution is flexible and permits for an
on-premises as well as SaaS-based solution, or both (hybrid model).

Intel Identity Technologies
Intel Corporation has developed several technologies useful for implementing identity
management systems. Hardware support is often beneficial because it presents physical
boundaries that can inhibit or prevent compromise of the identity management system
by malware.

Hardware Support
Intel provides hardware support to enable hardened identity technologies on Intel
platforms. Some basic underlying capabilities as of 2013 are as follows.

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

154

Virtualization Technology (VT)
Intel’s Virtualization Technology (VT; see Figure 7-4) creates an additional layer of
protection between physical memory and devices beneath the operating system.8
Virtualization can be used as a security mechanism by isolating the operating system
and applications from hardware using a small, and therefore well-understood software
layer, that’s also known as the hypervisor, ensures that hardware access follows some
prescribed rules of behavior. The hypervisor implements a security policy designed to
protect the integrity of information in memory, in peripheral devices, and in the CPU.

Figure 7-4. Intel Virtualization Technology

Intel Identity Protection Technology (IPT)
Intel’s Identity Protection Technology (IPT; see Figure 7-5) consists of several
credentialing and credential management capabilities for client platforms.9 They are
implemented in a security engine in hardware and offer an additional layer of security
hardening and isolation from malware.

8For information about Intel Virtualization Technology, http://ark.intel.com/products/
virtualizationtechnology.
9http://www.intel.com/content/www/us/en/architecture-and-technology/identity-
protection/identity-protection-technology-general.html.

http://ark.intel.com/products/virtualizationtechnology
http://ark.intel.com/products/virtualizationtechnology
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

155

•	 IPT-OTP. One-time passwords are single-use identifiers that
cannot be anticipated or replayed by an attacker. Typically, the
user and service provider agree to use a common “seed” from
which a sequence of one-time passwords is generated. Keeping
the seed secret is essential to security. IPT-OTP protects seeds in a
hardware security engine.

•	 IPT-PKI. Public key infrastructure (PKI) is a set of hardware,
software, people, policies, and procedures designed to create,
manage, distribute, use, store, and revoke digital certificates.10
Certificates are identity credentials that associate an asymmetric
key11 with an identifier. IPT-PKI is a cryptographic service provider
that protects private asymmetric keys in a hardware security engine.

•	 IPT-PTD. In many cases, use of a credential requires user
approval. Malware attacks that fake user approval may be a
sufficient form of compromise to achieve the attacker’s objective.
IPT-PTD protects the output path between the hardware security
engine and the graphics controller. Malware may not observe
information displayed to a user. Protected output may be used to
protect PIN input by rearranging a PIN pad display in a random
order. When a user inputs the PIN using the randomized PIN pad,
malware observing the mouse clicks cannot determine which (X,Y)
coordinates map to which PIN digit. PINs are used by IPT-PKI and
IPT-OTP to authorize use of a credential by a specific person.

Figure 7-5. Intel Identity Protection Technology

10See Wikipedia, “Public Key Infrastructure.” http://en.wikipedia.org/wiki/
Public-key_infrastructure.
11See Wikipedia, “Public Key Cryptography.” http://en.wikipedia.org/wiki/Public-
key_cryptography.

http://en.wikipedia.org/wiki/Public-key_infrastructure
http://en.wikipedia.org/wiki/Public-key_infrastructure
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

156

•	 IPT-DeviceID. Use cases involving the computing platform when
no user is present may require authentication. IPT-DeviceID
associates a platform identifier with a credential. IPT-DeviceID
protects the device credential in hardware.

Intel Security Engine
The security engine used to implement Intel’s Identity Protection Technology has several
capabilities that may be useful for enhanced privacy protections.

•	 Enhanced Privacy ID (EPID). The EPID is an asymmetric key
provisioned at platform manufacturing time by Intel. It can
be used to authenticate that an Intel platform security engine
is performing a function securely. For example, the EPID key
may be used to digitally sign the applet running on the security
engine to prove its integrity and validity. EPID may also be used
to prove an Intel security engine protects an IPT-PKI key. As the
name suggests, EPID is privacy enhanced. This means the verifier
can tell that the endpoint is an Intel security engine, but can’t
tell which one–even when the same platform returns a second
time, the verifier can’t correlate the second session with the first
session.

•	 Sigma. The Intel security engine also implements a SIGn-and-
MAc protocol (Sigma) based on a Diffie-Hellman key exchange
that is signed using the EPID key. Sigma produces symmetric
session keys for encryption and mac-ing of bulk data. Sigma
allows a stream of data originating from the security engine to
be transferred to a remote service provider. Sigma is useful for
protecting logged event data, sensor input values, and configuring
of policies.

The use of EPID and Sigma building blocks allows a client platform to interact
securely without disclosing privacy sensitive information unnecessarily.

Intel’s Manageability Engine (ME) implements security primitives for encryption,
key exchange, and identity protection. It is integrated into Intel’s chipsets. The ME
(Figure 7-6) is isolated from the host operating environment and memory.

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

157

Cloud Identity Solutions
Security services vendors such as McAfee provide a suite of security solutions for a
wide range of enterprise and cloud-hosted services. Identity management is part of
a comprehensive solution. Identity management services implement the credential
lifecycle and ensure interoperability with a wide variety of services and applications.

The McAfee Cloud Ecosystem (see Figure 7-7) includes unified management, policy,
reporting, and enterprise integration of pluggable security capabilities ranging from data
loss prevention to web security. These capabilities are built upon an infrastructure that
supports global threat intelligence monitoring and response, cloud-aware security, and
enterprise-orchestrated policies. Such cloud-based security solutions offer dynamic
protections that adjust as situational awareness changes. Cooperation among thousands
of nodes participating in building a clearer picture of the threat landscape ensures that
security incidents are processed and countermeasures are applied.

Figure 7-6. Intel B85 chipset containing the Intel Manageability Engine

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

158

A cloud-based approach to security that includes identity management ensures
that the known trusted users can be distinguished from the unknown and less trusted.
Selection of a security services provider that implements such identity management
comes with the implication that the provider is protecting the user’s privacy in addition to
ensuring computing security.

Summary
Identity management is an important component of a comprehensive cloud security
infrastructure. This infrastructure must be rooted in sound identity management
principles that not only ensure robust control of the identity credential lifecycle but
also satisfies users’ privacy desires. The identity management landscape is complicated
by constant innovation and the evolution of authentication factor technology, identity
credentials, and infrastructure investments. Complexity isn’t necessarily good for
security and privacy protection, but it appears to be an unavoidable reality. Taking the
time to select a competent identity management provider can be an effective strategy for
managing this complexity.

Figure 7-7. McAfee cloud identity solution

CHAPTER 7 ■ IdEnTITy MAnAgEMEnT And ConTRol foR Clouds

159

Computers that have deeply integrated identity protection technologies can be
very effective in protecting user privacy and identity, while also delivering identity
management solutions that interoperate with an already complex ecosystem of cloud
services and that can promise continued support for an emerging Internet-of-things.

Identity management in the future holds many interesting challenges, especially
when the Internet-of-things (IOT) is factored in.12 The IOT promises Internet connectivity
to a host of embedded systems, building automation control, smart appliances, and
vehicles of all kinds. Technology advances make it practical to build wireless self-
contained sensors that link directly to the Internet, feeding databases that analyze and
infer new knowledge about the world. As people interact ever more widely with the
world, sensors may be able to identify their unique properties using kinematics.13 In an
IOT world, devices will come equipped with device IDs to ensure they can be managed
and controlled by authorized servers. They will have privacy-preserving capabilities that
respect their user’s right to privacy by filtering biometric data locally and translating it
into digital credentials that more easily support credential lifecycle management.

In the next chapter, we focus on building and extending security, integrity, and
confidentiality to applications and workloads that run in the cloud. As you would expect,
the applications and workloads, which are typically packaged as virtual machines, anchor
their integrity and trust in the chain of trust that is built with trusted compute pools and
associated concepts and technologies that have been discussed in preceeding chapters.

12Intel adds Intelligence to Cloud for Internet of Things. http://iotinternetofthingsconference.
com/2013/10/09/intel-adds-intelligence-to-cloud-for-internet-of-things/.
13See Wikipedia, “Gait Analysis Using Kinematics.” http://en.wikipedia.org/wiki/Gait_analysis.

http://iotinternetofthingsconference.com/2013/10/09/intel-adds-intelligence-to-cloud-for-internet-of-things/
http://iotinternetofthingsconference.com/2013/10/09/intel-adds-intelligence-to-cloud-for-internet-of-things/
http://en.wikipedia.org/wiki/Gait_analysis

161

Chapter 8

Trusted Virtual Machines:
Ensuring the Integrity of
Virtual Machines in the
Cloud

In Chapters 3 and 4, we described how a service provider can ensure that the
infrastructure on which the workloads and applications are instantiated has boot
integrity, and how these workloads can be placed in trusted pools with compute assets
exhibiting demonstrated trust that is rooted in hardware. This model provides an
excellent framework for a trusted compute infrastructure, but it’s not sufficient for the
cloud. Cloud data centers today almost invariably run virtualized. Stopping the chain
of trust at the bare hypervisor is clearly insufficient; that is but the proverbial tip of the
iceberg. Protection needs to be extended to support the multi-tenancy and virtualized
networks of the cloud. Extending the chain of trust described to encompass these
virtualized resources, embodied in the concept of trusted virtual machines, is what this
chapter is about.

Critical concerns for cloud users are for protecting workloads and data in the
cloud and from the cloud, and for ensuring trust and integrity for virtual machine
images launched on a service provider’s cloud. For virtual machine and workload data
protection, cloud-user organizations need a method to securely place and use their
workloads and data in the cloud.

Current provisioning and deployment models include either storing the virtual
machine and application images and data in the clear—in other words, unencrypted—or
having these images and data encrypted by the keys controlled by the service provider,
which are likely applied uniformly to all the tenants. Increasingly, however, virtual
machine images—effectively containers for operating system and application images,
configuration files, data, and other entities—need confidentiality protection in a multi-tenant
cloud environment. These images need to be encrypted by keys that the tenant controls,
and that can be decrypted for provisioning by the keys also under tenant control, all done
in a manner that’s transparent to the cloud service provider.

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

162

Additionally, tenants would like the chain of trust and the boot integrity of these
virtual machines assessed by the attestation authority in the infrastructure or the cloud
before they are launched and begin participating on the network to satisfy service
requests. With the tenant-controlled encryption and decryption, and integrity attestation
of virtual machines, there can be clear security statements made about the confidentiality
and protection of these application workloads in the cloud.

With interest in these topics driving cloud security considerations, Intel has reached
out to the independent software vendor and cloud service provider community to
develop a set of technology components and associated solutions architecture built on
top of the trusted compute pools foundation to build proof points for these usage models.
These are reference and prototype demonstrations that, it is hoped, will light a path to
deployable solutions that address the concerns voiced above.

Requirements for Trusted Virtual Machines
Organizations are clearly leveraging the cost-saving (from capX reduction) and flexibility
benefits of virtualizing their data centers, as opposed to the traditional deployment
model in dedicated, corporate-owned infrastructure resources. The ease with which
virtual machines can be created, deployed, and moved brings a multitude of security
issues not present in those traditional, physical data centers, however. Protecting data
and applications in traditional data centers is fairly well understood. In addition to
security appliances and measures like firewalls, intrusion detection, intrusion prevention,
anti-malware controls, encryption, access controls, monitoring, and logging, there are
physical security measures like locked cabinets and cages, and these all go a long way
toward defending sensitive data.

Software-defined virtualized data centers are very different, though. The unit of
deployment is a virtual machine, and the entire lifecycle, connectivity, and storage
associated with these virtual machines is defined, managed, monitored, and secured
using software. The ability of virtual machines holding sensitive and confidential data
to be easily moved or replicated in a matter of seconds requires special solutions and
protections designed for virtual and cloud computing environments. Most Infrastructure
as a Service (IaaS) providers either store the virtual machines in the clear—meaning no
encryption—or encrypt them with keys that they control. This may be acceptable for
some tenants, but most public or hybrid cloud tenants are concerned about leakage of
data and sensitive information stored in some of these virtual machines. For example,
insider threats at the service provider constitute legitimate concerns for organizations.
Organizations are also concerned about the privacy of data running and processed in
the virtual machines, and they must demonstrate the ability to measure and control risk,
owing to the significant implications for meeting legal and fiduciary responsibilities.

Another essential aspect of the virtual machine lifecycle is decommissioning.
A cloud service provider replicates virtual machines to multiple locations and availability
zones as a matter of policy, ensuring later availability and for disaster recovery. While
this allows service providers to comply with demanding SLAs, it raises security risks.
Geographically dispersed copies of virtual machines can also proliferate sensitive data,
credentials, and information, leaving it floating in the cloud. Additionally, a benefit end
users get from cloud use is the ability to switch providers. Former customers need to be
assured that they can make a clean break when they switch providers. This includes the

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

163

ability to destroy any virtual machine and associated data left at the former provider,
including backups. Most cloud service providers can’t promise that, if only because in the
current state of the art there are no standards for proving that disks and backup media are
properly wiped before disposal or repair.

Standards organizations and compliance regulation bodies have started to
acknowledge these needs for requirements. The Payment Card Industry (PCI) Standards
Council recently released an information addendum to the latest data security standard
(DSS) specification regarding vulnerabilities laid to virtualization, including exposure of
personally identifiable information (PII) and credit card information residing in the virtual
machines. The addendum also highlights vulnerabilities with regard to snapshot files and
virtual machine backups. The dormant virtual machines in these backups can lie there for
years, to be spun up anytime and anywhere, exposing the data and sensitive information.

Consequently, in addition to the encryption of application data, new PCI guidelines
recommend encrypting virtual machine images with an operating system and
applications with keys managed securely to reduce the footprint of any sensitive data left
behind. Figure 8-1 illustrates the concept of tenant-controlled virtual machine encryption
and decryption.

Figure 8-1. Tenant-controlled virtual machine encrytion and decryption

In addition to confidentiality protection, organizations would like to verify the
integrity of virtual machines before launching them. For instance, if a hardened Linux
virtual machine configuration is available, and a user wants it, the user will want a
proof of this machine’s being used. Doing so within the cloud model is harder than

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

164

within a corporate-owned infrastructure, since the tenant organization doesn’t own
the infrastructure. A chain of trust rooted in hardware, with continuous monitoring of
the integrity of infrastructure, the workloads, and virtual machines, can provide the
assurance the organization wants.

All of this can be distilled into three key requirements that need to be in place to
ensure integrity and confidentiality of these virtual machines in a virtual and cloud
environment:

•	 Virtual machines must be launched on servers with provable
boot integrity. The trusted compute pools usages, platform/host
attestation, and geo-fencing solutions described in Chapters 3, 4,
and 5 address this requirement. This is foundational.

•	 Virtual machine images must be encrypted in transit, at rest,
and during execution. This is essential to preserve confidentiality
and secrets. The keys are under the control of the tenant, and they
are released (key policy management) to the service provider only
when they provide attestation that the virtual machine images are
being launched on trusted servers.

•	 Launch and provision only qualified and attested virtual
machine images. Virtual machines about to launch must attest
their launch integrity with the infrastructure.

In the rest of the chapter we’ll cover usages, a conceptual architecture, and a
reference implementation that addresses requirements for service providers to offer
protection of tenant payloads. Before we jump into details, though, we have to look at the
basics of a virtual machine image to understand what needs to be encrypted and what
needs to be measured and attested. We will look at the various virtual image formats
and also consider virtual machine templates, a standard operating procedure for cloud
operators to instantiate virtual machines.

Virtual Machine Images
Virtual machine images come in two different formats: disk and container. Hypervisor
management tools accept both formats, and so do most of the cloud management
platforms. However, as of this writing, the OpenStack Image Service (Glance) and
other projects do not support the container format. It is possible, however, to associate
metadata with images using OpenStack Image Service properties (key/value pairs).

The disk format of a virtual machine image is the format of the underlying disk
image. Virtual machines can have different formats for laying out the information
contained in a virtual machine disk image, as outlined in Table 8-1.

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

165

A container format indicates whether the virtual machine image is in a file format
that also contains metadata about the actual virtual machine. The container format for a
virtual machine image is a self-contained package with two items:

Metadata about the virtual machine.•	

One or more virtual disks containing the operating system, •	
applications and data. The virtual disk is on the formats as
described above.

The image by itself can be a representation of one virtual machine image or could
be a composition of multiple related virtual machine images pertaining to a multi-tier
service or distributed application workload.

Let’s look at the details of the image components. The metadata included in the
virtual machine image includes specific information about the operation information
about the virtual machines, including:

Metadata describing server resources needed to run the image: •	
number of CPUs, either dedicated or shared, and memory
requirements for the workloads running in the virtual machine.

Metadata articulating the goals and constraints. This •	
comprehends performance and availability goals and any
placement constraints, such as security isolation.

Table 8-1. Virtual Disk Image Formats

Type Description

raw An unstructured disk image format

vhd VHD, a common disk format used by virtual machine monitors from
VMWare, Xen, Linux/KVM, Microsoft, VirtualBox, and others

vmdk Common disk format supported by many common virtual machine
monitors

vdi Format supported by VirtualBox virtual machine monitor and the QEMU
emulator

ISO An archive format for the data contents of an optical disc, such as CD-ROM

qcow2 Format supported by the QEMU emulator that can expand dynamically
and that supports Copy on Write

AKI An Amazon kernel image (as used in Amazon Web Services EC2)

ARI Amazon ramdisk image

AMI Amazon machine image

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

166

Metadata describing virtual machine configuration variables like •	
IP addresses and application configuration parameters.

Metadata describing the package integrity, like SHA1/SHA2 •	
hashes of the virtual disks and modules.

Virtualization management software uses metadata information to create the right
type of virtual machine container with the required platform resources. Once the virtual
disk image, built as a bootable image, is copied and made accessible to the physical host
system, the virtual machine is started from the bootable disk image.

The Open Virtualization Format (OVF)
Virtual machine images can be assembled and delivered in many ways. To ensure
interoperability of virtual machines and seamless deployment and management across
virtualization platforms, standardization of the virtual machine distribution format is
essential. That is exactly what Open Virtualization Format (OVF) is. OVF is a hypervisor
agnostic virtual machine packaging and distribution format, standardized by the
Distributed Management Task Force (DMTF). It provides a complete description of a
single virtual machine or a complex multi-virtual machine software solution package. It is
extensible so that DMTF or third parties can add features and extensions to it. OVF goes
beyond just the description and virtual hardware attributes.

Open Virtualization Format allows a virtual appliance/ISV vendor to add items like a
EULA, comments about the virtual machine, boot parameters, minimum requirements,
and a host of other features. OVF specification calls for an OVF descriptor, typically called
the OVF envelope, which is an XML file describing the software in the OVF package.
The OVF descriptor has ten core sections for metadata, such as the virtual hardware,
EULA, product information, and so on. In order to support the extensibility, the OVF
specification provides extension points. These custom extension points may be used to
specify items such as multiple networks, specific firewalls, firewall rules required for
the virtual machines, and the setup of a load balancer for multiple instances of virtual
machines. A virtual machine author can describe in “levels” the conformance to the
OVF specification as part of the OVF envelope. Level 1 indicates that there are no custom
extensions, Level 2 indicates that there are custom extensions but they are optional, and
Level 3 indicates that the custom extensions are required. This information helps the
deployer to figure out the appropriate set of virtualization environments to deploy the
virtual machines.

Intel has been working with the industry to deliver a solution architecture and
implementations that address security requirements in virtualized environments. The
usage models are called trusted virtual machines and are code-named Mystery Hill
(abbreviated MH). The usage models cover the tenant-controlled encryption of virtual
machines with tenant-controlled key management , decryption of the virtual machine
images and data on servers or hosts with attested integrity and hardware roots of
trust, and the attestation of the virtual machines prior to their launch. In this section,
we discuss a reference architecture, with details about the key components of the
architecture and the workflow. Following this, we present a reference implementation in
the OpenStack cloud environment.

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

167

A Conceptual Architecture for Trusted Virtual
Machines
Figure 8-2 shows the conceptual architecture for trusted virtual machines. There are four
key elements needed to enable the usages described in the previous sections:

1. Mystery Hill (MH) client

2. MH key management and policy server (KMS)

3. MH plug-in that runs on the host or server

4. Mt. Wilson trust attestation server technology

Figure 8-2. Conceptual architecture for trusted virtual machines

The conceptual architecture calls for loosely coupled components with well-defined
APIs and interfaces. Let’s look at each of these in detail.

Mystery Hill (MH) Client
The Mystery Hill (MH) client is an application that runs under tenant or organization
control and that carries many functions. It is the primary mechanism by which the service
owner (tenant) encrypts the virtual machine images, generates the module manifest for
the VMs (list of all files that need to be measured and verified), generates SHA-1/SHA-2

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

168

hash values of the modules (whitelist), and specifies the VM trust policies. The MH client
interfaces with the key management server (KMS), which is assumed to be a service under
tenant or organization control. The MH client also interfaces with the cloud management
software, such as Amazon AWS EC2 or OpenStack, to be able to upload the encrypted virtual
machine images and the meta-data onto the image server for provisioning and launch.

The VM payload includes one or more encrypted virtual machine images and the
metadata. The metadata contains:

Module manifest and hash of the modules, signed by the trust •	
authority (like Mt. Wilson)

Key ID (data encryption key ID) to determine the decryption key •	
in the KMS store

URL for the KMS from where the decryption key can be obtained•	

VM trust launch policies•	

We will cover the trust launch policies in a later section. The MH client generates a
new symmetric encryption key for each VM that is being encrypted, wraps the symmetric
key using an asymmetric key (provided by the KMS), and posts the wrapped key to
the KMS. The metadata is stored in either the OVF envelope for the virtual machine (if
the container format of virtual machine image is used) or as additional attributes or
properties of the image server (for disk-based virtual machine image formats). Figure 8-3
shows the OVF envelope with the metadata extensions.

Figure 8-3. OVF extensions for VM encryption

Mystery Hill Key Management and Policy Server (KMS)
The Mystery Hill key management and policy server (KMS) is the core key generation
and management service, designed to allow control of key generation and management
functions by the tenant organization. It provides the standard web services interface
for generating the keys and delivering those keys to the MH client after successful

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

169

authentication, to allow an MH client to encrypt virtual machine images. It also provides
the decryption key URLs to the MH client to be included in the OVF envelopes. We
recommend for the KMS to use a hardware security module (HSM) for the generation,
storage, and processing of the keys. The second function of the key management
and policy server is to evaluate trust policies before decryption keys are handed to
the requesting entity. The trust policies can include user roles, license verification,
application certification, server or host platform integrity and attestation, and geolocation
or geo-fencing policies, as well as network attributes.

Mystery Hill Plug-in
The Mystery Hill plug-in is a set of two components that reside and run with the
hypervisor on the host/server on which the virtual machines are being deployed. These
components are:

•	 MH Agent. Part of the platform trust computing base (TCB),
it performs the functions for decryption of the tenant virtual
machines and integrates with the virtualization and cloud
management environment. In OpenStack environments, the MH
agent integrates with the Nova compute node service to intercept
encrypted virtual machine launch requests to the hypervisor,
obtains the decryption key from the MH key management
service after the server or node attests to its integrity with a trust
attestation authority, and decrypts the virtual machine images. It
provides local (and transparent) encryption of the decrypted VM
images on the compute node disk prior to the launch, so they are
not in the clear, even for a short time prior to launch.

•	 MH Measuring and Quoting Agent. This component, also part
of the platform TCB, measures the virtual machine images,
verifies the measurements against the whitelist, and also provides
a Quote-analogous to the TPMQuote, which is rooted to the
physical TPM on the server. The measuring agent runs with the
hypervisor on a host server and measures the VM images, per
the manifest sent as part of the VM payload metadata. The MH
quoting agent has the primitives to Quote, Seal, and Attest. Based
on the VM trust policies, once the measurement and attestation of
the VM image is completed, the decrypted image is passed on to
the hypervisor to continue the normal launch sequence.

Encrypted virtual machine requests are identified using attributes present in an
OVF envelope, similar to what is shown in Figure 8-3. The attributes indicate that the
VM image is encrypted and show a URL where the decryption key can be obtained. The
URL points to the KMS. When the MH plug-in requests the decryption key from the KMS,
it provides the compute node’s attestation identity key, to request an attestation from
Mt. Wilson. The section “Workflows for Trusted Virtual Machines” below describes the
complete process.

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

170

Note ■ The MH measuring agent could get complex, owing to the various virtual machine
formats that would need to be comprehended. This would increase the TCB significantly. it
is possible to migrate the measuring agent outside the TCB but still ensure its integrity. one
way to accomplish this is to keep a hash of the measuring agent as part of the TCB, and to
measure/attest the measuring agent before it is launched to perform the measurement of
the VM image.

Trust Attestation Server
The trust attestation server is the attestation authority monitoring the compute nodes
in the trusted data center, as described in detail in Chapter 4 and shown in Figure 8-4.
The attestation server maintains the trust policy for every attested host and evaluates
reports from the hardware roots of trust on each node to determine if each node is in
compliance with its trust policy. The attestation server tracks the attestation identity key
(AIK), public key, and an encryption public key for each compute node, among other
information. When the KMS requests an attestation of a compute node that in turn
requests a decryption key for an encrypted virtual machine, the MH key management
server provides the AIK public key to the attestation server in order to uniquely identify
the compute node to attest. The attestation server identifies the compute node to attest
based on the provided AIK public key and returns the result to the KMS.

Figure 8-4. Attestation architecture

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

171

Workflows for Trusted Virtual Machines
Figure 8-5 shows the flow of encryption, decryption, and launch of the virtual machines
according to the conceptual architecture. The workflow builds upon the foundation
established by the trusted compute pools to support virtualized cloud environments,
adding the concept of trusted virtual machines. This is how the security capabilities
and benefits of trusted compute pools are extended and become usable in virtualized
cloud environments. Note that the elements in the workflow can be implemented in a
distributed and scalable fashion under the cloud paradigm, in which Mt. Wilson and the
KMS can be delivered through a PaaS provider, the cloud service provider and the hosts
with Intel TXT are IaaS instances, and the cloud storage is a SaaS instance. There are nine
steps involved in this workflow, noted as follows:

Figure 8-5. Encryption and decryption flow diagram for trusted virtual machines

Step 1: The launch of an encrypted virtual machine
begins with creating an encryption key. The MH client can
automatically generate new encryption keys as needed. Users
have the flexibility of using the same key multiple times to
protect different virtual machine images, or to create a new key
for every virtual machine image. Every key that the MH client
generates is wrapped and posted to the KMS so that it can
later be retrieved for decryption. The corresponding key URL,
provided by the KMS when the encryption key was wrapped
and posted, is also stored by the MH client.

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

172

Step 2: This involves selection of an encryption key and a
plaintext virtual machine image, and subsequent encryption
with the key. The encrypted virtual machine image can then
be uploaded to servers in the data center. See the upper arrow
to “Cloud Storage” in the flow diagram. The MH client attaches
metadata to the virtual machine image—in particular for this
case, the URL identifying the encryption key.

Step 3: Once the encrypted virtual machine image and
associated metadata are posted in the cloud, the virtual
machine can be launched using the cloud service provider’s
existing mechanism for launching virtual machine workloads.
This is noted in the diagram as “VM Launch Request.”

Step 4: Cloud service providers featuring trusted compute
pools can query the trust status of a compute node and ensure
that it is trusted before sending a new workload to it. This
check is performed by sending an attestation request to the
attestation server and inspecting the result. After identifying
an available trusted compute node, the cloud service provider
sends a launch request to that compute node with the
encrypted virtual machine image information. The launch
request includes the image metadata, image download URL,
and decryption key URL. At this point, if the compute node
does not have the MH plug-in, or has not been enabled with
Intel TXT and registered with the attestation server, it will not
be able to continue with the launch. The system prevents the
encrypted image from even reaching the hypervisor.

Step 5: An Intel TXT-enabled trusted compute node with the
MH plug-in can detect that the VM image is encrypted by
examining the metadata or the OVF plug-in. The MH plug-in
connects to the decryption key URL and sends the compute
node’s AIK public key to that URL to identify the compute
node that is requesting the decryption key. The URL points to
the KMS, which already has the decryption key, wrapped by
MH client.

Step 6: The attestation server looks up the compute node
details using the AIK public key, obtains a TPM quote from
the compute node, and verifies the compute node’s state
against its trust policy. The result is reported back to the
KMS. In addition, if the attestation server determines the
compute node complies with its trust policy, the attestation
server will then provide an asymmetric encryption public key
for the compute node to the KMS, noted in the diagram as
“BindPubKey.”

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

173

Step 7: The KMS, upon receiving a favorable trust report on the
compute node from the attestation server, wraps the requested
decryption key and sends it back to the compute node. The key
wrapping is done using the public key of the compute node, as
provided by the attestation server. The compute node has the
corresponding private key. It’s possible to bind the private key
to the TPM on the compute node such that it can be used only
if the host complies with its trust policy.

Steps 8, 9, and 10: The compute node unwraps the decryption
key with the TPM, decrypts the encrypted VM, and as an
additional step, can measure the virtual machine image and
attest with the trust attestation authority before handing control
to the compute node to proceed with the launch as usual.

As seen from this flow, the virtual machine image is protected at rest, in motion, and
up until execution with protection under tenant control. The decryption keys are released
only when the cloud service provider can demonstrate the integrity of the server on
which the virtual machine is being provisioned.

Deploying Trusted Virtual Machines with
OpenStack
Here, we document a reference implementation constructed to demonstrate trusted
virtual machine usages with OpenStack. This proof point provides an opportunity
to highlight the finer points of an actual implementation, allowing a more accurate
evaluation of the value proposition, its applicability, and its usability. The reference
implementation has been demonstrated at a number of industry-wide security
conferences, including the OpenStack Summit, with excellent reviews. We expect the
independent software vendor and cloud service provider community to scale production
implementations of this usage to their own infrastructures—and ultimately to their
service offerings—so as to offer a soup-to-nuts chain of trust, running from cloud
service offerings all the way down the layers to the underlying host hardware. This
implementation is an instantiation of the workflow described in the previous section.

Figure 8-6 shows the reference implementation in OpenStack. It works with
OpenStack environments using either KVM or Xen hypervisors. A set of screenshots
of the implementation follows, illustrating the flow and the process of integration into
OpenStack.

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

174

As shown in Figure 8-6, the process begins with creating the encryption keys to be
applied to the virtual machine images. The goal is to implement a secure process under
tenant control. The tenant or the service consumer, perhaps DevOps staff, uses the MH
client to create keys, store them in the KMS, and encrypt the virtual machine images. In
OpenStack, a virtual machine image is assumed to be in disk image format, ISO, vmdk,
xva, or vhd. Although it is possible to upload encrypted virtual machine images manually
to OpenStack Glance image service, and to use the Glance client to add the encryption
metadata, it is far more convenient to let the MH client upload the encrypted virtual
machine image and add the encryption flag and decryption key URL to the Glance image
metadata using the Glance APIs.

As can be seen in Figure 8-7, there are two steps before an encrypted virtual machine
can be uploaded to OpenStack Glance. First, either an existing key is selected or a new
key is generated to use for encryption. The new key interfaces with the KMS. (For the
reference implementation, no HSM was used with the KMS.) The KMS returns the
URL and a decryption key ID (DKID) to be associated with the encrypted target virtual
machine. Second, a virtual macine image to encrypt is selected and encrypted using the
key just selected or generated. Third, the encrypted VM image is uploaded along with its
encryption metadata to Glance, using the Glance client to upload the image and set its
metadata in Glance.

Figure 8-6. Tenant-controlled virtual machine encryption and decryption with trusted
launch in OpenStack

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

175

The Launch tab, as shown in Figure 8-8, simulates a launch of a specific virtual
machine. In practice this will be done either through use of OpenStack virtual machine
launch APIs or from a portal such as OpenStack Horizon. The Launch tab features a
single launch step and a progress monitor. To launch an encrypted virtual machine, the
encrypted virtual machine image is selected from the list, a trusted flavor is chosen to
use for the virtual machine instance, and the Launch button is clicked. The MH client
reference implementation conveniently preselects the last virtual machine image
encrypted in the Upload tab. The flavor list is downloaded from Nova Controller and
reflects the same list as is available in the Horizon dashboard.

Figure 8-7. Selecting and binding a virtual machine image to an encryption key

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

176

Note ■ Trusted compute pools (TCP) function, as described in chapter 3, has been
implemented in openstack as scheduler filters. These extensions, and the Horizon
dashboard and APi extensions to tag flavors with trustpolicies, have been part of openstack
since the folsom release.

In the screenshot of the Launch tab, the selected flavor is m1.tiny.trusted, which
in the reference implementation refers to a single virtual CPU, with 512 MB of memory,
no extra disks, and a trust requirement from the attestation server. When a virtual image
is launched with a trusted flavor, the trust scheduler in OpenStack Nova queries the
attestation server for the trust status of available compute nodes and only selects trusted
compute nodes for launching the virtual machine instance. When the Launch button in
the Launch tab is clicked, the MH client uses the Nova client to request a launch of the
selected encrypted virtual machine image using the selected flavor. The trust scheduler
selects a trusted compute node and initiates a launch of the virtual machine image
instance on that compute node.

Figure 8-8. Launching a virtual machine image

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

177

The reference implementation integrates MH plug-in with the Nova compute node
for KVM and Xen hypervisors. On KVM, the MH plug-in integrates with the libvirt driver
(driver.py) on the compute node to intercept the launch request of an encrypted image,
request the decryption key, and decrypt the image. On Xen, the MH plug-in integrates
with the xapi.d plug-in for Glance (in dom0) to perform the same actions, but integrates
the decryption into the image stream downloaded from Citrix into the Xen hypervisor’s
work area.

When the MH plug-in requests the decryption key from the KMS, it sends an HTTP
POST request to the decryption key URL noted in the image metadata. The body of
the POST request is simply the AIK public key of the compute node. On KVM nodes,
the AIK public key is managed by the trust agent, an additional component required
for the attestation server. On Xen nodes, the AIK public key is managed by the Xen API
performing the same functions as the trust agent.

The KMS forwards the AIK public key to the attestation server to obtain a report
on that compute node. If the compute node is trusted, the report includes a public key
that can be used for wrapping keys to be sent to the compute node. The corresponding
private key is bound to the TPM on the compute node. The KMS wraps the decryption
key using the compute node’s public key and sends it to the compute node. This
mechanism ensures that the key can be unwrapped only by the compute node that
was reported as trusted by the attestation server. This enables some flexibility on the
part of the cloud service provider to anonymize, proxy, aggregate, or otherwise manage
the decryption key requests without the risk of leaking the decryption key to any
intermediate network node.

The MH plug-in receives and unwraps the decryption key, uses it to decrypt the
encrypted VM image, measures the virtual machine image with additional primitives
in DOM0, and attests to it with the attestation server. The attestation report from the
attestation server indicates whether it can be launched. If so, the virtual machine launch
continues as usual. In this reference implementation, the sequence of steps is reflected in
the checkboxes on the Launch tab.

Summary
Building on the foundation of trusted compute pools, the concept of trusted virtual
machines extends the chain of trust in the cloud computing environment to cover
guest virtual machines and associated workloads. In this chapter we covered what
trusted virtual machines mean, how a tenant can control the encryption and decryption
keys, and how to protect the confidentiality and integrity of the virtual machines in
transit, at rest, and up to execution, using encryption and decryption and other policy
implementation techniques. We presented a reference architecture for realizing the
vision of trusted virtual machines, and also reviewed a reference implementation of
that architecture as it appears in OpenStack. Clearly, this implementation is very early
in the industry’s process for realizing the full vision of trusted virtual machines. The
need is there: users are demanding cloud providers to offer security for their virtual
machines, while permitting cloud customers to retain control over encryption keys.
They would also like to see decryption keys released only when the service provider can

CHAPTER 8 ■ TRusTEd ViRTuAl MACHinEs: EnsuRing THE inTEgRiTy of ViRTuAl MACHinEs in THE Cloud

178

demonstrate the integrity of the compute nodes on which the virtual machines are going
to be deployed and launched. The model for trusted virtual machines showed how it is
possible to bind decryption of the keys to the TPM on a server that has demonstrated
integrity. This ensures that the virtual machine is decrypted only inside the trusted
server and not anywhere else.

Intel has started to work with the community of independent software vendors and
cloud service providers to develop the solutions that bring trusted virtual machine usages
and associated technical architecture to scalable and production-ready offerings that can
be used with private, public, and hybrid cloud deployments. Chapter 9 brings together all
the concepts, usages, and technologies that we have reviewed in the first eight chapters,
via a compelling usage model called “Secure Cloud Bursting.”

179

Chapter 9

A Reference Design for
Secure Cloud Bursting

In this chapter we’ll see how the concepts covered individually in the previous chapters
relate to each other. We have been looking at the many concepts and components of the
technology solutions needed to enable the trusted infrastructure that moves us toward
the goal of delivering trusted clouds. We have covered the foundational elements of
platform trust attestation, network virtualization security, and identity management in
the cloud. In this chapter, we put all these elements together. Virtustream, a key Intel
partner, took a proof of concept implementation, originally developed with Intel, for a
key customer and evolved it into a new capability to enable secure cloud bursting that is
available to all Virtustream customers. We’ll explain the nature of this new capability and
examine the architecture and reference design for this capability in the next few pages.

Virtustream, then, is a cloud service provider and a cloud management software
vendor at the forefront of private and public cloud deployments. Virtustream’s flagship
cloud management software is xStream. (See sidebar for an overview of Virtustream
xStream.) The proof of concept project was designed to demonstrate application
workload mobility and “bursting” capabilities between a customer’s primary IT
facilities and its geographically disperse data centers and application profiles, while
simultaneously ensuring policy, security, and performance controls. In addition to
addressing the networking, identity management, and cross–data center orchestration,
this project validated Intel’s TXT as a foundational technology to enable the critical
secure cloud bursting features supported by the Virtustream platform.

This infrastructure reference design is a way to highlight the essential elements for
secure hybrid cloud services. Virtustream is the first such example in the industry to
provide a robust, secure, and elastic cloud management service, intended for managing
and controlling bursting and the orchestration of workloads on the virtualization platforms
at multiple sites under control by multiple providers. This new reference design addresses
the demanding requirements from cloud customers related to personally identifiable
information (PII), location enforcement, auditability, infrastructure security, network
security, application bandwidth, and service levels and performance.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

180

Cloud Bursting Usage Models
New cloud computing clients envision an application computing environment in which
computing capacity can be expanded by what has been termed cloud bursting, or
switching critical application loads from facilities within a company’s headquarters to
geographically disperse data centers as demand requires.

An Explanation of Cloud Bursting
Figure 9-1 depicts the basic principles of cloud bursting and how it operates. This
technology enables virtualized data centers to expose their excess capacity to other
virtual data centers. It enables collaboration in a federated cloud that allows partners to
offer capacity and move workloads or parts of workloads on demand between each other,
all without compromising security and operational related SLAs.

VM
SVC

APP

Multiple Enterprise Data Centers /
Cloud Service Provider-1

Multiple Enterprise Data Centers/

Cloud Service Provider -N

Internal
Enterprise Data Center

VM

Figure 9-1. The structure and operation of cloud bursting capability

With cloud bursting capability, it becomes possible to deploy all or some application
components, packaged as virtual machines, that normally run on traditional corporate
resources, transferring them to one or more data centers that host pooled resources. This
allows enterprises to respond to spikes in demand, to enhance business continuity, manage
capacity, and optimize cost. Hence, the general premise of cloud bursting is to use the cloud
as an overflow resource—for example, in the event an organization’s base infrastructure
becomes overloaded. A reduction in total cost of ownership may be possible with this
overflow model if extra capacity is needed on a seasonal basis or for only a few minutes
per day, or to employ disaster recovery practices. Typical utilization rates for these usages
are abysmally low—namely, a few minutes per day for workload peaking or in the unlikely
event of a disaster-triggered outage. In contrast, expanding a data center to address those
eventualities results in poor capital utilization for the enterprise.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

181

In short, resource utilization should be a tactical, responsive, and transparent
operation. Business outcomes for a data center are no longer measured in terms of
glacial five-year planning cycles; they now measured as current operational conditions
in responding to short-term business demand and they use real-world metrics, such as
the quality of experience and service (QoS). Cloud bursting aligns the traditional safe
enterprise computing model with that of cloud computing; in essence, it means “bursting”
into the cloud when necessary or using the cloud when required temporarily. These
practices have the potential of improving, by several orders of magnitude, the data center’s
agility and operational transparency, such as having server resources allocated in minutes
instead of going through a six-month or year-long budgeting and procurement process.

Cloud bursting addresses three basic needs of an enterprise data center:

1. Companies need additional capacity to handle occasional
demand spikes, lest they encounter unacceptable server
utilization and application response times. Investing
internally to handle peak loads leads to unused capacity and
stranded investment. Most enterprises want to reduce capital
expenditures to the extent that does not impact QoS.

2. Companies are hesitant to delegate all infrastructure to
cloud computing providers, owing to serious security and
stability concerns. Presently, cloud service providers are used
for important but noncritical applications such as human
resources and expense reporting. The organization’s crown
jewels currently need to run on corporate-hosted, dedicated
infrastructure and are treated as premium applications,
justifying the extra cost involved. Cloud bursting addresses
those concerns about migrating workloads to cloud by
providing a hybrid model, and the net effect is a reduction in
the total cost of ownership.

3. Cloud bursting meets a need to migrate workloads from
one cloud to another, based on resource consumption and
performance. This involves network bandwidth, storage,
management, security, among other considerations. In this
scenario, bursting is not triggered by load overflow; rather, it
is initiating by a need for workload migration to optimize the
resource utilization.

Implementing a cloud bursting strategy brings with it a need for automation in the
data center and capabilities to orchestrate the local and remote resources, as well as to
globally enforce policies from a specified command point or entity. It requires enterprise
service consumers to manage not only the deployment of applications and resources
in the enterprise data centers but also those within the cloud platform of the cloud
service provider, accomplished through a cloud API using the cloud service provider’s
self-service portal or by directly manipulating the hypervisor. For ultimate flexibility,
operators will want to implement the cloud bursting across heterogeneous hypervisor
environments. Doing so brings up issues of virtual machine interoperability.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

182

The Open Data Center Alliance has carried out initial studies on this usage. All demand
spikes on a virtualized enterprise data center infrastructure are not the same; the spikes
come in different shapes and forms. Today, enterprises handle spikes through the
one-size-fits-all approach of overprovisioning the infrastructure. But with cloud bursting,
enterprises have another means for handling overflow capacity and delivering the same or
better QoS. They get to take the money to the bank that otherwise would have been spent on
addressing this occasional demand.

Architectural Considerations for Cloud Bursting
There are key architectural considerations for successfully deploying cloud bursting.

•	 Security and isolation. In the end-to-end view of this deployment
model, security and isolattion are extremely critical. Enterprises
would be hesitant to trust a third-party service provider to host
applications or components thereof, and so they access the
enterprise data either by reaching back into the enterprise through
long pipelines or by caching the data at the service provider.
Service providers need to prove they meet compliance and audit
requirements as specified by the enterprise customer. In addition to
the primary capability of facilitating migration and use of overflow
capacity, they need to address to their customers’ satisfaction
the security for data in transit, in use, and at rest, as well as the
implementation of access control mechanisms. For cloud bursting
to be embraced, there needs to be bilateral trust between cloud
data centers. The relevant technologies and security standards are
still in their infancy at the time of this writing.

•	 Network performance and data architecture. Network latency
and bandwidth are logical concerns for bursting applications to
handle overflow capacity. The connectivity between the clouds
looks like a horizontal hourglass; the Open Data Center Alliance
speaks of this as the “tromboning” phenomenon. Even with
the best WAN networks and WAN performance optimization,
the throughput and latency can have significant impact on
application performance. Also, the connectivity of choice for
cloud bursting data centers is almost invariably a VPN connection
with encryption, which adds to the latency. The challenge is to
determine the best way to deal with the data that distributed
applications require or generate. There are several strategies for
dealing with cloud bursting, each with its different implications
for cost, performance, and architecture. Some architectural
remedies involve data cache in the overflow capacity and
replication, and shadow databases in overflow capacity. It is not
currently practical to send terabyte data sets over the wire, and
the “sneakernet” approach of shipping data on physical media
still makes the most sense. Reaching back to base, or replicating
data in the overflow capacity, works best for applications with
smaller data sets or for those not overly latency sensitive.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

183

•	 Data locality and compliance. The current lack of transparency
from cloud providers on the exact physical location of their
data is such a significant concern that we dedicated Chapter 5
to the subject. As we saw earlier, there are country and regional
constraints on how far and where the data can and cannot
migrate. Depending on the type and kind of data processed by the
cloud application, there might be legal restrictions on the location
of a physical server where the data is stored. Missing is a simple
API-based mechanism with cloud platforms to query the location
of tenant data. The migration of workloads to a public cloud, even
if the associated data doesn’t move, increases the complexity
associated with meeting legal and regulatory requirements for
handling sensitive information. How can a service consumer
be certain that the virtual machines instantiated in the overflow
capacity at the service provider were shut down and the
temporary storage securely wiped afterwards?

•	 Management and federation. This concept comprises the
management, resource allocation, resource optimization, and
lifecycle management between a virtualized data center and the
overflow capacity in a remote data center. In short, cloud bursting
can’t be implemented without these logistical capabilities. The extent
of interoperability across cloud platforms and the programmability
of these platforms determine the extent to which an enterprise
can utilize the uniform processes to manage resources. Cloud
IaaS offerings are defined, developed, published, provisioned, and
managed through the API from the service provider. These APIs must
be standardized to enable hybrid cloud users to move workloads
quickly and easily across different cloud service providers, without
vendor lock-in. The current situation is far from ideal. A number
of software tools are available from service providers to import
workloads into their infrastructure. Understandably, the tools to
migrate workloads out of their infrastures are much less available.
Conflicts of interest might be avoided if there were third-party tools
from independent software vendors. This won’t happen until a
modicum of API standardization takes place.

Data Center Deployment Models
All the existing cloud deployment models support the cloud bursting usage model. A key
objective defined as part of the reference design architecture, then, includes the ability to
deploy into and connect to remote data center cloud locations across wide area networks.
Additionally, enterprise users expect to gain from the operational flexibility and cost
reduction through competitive sourcing. There is the benefit of resource elasticity and
response to changeable workload demand. For these workloads, a pay-as-you-go IT using
cloud service providers is usually more economical. In this section, we do not deep dive
into deployment model configurations. Instead, we focus on the model selected for the
reference design architecture.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

184

As indicated in Figure 9-2, there are multiple deployment models possible to support
these objectives.

Figure 9-2. Data center deployment models

Seamless and secure integration between geographically disperse •	
customer data centers

Private clouds on service provider data centers•	

Trusted hybrid clouds—hybrid clouds on trusted service provider •	
data centers

Public clouds•	

Each model carries its advantages and drawbacks. A strong security foundation
was a primary consideration for our reference design. This starts with trusted hardware
as determined by hardware roots of trust and is validated using Intel TXT-capable and
-enabled hardware. This allows the platform’s integrity to be measured and audited on a
near-real-time basis. Hence, the choice for our reference design is a trusted hybrid cloud.

Trusted Hybrid Clouds
Given the nature of malicious threats in today’s environment and the stringent security
requirements in many organizations, IT operations cannot unconditionally trust either
their on-premise resources or their cloud service providers’ execution environment.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

185

Security is a fundamental consideration in server, storage, and network deployments,
be it virtualized or bare metal. In a cloud deployment scenario, security needs to be
supported and managed by both the service provider and the consumer tenant. This
interaction leads to the concept of trusted hybrid clouds. Trusted hybrid clouds are built on
the concept of hardware-enforced roots of trust. Our reference implementation uses Intel’s
Trusted Execution Technology (TXT) for this purpose, as well as to implement a real-time
attestation capability for the trusted platform.

The proof of concept reference implementation deploys trusted execution
environments to establish a root of trust. This root of trust is optimally compact,
extremely difficult to defeat or subvert, and allows for flexibility and extensibility to
measure platform components during the boot and launch of the environment, including
BIOS, operating system loader, and virtual machine managers or VMMs. Chapters 3 and 4
covered the Intel TXT and the attestation process in detail.

As shown in Figure 9-3, the reference design comprehends the deployment model
for trusted service provider data centers offering hybrid clouds. Under this model, the
customer data center and the cloud service provider both deploy trusted execution
environments. Policies and compliance activities using trusted platform attestation are
required for enforcement of trust and security in the cloud.

Figure 9-3. Trusted hybrid clouds (SRC: Virtustream)

Attestation and policy enforcement are managed by the cloud management layer
and include the following.

•	 Trusted resource pool, relying on hardware-based secure technical
measurement capability and trusted resource aggregation

•	 Platform attestation and safe hypervisor launch, providing
integrity measurement and enforcement for the compute nodes

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

186

•	 Trust-based secure migration, offering geolocation measurement
and enforcement (geo-fencing) for cloud trusted resource pools
and associated compute nodes

•	 Instantiation and provisioning of workloads, operating in a
trusted resource pool

•	 Dynamic workload migration and API-based enforcement, moving
between trusted resource pools within and across geolocations

•	 Visibility and transparency in real-time measurement, regarding
the reporting and auditing of the workloads to support
governance, risk, and compliance requirements

•	 Best practices for deploying a secure virtualized infrastructure,
following industry recommendations

The reference design demonstrates how an enterprise user workload application
can burst into Intel TXT’s attested secured resources, as well as prevent application loads
from utilizing noncompliant resources under NIST 7904 draft recommended scenarios.

We cover details of the architecture next, with network topology considerations,
followed by security considerations for the successful deployment of this reference design.

Cloud Bursting Reference Architecture
Figure 9-4 shows the solution architecture for this trusted hybrid cloud deployment.
Site 1 (“Customer Site”) represents an IT organization’s primary private cloud, running
Virtustream xStream cloud management software and managing resource pools of
servers running VMWare ESXi. (See the sidebar for details on Virtustream xStream cloud
management software.) As can be seen from the figure, there are two resource pools: Intel
TXT-based resource pools for security sensitive workloads and non-TXT resource pools
for regular workloads. A similar setup (as indicated by site 2, “Cloud Service Provider”)
is instantiated and maintained at a public cloud environment as well. The workloads
from the private cloud (site 1) burst into the resource clusters at site 2. The xStream
cloud management software seamlessly federates the identity, controls and configures
resources and deployment of workloads, and is fully controlled, monitored, and
managed from within the organizations xStream Management portal. To ensure that the
management software is running on high-integrity infrastructure, as shown in Figure 9-4,
the xStream software components are provisioned on Intel TXT-based trusted pools.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

187

Here are the key components of the reference architecture, followed by a brief
exposition of each:

Secure environment built around best practices •	

Cloud management, or cloud identity and access management•	

Separation of cloud resources, traffic, and data•	

Vulnerability and patch management•	

Compliance, or security policy, enforcement, and reporting•	

Security monitoring•	

Secure Environment Built Around Best Practices
Each computing platform component is built based on standard technical
implementation guides (STIGs) from a reputable standards body; in this case, NIST via
the NIST SP 800-70 National Checklist Program for IT Products. The cloud data center is
built with the STIGs just cited, with multiple security ecosystem components utilizing a
defense in depth methodology. The framework creates a multi-layered secure computing
environment with a high degree of assurance in its security posture.

Figure 9-4. Cloud bursting solution architecture (SRC: Virtustream)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

188

Cloud Management
Virtustream’s xStream software provides management functions with a highly secure and
user-friendly self-service cloud management, enabling cloud service provider tenants
to move workloads around all the federated cloud service providers’ data centers in an
efficient and reliable manner. This approach enables cloud bursting and migration of
workloads in a secure manner. It manages the resources, identity, access control, reporting,
and management within the organization’s data center, as well as the hybrid cloud
resources in the service provider’s data centers. The xStream software provides a very robust
set of APIs for interfacing with all the services. API endpoints allow secure HTTP access
(HTTPs) to establish secure communication sessions with Virtustream services using SSL.

Cloud Identity and Access Management
The cloud management platform utilizes the least privilege to execute on all operations
to ensure that no one user has more than the required privileges to accomplish its
respective management tasks in the cloud data center in a controlled manner. Each user
carries unique security credentials, eliminating the need for shared passwords or keys
and allowing the security best practices of role separation and least privilege.

Access to the cloud environment is denied unless explicitly granted. The default
access methodology for all layers of computing are denied unless explicitly given access
via an authorization policy managed by the cloud administrator. Custom, secure portals
requires dual-factor authentication with role-based access. Identity management is
accomplished utilizing LDAP/x.500 directory services with role-based access (RBAC)
control and management.

Separation of Cloud Resources, Traffic, and Data
All tenants in the cloud have their related traffic, computing, network, and storage
resource separated logically from each other in a reliable and consistent manner, attained
by utilizing the xStream management and orchestration platform.

Secure network is segregated into physical zones based on the level of trust
associated with the intended purpose, such as management, public DMZ, core, cloud
platform, and backup. (There is more detail on the physical zone segregation is in the
Network Topology and Considerations section.) Additionally, xStream allows adding
another layer of network security to customer virtual machines by creating private
subnets and even adding an IPsec VPN tunnel between the client’s network and the
third-party data center.

Vulnerability and Patch Management
Cloud vulnerability and patch management are handled in an automated method by the
cloud service provider for all tenants wanting secure, trusted, and compliant computing.
Logging under SIEM, intrusion detection, file integrity monitoring, content filtering, data
leakage prevention, firewall audits, web application layer firewalling, and many other
security processes need to be considered to ensure the security of the cloud provided.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

189

Compliance
Security policies are defined in the orchestration portal during virtual machine
provisioning. Here are some examples:

•	 Trusted execution technology enforced policies: A given virtual
machine requires TXT-based boot integrity and attestation and
should not be allowed to execute on unverified and non-attested
hypervisors and platforms. Figure 9-5 shows how a policy gets set
up using the xStream operational portal.

Figure 9-5. Enabling the trust policy

•	 Geo-fencing policies: This type of policy defines where a virtual
machine and associated data are allowed to run. A geo-fence
is a set of one or more physical locations and geographies for
a physical data center, including possible locations within the
physical data center down to a physical rack. For example, a VM
can only run on physical machines running in a data center in the
United States and Canada.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

190

•	 Data security policy: Data center best practices dictate that sensitive,
private, and confidential data in the cloud, including but not limited
to PII data, must be protected with tokenization and/or encryption
technology conformant with FIPS 140-2–level encryption
technology. During provisioning, options to encrypt the provisioned
disk of a virtual machine or even an entire virtual machine are
available to a cloud administrator. Chapter 8 covered the notion of
trusted VMs, including tenant-controlled encryption and decryption
of virtual machines based on outstanding data security policies.

•	 Compliance reporting: All cloud audit logs and security-related
posture data from vulnerabilities scans are correlated to their
respective information assurance framework security controls
and are maintained as continuous monitoring artifacts in a
GRC information system to attest to the controls functioning
as designed and in place for auditors to validate. The reference
design calls for defining a small set of controls regarding virtual
machine geolocation policies. These controls are evaluated on
a continuous basis to assess compliance of workloads and data
location regarding trust requirements. One example of a control
is an authentication event occurring for a privileged user onto a
sensitive compute virtual machine.

•	 Security monitoring: To ensure 24/7 continuous monitoring of the
cloud environment, real-time security monitoring is built using
enterprise class security information and event management
(SIEM) tools. xStream SIEM (xSIEM) is used in the reference design
to collect and correlate events from all components of the cloud
systems. It is important to verify, on a continuing basis, the threat
profile of the cloud environment and to provide visibility into the
posture of the environment in a continuous real-time manner
to the cloud’s security operations team and tenant customers.
By monitoring the cloud infrastructure with a SIEM, security
operations center personnel can react in an informed manner to
any suspicious activity performed against any cloud infrastructure
or compute workload. The xSIEM tool is equipped to capture any
trust policies the cloud management software has executed with
regard to placement and migration of workload, whether inside the
enterprise data center or burst into the service provider data center.
Events are analyzed, categorized, and the appropriate alerts are
generated for investigation and possible remediation.

•	 Cloud management and orchestration portal: As shown in
Figure 9-6, the xStream management and orchestration portal
is the heart of the cloud operations, enabling the tenant and the
cloud provider to operate in an efficient manner while allowing
the tenant to consume compute, network, and storage in an
elastic manner, with the cloud provider managing and providing
these resources in a secure and reliable manner.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

191

Network Topology and Considerations
The network for the reference data center design is built on principles of scalability,
redundancy, and security. There are many design considerations in the selection of data
center connectivity options. Needless to say, security and isolation are key, but there
are more:

Bandwidth shaping •	

Traffic policing•	

Performance considerations due to latency•	

IP addressing•	

Availability and DDOS-related issues •	

Time-of-day issues•	

Figure 9-7 captures the topology for the reference data center network design. The
network design architecture includes separate network cores for the enterprise cloud
zone and the DMZ zone. This allows a full air gap between those trust zones, and it can
facilitate the achievement of certifications for the platform in data centers.

Figure 9-6. xStream management environment

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

192

The design caters to the following elements:

Appropriate level of segregation between virtual machines •	
belonging to different cloud users

Appropriate level of security for management network•	

Standard virtual network design considerations, such as NIC •	
failover design

Capacity planning for future growth•	

The design is intended to be a best-practice cloud deployment for using either
separate virtual switches or multiple VLANs to segregate traffic and retain inter-site
mobility for the network stack. The platform utilizes virtualized converged I/O as a key
technology to enable the control of both storage and network-based operations.

At all stages throughout the design, resilience is implied—that is, fault tolerance
within the network switch design, multiple connections through multiple firewalls and
IPS appliances, and resilient VPN concentrators.

Figure 9-7. Network topology

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

193

Let’s highlight the essential network elements.

•	 The demilitarized zone. All IP VPN traffic lands on a demilitarized
zone (DMZ) switch before passing through a port blocking
firewall, to strip all non-VPN traffic and to transform VPN traffic
to VM VLAN IP traffic accessing the layer 2 switch infrastructures.
From here, traffic is addressed to the client-specific vSwitches
as per the VM VLAN tags. Before accessing the VM attached
switches, all traffic is routed through an IPS device in order to
assure quality of traffic from both external access and
VM-generated packets.

The DMZ network incorporates a business continuity management
(BCM) function and constitutes the virtualized infrastructure
dedicated to meeting the production demands of tenants requiring
web facing services. To ensure reliability and availability, one DMZ
network is maintained per pair of data centers.

•	 Management network. The tenant management connectivity
consists of two routes for internal and external management
access. Both routes need to pass through port blocking firewalls
before access is granted to the layer 2 switch infrastructure. This
is primarily to avoid impact if service provider management
workstations are compromised. Remote access is provided
through the same port blocking firewall as customer access.

Storage replication should occur over its own switching and
routing infrastructure; firewalls are configured behind each
secure connection appliance to avoid compromise of this route
to core infrastructure. This traffic will be encrypted and assured
throughout transit, and it is preferable that this transit is over a
leased line to improve that security.

•	 Core network. Production core network incorporates layer 3
and layer 2 equipment with a high-availability design. The
zone is utilized to control, manage, and route all network traffic
incoming and outgoing from the customer platform, DMZ, and
management network. This zone is the centralized control point
for all critical network traffic.

•	 Backup network. This contains all backup devices and related
service components with routes from customer platform zones to
service all data backup service request and requirements.

•	 Platform. Comprises the production computing infrastructure
dedicated to meeting customer production requirements
requiring non-web facing services. One required per pair of data
centers, data security, resilience, and reliability is a key part of the
design of components in this zone.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

194

•	 MPLS. MPLS is an any-to-any WAN technology robust to changes
in IP topology and automatic rerouting. MPLS provides a variety
of ways of logically isolating multiple virtual connections on a
single physical circuit. If possible, a separate VRF (virtual routing
and forwarding) MPLS instance can be temporarily created
for the temporary traffic, thereby logically isolating the routing
domain from the VDI traffic.

Another method is to use the prioritization techniques available
to MPLS to always ensure that VDI traffic trumps any POC traffic
on the circuit. These methods may include QoS markings at the IP
DSCP (DiffServ Code Point) or at the Ethernet p-bits. Coexistence
with any existing quality of service (QoS) markings techniques on
the MPLS circuit will be a requirement.

Security Design Considerations
Security is a high priority for customers in a multi-tenant environment. While virtual
infrastructures are relatively secure in their basic installation, additional changes are
required to adhere to certain security audit requirements. This section provides an overview
of some of the security measures considered within the reference design, as they are subject
to the wider security protocols required in an offering for managed services.

Hypervisor Hardening
VMware ESXi 5 is a small-footprint version of VMware’s hypervisor. This minimal
footprint also reduces the attack surface. ESXi implements support for Intel TXT. The
capability is managed and controlled by xStream software for trusted compute pools,
providing visibility to the integrity of the platform and enforcement of trust policies
for deployment and migration of virtual machines. The ESXi installation comes with a
number of additional security features:

LDAP integration•	

Management interface firewall•	

Lockdown mode•	

Logging•	

These features have to be enabled corrected to ensure hardening. With the high priority
attached to security in the multi-tenant paradigm being used in the cloud platform, using
ESXi 5.x is recommended. In addition to this, basic security measures such as setting a
strong root password should be used and compliance requirements that are necessary for
compliance with the security standards selected for the platform are checked.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

195

Firewalls and Network separation
To provide end-to-end separation of client data, it is important to ensure that no element
in the infrastructure allows data to comingle or be accessed by another client. This is
especially true of the networking design and infrastructure.

In order to achieve this, the reference design prescribes the infrastructure to be
entirely separate from the customer VPN landing zone, through to the individual virtual
machines and at all points in between. To achieve this, the reference design uses of the
following technologies:

VLAN•	

Virtual switches •	

Virtual appliances•	

Firewalls and routing infrastructure•	

Every cloud customer is assigned one or more individual VLAN, as needed.
Customer network traffic remains isolated from each other within a VLAN. The switch to
which a VLAN is attached is also assigned the same VLAN tag.

As shown in Figure 9-8, the only way for machines in VLAN A to talk to machines
in VLAN B (and vice versa) is for the router to be configured to allow that conversation
to occur. To ensure that the switch configuration is unified across all hosts in a cluster,
the reference design uses distributed virtual switches. These ensure that the switch
configuration associated VLAN tagged switch port groups are the same across all
attached hosts, thereby limiting the chances of a misconfiguration of VLAN tagging on the
virtual switch.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

196

In addition to the VLAN tagging, the reference design also makes use of other
traditional networking separation and security tools. A key technology is firewalling
(see Figure 9-9). Both virtual and physical firewalls are needed to ensure separations
throughout the environment, from access to the physical network, including DMZ
separation using physical firewall devices, and virtual firewalls to ensure visibility and
separation across virtual machines.

Figure 9-8. VLAN separation using vSwitches

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

197

Firewalls are required to scale to the highest VPN session counts, throughput, and
connection speed and capacity to meet the needs of the most demanding customers.
Offering protocol-agnostic client and clientless access for a broad spectrum of desktop
and mobile platforms, the firewall device delivers a versatile, always-on remote access
integrated with IPS and Web security for secure mobility and enhanced productivity.

The reference design ensures that throughout the network, be it virtual or physical,
industry standard separation is enabled, and further guaranteed and improved by the
inclusion of specific industry leading technologies that ensure even greater levels of
granularity and visibility within the system.

Management Network Firewalling
For additional security, putting the hosts and management servers behind firewalls
provides additional security and separation of the management services. Ports will be
required to be opened for VMware virtual infrastructure to work.

Virtual Networking
VMware virtual infrastructure implements a virtual networking component that allows
for virtual switches and port groups to be created at the software layer and operate as if
they were physical infrastructure. There are certain features and ways to configure the
networking to improve network segregation and prevent possible network vulnerabilities.
These are:

Use VLAN tagging•	

Disable MAC address changes•	

Figure 9-9. Cisco ASA protection

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

198

Disable forged transmits•	

Disable promiscuous mode•	

Prevent and monitor for spoofing•	

Note that some of the features need to be enabled for certain customers— for
example, for internal IDS scans—but should only be changed explicitly from defaults on
an individual basis. As mentioned earlier, all customers will be assigned their own VLAN,
and this will remain enabled. As a recommended practice, the reference design calls for
use of different vSwitches to physically separate network traffic, disable forged transmits,
and segregate management network traffic from virtual machine traffic

Anti-Virus Software
Anti-virus and anti-malware software is always a consideration by any company when
security is in question. For the management layer, anti-virus software is recommended on
the virtual machine manager server and any other appropriate virtual machines.

The definition of anti-virus policies and the deployment of anti-virus agents by a
service provider to the tenant’s virtual machines fall outside the scope of this reference
design. Tenant segregation and the use of security devices such as firewalls and
IPSs—and, if selected, technologies such as virtual firewalls—will ensure that any viruses
on a tenant’s virtual machines will not spread to other tenants.

It is recommended that approved anti-virus software be installed on management
layer virtual machines. Unless specified by the service provider, the tenant is generally
responsible for installation of anti-virus software on production virtual machines.

Cloud Management Security
The cloud management layer provides the basis for all management functions surrounding
the reference design. It ties into all the other technologies previously listed and provides
some additional functionality to assist in the creation of a secure and auditable cloud
environment. The security elements required by a cloud management portal are as follows:

PCI/ISO/FedRAMP/NIST 800-53 associated security controls•	

Governance, risk, and compliance (GRC)•	

Trusted execution platform•	

Trusted execution platform is the one element that we have covered in depth in the
earlier chapters, so we will not cover that here. Let’s cover the other two elements briefly
in the next two sections.

Security Controls
The security controls implemented in the reference design are based on NIST
800-53/FedRAMP, GLB, iTAR/EAR, applicable security controls to measure and secure
connectivity between data centers.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

199

NISt 800-53

nisT special Publication 800-53 is part of the special Publication 800-series that
reports on the information Technology laboratory’s (iTl) research, guidelines, and
outreach efforts in information system security, and on iTl’s activity with industry,
government, and academic organizations. specifically, nisT special Publication
800-53 covers the steps in the risk management framework that address security
control selection for federal information systems in accordance with the security
requirements in federal information Processing standard (fiPs) 200. This includes
selecting an initial set of baseline security controls based on a fiPs 199 worst-case
impact analysis, tailoring the baseline security controls, and supplementing the
security controls based on an organizational assessment of risk. The security rules
cover 17 areas, including access control, incident response, business continuity,
and disaster recoverability. These controls are the management, operational, and
technical safeguards (or countermeasures) prescribed for an information system to
protect the confidentiality, integrity, and availability of the system and its information.
To implement the needed safeguards or controls, agencies must first determine the
security category of their information systems in accordance with the provisions
of fiPs 199, “standards for security Categorization of federal information and
information systems.” The security categorization of the information system
(low, moderate, or high) determines the baseline collection of controls that must be
implemented and monitored. Agencies have the ability to adjust these controls and
tailor them to fit more closely with their organizational goals or environments.

Tables 9-1 through 9-4 show the subset of key NIST 800-53 controls that are
implemented in this reference design to conform to a trusted architecture. The NIST
800-53 security controls have a well-defined organization and structure. To make it easy
for selection and specification, controls are organized into 18 families. Each family contains
security controls related to the general security topic of the family. A two-character identifier
uniquely identifies security control families—for example, SI (system and information
integration). Security controls may involve aspects of policy, oversight, supervision, manual
processes, actions by individuals, or automated mechanisms implemented by information
systems/devices. In the context of this reference design, the key controls that are
implemented belong to four specific families of controls.

a. CM Configuration Management

b. SA System and Services Acquisition

c. SC System and Communications Protection

d. SI System and Information Integration

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

200

Table 9-1. NIST 800-53 Control Family - CM - Configuration Management

800-53 Control ID Control Text Control Comments/Guidance

CM-2 (2) The organization employs
automated mechanisms to
maintain an up-to-date, complete,
accurate, and readily available
baseline configuration.

CM-8 CM-8d.

[Assignment: organization-defined
information deemed necessary
to achieve effective property
accountability]

Parameter: See additional
requirements and guidance.
CM-8 (3) (a)

[Assignment: organization-defined
frequency]

Parameter: [Continuously, using
automated mechanisms with a
maximum five-minute delay in
detection]

Table 9-2. NIST 800-53 Control Family - SA - System and Services Acquisition

800-53
Control ID

Control Text Control Comments/Guidance

SA-11 (1) The organization requires that
information system developers/
integrators employ code analysis
tools to examine software for
common flaws and document the
results of the analysis.

The organization:

a. Conducts an organizational
assessment of risk prior to the
acquisition or outsourcing of dedicated
information security services.

b. Ensures that the acquisition or
outsourcing of dedicated information
security services is approved by
[Assignment: organization-defined
senior organizational official].

(continued)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

201

800-53
Control ID

Control Text Control Comments/Guidance

SA-12 The organization protects
against supply chain threats by
employing: [organization-defined
list of measures to protect against
supply chain threats] as part of
a comprehensive, defense-in-
breadth information security
strategy.

Control: The organization requires
that information system developers/
integrators, in consultation with
associated security personnel
(including security engineers):

a. Create and implement a security test
and evaluation plan.

b. Implement a verifiable flaw
remediation process to correct
weaknesses and deficiencies identified
during the security testing and
evaluation process.

c. Document the results of the security
testing/evaluation and flaw remediation
processes.

Supplemental Guidance: Developmental
security test results are used to the
greatest extent feasible after verification
of the results and recognizing that
these results are impacted whenever
there have been security-relevant
modifications to the information system
subsequent to developer testing. Test
results may be used in support of the
security authorization process for the
delivered information system. Related
control: CA-2, SI-2.

(continued)

Table 9-2. (continued)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

202

800-53
Control ID

Control Text Control Comments/Guidance

SA-4 (7) The organization: (a) Limits the
use of commercially provided
information technology products
to those products that have been
successfully evaluated against
a validated U.S. Government
Protection Profile for a specific
technology type, if such a profile
exists; and (b) Requires, if no U.S.
Government Protection Profile
exists for a specific technology
type but a commercially
provided information technology
product relies on cryptographic
functionality to enforce its security
policy, then the cryptographic
module is FIPS-validated.

The organization:

a. Limits the use of commercially
provided information technology
products to those products that have
been successfully evaluated against a
validated U.S. Government Protection
Profile for a specific technology type,
if such a profile exists.

b. Requires, if no U.S. Government
Protection Profile exists for a specific
technology type but a commercially
provided information technology
product relies on cryptographic
functionality to enforce its security
policy, then the cryptographic module
is FIPS-validated.

SA-9 (1) The organization: (a) Conducts
an organizational assessment
of risk prior to the acquisition
or outsourcing of dedicated
information security services.

(b) Ensures that the acquisition
or outsourcing of dedicated
information security services
is approved by [organization-
defined senior organizational
official].

SA-9 (1) (b)

[Assignment: organization-defined
senior organizational official].

Parameter: [Joint Authorization Board
(JAB)] The organization:

a. Limits the use of commercially
provided information technology
products to those products that have
been successfully evaluated against a
validated U.S. Government Protection
Profile for a specific technology type,
if such a profile exists.

b. Requires, if no U.S. Government
Protection Profile exists for a specific
technology type but a commercially
provided information technology
product relies on cryptographic
functionality to enforce its security
policy, then the cryptographic module
is FIPS-validated.

Table 9-2. (continued)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

203

Table 9-3. NIST 800-53 Control Family - SC - System and Communications Protection

800-53 Control ID Control Text Control Comments/Guidance

SC-12 (2) The organization produces,
controls, and distributes
symmetric cryptographic keys
using [NIST-approved,
NSA-approved] key
management technology and
processes.

The organization produces,
controls, and distributes
symmetric cryptographic
keys using NIST-approved key
management technology and
processes.

SC-12 (5) The organization produces,
controls, and distributes
asymmetric cryptographic
keys using approved PKI Class
3 or Class 4 certificates and
hardware security tokens that
protect the user’sprivate key.

The organization produces,
controls, and distributes
asymmetric cryptographic keys
using approved PKI Class 3 or
Class 4 certificates and hardware
security tokens that protect the
user’s private key.

SC-13 (1) The organization employs, at
a minimum, FIPS-validated
cryptography to protect
unclassified information.

The organization employs, at
a minimum, FIPS-validated
cryptography to protect
unclassified information.

SC-21 The information system
performs data origin
authentication and data
integrity verification on the
name/address resolution
responses the system receives
from authoritative sources
when requested by client
systems.

The information system provides
additional data origin and
integrity artifacts along with the
authoritative data the system
returns in response to name/
address resolution queries.

SC-6 The information system limits
the use of resources by priority.

The information system limits the
use of resources by priority.

SC-7 (8) The information system
routes [organization-defined
internal communications
traffic] to [organization-defined
external networks] through
authenticated proxy servers
within the managed interfaces
of boundary protection
devices.

The information system routes
[Assignment: organization-
defined internal communications
traffic] to [Assignment:
organization-defined external
networks] through authenticated
proxy servers within the managed
interfaces of boundary protection
devices.

(continued)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

204

800-53 Control ID Control Text Control Comments/Guidance

SC-7 (12) The information system
implements host-based
boundary protection
mechanisms for servers,
workstations, and mobile
devices.

The information system
implements host-based boundary
protection mechanisms for
servers, workstations, and mobile
devices.

Enhancement Supplemental
Guidance: A host-based boundary
protection mechanism is, for
example, a host-based firewall.
Host-based boundary protection
mechanisms are employed on
mobile devices, such as notebook/
laptop computers, and other types
of mobile devices where such
boundary protection mechanisms
are available.

SC-7 (13) The organization isolates
[organization defined key
information security tools,
mechanisms, and support
components] from other
internal information system
components via physically
separate subnets with managed
interfaces to other portions of
the system.

The organization isolates
[Assignment: organization
defined key information security
tools, mechanisms, and support
components] from other internal
information system components
via physically separate subnets
with managed interfaces to other
portions of the system.

SC-7 (18) The information system
fails securely in the event of
an operational failure of a
boundaryprotection device.

The information system fails
securely in the event of an
operational failure of a boundary
protection device.

Table 9-3. (continued)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

205

Table 9-4. NIST 800-53 Control Family - SI - System and Information Integrity

800-53
Control ID

Control Text Control Comments/Guidance

SI-4 SI-4a.

[Assignment: organization-defined
monitoring objectives]

Parameter: [ensure the proper functioning
of internal processes and controls in
furtherance of regulatory and compliance
requirements; examine system records
to confirm that the system is functioning
in an optimal, resilient, and secure state;
identify irregularities or anomalies that
are indicators of a system malfunction or
compromise]

SI-4 (5)

[Assignment: organization-defined list of
compromise indicators]

Parameter: [protected information system
files or directories have been modified
without notification from the appropriate
change/configuration management
channels; information system performance
indicates resource consumption that is
inconsistent with expected operating
conditions; auditing functionality has
been disabled or modified to reduce audit
visibility; audit or log records have been
deleted or modified without explanation;
information system is raising alerts or faults
in a manner that indicates the presence of
an abnormal condition; resource or service
requests are initiated from clients that are
outside of the expected client membership
set; information system reports failed logins
or password changes for administrative
or key service accounts; processes and
services are running that are outside of
the baseline system profile; utilities, tools,
or scripts have been saved or installed
on production systems without clear
indication of their use or purpose]

(continued)

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

206

Table 9-4. (continued)

800-53
Control ID

Control Text Control Comments/Guidance

SI-6 The information system verifies the
correct operation of security functions
[Selection (oneor more): [Organization-
defined system transitional states]; upon
command by user with appropriate
privilege; periodically every [Organization-
defined time-period]] and [Selection (one
or more): notifies system administrator;
shuts the system down; restarts the
system; [organization-defined alternative
action(s)]] when anomalies are discovered.

Control: The information
system verifies the correct
operation of security functions
upon system startup and/
or restart and periodically
every ninety days and notifies
system administrator when
anomalies are discovered.

Supplemental Guidance:
The need to verify security
functionality applies to
all security functions. For
those security functions
that are not able to execute
automated self-tests,
the organization either
implements compensating
security controls or explicitly
accepts the risk of not
performing the verification as
required. Information system
transitional states include,
for example, startup, restart,
shutdown, and abort.

We will briefly mention the controls implemented for each of these families in the
next three sections. Column1 provides the 800-53 control ID, column 2 describes the
control, and column 3 provides additional commentary or guidance (if any) for each of
the controls. Selecting and specifying security controls is based on the maturity of the
organization’s information systems, how they manage risk, and the system impact level
in accordance with FIPS 199 and FIPS 200. The selection of the security controls includes
tailoring the initial set of baseline security controls and supplementing the tailored
baseline as necessary, based on an organizational assessment of risk, and assessing the
security controls as part of a comprehensive continuous monitoring process.

Governance, Risk, and Compliance (GRC)
By continuously assessing the compliance of the systems and the underlying cloud
system, a tenant system can be assigned a granular rating traceable over time, allowing
visibility into any threats presented by the underlying, normally invisible virtualized
cloud infrastructure. The tenant is alerted to any potential threat originating within the
infrastructure due to poor server management.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

207

Figure 9-10 shows the xGRC rating system used in the reference design. These ratings
allow for easier audit and reporting, as well as a simple method of assessing infrastructure
health. The physical and virtual data center’s machine data are correlated and fed into
GRC Reporting Tools in a continuous monitoring cycle and the related controls are
maintained for the specific compliance frameworks—for example, NIST 800-53 or PCI
etc. xStream’s xGRC provides this functionality in the reference architecture.

Figure 9-10. xGRC rating system

1Open Data Center Alliance Usage: Virtual Machine (VM) Interoperability in a Hybrid Cloud
Environment Rev. 1.2; http://www.opendatacenteralliance.org/docs/Virtual_Machine_
%28VM%29_Interoperability_in_a_Hybrid_Cloud_Environment_Rev1.2.pdf.

Practical Considerations for Virtual Machine
Migration
In the initial discussion of cloud bursting, we glossed over a number of considerations
in the interests of presenting a clear explanation. In particular, with the current state of
the art, there are a number of limitations when it comes to migrating virtual machines
across hypervisors. This is the problem of virtual machine interoperability.1 The assumed
environment for current practical implementations is a private cloud environment
connected to the home base through VPN links. The VPN links are necessary to have
all virtual machines in the same subnet. Furthermore, all virtual machine movements

http://www.opendatacenteralliance.org/docs/Virtual_Machine_(VM)_Interoperability_in_a_Hybrid_Cloud_Environment_Rev1.2.pdf
http://www.opendatacenteralliance.org/docs/Virtual_Machine_(VM)_Interoperability_in_a_Hybrid_Cloud_Environment_Rev1.2.pdf

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

208

take place across hosts running the same hypervisor environment. There are a number
of operational limitations that prevent virtual machine movements across different
hypervisor environments or across public clouds with different providers.

Live migration is supported by the most commonly deployed hypervisor
environments: Xen, VMware, and Microsoft Hyper-V. This is a case of homogeneous
migration, where the source and target hosts run the same hypervisor environment.
Homogeneous migration is the first of three possible levels for virtual machine
interoperability or compatibility.2

To summarize the DMTF definitions:

Level 1: Workloads under compatibility level 1 only run on a •	
particular virtualization product and/or CPU architecture and/
or virtual hardware selection. Level 1 portability is logically
equivalent to a suspend operation in the source environment and
a resume in the target environment.

Level 2: Workloads under compatibility level 2 are designed to run •	
on a specific family of virtual hardware. Migration under level 2 is
equivalent to a shutdown in the source environment followed by
a reboot in the target environment.

Level 3: Workloads supporting level 3 compatibility are able to •	
run on multiple families of virtual hardware.

Level 1 maps to homogeneous migration, the type of migration supported today
within a single hypervisor environment and the only environment where live migration is
feasible. Level 2 supports movement across heterogeneous hypervisor environments; this
necessitates an intervening reboot. For this reason, this scheme is known as cold migration.
Level 3 allows not only migration across different hypervisors but also across different host
hardware architectures, and hence we identify it as heterogeneous architecture migration.

Live migration, when feasible, preserves the most operating states of a virtual
machine image of the three schemes, including IP addresses and open file descriptors,
and even transactions and streaming data in midstream. On the one hand, live migration
may be required by some legacy applications that break after some of the state transitions
mentioned above. On the other hand, requirements for live migration are strict: the target
host usually needs to be part of a preconfigured cluster; the hosts need to be in the same
subnet; and even if physically remote hosts are connected through a VPN tunnel, latency
due to the trombone effect may induce failures. Live migration is not possible across
heterogeneous hypervisor environments.

Heterogeneous hypervisor migration relaxes some of the environmental requirements
compared to live migration. A logical shutdown and restart means that virtual machines
in the target environment may end up running with a different set of IP addresses. Open
file descriptors may be different, even though they may be reaching the same files; the
descriptors may point to a remote file that was previously local. Transactions interrupted
during the migration may have to be rolled back and retried. The virtual machine image

2DMTF, Open Virtualization Format White Paper, OVF version 1.0.0e, paper DSP2017, 2/6/2009,
Section 5.

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

209

needs to be remapped to run in the new target hypervisor environment. It is not practical
to modify the memory image to run in the new environment, and hence the need for a
reboot. For applications that can tolerate these environment changes, cold migration offers
a broader choice of target service providers.

Heterogeneous architecture migration provides the least support of state
preservation. At the same time, it provides the most options in running an application
across computer architectures or service providers. It potentially involves reassembling
the application in the target environment. Loose coupling becomes obligatory. This
applies to advanced methodologies, such as integrated development and operations
(DevOps).3 Heterogeneous architecture migration offers the broadest choices for operating
environments, running not only on a variety of hypervisor environment but also across
platform architectures. The trade-off is being the least state-preserving of the three levels.

From the discussion above, it becomes clear that cloud bursting options need
not include live migration as an obligatory requirement. Loosely coupled application
components may be instantiated as levels 2 or 3 cloud bursting components. An example
of level 2 bursting could be web server front-end instances connected to the mid-tier
through DCOM or CORBA. Examples of level 3 bursting could be web server front-end
components connected to the application through REST interfaces, or even instantiating
auxiliary services such as content delivery networks or connecting to API managers.

Summary
This chapter on cloud bursting references an architecture design utilized by Virtustream,
which marks the beginning of a new era in cloud computing. This is an era when the
migration and bursting of workloads to trusted federated cloud partners, whether in
a private or public infrastructure, will industrialize a new mode of cloud operations
via a highly efficient model to enable the consumption of cloud resources in an elastic
manner that doesn’t compromise security. The chapter covered the reference design
leveraging Intel Corporation’s TXT technology to ensure the platform boot integrity and
attestation, both in the private cloud infrastructure and the external/overflow capacity.
The integration of Virtustream’s xStream cloud management platform with Intel TXT via
the Mt. Wilson trust attestation authority provides an automated and production-ready
cloud platform to accomplish the secure cloud bursting architecture and usage.

This is just the beginning. As discussed in the chapter, there are regulatory
compliance issues, quality of service questions, and data locality and governance
matters, as well as the immaturity of the monitoring and remediation components. The
Virtustream xStream cloud management software used in this reference design and
the proof of concept begin to address many of these problems. This and other cloud
architectures will continue to evolve as real-world organizational requirements change,
and as proofs of concept such as the illustrated proof of concept in this chapter exercise
existing technology to its limits, requiring new technologies to be created or improve
upon what presently exists.

3http://www.readwriteweb.com/enterprise/2011/08/devops-what-it-is-why-it-exist.
php, http://www.cio.com/article/print/705919.

http://www.readwriteweb.com/enterprise/2011/08/devops-what-it-is-why-it-exist.php
http://www.readwriteweb.com/enterprise/2011/08/devops-what-it-is-why-it-exist.php
http://www.cio.com/article/print/705919

CHAPTER 9 ■ A REfEREnCE DEsign foR sECuRE ClouD BuRsTing

210

VIrtUStreaM OVerVIeW

Virtustream is a leading Enterprise Class Cloud solution provider for global 2000
workloads. xstream™ is Virtustream’s Enterprise Class Cloud solution allowing both
mission-critical legacy and web-scale applications to run in the cloud—whether
private, virtual private or public. xstream uses mVM technology to deliver enterprise-
grade security/compliance, application performance slAs, consumption-based
pricing, significant cost efficiency beyond virtualization and the ability to deliver iT
in minutes rather than months. xstream is available as software, appliance or a
managed service and works with all leading hardware and virtualization software.

figure 9-11 shows the overview of xstream management software.

Figure 9-11. Virtustream xStream Software

A���������
Accountability, 148
ActiveDirectory, 153
Amazon AWS EC2, 168
Anonymity, 148
Asset tagging, 96
Attestation

definition, 65
dynamic remote attestation

techniques, 66
IMA, 67
Intel Trust Attestation

Platform (TAP), 72
measurement properties, 66
Mt. Wilson platform

APIs (see Mt. Wilson API)
architecture, 76
attestation process, 78
features and capability, 74
host registration process, 80
identity key provisioning

process, 79
requesting platform trust, 81
threat model, 81–82

PRIMA, 67
process

integrity measurement, 71
remote attestation

protocol, 68–69
trust attestation authority, 70

properties, 66
semantic remote attestation, 68
static remote attestation

techniques, 66
Attestation identity key (AIK), 170

B���������
Boot integrity usage model, 30

attestation, 42
Intel TXT, 61
measured boot process, 40
roots of trust, 39
trusted compute pools (see Trusted

compute pool (TCP))
Business continuity

management (BCM), 193
Business-to-business (B2B), 152

C���������
Certificate revocation lists (CRLs), 151
Chain of trust, 27
Cloud bursting

data center deployment models
multiple deployment model, 184
objective, 183
trusted hybrid clouds, 184

enterprise data center, 181
network topology, 191
reference architecture

access management, 188
cloud identity, 188
cloud management, 188
compliance, 189
Intel TXT-based resource

pools, 186
non-TXT resource pools, 186
secure network, 188
STIGs, 187
vulnerability/patch

management, 188

Index

211

■ index

212

xStream software, 186–187
security design (see Security design,

cloud bursting)
usage model

architectural considerations, 182
implementation, 181
one-size-fits-all approach, 182
overflow resource, 180
principles of, 180
structure and operation, 180

Cloud computing
APIs, 5
definition, 2
deployment models, 4
elasticity, 3
historical drivers

IT services, 10
server consolidation, 7
service network (see Service

network)
three-tier architecture, 6

metaservices, 3
resource pooling, 2
security as a service (see Security

as a service)
self-service model, 3
service models, 3
value proposition, 5

Cloud Security Alliance (CSA), 21
Cloud security and compliance

architecture, 22
automation and

policy orchestration, 22
challenges

architecture and applications, 25
co-tenancy and

noisy/adversarial neighbors, 25
data, 25
governance, 24

data breach, 20
data center security, 23
data discovery and protection, 22
IaaS cloud’s physical and

virtual servers, 21
identity management, 22
trusted clouds (see Trusted cloud)
visibility, compliance, and

monitoring, 22
Community cloud, 4

D���������
Data minimization, 149
Data protection usage model, 32
Data security standard (DSS), 163
Decryption key ID (DKID), 174
Demilitarized zone (DMZ), 193
DiffServ Code Point (DSCP), 194
Distributed Management

Task Force (DMTF), 166
Dynamic root of trust for

measurement (D-RTM), 42

E���������
Enhanced Privacy ID (EPID), 156

F���������
Federal Information Processing

Standard (FIPS), 199
Federal Information Security

Management Act (FISMA), 24
Federal Risk and Authorization

Management Program
(FedRAMP), 24

G���������
Geo-fencing, 94
Geolocation, 94
Geo-tagging

attestation, 108
implementation

asset certificate, 119
asset tag verification and

SAML assertion tag, 120
provisioning agent, 119
taxanomy, 117
whitelist selection, 118

life cycle
tag creation, 104
tag deployment, 106
tag selection, 105
validation and

invalidation process, 107
whitelist, 105

provisioning model
pull model, 114
push model, 114

212

Cloud bursting (cont.)

■ index

213

solution architecture
attestation service, 112
tag management service and

management tool, 110
tag provisioning agent, 110
tag provisioning service, 109

TCP (see Trusted compute pools
(TCP))

Governance, risk, and
compliance (GRC), 206

Grid computing, 4

H���������
Hardware security module (HSM), 169
Hybrid cloud model, 14

I, J���������
IaaS service model, 3
Identity federation, 152
Identity management (IdM), 22

accountability, 148
anonymity, 148
attribute privacy, 149
attribute security property, 149
contexts, 142
credential lifecycle, 142
data minimization, 149
definition, 141
digital identifiers, 144
digital identity, 142
identity information, 142
IdP, 143
Intel identity technologies (see Intel

identity technology)
IOT, 159
limitation, 143
modification, 144
notification, 148
pseudonymity, 149
representation

federation, 152
PKI certificates, 150
security and privacy, 151
SSO, 153
types of identity tokens, 150

revocation, 145
security and privacy, 146–147
system requirements

Cameron’s Laws of
Identity, 145

OECD guidelines, 145
user control properties, 146

usage, 143
Identity provider (IdPs), 143
Infrastructure as a Service (IaaS), 162
Integrated development and

operations (DevOps), 209
Integrity measurement

architecture (IMA), 67
Intel Identity Protection

Technology (IPT), 154
Intel identity technology

Intel Security Engine, 156
IPT, 154
McAfee cloud ecosystem, 157
VT, 154

Intel’s Manageability Engine (ME), 156
Intel Trust Attestation Platform (TAP), 72
Intel TXT, 61, 179, 185
Internet-of-things (IOT), 159

K, L���������
Kerberos, 153
Key management server (KMS), 168

M���������
McAfee Cloud SSO, 153
Metaservices, 3
Mt. Wilson API

API request specification, 85
API responses, 86
deploying attestation components, 87
high-level programming steps, 88

API client registration process, 89
trust attestation, 90
whitelisting and host

registration, 90
management and whitelisting API, 85
provisioning and trust query API, 84
usage, 87

Mystery Hill (MH), 166
Mystery Hill key management and

policy server (KMS), 168

N���������
National Institute of Science and

Technology (NIST), 152
National Institute of Standards and

Technology (NIST), 1, 4–5, 21

213

■ index

214

Network security
cloud network

application delivery
controllers, 126

components, 124–125
intrusion detection devices, 126
load balancers, 125

end-to-end security
firewalls, 127
hypervisor security, 129
site-to-site VPN, 128
virtual local area networks, 127
virtual machine

guest security, 130
SDN (see Software defined

networks (SDN))
Network topology, 191
NIST cloud computing. See Cloud

computing
Noisy neighbor problem, 4
Notification, 148

O���������
Open Cloud Computing

Interface (OCCI), 21
Open Data Center

Alliance (ODCA), 21, 182
OpenID, 153
Open Identity Exchange (OIX), 152
OpenStack, 168
Open Virtualization Format (OVF), 166

P���������
PaaS service model, 3
Payment Card Industry (PCI) Standards

Council, 163
Perimeter management, 15
Personally identifiable

information (PII), 148, 163, 179
Platform configuration

registers (PCRs), 69
Policy reduced integrity measurement

architecture (PRIMA), 67
Private cloud model, 13
Pseudonymity, 149
Public cloud model, 14
Public key infrastructure (PKI), 151

Q���������
Quality of experience and

service (QoS), 181

R���������
Role-based access (RBAC) control, 188
Root of trust, 27
Run-time integrity and attestation

usage model, 33

S���������
SaaS service model, 3
SAML, 153
Security as a service

application deployment, 16
new enterprise boundaries

firewall protection, 12
hybrid cloud, 14
perimeter management, 15
private cloud model, 13
public cloud, 14
self-service model, 15

roadmap, 16
servicelets, 12

Security design, cloud bursting
anti-virus software, 198
firewalls, 196
GRC, 206
hypervisor hardening, 194
network separation, 197
NIST 800-53 control

Configuration Management, 200
System and Communications

Protection, 203
System and Information

Integrity, 205
System and Services

Acquisition, 200
trusted execution platform, 198
virtual machine migration

DMTF, 208
heterogeneous architecture, 209
heterogeneous hypervisor, 208
homogeneous, 208
live migration, 208
VPN links, 207

214

■ index

215

virtual network, 197
VLAN, 195

Security information and event
management (SIEM), 190

Self-service model, 3
Semantic remote attestation, 68
Service-level agreements (SLAs), 12
Service network

application, 9
stovepipes transition, 8

Sign-and-Mac protocol (Sigma), 156
Single sign-on (SSO), 153
Sneakernet approach, 182
Software as a service (SaaS), 153
Software-defined networks (SDN)

advantages, 132
API and orchestration, 134
cloud multi-tenant (IaaS) data

centers, 133
network security capability

interface, 138
M2M automation, 137
VLAN trunking, 138

OpenStack, 135, 136
vs. traditional networking, 131–132
usage models, 132–133

SPI model, 3
Standard technical implementation

guides (STIGs), 187
Static root of trust for

measurement (S-RTM), 40
Strong authentication, 143

T, U���������
Taiwan Exchange Stock Exchange

Corporation (TWSE)
HyTrust attestation, 56
McAfee ePO, 60
proof of concept, 54
solution architecture, 55
trusted compute pools creation and

workload migration, 59
TPMQuote command, 76
Trust attestation, 31
Trust attestation authority (TAA), 70
Trust computing base (TCB), 169
Trusted cloud

assurance, 27

boot integrity usage model (see Boot
integrity usage model)

building blocks for, 37
definitions, 26
trust, 26
trusted computing infrastructure, 27
usage models

boot integrity usage model, 30
data protection usage model, 32
framework, 29
run-time integrity and attestation

usage model, 33
trusted virtual machine launch

usage model, 31
value proposition for cloud tenants, 34

Trusted compute pools (TCP), 176
compliance reporting, 47
pool creation, 46
principles of operation, 43
solution architecture

cloud management layer, 102
hardware layer, 48, 101
operating systems and

hypervisors layer, 49, 102
reference architecture, 48
security management

layer, 51, 103
tag provisioning and lifecycle

management, 103
Taiwan Stock Exchange case study

(see Taiwan Exchange Stock
Corporation (TWSE))

verification and attestation
layer, 102

virtualization/cloud management
and verification/attestation
layer, 50

virtualization layer, 102
usage

FISMA SP800-53, 97
geolocation and geo-fencing, 98
geolocation-based secure

migration, 100
NIST IR 7904, 98
platform attestation and safe

hypervisor launch, 99
trust-based secure migration, 100

workload migration, 46
workload placement, 46

215

■ index

216

Trusted execution technology (TXT), 11
Trusted hybrid clouds, 184
Trusted virtual machines

cloud service provider, 162
conceptual architecture

attestation, 170
key elements, 167
KMS, 168
MH client, 167
Mystery Hill plug-in, 169

images
container format, 165
disk format, 164
OVF, 166

independent software vendor, 162
launch usage model, 31
with OpenStack

AIK public key, 177
cloud service provider, 177
compute node, 177
encryption key, 175
Glance APIs, 174
implementation, 173
Launch tab, 175

URL, 174
requirement, 162
workflow, 171

V���������
Virtualization technology (VT), 154
Virtual local area networks (VLAN), 127
Virtual private networks (VPNs), 128
Virtual routing and forwarding (VRF), 194
Virtustream, 210

architecture design (see Cloud
bursting)

xStream software, 179, 210
VMware ESXi, 186, 194

W���������
Whitelist management, 77

X, Y, Z���������
xStream SIEM (xSIEM), 190
xStream software, 179, 186

216

Building the
Infrastructure for
Cloud Security

A Solutions view

Raghu Yeluri

Enrique Castro-Leon

Building the Infrastructure for Cloud Security

Raghu Yeluri and Enrique Castro-Leon

Copyright © 2014 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use
or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than
5 lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the
text of the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights
reserved. Use of this Work other than as provided for in this license is prohibited. By exercising any of the
rights herein, you are accepting the terms of this license. You have the non-exclusive right to copy, use and
distribute this English language Work in its entirety, electronically without modification except for those
modifications necessary for formatting on specific devices, for all non-commercial purposes, in all media
and formats known now or hereafter. While the advice and information in this Work are believed to be true
and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express
or implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses
(2) and (3) must accompany the source code. If your use is an adaptation of the source code provided by
Apress in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, from TouchDevelop:
Programming on the Go, ISBN 978-1-4302-6136-0 is copyrighted by Apress Media, LLC, all rights
reserved. Any direct reproduction of this Apress source code is permitted but must contain this license.
The following license must be provided for any use of the source code from this product of greater than
5 lines wherein the code is adapted or altered from its original Apress form. This Apress code is presented
AS IS and Apress makes no claims to, representations or warrantees as to the function, usability, accuracy
or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code provided
are used or adapted from TouchDevelop: Programming on the Go, ISBN 978-1-4302-6136-0 copyright
Apress Media LLC. Any use or reuse of this Apress source code must contain this License. This Apress code
is made available at Apress.com/978143026136-0 as is and Apress makes no claims to, representations or
warrantees as to the function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4302-6145-2

ISBN-13 (electronic): 978-1-4302-6146-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

President and Publisher: Paul Manning
Lead Editors: Steve Weiss (Apress); Patrick Hauke (Intel)
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress.com/978143026136-0
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

To Sunita, Sonia, and Rajeev. Without your motivation, patience, and sacrifice,
I couldn’t have succeeded. Many thanks for maintaining and managing

normalcy while I spent hours writing this book.

—Raghu Yeluri

To Kitty, for her infinite patience and both explicit and tacit support during
the long hours it took to put together this book project.

—Enrique Castro-Leon

vii

Contents

About the Authors �� xv

About the Technical Reviewers ��� xvii

Acknowledgments �� xix

Foreword �� xxi

Introduction �� xxiii

Chapter 1: Cloud Computing Basics ■ ��� 1

Defining the Cloud ��� 1

The Cloud’s Essential Characteristics ��� 2

The Cloud Service Models �� 3

The Cloud Deployment Models ��� 4

The Cloud Value Proposition ��� 5

Historical Context �� 6

Traditional Three-Tier Architecture ��� 6

Software Evolution: From Stovepipes to Service Networks �������������������������������������� 7

The Cloud as the New Way of Doing IT ��� 10

Security as a Service��� 12

New Enterprise Security Boundaries �� 12

A Roadmap for Security in the Cloud �� 16

Summary ��� 17

■ Contents

viii

 Chapter 2: The Trusted Cloud: Addressing Security ■
and Compliance �� 19

Security Considerations for the Cloud ��� 19

Cloud Security, Trust, and Assurance �� 21

Trends Affecting Data Center Security �� 23

Security and Compliance Challenges ��� 24

Trusted Clouds �� 26

Trusted Computing Infrastructure ��� 27

Trusted Cloud Usage Models ��� 28

The Boot Integrity Usage Model�� 30

The Trusted Virtual Machine Launch Usage Model ��� 31

The Data Protection Usage Model �� 32

The Run-time Integrity and Attestation Usage Model ��� 33

Trusted Cloud Value Proposition for Cloud Tenants ������������������������������� 34

The Advantages of Cloud Services on a Trusted Computing Chain ������������������������� 35

Summary ��� 36

 Chapter 3: Platform Boot Integrity: Foundation for Trusted ■
Compute Pools �� 37

The Building blocks for Trusted Clouds ��� 37

Platform Boot Integrity �� 38

Roots of Trust–RTM, RTR, and RTS in the Intel TXT Platform ���������������������������������� 39

Measured Boot Process �� 40

Attestation �� 42

Trusted Compute Pools�� 43

TCP Principles of Operation �� 44

Pool Creation �� 46

Workload Placement ��� 46

■ Contents

ix

Workload Migration �� 46

Compliance Reporting for a Workload/Cloud Service ��� 47

Solution Reference Architecture for the TCP ��� 47

Hardware Layer �� 48

Operating System / Hypervisor Layer ��� 49

Virtualization/Cloud Management and Verification/Attestation Layer �������������������� 50

Security Management Layer ��� 51

Reference Implementation: The Taiwan Stock Exchange Case Study ��������54

Solution Architecture for TWSE ��� 55

Trusted Compute Pool Use Case Instantiation �� 56

Remote Attestation with HyTrust �� 57

Use Case Example: Creating Trusted Compute Pools and Workload Migration ������ 59

Integrated and Extended Security and Platform Trust with McAfee ePO ���������������� 60

Summary ��� 64

Chapter 4: Attestation: Proving Trustability ■ ��������������������������������� 65

Attestation ��� 65

Integrity Measurement Architecture ��� 67

Policy Reduced Integrity Measurement Architecture �� 67

Semantic Remote Attestation ��� 68

The Attestation Process ��� 68

Remote Attestation Protocol ��� 68

Flow for Integrity Measurement ��� 71

A First Commercial Attestation Implementation: The Intel Trust
Attestation Platform �� 72

Mt� Wilson Platform ��� 74

Mt� Wilson Architecture��� 76

The Mt� Wilson Attestation Process �� 78

■ Contents

x

Security of Mt� Wilson ��� 81

Mt� Wilson Trust, Whitelisting, and Management APIs ��������������������������� 83

Mt� Wilson APIs ��� 84

The API Request Specification �� 85

API Response �� 86

Mt� Wilson API Usage �� 87

Deploying Mt� Wilson �� 87

Mt� Wilson Programming Examples �� 88

Summary ��� 91

 Chapter 5: Boundary Control in the Cloud: Geo-Tagging ■
and Asset Tagging �� 93

Geolocation ��� 94

Geo-fencing ��� 94

Asset Tagging �� 96

Trusted Compute Pools Usage with Geo-Tagging ���������������������������������� 97

Stage 1: Platform Attestation and Safe Hypervisor Launch ������������������������������������ 99

Stage 2: Trust-Based Secure Migration �� 100

Stage 3: Trust- and Geolocation-Based Secure Migration ������������������������������������ 100

Adding Geo-Tagging to the Trusted Compute Pools Solution �������������� 100

Hardware Layer (Servers) ��� 101

Hypervisor and Operating System Layer �� 102

Virtualization, Cloud Management, and the Verification and Attestation Layer ��������� 102

Security Management Layer ��� 103

Provisioning and Lifecycle Management for Geo-Tags ��� 103

Geo-Tag Workflow and Lifecycle ��� 104

Tag Creation �� 104

Tag Whitelisting �� 105

Tag Provisioning ��� 105

■ Contents

xi

Validation and Invalidation of Asset Tags and Geo-Tags ��������������������������������������� 107

Attestation of Geo-Tags �� 108

Architecture for Geo-Tag Provisioning ��� 108

Tag Provisioning Service �� 109

Tag Provisioning Agent ��� 110

Tag Management Service and Management Tool ��� 110

Attestation Service ��� 112

Geo-Tag Provisioning Process ��� 113

Push Model ��� 114

Pull Model ��� 114

Reference Implementation �� 116

Step 1 ��� 117

Step 2 ��� 118

Step 3 ��� 119

Step 4 ��� 120

Summary ��� 121

Chapter 6: Network Security in the Cloud ■ ���������������������������������� 123

The Cloud Network �� 123

Network Security Components ��� 124

Load Balancers ��� 125

Intrusion Detection Devices �� 126

Application Delivery Controllers ��� 126

End-to-End Security in a Cloud ��� 126

Network security: End-to-End security: Firewalls �� 127

Network security: End-to-End security: VLANs ��� 127

End-to-End Security for Site-to-Site VPNs�� 128

Network security:End-to-End security: Hypervisors and Virtual Machines ���������� 129

■ Contents

xii

Software-Defined Security in the Cloud �� 131

OpenStack �� 135

OpenStack Network Security �� 136

Network Security Capabilities and Examples ��� 137

Summary ��� 139

Chapter 7: Identity Management and Control for Clouds ■ ����������� 141

Identity Challenges �� 142

Identity Usages ��� 143

Identity Modification ��� 144

Identity Revocation ��� 145

Identity Management System Requirements �������������������������������������� 145

Basic User Control Properties ��� 146

Key Requirements for an Identity Management Solution �������������������� 148

Accountability ��� 148

Notification ��� 148

Anonymity ��� 148

Data Minimization ��� 149

Attribute Security �� 149

Attribute Privacy ��� 149

Identity Representations and Case Studies ��� 150

PKI Certificates ��� 150

Security and Privacy Discussion ��� 151

Identity Federation �� 152

Single Sign-On �� 153

Intel Identity Technologies ��� 153

Hardware Support �� 153

Summary ��� 158

■ Contents

xiii

 Chapter 8: Trusted Virtual Machines: Ensuring the Integrity ■
of Virtual Machines in the Cloud �� 161

Requirements for Trusted Virtual Machines �� 162

Virtual Machine Images ��� 164

The Open Virtualization Format (OVF) ��� 166

A Conceptual Architecture for Trusted Virtual Machines ��������������������� 167

Mystery Hill (MH) Client �� 167

Mystery Hill Key Management and Policy Server (KMS) �������������������������������������� 168

Mystery Hill Plug-in �� 169

Trust Attestation Server �� 170

Workflows for Trusted Virtual Machines �� 171

Deploying Trusted Virtual Machines with OpenStack �������������������������� 173

Summary ��� 177

Chapter 9: A Reference Design for Secure Cloud Bursting ■ �������� 179

Cloud Bursting Usage Models ��� 180

An Explanation of Cloud Bursting �� 180

Data Center Deployment Models �� 183

Trusted Hybrid Clouds ��� 184

Cloud Bursting Reference Architecture �� 186

Secure Environment Built Around Best Practices ��� 187

Cloud Management �� 188

Cloud Identity and Access Management��� 188

Separation of Cloud Resources, Traffic, and Data ��� 188

Vulnerability and Patch Management ��� 188

Compliance ��� 189

Network Topology and Considerations ��� 191

■ Contents

xiv

Security Design Considerations �� 194

Hypervisor Hardening ��� 194

Firewalls and Network separation �� 195

Management Network Firewalling ��� 197

Virtual Networking �� 197

Anti-Virus Software �� 198

Cloud Management Security �� 198

Practical Considerations for Virtual Machine Migration ���������������������� 207

Summary ��� 209

Index �� 211

xv

About the Authors

Raghu Yeluri is a Principal Engineer and lead Security
Solutions Architect in the Data Center & Cloud
Products Group at Intel Corporation, with focus on
virtualization and cloud security usages, solution
architectures, and technology initiatives. In this role,
he drives security solution pathfinding and development
to deliver hardware-assisted security solutions that
enable deep visibility, orchestration, and control in
multi-tenant clouds. Prior to this role, he has worked
in various engineering and architecture positions in
systems development and deployment, focusing on
service-oriented architectures and large data analytics,
in information technology and manufacturing
technology groups during the last 15+ years at Intel.

Raghu has multiple patents filed in security, attestation, and control in virtualization
and cloud computing, and he is a co-author of a book, Creating the Infrastructure for
Cloud Computing: An Essential Handbook for IT Professionals. He holds an MS degree
in Computer Science, and a B.S in Electrical Engineering, and was involved in multiple
artificial intelligence/knowledge-engineering startup ventures prior to joining Intel.

Enrique Castro-Leon is an Enterprise Architect and
Technology Strategist with the Intel Architecture Group
at Intel Corporation, working in enterprise IT solution
integration, cloud computing, and service engineering.
As a technology strategist, Enrique has been investigating
the disruptive effects of emerging technologies
in the marketplace. He is the lead author of a book on
the convergence of virtualization, service-oriented
methodologies, and distributed computing, titled The
Business Value of Virtual Service Grids: Strategic Insights
for Enterprise Decision Makers. He is also the lead author
of a second book, Creating the Infrastructure for Cloud
Computing: An Essential Handbook for IT Professionals.
Enrique holds a Ph.D. in Electrical Engineering and
M.S. degrees in Electrical Engineering and Computer
Science from Purdue University, and a BSEE degree from

■ About the Authors

xvi

the University of Costa Rica. Enrique is also a co-founder and President of Neighborhood
Learning Center (NLC), a tax-exempt organization providing computer education and
tutoring services to K-12 in Oregon. Since its inception in 2000, the NLC has served over
300 children at risk of falling behind in the school system, and currently serves over
60 families. It has received recent grant awards from the Meyer Memorial Trust, the
Templeton Foundation, and the Rose E. Tucker Charitable Trust.

xvii

About the Technical
Reviewers

Martin Guttmann is a Principal Engineer at Intel
Corporation. He has 30+ years of extensive experience
ranging from computer systems and software to
operating systems, including the data center operation,
security solutions, and enterprise architecture. As
member of the office of the CTO at Intel, he was
responsible for defining end-to-end manageability and
security architecture for enterprise IT and data center
infrastructure, systems, products, and solutions.

Uttam Shetty is Director of Cloud Security Solutions
at Intel Corporation, leading the engineering groups
delivering security solutions that provide
platform-derived trust assurance of the cloud
Infrastructure. He has extensive experience
(25+ years) in leading global development centers
in delivering technologies and solutions that
enable key transformation with Intel for e-business,
manufacturing systems, and infrastructure technology.

xviii

■ About the teChnICAL reVIeWers

Mitch Koyama is a subject-matter expert on Intel’s
enterprise products, solutions, and technologies.
Emergence of cloud computing keeps Mitch busy
with Intel’s security technologies, where he has been
working with various technology suppliers and vendors
to provide solutions addressing the barriers for cloud
adoption. Mitch has been in this field for more than
10 years, working in multiple locations.

Ren Wu is a technology-integration engineer for
security technologies in Intel Corporation’s data center
group. Ren has rich and varied experience both at Intel
and at AT&T Bell Labs and Lucent Technologies as a
systems and solution architect and has contributed to
their optical network architectures, standards, and the
long-haul DWDM systems.

xix

Acknowledgments

This book is an embodiment of work by many different Intel Corporation communities
of engineers, architects, technical and product marketing engineers, software architects,
and researchers at Intel labs, as well as many external software and solution partners.
The work could not have been created without the multi-year effort and development of
Security Technologies by Intel’s Data Center Group and Software and Services Group.
Their technical whitepapers, industry engagements, and eco-system development
work provided the impetus for the development of the solution architectures, solution
components, and reference implementations discussed in this book. It is not feasible to
name all the people involved, but here is a very likely nonexhaustive list of folks we would
like to acknowledge: Monty Wiseman, Joe Cihula, Steve Orrin, James Blakley, James
Greene, Iddo Kadim, Lynn Comp, Tracie Zenti, Hemma Prafullchandra, Vince Lubsey,
Murugiah Souppaya, Michael Bartock and Nikhil Sharma. Special acknowledgement to
the Intel Cloud Security team, including Ravi Varanasi, Uttam Shetty, Sudhir S. Bangalore,
Jonathan Buhacoff, Kamal Natesan and Jerry Wheeler. This team has been at the forefront
of the solution definition and development that are covered in this book.

The authors gratefully acknowledge the time, guidance, and expertise of the
technical reviewers, Martin Guttmann, Uttam Shetty, Ren Wu, and Mitch Koyama.

Authors would like to offer special thanks to acknowledge a small set of contributors
who provided particular content to these chapters:

Chapter 1 – •	 Blake Dournaee.

Chapter 4, 5 - •	 Jonathan Buhacoff and Sudhir Bangalore.

Chapter 6 – •	 William Bathurst, M2Mi, Inc.

Chapter 7 – •	 Abhilasha Bhargav and Ned Smith.

Chapter 9 – •	 Gregsie Leighton and Pete Nicoletti, VirtuStream, Inc.

xxi

Foreword

I’ve worn a lot of hats in my career, from investment banker to venture capitalist to
business entrepreneur. And I’ve been fortunate to have been at the forefront of a number
of technology waves, from mainframe to client/server computing, the Internet boom,
and now the continuing rise of mobile and cloud computing. Each new wave brings
technology disruption driven by an industry in transformation, and each enables new
levels of efficiency and operational productivity. However, in line with that, each new
wave also brings new security risks and operational concerns.

Virtualization and cloud technologies are no different. They’re bringing about
the most significant data center transformation in the last 20 years, and are enabling
enormous benefits in terms of cost savings, flexibility, and business agility. But at the
same time, there’s been a correspondingly significant shift in the security risk posture.
The new platform that cloud environments create brings together all an organization’s
critical systems, applications, and data, which, in essence, leads to a concentration of
risk. That on its own should get executives to stop, sit up, and take notice. Without the
proper controls in place (as you can very well imagine) a data center–and thus
business–disaster can ensue. Critical systems and data might be accessed, copied, and
deleted in one fell swoop or at touch of a button. Servers that IT used to think of as
physical boxes that can be racked and stacked are now simply sets of files. The data center
is becoming a software abstraction that can entirely be managed remotely.

Further, in this new environment, godlike privileges are enabled over the entire set of
virtualized resources. A single systems administrator—or someone hijacking someone’s
privileges to escalate an attack—can copy a virtual machine or delete an entire virtual
data center in a matter of minutes. Misconfigurations can now cause serious downtime
owing to the greater number of systems. And, audit failures are more likely to happen
given that now the new platform is subject to audit.

And we aren’t done yet. Technology is moving toward software-defined networks
and storage to enable the “software-defined data center.” This concentrates risk further
and creates additional security and compliance challenges.

Such radical changes demand a new approach to security and chain of trust—one
that addresses these risks specifically. It’s more critical than ever, given these factors:
(1) concentration of risk, as noted; (2) attackers becoming much more sophisticated;
and (3) higher stakes, such as insider risk and data leaks, and advanced external threats
and privilege hijacking and to escalate attacks. A few good examples include Edward
Snowden’s leak of classified NSA documents; the theft of hundreds of millions of Target
customers’ personal information; and the Adobe breach that compromised tens of
millions of user accounts and payments information, not to mention top-secret
source code.

■ ForeWord

xxii

The new chain of trust must start from the hardware as well as the virtual
infrastructure, to ensure you can trust the operating systems and applications that are
running on virtual machines. It needs to work across private, hybrid, and public clouds
so that the policies required for workloads can be dictated and enforced automatically.
And it must be tied to data security to ensure VMs are encrypted unless they’re running in
authorized environments.

Looking ahead, cloud security from hardware-to-data will be critical to enabling
faster adoption of cloud services.

This book is a great read for those looking to build secure foundations for cloud
environments. As seasoned experts in virtualization, enterprise architectures, and
security technologies, Raghu and Enrique provide a pivotal discussion of cloud security
issues, the challenges companies face as they move into the cloud, and the infrastructure
solution components required to address the new security requirements and controls.

—Eric Chiu, President & Co-Founder, Hytrust, Inc.

	Contents at a Glance
	Contents
	About the Authors
	About the TechnicalReviewers
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Cloud Computing Basics
	Defining the Cloud
	The Cloud’s Essential Characteristics
	The Cloud Service Models
	The Cloud Deployment Models
	The Cloud Value Proposition

	Historical Context
	Traditional Three-Tier Architecture
	Software Evolution: From Stovepipes to Service Networks
	The Cloud as the New Way of Doing IT

	Security as a Service
	New Enterprise Security Boundaries
	A Roadmap for Security in the Cloud

	Summary

	Chapter 2: The Trusted Cloud: Addressing Security and Compliance
	Security Considerations for the Cloud
	Cloud Security, Trust, and Assurance
	Trends Affecting Data Center Security
	Security and Compliance Challenges
	Trusted Clouds

	Trusted Computing Infrastructure
	Trusted Cloud Usage Models
	The Boot Integrity Usage Model
	Understanding the Value of Platform Boot Integrity

	The Trusted Virtual Machine Launch Usage Model
	The Data Protection Usage Model
	The Run-time Integrity and Attestation Usage Model

	Trusted Cloud Value Proposition for Cloud Tenants
	The Advantages of Cloud Services on a Trusted Computing Chain

	Summary

	Chapter 3: Platform Boot Integrity: Foundation for Trusted Compute Pools
	The Building blocks for Trusted Clouds
	Platform Boot Integrity
	Roots of Trust –RTM, RTR, and RTS in the Intel TXT Platform
	Measured Boot Process
	Attestation

	Trusted Compute Pools
	TCP Principles of Operation
	Pool Creation
	Workload Placement
	Workload Migration
	Compliance Reporting for a Workload/Cloud Service

	Solution Reference Architecture for the TCP
	Hardware Layer
	Operating System / Hypervisor Layer
	Virtualization/Cloud Management and Verification/Attestation Layer
	Security Management Layer
	VM/Workload Policy Management
	GRC Tools—Compliance in the Cloud

	Reference Implementation: The Taiwan Stock Exchange Case Study
	Solution Architecture for TWSE
	Trusted Compute Pool Use Case Instantiation
	Remote Attestation with HyTrust
	Use Case Example: Creating Trusted Compute Pools and Workload Migration
	Integrated and Extended Security and Platform Trust with McAfee ePO

	Summary

	Chapter 4: Attestation: Proving Trustability
	Attestation
	Integrity Measurement Architecture
	Policy Reduced Integrity Measurement Architecture
	Semantic Remote Attestation

	The Attestation Process
	Remote Attestation Protocol
	Flow for Integrity Measurement

	A First Commercial Attestation Implementation: The Intel Trust Attestation Platform
	Mt. Wilson Platform
	Mt. Wilson Architecture
	The Mt. Wilson Attestation Process
	Attestation Identity Key Provisioning
	Host Registration and Attestation Identity Key Certificate Provisioning
	Requesting Platform Trust

	Security of Mt. Wilson
	Mt. Wilson Trust, Whitelisting, and Management APIs
	Mt. Wilson APIs
	The API Request Specification
	API Response
	Mt. Wilson API Usage
	Deploying Mt. Wilson
	Mt. Wilson Programming Examples
	API Client Registration Process
	Whitelisting and Host Registration
	Verify Trust: Trust Attestation

	Summary

	Chapter 5: Boundary Control in the Cloud: Geo-Tagging and Asset Tagging
	Geolocation
	Geo-fencing
	Asset Tagging
	Trusted Compute Pools Usage with Geo-Tagging
	Stage 1: Platform Attestation and Safe Hypervisor Launch
	Stage 2: Trust-Based Secure Migration
	Stage 3: Trust- and Geolocation-Based Secure Migration

	Adding Geo-Tagging to the Trusted Compute Pools Solution
	Hardware Layer (Servers)
	Hypervisor and Operating System Layer
	Virtualization, Cloud Management, and the Verification and Attestation Layer
	Security Management Layer
	Provisioning and Lifecycle Management for Geo-Tags

	Geo-Tag Workflow and Lifecycle
	Tag Creation
	Tag Whitelisting
	Tag Provisioning
	Tag selection
	Tag deployment

	Validation and Invalidation of Asset Tags and Geo-Tags
	Attestation of Geo-Tags

	Architecture for Geo-Tag Provisioning
	Tag Provisioning Service
	Tag Provisioning Agent
	Tag Management Service and Management Tool
	Attestation Service

	Geo-Tag Provisioning Process
	Push Model
	Pull Model

	Reference Implementation
	Step 1
	Step 2
	Step 3
	Step 4

	Summary

	Chapter 6: Network Security in the Cloud
	The Cloud Network
	Network Security Components
	Load Balancers
	Intrusion Detection Devices
	Application Delivery Controllers

	End-to-End Security in a Cloud
	Network security: End-to-End security: Firewalls
	Network security: End-to-End security: VLANs
	End-to-End Security for Site-to-Site VPN s
	Network security:End-to-End security: Hypervisors and Virtual Machines
	Hypervisor Security
	Virtual Machine Guest Security

	Software-Defined Security in the Cloud
	OpenStack
	OpenStack Network Security
	Network Security Capabilities and Examples

	Summary

	Chapter 7: Identity Management and Control for Clouds
	Identity Challenges
	Identity Usages
	Identity Modification
	Identity Revocation

	Identity Management System Requirements
	Basic User Control Properties

	Key Requirements for an Identity Management Solution
	Accountability
	Notification
	Anonymity
	Data Minimization
	Attribute Security
	Attribute Privacy

	Identity Representations and Case Studies
	PKI Certificates
	Security and Privacy Discussion
	Limitations

	Identity Federation
	Single Sign-On

	Intel Identity Technologies
	Hardware Support
	Virtualization Technology (VT)
	Intel Identity Protection Technology (IPT)
	Intel Security Engine
	Cloud Identity Solutions

	Summary

	Chapter 8: Trusted Virtual Machines: Ensuring the Integrity of Virtual Machines in the Cloud
	Requirements for Trusted Virtual Machines
	Virtual Machine Images
	The Open Virtualization Format (OVF)

	A Conceptual Architecture for Trusted Virtual Machines
	Mystery Hill (MH) Client
	Mystery Hill Key Management and Policy Server (KMS)
	Mystery Hill Plug-in
	Trust Attestation Server

	Workflows for Trusted Virtual Machines
	Deploying Trusted Virtual Machines with OpenStack
	Summary

	Chapter 9: A Reference Design for Secure Cloud Bursting
	Cloud Bursting Usage Models
	An Explanation of Cloud Bursting
	Architectural Considerations for Cloud Bursting

	Data Center Deployment Models
	Trusted Hybrid Clouds

	Cloud Bursting Reference Architecture
	Secure Environment Built Around Best Practices
	Cloud Management
	Cloud Identity and Access Management
	Separation of Cloud Resources, Traffic, and Data
	Vulnerability and Patch Management
	Compliance

	Network Topology and Considerations
	Security Design Considerations
	Hypervisor Hardening
	Firewalls and Network separation
	Management Network Firewalling
	Virtual Networking
	Anti-Virus Software
	Cloud Management Security
	Security Controls
	Governance, Risk, and Compliance (GRC)

	Practical Considerations for Virtual Machine Migration
	Summary

	Index

