
  

 
 
 
 
 
 
 

COMPUTER ORGANIZATION AND  
DESIGN FUNDAMENTALS 

Examining Computer Hardware from the Bottom to the Top 

 
 
 
 
 
 
 
 
 
 
 
 

David Tarnoff 

 
 
 
 
 
 
 
 
 
 

Revised First Edition 



 
Computer Organization and Design Fundamentals 
by David Tarnoff 
 
Copyright  2005-2007 by David L. Tarnoff.  All rights reserved. 
Published with the assistance of Lulu.com 
 
This book was written by David L. Tarnoff who is also responsible for 
the creation of all figures contained herein. 
 
Cover design by David L. Tarnoff 
Cover cartoons created by Neal Kegley 
 
Printing History: 
 July 2005: First edition. 
 January 2006: Minor corrections to first edition. 
 July 2007: Added text on Gray code, DRAM technologies, 
  Mealy machines, XOR boolean rules, signed 
  BCD, and hard drive access times.  Also made 
  minor corrections. 
 
Legal Notice: 
The 3Com® name is a registered trademark of the 3Com Corporation. 
The Apple® name and iTunes® name are registered trademarks of 
Apple Computer, Inc. 
The Dell® name is a registered trademark of Dell, Inc. 
The Intel® name, Pentium® 4 Processor Extreme Edition, Hyper-
Threading Technology™, and Hyper-Pipelined Technology™ are 
registered trademarks of the Intel Corporation. 
PowerPC® is a registered trademark of International Business Machines 
Corporation. 
The Microsoft® name is a registered trademark of the Microsoft 
Corporation. 
 
While every precaution has been taken to ensure that the material 
contained in this book is accurate, the author assumes no responsibility 
for errors or omissions, or for damage incurred as a result of using the 
information contained in this book.   
 
Please report any errors found to the author at tarnoff@etsu.edu. In 
addition, suggestions concerning improvements or additions to the text 
are encouraged.  Please direct such correspondence to the author. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This book is dedicated to 
my wife and our son. 

I love you both with all my heart. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

TABLE OF CONTENTS 

 
Preface................................................................................................ xxi 
 

Chapter One: Digital Signals and Systems ........................................ 1 
 1.1 Should Software Engineers Worry About Hardware?............... 1 
 1.2 Non-Digital Signals.................................................................... 3 
 1.3 Digital Signals............................................................................ 4 
 1.4 Conversion Systems................................................................... 6 
 1.5 Representation of Digital Signals .............................................. 7 
 1.6 Types of Digital Signals............................................................. 9 
  1.6.1 Edges ................................................................................. 9 
  1.6.2 Pulses................................................................................. 9 
  1.6.3 Non-Periodic Pulse Trains .............................................. 10 
  1.6.4 Periodic Pulse Trains....................................................... 11 
  1.6.5 Pulse-Width Modulation ................................................. 13 
 1.7 Unit Prefixes ............................................................................ 15 
 1.8 What's Next? ............................................................................ 16 
 Problems......................................................................................... 16 
 

Chapter Two: Numbering Systems .................................................. 17 
 2.1 Unsigned Binary Counting....................................................... 17 
 2.2 Binary Terminology................................................................. 20 
 2.3 Unsigned Binary to Decimal Conversion ................................ 20 
 2.4 Decimal to Unsigned Binary Conversion ................................ 23 
 2.5 Binary Representation of Analog Values................................. 25 
 2.6 Sampling Theory...................................................................... 31 
 2.7 Hexadecimal Representation.................................................... 34 
 2.8 Binary Coded Decimal............................................................. 36 
 2.9 Gray Codes............................................................................... 37 
 2.10 What's Next? .......................................................................... 40 
 Problems......................................................................................... 41 
 

Chapter Three: Binary Math and Signed Representations ........... 43 
 3.1 Binary Addition........................................................................ 43 
 3.2 Binary Subtraction ................................................................... 45 
 3.3 Binary Complements................................................................ 46 
  3.3.1 One's Complement .......................................................... 46 
  3.3.2 Two's Complement.......................................................... 47 
  3.3.3 Most Significant Bit as a Sign Indicator ......................... 50 
  3.3.4 Signed Magnitude ........................................................... 51 



vi   Computer Organization and Design Fundamentals 
 
  3.3.5 MSB and Number of Bits................................................ 51 
  3.3.6 Issues Surrounding the Conversion of Binary Numbers. 52 
  3.3.7 Minimums and Maximums ............................................. 55 
 3.4 Floating Point Binary............................................................... 57 
 3.5 Hexadecimal Addition ............................................................. 61 
 3.6 BCD Addition .......................................................................... 64 
 3.7 Multiplication and Division by Powers of Two....................... 65 
 3.8 Easy Decimal to Binary Conversion Trick .............................. 67 
 3.9 Arithmetic Overflow................................................................ 67 
 3.10 What's Next? .......................................................................... 69 
 Problems ........................................................................................ 69 
 

Chapter Four: Logic Functions and Gates...................................... 71 
 4.1 Logic Gate Basics .................................................................... 71 
  4.1.1 NOT Gate........................................................................ 72 
  4.1.2 AND Gate ....................................................................... 72 
  4.1.3 OR Gate........................................................................... 73 
  4.1.4 Exclusive-OR (XOR) Gate ............................................. 74 
 4.2 Truth Tables............................................................................. 75 
 4.3 Timing Diagrams for Gates ..................................................... 79 
 4.4 Combinational Logic ............................................................... 80 
 4.5 Truth Tables for Combinational Logic .................................... 83 
 4.6 What's Next? ............................................................................ 86 
 Problems ........................................................................................ 87 
 

Chapter Five: Boolean Algebra ........................................................ 89 
 5.1 Need for Boolean Expressions................................................. 89 
 5.2 Symbols of Boolean Algebra................................................... 90 
 5.3 Boolean Expressions of Combinational Logic ........................ 92 
 5.4 Laws of Boolean Algebra ........................................................ 95 
 5.5 Rules of Boolean Algebra........................................................ 96 
  5.5.1 NOT Rule........................................................................ 96 
  5.5.2 OR Rules ......................................................................... 96 
  5.5.3 AND Rules...................................................................... 97 
  5.5.4 XOR Rules ...................................................................... 98 
  5.5.5 Derivation of Other Rules ............................................... 99 
 5.6 Simplification......................................................................... 101 
 5.7 DeMorgan's Theorem ............................................................ 103 
 5.8 What's Next? .......................................................................... 106 
 Problems ...................................................................................... 107 
 



 Table of Contents    vii 
 
Chapter Six: Standard Boolean Expression Formats................... 109 
 6.1 Sum-of-Products .................................................................... 109 
 6.2 Converting an SOP Expression to a Truth Table................... 110 
 6.3 Converting a Truth Table to an SOP Expression................... 112 
 6.4 Product-of-Sums .................................................................... 114 
 6.5 Converting POS to Truth Table ............................................. 115 
 6.6 Converting a Truth Table to a POS Expression..................... 118 
 6.7 NAND-NAND Logic............................................................. 119 
 6.8 What's Next? .......................................................................... 122 
 Problems....................................................................................... 123 
 

Chapter Seven: Karnaugh Maps .................................................... 125 
 7.1 The Karnaugh Map ................................................................ 125 
 7.2 Using Karnaugh Maps ........................................................... 129 
 7.3 "Don't Care" Conditions in a Karnaugh Map......................... 137 
 7.4 What's Next? .......................................................................... 138 
 Problems....................................................................................... 139 
 

Chapter Eight: Combinational Logic Applications ...................... 141 
 8.1 Adders .................................................................................... 141 
 8.2 Seven-Segment Displays........................................................ 147 
 8.3 Active-Low Signals................................................................ 151 
 8.4 Decoders................................................................................. 152 
 8.5 Multiplexers ........................................................................... 155 
 8.6 Demultiplexers ....................................................................... 157 
 8.7 Integrated Circuits.................................................................. 159 
 8.8 What's Next? .......................................................................... 163 
 Problems....................................................................................... 164 
 

Chapter Nine: Binary Operation Applications ............................. 165 
 9.1 Bitwise Operations................................................................. 165 
  9.1.1 Clearing/Masking Bits .................................................. 167 
  9.1.2 Setting Bits .................................................................... 171 
  9.1.3 Toggling Bits................................................................. 171 
 9.2 Comparing Bits with XOR..................................................... 173 
 9.3 Parity ...................................................................................... 174 
 9.4 Checksum............................................................................... 175 
 9.5 Cyclic Redundancy Check ..................................................... 179 
  9.5.1 CRC Process.................................................................. 185 
  9.5.2 CRC Implementation .................................................... 187 
 9.6 Hamming Code ...................................................................... 188 



viii   Computer Organization and Design Fundamentals 
 
 9.7 What's Next? .......................................................................... 199 
 Problems ...................................................................................... 199 
 

Chapter Ten: Memory Cells ........................................................... 203 
 10.1 New Truth Table Symbols ................................................... 203 
  10.1.1 Edges/Transitions........................................................ 203 
  10.1.2 Previously Stored Values ............................................ 204 
  10.1.3 Undefined Values........................................................ 204 
 10.2 The S-R Latch...................................................................... 205 
 10.3 The D Latch ......................................................................... 209 
 10.4 Divide-By-Two Circuit........................................................ 212 
 10.5 Counter................................................................................. 213 
 10.6 Parallel Data Output............................................................. 214 
 10.7 What's Next? ........................................................................ 215 
 Problems ...................................................................................... 216 
 

Chapter Eleven: State Machines .................................................... 217 
 11.1 Introduction to State Machines ............................................ 217 
  11.1.1 States ........................................................................... 217 
  11.1.2 State Diagrams ............................................................ 218 
  11.1.3 Errors in State Diagrams ............................................. 222 
  11.1.4 Basic Circuit Organization.......................................... 222 
 11.2 State Machine Design Process............................................. 225 
 11.3 Another State Machine Design: Pattern Detection .............. 234 
 11.4 Mealy Versus Moore State Machines.................................. 237 
 11.5 What's Next? ........................................................................ 238 
 Problems ...................................................................................... 239 
 

Chapter Twelve: Memory Organization ....................................... 241 
 12.1 Early Memory ...................................................................... 241 
 12.2 Organization of Memory Device ......................................... 242 
 12.3 Interfacing Memory to a Processor...................................... 244 
  12.3.1 Buses ........................................................................... 244 
  12.3.2 Memory Maps ............................................................. 248 
  12.3.3 Address Decoding ....................................................... 250 
  12.3.4 Chip Select Hardware ................................................. 255 
 12.4 Memory Mapped Input/Output............................................ 259 
 12.5 Memory Terminology.......................................................... 260 
  12.5.1 Random Access Memory ............................................ 260 
  12.5.2 Read Only Memory..................................................... 261 
  12.5.3 Static RAM versus Dynamic RAM ............................ 261 



 Table of Contents    ix 
 
  12.5.4 Types of DRAM and Their Timing ............................ 263 
  12.5.5 Asynchronous vs. Synchronous Memory ................... 266 
 12.6 What's Next? ........................................................................ 267 
 Problems....................................................................................... 267 
 

Chapter Thirteen: Memory Hierarchy .......................................... 269 
 13.1 Characteristics of the Memory Hierarchy............................ 269 
 13.2 Physical Characteristics of a Hard Drive ............................. 269 
  13.2.1 Hard Drive Read/Write Head...................................... 270 
  13.2.2 Data Encoding............................................................. 272 
  13.2.3 Hard Drive Access Time............................................. 275 
  13.2.4 S.M.A.R.T. .................................................................. 278 
 13.3 Organization of Data on a Hard Drive ................................. 279 
 13.4 Cache RAM.......................................................................... 284 
  13.4.1 Cache Organization..................................................... 286 
  13.4.2 Dividing Memory into Blocks .................................... 287 
  13.4.3 Cache Operation.......................................................... 289 
  13.4.4 Cache Characteristics .................................................. 290 
  13.4.5 Cache Mapping Functions........................................... 290 
  13.4.6 Cache Write Policy ..................................................... 299 
 13.5 Registers............................................................................... 300 
 13.6 What's Next? ........................................................................ 300 
 Problems....................................................................................... 301 
 

Chapter Fourteen: Serial Protocol Basics...................................... 303 
 14.1 OSI Seven-Layer Network Model ....................................... 303 
 14.2 Serial versus Parallel Data Transmission............................. 304 
 14.3 Anatomy of a Frame or Packet ............................................ 306 
 14.4 Sample Protocol: IEEE 802.3 Ethernet................................ 308 
 14.5 Sample Protocol: Internet Protocol ...................................... 310 
 14.6 Sample Protocol: Transmission Control Protocol................ 313 
 14.7 Dissecting a Frame............................................................... 317 
 14.8 Additional Resources ........................................................... 320 
 14.9 What's Next? ........................................................................ 322 
 Problems....................................................................................... 322 
 

Chapter Fifteen: Introduction to Processor Architecture............ 325 
 15.1 Organization versus Architecture......................................... 325 
 15.2 Components ......................................................................... 325 
  15.2.1 Bus............................................................................... 325 
  15.2.2 Registers ...................................................................... 326 



x   Computer Organization and Design Fundamentals 
 
  15.2.3 Flags ............................................................................ 327 
  15.2.4 Buffers......................................................................... 328 
  15.2.5 The Stack..................................................................... 329 
  15.2.6 I/O Ports ...................................................................... 331 
 15.3 Processor Level.................................................................... 332 
 15.4 CPU Level............................................................................ 333 
 15.5 Simple Example of CPU Operation..................................... 334 
 15.6 Assembly and Machine Language....................................... 338 
 15.7 Big-Endian/Little-Endian..................................................... 345 
 15.8 Pipelined Architectures........................................................ 346 
 15.9 Passing Data To and From Peripherals................................ 350 
  15.9.1 Memory-Mapped I/O .................................................. 351 
  15.9.2 Polling ......................................................................... 353 
  15.9.3 Interrupts ..................................................................... 354 
  15.9.4 Direct Memory Access................................................ 355 
  15.9.5 I/O Channels and Processors....................................... 356 
 15.10 What's Next? ...................................................................... 357 
 Problems ...................................................................................... 357 
 

Chapter Sixteen: Intel 80x86 Base Architecture........................... 359 
 16.1 Why Study the 80x86?......................................................... 359 
 16.2 Execution Unit ..................................................................... 360 
  16.2.1 General Purpose Registers .......................................... 361 
  16.2.2 Address Registers........................................................ 362 
  16.2.3 Flags ............................................................................ 363 
  16.2.4 Internal Buses.............................................................. 365 
 16.3 Bus Interface Unit ................................................................ 365 
  16.3.1 Segment Addressing ................................................... 366 
  16.3.2 Instruction Queue........................................................ 370 
 16.4 Memory versus I/O Ports..................................................... 371 
 16.5 What's Next? ........................................................................ 372 
 Problems ...................................................................................... 373 
 

Chapter Seventeen: Intel 80x86 Assembly Language................... 375 
 17.1 Assemblers versus Compilers .............................................. 375 
 17.2 Components of a Line of Assembly Language.................... 376 
 17.3 Assembly Language Directives ........................................... 378 
  17.3.1 SEGMENT Directive.................................................. 378 
  17.3.2 .MODEL, .STACK, .DATA, and .CODE Directives . 380 
  17.3.3 PROC Directive .......................................................... 381 



 Table of Contents    xi 
 
  17.3.4 END Directive............................................................. 382 
  17.3.5 Data Definition Directives .......................................... 382 
  17.3.6 EQU Directive............................................................. 383 
 17.4 80x86 Opcodes..................................................................... 385 
  17.4.1 Data Transfer............................................................... 385 
  17.4.2 Data Manipulation....................................................... 386 
  17.4.3 Program Control.......................................................... 387 
  17.4.4 Special Operations ...................................................... 390 
 17.5 Addressing Modes................................................................ 391 
  17.5.1 Register Addressing .................................................... 391 
  17.5.2 Immediate Addressing................................................. 392 
  17.5.3 Pointer Addressing ...................................................... 392 
 17.6 Sample 80x86 Assembly Language Programs..................... 393 
 17.7 Additional 80x86 Programming Resources ......................... 397 
 17.8 What's Next? ........................................................................ 398 
 Problems....................................................................................... 398 
 

Index.................................................................................................. 401 
 
 

 TABLE OF FIGURES 

1-1 Sample Digital System............................................................... 3 
1-2 Continuous Analog Signal with Infinite Resolution .................. 4 
1-3 Sample of Discrete Measurements Taken Every 0.1 Sec........... 4 
1-4 Samples Taken of an Analog Signal .......................................... 5 
1-5 Slow Sampling Rate Missed an Anomaly.................................. 5 
1-6 Poor Resolution Resulting in an Inaccurate Measurement ........ 5 
1-7 Block Diagram of a System to Capture Analog Data ................ 6 
1-8 Representation of a Single Binary Signal .................................. 8 
1-9 Representation of Multiple Digital Signals................................ 8 
1-10 Alternate Representation of Multiple Digital Signals ................ 9 
1-11 Digital Transition Definitions .................................................. 10 
1-12 Pulse Waveforms ..................................................................... 10 
1-13 Non-Periodic Pulse Train ......................................................... 10 
1-14 Periodic Pulse Train ................................................................. 11 
1-15 Periodic Pulse Train with Different Pulse Widths ................... 11 
1-16 Periodic Pulse Train with 25% Duty Cycle ............................. 13 
 

2-1 Counting in Decimal ................................................................ 17 



xii   Computer Organization and Design Fundamentals 
 
2-2 Counting in Binary................................................................... 18 
2-3 Binary-Decimal Equivalents from 0 to 17 ............................... 19 
2-4 Values Represented By Each of the First 8 Bit Positions ........ 21 
2-5 Sample Conversion of 101101002 to Decimal......................... 21 
2-6 Decimal to Unsigned Binary Conversion Flow Chart ............. 24 
2-7 Sample Analog Signal of Sound .............................................. 26 
2-8 Effects of Number of Bits on Roundoff Error ......................... 32 
2-9 Aliasing Effects Due to Slow Sampling Rate .......................... 33 
2-10 Eight Binary Values Identifying Rotating Shaft Position........ 38 
2-11 Example of a Position Encoder................................................ 38 
2-12 Conversion from Unsigned Binary to Gray Code.................... 39 
 

3-1 Four Possible Results of Adding Two Bits.............................. 44 
3-2 Four Possible Results of Adding Two Bits with Carry............ 44 
3-3 Two's Complement Short-Cut.................................................. 49 
3-4 Converting a Two's Complement Number to a Decimal ......... 53 
3-5 IEEE Standard 754 Floating-Point Formats............................. 59 
3-6 Duplicate MSB for Right Shift of 2's Complement Values..... 66 
 

4-1 Basic Format of a Logic Gate .................................................. 71 
4-2 Basic Logic Symbols ............................................................... 72 
4-3 Operation of the NOT Gate...................................................... 72 
4-4 Operation of a Two-Input AND Gate ...................................... 73 
4-5 Operation of a Two-Input OR Gate ......................................... 74 
4-6 Operation of a Two-Input XOR Gate ...................................... 74 
4-7 Sample Three-Input Truth Table.............................................. 75 
4-8 Listing All Bit Patterns for a Four-Input Truth Table.............. 76 
4-9 Inverter Truth Table ................................................................. 77 
4-10 Two-Input AND Gate Truth Table .......................................... 77 
4-11 Two-Input OR Gate Truth Table ............................................. 77 
4-12 Two-Input XOR Gate Truth Table........................................... 78 
4-13 Three-Input AND Gate Truth Table With Don't Cares ........... 78 
4-14 Sample Timing Diagram for a Three-Input AND Gate ........... 79 
4-15 Sample Timing Diagram for a Three-Input OR Gate .............. 79 
4-16 Sample Timing Diagram for a Three-Input XOR Gate ........... 79 
4-17 Sample Combinational Logic................................................... 80 
4-18 Combinational Logic for a Simple Security System................ 80 
4-19 Truth Table for Simple Security System of Figure 4-18 ......... 81 
4-20 "NOT" Circuits ........................................................................ 82 
4-21 Schematic "Short-Hand" for Inverted Inputs ........................... 82 



 Table of Contents    xiii 
 
4-22 Sample of Multi-Level Combinational Logic .......................... 83 
4-23 Process of Passing Inputs Through Combinational Logic ....... 83 
4-24 Steps That Inputs Pass Through in Combinational Logic........ 84 
4-25 All Combinations of Ones and Zeros for Three Inputs............ 84 
4-26 Step (a) in Sample Truth Table Creation ................................. 85 
4-27 Step (b) in Sample Truth Table Creation ................................. 85 
4-28 Step (c) in Sample Truth Table Creation ................................. 86 
4-29 Step (d) in Sample Truth Table Creation ................................. 86 
 

5-1 Schematic and Truth Table of Combinational Logic ............... 89 
5-2 Boolean Expression for the AND Function ............................. 90 
5-3 Boolean Expression for the OR Function ................................ 91 
5-4 Boolean Expression for the NOT Function.............................. 91 
5-5 Circuit Representation of the Boolean Expression 1+0+1....... 91 
5-6 Sample of Multi-Level Combinational Logic .......................... 92 
5-7 Creating Boolean Expression from Combinational Logic ....... 93 
5-8 Examples of the Precedence of the NOT Function ................. 93 
5-9 Example of a Conversion from a Boolean Expression ............ 94 
5-10 Commutative Law for Two Variables OR'ed Together ........... 95 
5-11 Schematic Form of NOT Rule ................................................. 96 
5-12 Rules of Boolean Algebra ...................................................... 101 
5-13 Application of DeMorgan's Theorem..................................... 105 
5-14 Schematic Application of DeMorgan's Theorem................... 106 
 

6-1 Sample Sum-of-Products Binary Circuit ............................... 110 
6-2 Samples of Single Product (AND) Truth Tables ................... 111 
6-3 Sample of a Sum-of-Products Truth Table ............................ 111 
6-4 Conversion of an SOP Expression to a Truth Table .............. 112 
6-5 Sample Product-of-Sums Binary Circuit ............................... 115 
6-6 Samples of Single Sum (OR) Truth Tables............................ 115 
6-7 Sample of a Product-of-Sums Truth Table ............................ 116 
6-8 Sample Sums With Multiple Zero Outputs ............................ 117 
6-9 Conversion of a POS Expression to a Truth Table ................ 118 
6-10 Circuit Depiction of DeMorgan's Theorem............................ 120 
6-11 OR Gate Equals a NAND Gate With Inverted Inputs............ 120 
6-12 OR-to-NAND Equivalency Expanded to Four Inputs ........... 120 
6-13 Sample SOP Circuit ............................................................... 121 
6-14 Sample SOP Circuit with Output OR Gate Replaced ............ 121 
6-15 Sample SOP Circuit Implemented With NAND Gates.......... 122 
 

7-1 2-by-2 Karnaugh Map Used with Two Inputs ....................... 126 



xiv   Computer Organization and Design Fundamentals 
 
7-2 Mapping a 2-Input Truth Table to Its Karnaugh Map ........... 126 
7-3 Three-Input Karnaugh Map ................................................... 127 
7-4 Four-Input Karnaugh Map ..................................................... 127 
7-5 Identifying the Products in a Karnaugh Map......................... 130 
7-6 Karnaugh Map with Four Adjacent Cells Containing '1' ....... 130 
7-7 Sample Rectangle in a Three-Input Karnaugh Map............... 133 
7-8 Karnaugh Map with a "Don't Care" Elements ....................... 138 
7-9 Karnaugh Map with a "Don't Care" Elements Assigned ....... 138 
 

8-1 Four Possible Results of Adding Two Bits............................ 141 
8-2 Block Diagram of a Half Adder............................................. 142 
8-3 Four Possible States of a Half Adder ..................................... 142 
8-4 Logic Circuit for a Half Adder............................................... 143 
8-5 Block Diagram of a Multi-bit Adder...................................... 144 
8-6 Block Diagram of a Full Adder.............................................. 144 
8-7 Sum and Carryout Karnaugh Maps for a Full Adder............. 145 
8-8 Logic Circuit for a Full Adder ............................................... 146 
8-9 Seven-Segment Display ......................................................... 147 
8-10 Displaying a '1' with a 7-Segment Display ............................ 147 
8-11 A Seven-Segment Display Displaying a Decimal '2' ............. 148 
8-12 Block Diagram of a Seven-Segment Display Driver ............. 148 
8-13 Segment Patterns for all Hexadecimal Digits ........................ 149 
8-14 Seven Segment Display Truth Table ..................................... 149 
8-15 Karnaugh Map for Segment 'e'............................................... 150 
8-16 Karnaugh Map for Segment 'e' with Rectangles .................... 150 
8-17 Logic Circuit for Segment e of 7-Segment Display............... 151 
8-18 Labeling Conventions for Active-Low Signals ..................... 152 
8-19 Sample Circuit for Enabling a Microwave ............................ 153 
8-20 Sample Circuit for Delivering a Soda.................................... 153 
8-21 Truth Table to Enable a Device for A=1, B=1, & C=0.......... 154 
8-22 Digital Circuit for a 1-of-4 Decoder ...................................... 154 
8-23 Digital Circuit for an Active-Low 1-of-4 Decoder ................ 155 
8-24 Truth Table for an Active-Low 1-of-8 Decoder .................... 155 
8-25 Block Diagram of an Eight Channel Multiplexer .................. 156 
8-26 Truth Table for an Eight Channel Multiplexer ...................... 156 
8-27 Logic Circuit for a 1-Line-to-4-Line Demultiplexer.............. 158 
8-28 Truth Table for a 1-Line-to-4-Line Demultiplexer ................ 159 
8-29 Examples of Integrated Circuits............................................. 159 
8-30 Pin-out of a Quad Dual-Input NAND Gate IC (7400)........... 160 
8-31 Sample Pin 1 Identifications .................................................. 160 



 Table of Contents    xv 
 
8-32 Generic Protoboard ................................................................ 161 
8-33 Generic Protoboard Internal Connections .............................. 161 
8-34 Sample Circuit Wired on a Protoboard .................................. 162 
8-35 Schematic Symbol of a Light-Emitting Diode (LED) ........... 162 
8-36 LED Circuit ........................................................................... 163 
8-37 Switch Circuit......................................................................... 163 
 

9-1 Graphic of a Bitwise Operation Performed on LSB .............. 166 
9-2 Bitwise AND of 011010112 and 110110102 .......................... 166 
9-3 Three Sample Bitwise ANDs ................................................. 168 
9-4 Possible Output from a Motion Detector ............................... 173 
9-5 A Difference in Output Indicates an Error ............................. 173 
9-6 Simple Error Detection with an XOR Gate............................ 174 
9-7 Sample Block of Data with Accompanying Datasums .......... 176 
9-8 Small Changes in Data Canceling in Checksum.................... 179 
9-9 Example of Long Division in Binary ..................................... 181 
9-10 Example of Long Division Using XOR Subtraction.............. 182 
9-11 Sample Code for Calculating CRC Checksums..................... 189 
9-12 Venn Diagram Representation of Hamming Code ................ 192 
9-13 Example Single-Bit Errors in Venn Diagram ........................ 192 
9-14 Example of a Two-Bit Error .................................................. 193 
9-15 Using Parity to Check for Double-Bit Errors......................... 194 
 

10-1 Symbols for Rising Edge and Falling Edge Transitions ........ 204 
10-2 Sample Truth Table Using Undefined Output ....................... 204 
10-3 Primitive Feedback Circuit using Inverters............................ 205 
10-4 Operation of a NAND Gate with One Input Tied High ......... 206 
10-5 Primitive Feedback Circuit Redrawn with NAND Gates ...... 206 
10-6 Only Two Possible States of Circuit in Figure 10-5 .............. 206 
10-7 Operation of a Simple Memory Cell ...................................... 207 
10-8 Operation of a Simple Memory Cell (continued)................... 208 
10-9 S-R Latch ............................................................................... 209 
10-10 S-R Latch Truth Table ........................................................... 209 
10-11 Block Diagram of the D Latch ............................................... 209 
10-12 Edge-Triggered D Latch Truth Tables ................................... 211 
10-13 Transparent D Latch Truth Tables ......................................... 211 
10-14 Divide-By-Two Circuit .......................................................... 212 
10-15 Clock and Output Timing in a Divide-By-Two Circuit ......... 212 
10-16 Cascading Four Divide-By-Two Circuits .............................. 213 
10-17 Counter Implemented with Divide-By-Two Circuits ............ 213 



xvi   Computer Organization and Design Fundamentals 
 
10-18 Output of Binary Counter Circuit .......................................... 214 
10-19 Output Port Data Latch Circuitry........................................... 215 
 

11-1 Adding Memory to a Digital Logic Circuit ........................... 217 
11-2 States of a Traffic Signal System........................................... 218 
11-3 States of a Light Bulb............................................................. 218 
11-4 State Diagram for Light Bulb State Machine......................... 218 
11-5 Complete State Diagram for Light Bulb State Machine ........ 219 
11-6 Block Diagram of an Up-Down Binary Counter ................... 220 
11-7 State Diagram for a 3-Bit Up-Down Binary Counter ............ 221 
11-8 Sample of a Reset Indication in a State Diagram................... 221 
11-9 Block Diagram of a State Machine ........................................ 223 
11-10 Initial State of the Push Button Light Control ....................... 226 
11-11 Transitions from State 0 of Push Button Circuit.................... 226 
11-12 B=0 Transition from State 0 of Push Button Circuit ............. 227 
11-13 B=1 Transition from State 0 of Push Button Circuit ............. 227 
11-14 B=0 Transition from State 1 of Push Button Circuit ............. 227 
11-15 B=1 Transition from State 1 of Push Button Circuit ............. 228 
11-16 Transitions from State 2 of Push Button Circuit.................... 228 
11-17 Final State Diagram for Push Button Circuit ......................... 229 
11-18 Block Diagram for Push Button Circuit................................. 230 
11-19 K-Maps for S1', S0', and L of Push Button Circuit ................. 232 
11-20 Finished Push Button Circuit ................................................. 232 
11-21 Revised Truth Table and K Map for Push Button Circuit ..... 233 
11-22 Identifying the Bit Pattern "101" in a Bit Stream .................. 234 
11-23 State Diagram for Identifying the Bit Pattern "101".............. 235 
11-24 Next State and Output Truth Tables for Pattern Detect ......... 236 
11-25 K-Maps for S1', S0', and P of Pattern Detect Circuit .............. 237 
11-26 Final Circuit to Identify the Bit Pattern "101" ....................... 237 
11-27 Basic Configuration of a Mealy Machine .............................. 238 
11-28 Sample State Diagram of a Mealy Machine .......................... 238 
11-29 Output Truth Table for Sample Mealy Machine.................... 239 
 

12-1 Diagram of a Section of Core Memory.................................. 241 
12-2 Basic Organization of a Memory Device............................... 243 
12-3 Basic Processor to Memory Device Interface........................ 245 
12-4 Two Memory Devices Sharing a Bus .................................... 246 
12-5 Three Buffers Trying to Drive the Same Output ................... 248 
12-6 Sample Memory Maps ........................................................... 249 
12-7 Full Address with Enable Bits and Device Address Bits....... 251 



 Table of Contents    xvii 
 
12-8 IPv4 Address Divided into Subnet and Host IDs................... 254 
12-9 Sample Chip Select Circuit for a Memory Device................. 256 
12-10 Some Types of Memory Mapped I/O Configurations ........... 260 
12-11 Basic Addressing Process for a DRAM ................................. 264 
12-12 Organization of DRAM.......................................................... 265 
12-13 Example of an FPM Transfer ................................................. 265 
12-14 Example of an EDO Transfer................................................. 266 
 

13-1 Block Diagram of a Standard Memory Hierarchy ................. 269 
13-2 Configuration of a Hard Drive Write Head............................ 271 
13-3 Sample FM Magnetic Encoding............................................. 273 
13-4 Sample MFM Magnetic Encoding ......................................... 274 
13-5 RLL Relation between Bit Patterns and Polarity Changes .... 274 
13-6 Sample RLL Magnetic Encoding........................................... 275 
13-7 Components of Disk Access Time......................................... 277 
13-8 Relation between Read/Write Head and Tracks .................... 279 
13-9 Organization of Hard Disk Platter.......................................... 280 
13-10 Illustration of a Hard Drive Cylinder ..................................... 281 
13-11 Equal Number of Bits per Track versus Equal Sized Bits ..... 282 
13-12 Comparison of Sector Organizations ..................................... 282 
13-13 Cache Placement between Main Memory and Processor ...... 285 
13-14 L1 and L2 Cache Placement................................................... 285 
13-15 Split Cache Organization ....................................................... 286 
13-16 Organization of Cache into Lines .......................................... 287 
13-17 Division of Memory into Blocks............................................ 288 
13-18 Organization of Address Identifying Block and Offset ......... 289 
13-19 Direct Mapping of Main Memory to Cache........................... 291 
13-20 Direct Mapping Partitioning of Memory Address ................. 292 
13-21 Fully Associative Partitioning of Memory Address............... 295 
13-22 Set Associative Mapping of Main Memory to Cache ............ 297 
13-23 Effect of Cache Set Size on Address Partitioning.................. 298 
 

14-1 Sample Protocol Stack using TCP, IP, and Ethernet ............. 307 
14-2 Layout of an IEEE 802.3 Ethernet Frame .............................. 308 
14-3 Layout of an IP Packet Header............................................... 311 
14-4 Layout of a TCP Packet Header............................................. 314 
14-5 Position and Purpose of TCP Control Flags .......................... 315 
14-6 Layout of a TCP Pseudo Header ............................................ 316 
14-7 Simulated Raw Data Capture of an Ethernet Frame .............. 317 
 

15-1 Sample Code Using Conditional Statements ......................... 328 



xviii   Computer Organization and Design Fundamentals 
 
15-2 Block Diagram of a System Incorporating a Buffer .............. 329 
15-3 Generic Block Diagram of a Processor System..................... 332 
15-4 Generic Block Diagram of Processor Internals...................... 333 
15-5 Generic Block Diagram of a Typical CPU ............................ 334 
15-6 Decoded Assembly Language from Table 15-6 .................... 343 
15-7 Non-Pipelined Execution of Five Instructions....................... 348 
15-8 Pipelined Execution of Five Instructions ............................... 348 
15-9 Sample Memory Mapped Device Circuit .............................. 352 
15-10 Basic Operation of an ISR ..................................................... 355 
 

16-1 Block Diagram of 80x86 Execution Unit (EU) ..................... 360 
16-2 Block Diagram of 80x86 Bus Interface Unit (BIU)............... 366 
16-3 Segment/Pointer Relation in the 80x86 Memory Map .......... 368 
 

17-1 Format of a Line of Assembly Language Code ..................... 377 
17-2 Format and Parameters Used to Define a Segment................ 379 
17-3 Format of the .MODEL Directive.......................................... 380 
17-4 Format and Parameters Used to Define a Procedure ............. 381 
17-5 Format and Parameters of Some Define Directives............... 383 
17-6 Example Uses of Define Directives ....................................... 384 
17-7 Format and Parameters of the EQU Directive ....................... 384 
17-8 Sample Code with and without the EQU Directive ............... 384 
17-9 Format and Parameters of the MOV Opcode......................... 385 
17-10 Format and Parameters of the IN and OUT Opcodes ............ 385 
17-11 Format and Parameters of the ADD Opcode ......................... 386 
17-12 Format and Parameters of NEG, NOT, DEC, and INC ......... 386 
17-13 Format and Parameters of SAR, SHR, SAL, and SHL.......... 387 
17-14 Example of a JMP Instruction................................................ 387 
17-15 Example of a LOOP Instruction............................................. 389 
17-16 Sample Organization of a Procedure Call.............................. 390 
17-17 Examples of Register Addressing.......................................... 392 
17-18 Examples of Immediate Addressing ...................................... 392 
17-19 Examples of an Address being used as an Operand............... 393 
17-20 Skeleton Code for a Simple Assembly Program.................... 393 
17-21 Code to Assign Data Segment Address to DS Register......... 394 
17-22 Code to Inform O/S that Program is Terminated................... 395 
17-23 Skeleton Code with Code Added for O/S Support ................ 395 
17-24 Data Defining Directives for Example Code ......................... 396 
17-25 Step-by-Step Example Operation Converted to Code ........... 396 
17-26 Final Code for Example Assembly Language Program......... 397 



 Table of Contents    xix 
 

TABLE OF TABLES 

1-1 Unit Prefixes............................................................................. 15 
 

2-1 Converting Binary to Decimal and Hexadecimal .................... 35 
2-2 Converting BCD to Decimal .................................................... 36 
2-3 Derivation of the Four-Bit Gray Code ..................................... 40 
 

3-1 Representation Comparison for 8-bit Binary Numbers ........... 57 
3-2 Hexadecimal to Decimal Conversion Table............................. 62 
3-3 Multiplying the Binary Value 10012 by Powers of Two.......... 65 
 

8-1 Addition Results Based on Inputs of a Full Adder ................ 144 
8-2 Sum and Carryout Truth Tables for a Full Adder .................. 145 
 

9-1 Truth Table for a Two-Input XOR Gate ................................ 172 
9-2 Addition and Subtraction Without Carries or Borrows.......... 181 
9-3 Reconstructing the Dividend Using XORs ............................ 183 
9-4 Second Example of Reconstructing the Dividend.................. 184 
9-5 Data Groupings and Parity for the Nibble 10112 ................... 190 
9-6 Data Groupings with a Data Bit in Error ............................... 190 
9-7 Data Groupings with a Parity Bit in Error ............................. 191 
9-8 Identifying Errors in a Nibble with Three Parity Bits............ 191 
9-9 Parity Bits Required for a Specific Number of Data Bits ...... 195 
9-10 Membership of Data and Parity Bits in Parity Groups .......... 197 
 

11-1 List of States for Push Button Circuit .................................... 230 
11-2 Next State Truth Table for Push Button Circuit..................... 231 
11-3 Output Truth Table for Push Button Circuit .......................... 231 
11-4 Revised List of States for Push Button Circuit ...................... 233 
11-5 List of States for Bit Pattern Detection Circuit ...................... 236 
 

12-1 The Allowable Settings of Four Chip Selects ........................ 247 
12-2 Sample Memory Sizes versus Required Address Lines......... 251 
 

15-1 Conditional Jumps to be Placed After a Compare ................. 337 
15-2 Conditional Jumps to be Placed After an Operation .............. 338 
15-3 Numbered Instructions for Imaginary Processor ................... 340 
15-4 Assembly Language for Imaginary Processor ....................... 340 
15-5 Operand Requirements for Imaginary Processor ................... 341 
15-6 A Simple Program Stored at Memory Address 100016 .......... 342 
15-7 Signal Values for Sample I/O Device .................................... 351 
15-8 Control Signal Levels for I/O and Memory Transactions...... 353 



xx   Computer Organization and Design Fundamentals 
 
 

16-1 Summary of Intel 80x86 Bus Characteristics ........................ 360 
16-2 Summary of the 80x86 Read and Write Control Signals....... 372 
 

17-1 Memory Models Available for use with .MODEL................ 381 
17-2 Summary of 80x86 Conditional Jumps.................................. 388 
17-3 80x86 Instructions for Modifying Flags ................................ 390 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxi 

PREFACE 

When I first taught computer organization to computer science 
majors here at East Tennessee State University, I was not sure where to 
begin. My training as an electrical engineer provided me with a 
background in DC and AC electrical theory, electronics, and circuit 
design. Was this where I needed to start?  Do computer science majors 
really need to understand computers at the transistor level? 

The textbook used by my predecessors assumed the reader had had 
some experience with electronics. The author went so far as to use 
screen captures from oscilloscopes and other test equipment to describe 
circuit properties. I soon found that this was a bad assumption to make 
when it came to students of computer science. 

To provide a lifeline to my floundering students, I began writing 
supplementary notes and posting them to my course web site. Over the 
years, the notes matured until eventually students stopped buying the 
course textbook. When the on-line notes were discovered by search 
engines, I began receiving messages from other instructors asking if 
they could link to my notes. The answer was obvious: of course! 

The on-line notes provided a wonderful opportunity. Instead of 
requiring a textbook for my course, I could ask my students to purchase 
hardware or software to supplement the university's laboratory 
equipment. This could include anything from external hard drives to 
circuit components. By enhancing the hands-on portion of the course, I 
hope that I have improved each student's chance to learn and retain the 
material.1 

In April of 2004, I became aware of recent advances in self-
publishing with services such as Lulu.com. In an effort to reduce the 
costs paid by students who were printing the course notes from the 
web, I decided to compile my web notes into a book. For years, I had 
been receiving comments from students about dried up printer 
cartridges. I once found a student searching the recycled paper bin for 
scrap paper on which to print my notes. Even our campus technology 
group had begun to suggest I was one of the causes for the overuse of 
campus printers. 

                                                 
1 Korwin, Anthony R., Jones, Ronald E., “Do Hands-On, Technology-Based 

Activities Enhance Learning by Reinforcing Cognitive Knowledge and Retention?” 
Journal of Technology Education, Vol. 1, No. 2, Spring 1990. Online. Internet. 
Available WWW: http://scholar.lib.vt.edu/ejournals/JTE/v1n2/pdf/jones.pdf 



xxii   Computer Organization and Design Fundamentals 
 

So here it is, a textbook open to anyone with a simple desire to learn 
about the digital concepts of a computer. I've tried to address topics 
such as analog to digital conversion, CRC's, and memory organization 
using practical terms and examples instead of the purely theoretical or 
technical approaches favored by engineers. Hopefully I've succeeded. 

I do not pretend to believe that this book alone will provide the 
reader with the background necessary to begin designing and building 
contemporary computer circuits. I do, however, believe that reading it 
will give people the tools to become better developers of software and 
computer systems by understanding the tools for logic design and the 
organization of the computer's internals.  

The design concepts used for hardware are just as applicable to 
software. In addition, an understanding of hardware can be applied to 
software design allowing for improved system performance. This book 
can be used as a springboard to topics such as advanced computer 
architecture, embedded system design, network design, compiler 
design, or microprocessor design. The possibilities are endless. 

Organization of This Book 
The material in this book is presented in three stages. The first stage, 

Chapters 1 through 7, discusses the mathematical foundation and 
design tools that address the digital nature of computers. The discussion 
begins in Chapters 1, 2, and 3 where the reader is introduced to the 
differences between the physical world and the digital world. These 
chapters show how the differences affect the way the computer 
represents and manipulates data. Chapter 4 introduces digital logic and 
logic gates followed by Chapters 5, 6, and 7 where the tools of design 
are introduced. 

The second stage, Chapters 8 through 11, applies the fundamentals 
of the first seven chapters to standard digital designs such as binary 
adders and counters, checksums and cyclic redundancy checks, 
network addressing, storage devices, and state machines. 

The last stage, Chapters 12 through 17, presents the top-level view 
of the computer. It begins with the organization of addressable memory 
in Chapter 12. This is followed in Chapter 13 with a discussion of the 
memory hierarchy starting with the physical construction of hard drives 
and ending with the organization of cache memory and processor 
registers. Chapter 14 brings the reader through the concepts of serial 
protocols ending with descriptions of the IEEE 802.3 Ethernet, TCP, 



 Preface    xxiii 
 
and IP protocols. Chapter 15 presents the theories of computer 
architecture while Chapters 16 and 17 use the Intel 80x86 family as a 
means of example. 

Each chapter concludes with a short section titled "What's Next?" 
describing where the next chapter will take the reader. This is followed 
by a set of questions that the reader may use to evaluate his or her 
understanding of the topic. 

Acknowledgments 
I would like to begin by thanking my department chair, Dr. Terry 

Countermine, for the support and guidance with which he provided me. 
At first I thought that this project would simply be a matter of 
converting my existing web notes into a refined manuscript. This was 
not the case, and Dr. Countermine's support and understanding were 
critical to my success. 

I would also like to thank my computer organization students who 
tolerated being the test bed of this textbook. Many of them provided 
suggestions that strengthened the book, and I am grateful to them all.  

Most of all, I would like to thank my wife, Karen, who has always 
encouraged and supported me in each of my endeavors. You provide 
the foundation of my success. 

Lastly, even self-published books cannot be realized without some 
support. I would like to thank those who participate as contributors and 
moderators on the Lulu.com forums. In addition, I would like to thank 
Lulu.com directly for providing me with a quality outlet for my work. 

Disclaimer 
The information in this book is based on the personal knowledge 

collected by David Tarnoff through years of study in the field of 
electrical engineering and his work as an embedded system designer. 
While he believes this information is correct, he accepts no 
responsibility or liability whatsoever with regard to the application of 
any of the material presented in this book. 

In addition, the design tools presented here are meant to act as a 
foundation to future learning. David Tarnoff offers no warranty or 
guarantee toward products used or developed with material from this 
book. He also denies any liability arising out of the application of any 
tool or product discussed in this book. If the reader chooses to use the 
material in this book to implement a product, he or she shall indemnify 



xxiv   Computer Organization and Design Fundamentals 
 
and hold the author and any party involved in the publication of this 
book harmless against all claims, costs, or damages arising out of the 
direct or indirect application of the material. 

 
 

David L. Tarnoff 
Johnson City, Tennessee 
USA 
May 11, 2005 
tarnoff@etsu.edu 
 

Note About Third Printing 
Over the past two years, a number of small issues have been 

revealed to me about this work.  A few topics needed elaboration and a 
few errors that had slipped through the self-editing process needed 
correction.  There were not enough issues to require the release of a 
second edition, but readers of this book should be aware that changes 
have been made in this the third printing of the book. 

The new topics now included in this book are Gray codes, signed 
BCD, XOR boolean rules, Mealy state machines (the first printing only 
addressed Moore state machines), DRAM technologies, and hard drive 
access times.  If any reader feels that additional topics should be 
included in future printings or editions, please feel free to e-mail me at 
tarnoff@etsu.edu. 
 
David L. Tarnoff 
July 6, 2007 



 1 

CHAPTER ONE 

Digital Signals and Systems 

1.1 Should Software Engineers Worry About Hardware? 
Some students of computer and information sciences look at 

computer hardware the same way many drivers look at their cars: the 
use of a car doesn't require the knowledge of how to build one. 
Knowing how to design and build a computer may not be vital to the 
computer professional, but it goes a long way toward improving their 
skills, i.e., making them better drivers. For anyone going into a career 
involving computer programming, computer system design, or the 
installation and maintenance of computer systems, the principles of 
computer organization provide tools to create better designs. These 
include: 

 
 System design tools – The same design theories used at the lowest 

level of system design are also applied at higher levels. For 
example, the same methods a circuit board designer uses to create 
the interface between a processor and its memory chips are used to 
design the addressing scheme of an IP network. 

 Software design tools – The same procedures used to optimize 
digital circuits can be used for the logic portions of software. 
Complex blocks of if-statements, for example, can be simplified or 
made to run faster using these tools. 

 Improved troubleshooting skills – A clear understanding of the 
inner workings of a computer gives the technician servicing it the 
tools to isolate a problem quicker and with greater accuracy. 

 Interconnectivity – Hardware is needed to connect the real world to 
a computer's inputs and outputs. Writing software to control a 
system such as an automotive air bag could produce catastrophic 
results without a clear understanding of the architecture and 
hardware of a microprocessor. 

 Marketability – Embedded system design puts microprocessors into 
task-specific applications such as manufacturing, communications, 
and automotive control. As processors become cheaper and more 
powerful, the same tools used for desktop software design are being 
applied to embedded system design. This means that the software 



2   Computer Organization and Design Fundamentals 
 

engineer with experience in hardware design has a significant 
advantage over hardware engineers in this market. 

 
If that doesn't convince you, take a look at what Shigeki Ishizuka, 

the head of Sony's digital camera division, says about understanding 
hardware. "When you control parts design, you can integrate the whole 
package much more elegantly."  In other words, today's business 
environment of low cost and rapid market response, success may 
depend on how well you control the hardware of your system. 

Think of the myriad of systems around you such as your car, cell 
phone, and PlayStation® that rely on a programmer's understanding of 
hardware. A computer mouse, for example, sends digital information 
into the computer's mouse port. In order for the software to respond 
properly to the movement or button presses of the mouse, the software 
designer must be able to interpret the digital signal. 

On a much greater scale, consider a construction company with 
projects scattered across a large region that wants to monitor its 
equipment from a central location such as its corporate offices. A 
system such as this could be used for inventory control allowing a 
remote user to locate each piece of equipment from their Internet-
enabled desktop computer. E-mail alerts could be sent predicting 
possible failures when conditions such as overheating or excessive 
vibration are detected. The system could deliver e-mails or messages to 
pagers in cases of theft or notify maintenance that periodic service is 
needed. Here again, the link between software and hardware is critical. 

An embedded processor inside the equipment communicates with 
sensors that monitor conditions such as temperature, vibration, or oil 
pressure. The processor is capable of transmitting this information to 
the remote user via a cellular link either when prompted or as an 
emergency notification. In addition, the processor may be capable of 
using GPS to determine its geographic location. If the equipment is 
moved outside of a specified range, a message can be sent indicating a 
possible theft. 

The design of a system such as this raises many questions including: 
 

 What physical values do the digital values that are read from the 
sensors represent in the real world? 

 How can useful information be pulled from the data stream being 
received by the processors? 



 Chapter 1:  Digital Signals and Systems    3 
 
 How should the data be formatted for optimal storage, searching, 

and retrieval? 
 Is it possible that using a slower data rate might actually mean 

shorter connect times over expensive cellular links? 
 

 

Figure 1-1   Sample Digital System 

Computer organization theories answer these and many other questions. 

1.2 Non-Digital Signals 
The real world is analog. What does that mean? Well, an analog 

value is equivalent to a floating-point number with an infinite number 
of places to the right of the decimal point. For example, temperatures 
do not take on distinct values such as 75°, 76°, 77°, 78°, etc. They take 
values like 75.434535... In fact, between the temperatures 75.435° and 
75.436°, there are an infinite number of possible values. A man doesn't 
weigh exactly 178 pounds. Add an atom, and his weight changes. 

When values such as temperature or weight change over time, they 
follow what is called a continuous curve. Between any two values on 
the curve, an infinite number of values take place over an infinite 
number of points in time. 

Okay, so these are ridiculous examples. We can get by without 
knowing the weight of a man plus or minus an atom. Heck, if we 



4   Computer Organization and Design Fundamentals 
 
measured to that level of accuracy, his weight would be changing every 
second. (Time is also an analog value.) It is sufficient to say that analog 
values represent a continuous signal with infinitesimal resolution.  

 
 
 
 
 
 

Figure 1-2   Continuous Analog Signal with Infinite Resolution 

1.3 Digital Signals 
There is such a thing as an analog computer, a computer that 

processes information using analog levels of electricity or the positions 
of mechanical devices. The overwhelming majority of today's 
computers do not do this, however. Instead, they represent an analog 
value by converting it to a number with a fixed resolution, i.e., a fixed 
number of digits to the right of the decimal point. This measurement is 
referred to as a digital value. If the value is changing with respect to 
time, then a sequence of measurements can be taken, the period 
between the measurements typically remaining fixed. 

 
Time 

(seconds) Measurement 
0.00 0.1987 
0.10 0.2955 
0.20 0.3894 
0.30 0.4794 
0.40 0.5646 

  

Figure 1-3   Sample of Discrete Measurements Taken Every 0.1 Sec 

Since computers look at the world with a fixed resolution in both 
time and magnitude, when the computer records an analog signal such 
as the sound waves from music, it does it by taking a sequence of snap-
shots. For example, assume Figure 1-2 is an analog "real world" signal 



 Chapter 1:  Digital Signals and Systems    5 
 
such as a sound wave. The computer can only measure the signal at 
intervals. Each measurement is called a sample. The rate at which these 
samples are taken is called the sampling rate. The X's in Figure 1-4 
represent these measurements. 

 
 
 
 
 
 

Figure 1-4   Samples Taken of an Analog Signal 

Two problems arise from this process: information can be lost 
between the measurements and information can be lost due to the 
rounding of the measurement. First, if the sampling rate is too slow, 
then some details of the signal may be missed. 

 
 
 
 
 
 

Figure 1-5   Slow Sampling Rate Missed an Anomaly 

Second, if the computer does not record with enough accuracy (i.e., 
enough digits after the decimal point) an error may be introduced 
between the actual measurement and the recorded value. 

 
 
 
 
 
 

Figure 1-6   Poor Resolution Resulting in an Inaccurate Measurement 

Missed 
Anomaly

Accuracy of 
computer allows 
only these levels 
of measurement

Analog Signal 



6   Computer Organization and Design Fundamentals 
 

These effects can be reduced by increasing the resolution of the 
measurement and increasing the sampling rate. A discussion of this can 
be found in Chapter 2 in the section titled "Sampling Theory". 

1.4 Conversion Systems 
The typical system used to convert an external condition such as 

pressure, temperature, or light intensity to a format usable by a digital 
system is shown in the block diagram in Figure 1-7. 

 

 

Figure 1-7   Block Diagram of a System to Capture Analog Data 

The interface between the external condition and the electronics of 
the system is the sensor. This device converts the environmental 
conditions into a signal readable by analog electronics. Often, this 
signal is weak and is easily distorted by noise. Therefore, the output of 
the sensor is usually amplified and cleaned up before being converted 
to digital values by the Analog-to-Digital Converter (ADC). 
Continuous operation of this system results in a sequence of digital 
measurements or samples that are stored in the computer where it can 
be viewed much like the table of numbers in a spreadsheet. 

There are benefits to using data in a digital format rather than 
analog. First, if an analog signal is transmitted over long distances, 
noise attaches itself to the signal. To keep the signal strong enough to 
reach its destination, it must be amplified. All of the noise that attached 
itself to the signal, however, is amplified along with the original signal 

Digital 
measurements 
of analog signal 

Sensor 
Signal 
condi-
tioning 

Analog 
to digital 
converter 

Weak, noisy 
analog signal 

Strong, clean 
analog signal 

0.3238 
0.3254 
0.3312 
0.3240 
0.3221 

       



 Chapter 1:  Digital Signals and Systems    7 
 
resulting in distortion. For example, before the advent of digital phone 
networks, long distance phone calls over analog lines were often full of 
static and interference that made understanding people who were 
physically farther away more difficult.  

Noise cannot attach itself to a digital signal. Once an analog signal 
has been converted to a sequence of numbers, the signal's 
characteristics remain the same as long as the numbers don't change. 
Therefore, digital systems such as the contemporary long-distance 
phone system do not suffer from degradation over long distances. 

A second benefit is that once a signal is turned into a sequence of 
numbers, mathematical algorithms can be used to operate on the data. 
Disciplines such as Digital Signal Processing (DSP) and the study of 
wavelets allow for much more accurate processing of signals than 
analog systems were ever able to achieve. 

A sequence of digital numbers can also be stored more compactly 
than an analog signal. The data compression behind the MP3 
technology is not remotely possible with analog technology. In 
addition, supplementary data can be stored along with the samples for 
information such as digital watermarking for security or codes for error 
checking or error correction. 

These advantages come at a price, however. As mentioned earlier, if 
the samples are taken too slowly, details of the analog input are missed. 
If the resolution of the samples is not fine enough, the signal may not 
be precisely represented with the digital values. Last of all, additional 
hardware is required to convert the signal from analog to digital. 

1.5 Representation of Digital Signals 
Digital systems do not store numbers the way humans do. A human 

can remember the number 4.5 and understand that it represents a 
quantity. The digital system does not have this capability. Instead, 
digital systems work with numbers using millions of tiny switches 
called transistors. Each transistor can remember only one of two 
possible values, on or off. This is referred to as a binary system.  

The values represented by the transistors of a binary system can be 
interpreted as needed by the application. On and off can just as easily 
mean 1 or 0, yes or no, true or false, up or down, or high or low. At this 
point, it is immaterial what the two values represent. What matters is 
that there are only two possible values per transistor. The complexity of 
the computer comes in how the millions of transistors are designed to 



8   Computer Organization and Design Fundamentals 
 
work together. For the purpose of this discussion, the two values of a 
transistor will be referred to as logic 1 and logic 0.  

Now let's examine some of the methods used to represent binary 
data by first looking at a single binary signal. Assume we are recording 
the binary values present on a single wire controlling a light bulb.  

Excluding lights controlled by dimmer switches, a light bulb circuit 
is a binary system; the light is either on or off, a logic 1 or a logic 0 
respectively. Over time, the state of the light bulb changes following 
the position of the switch. The top portion of Figure 1-8 represents the 
waveform of the binary signal controlling the light bulb based on the 
changes in the switch position shown in the lower half of the figure. 

 

 

Figure 1-8   Representation of a Single Binary Signal 

This representation is much like a mathematical x-y plot where the 
x-axis represents time and the y-axis identifies either logic 1 or 0. 

Sometimes, two or more binary lines are grouped together to 
perform a single function. For example, the overall lighting in a room 
may be controlled by three different switches controlling independent 
banks of lights. This circumstance may be represented with a diagram 
such as the one shown in Figure 1-9. 

 
 
 
 
 
 
 

Figure 1-9   Representation of Multiple Digital Signals 

Switch A 
 

Switch B 
 

Switch C 



 Chapter 1:  Digital Signals and Systems    9 
 

Alternatively, multiple lines can be combined into a more abstract 
representation such as the one shown in Figure 1-10. 

 
 
 
 
 
 
 
 
 

Figure 1-10   Alternate Representation of Multiple Digital Signals 

Two horizontal lines, one at a logic 1 level and one at a logic 0 level 
indicate constant signals from all of the lines represented. A single 
horizontal line running approximately between logic 1 and logic 0 
means that the signals are not sending any data. This is different from 
an "off" or logic 0 in that a logic 0 indicates a number while no data 
means that the device transmitting the data is not available. Hash marks 
indicate invalid or changing data. This could mean that one or all of the 
signals are changing their values, or that due to the nature of the 
electronics, the values of the data signals cannot be predicted. In the 
later case, the system may need to wait to allow the signals to stabilize. 

1.6 Types of Digital Signals 

1.6.1 Edges 
A single binary signal can have one of two possible transitions as 

shown in Figure 1-11. The first one, a transition from a logic 0 to a 
logic 1, is called a rising edge transition. The second one, a transition 
from a logic 1 to a logic 0 is called a falling edge transition. 

1.6.2 Pulses  
A binary pulse occurs when a signal changes from one value to the 

other for a short period, then returns to its original value. Examples of 
this type of signal might be the power-on or reset buttons on a 

Valid data Valid data Valid data 

Invalid or 
undefined data 

Data is in 
transition 

No data 
is available 

During these periods, the data 
signals do not change 



10   Computer Organization and Design Fundamentals 
 
computer (momentarily pressed, then released) or the button used to 
initialize synchronization between a PDA and a computer. 

 

 

Figure 1-11   Digital Transition Definitions 

There are two types of pulses. The first is called a positive-going 
pulse, and it has an idle state of logic 0 with a short pulse to logic 1. 
The other one, a negative-going pulse, has an idle state of logic 1 with 
a short pulse to logic 0. Both of these signals are shown in Figure 1-12. 

 

 

 

Figure 1-12   Pulse Waveforms 

1.6.3 Non-Periodic Pulse Trains 
Some digital signals such as the data wires of an Ethernet link or the 

data and address lines of a memory interface do not have a 
characteristic pattern in their changes between logic 1 and logic 0. 
These are called non-periodic pulse trains. 

 
 
 

Figure 1-13   Non-Periodic Pulse Train 

Like music, the duration of the notes or the spaces between the notes 
can be longer or shorter. On the page, they do not look meaningful, but 
once the reader is given the tools to interpret the signal, the data they 
contain becomes clear. 

Logic 1

Logic 0

Logic 1

Logic 0
a.) Rising Edge b.) Falling Edge 

a.) Positive-going 

Logic 1

Logic 0

b.) Negative-going 

Logic 1

Logic 0



 Chapter 1:  Digital Signals and Systems    11 
 
1.6.4 Periodic Pulse Trains 

Some signals act as the heartbeat to a digital system. For example, a 
signal might tell a system, "Every 1/100th of a second, you need to 
____." The output from a car's processor to control the engine's spark 
plug is such a signal. These signals are referred to as periodic pulse 
trains. Like the drum beat to a song, a periodic pulse train is meant to 
synchronize events or keep processes moving. 

The defining characteristic of this type of waveform is that all 
measurements between any two subsequent, identical parts of the 
waveform produce the same value. This value is referred to as the 
period, T, and it has units of seconds/cycle (read seconds per cycle). 
Figure 1-14 identifies the measurement of a period in a typical periodic 
Pulse Train. 

 
 
 
 
 

Figure 1-14   Periodic Pulse Train 

The measurement of the period does not fully describe a periodic 
pulse train, however; a second measurement, the width of the pulse, tw, 
is needed. For example, the two signals in Figure 1-15 have the same 
period. Their pulse widths, however, are not the same. In signal a, tw is 
about one-fourth of the signal's period while tw of signal b is about one-
half of the signal's period.  

 
 
 
 
 

Figure 1-15   Periodic Pulse Train with Different Pulse Widths 

The units of tw is seconds. Its value will always be greater than zero 
and less than the period. A tw of zero implies the signal has no pulses, 
and if tw equaled the period, then the signal would never go low. 

Period = T Period = T

tw

a) 

b) 



12   Computer Organization and Design Fundamentals 
 

It is also common to represent the rate of the pulses in a periodic 
pulse train with the inverse measurement of the period. This 
measurement, called the frequency of the periodic pulse train has units 
of cycles/second, otherwise known as Hertz (Hz). 

To determine the frequency of a periodic pulse train from the period, 
invert the measurement for the period. 

 
 
 

 

Example 
If it takes 0.1 seconds for a periodic pulse train to make a complete 

cycle or period, what is that waveform's frequency? 

Solution 
 
 
 
 
 
 
 

Example 
If a computer’s system clock is 2 Gigahertz (2,000,000,000 Hz), 

what is the duration of its system clock’s period? 

Solution 
Inverting Equation 1.1 gives us the equation used to determine the 

period from the frequency. 
 
 
 
 
 

Substituting 2,000,000,000 Hz for the frequency in this new equation 
gives us the following solution. 

Frequency = 
1 

Period in seconds 
(1.1)  

Frequency = 

Frequency = 

1 
Period in seconds 

1 
0.1 seconds 

Frequency = 10 Hz 

Period =  
1 

Frequency 



 Chapter 1:  Digital Signals and Systems    13 
 

1.6.5 Pulse-Width Modulation 
The last measurement of a periodic waveform is the duty cycle. The 

duty cycle represents the percentage of time that a periodic signal is a 
logic '1'. For example, Figure 1-16 represents a periodic pulse train 
where tw is about one-quarter or 25% of the duration of the period. 
Therefore, the duty cycle of this signal is 25%. 

 
 
 
 
 

Figure 1-16   Periodic Pulse Train with 25% Duty Cycle 

Equation 1.2 represents the formula used to calculate the duty cycle 
where both tw and T have units of seconds. 
 
 
 
 

Since the range of tw is from 0 to T, then the duty cycle has a range 
from 0% (a constant logic 0) to 100% (a constant logic 1). 

Example 
The typical human eye cannot detect a light flashing on and off at 

frequencies above 40 Hz. For example, fluorescent lights flicker at a 
low frequency, around 60 Hz, which most people cannot see. (Some 
people can detect higher frequencies and are sensitive to what they 
correctly perceive as the flashing of fluorescent lights.) 

For higher frequencies, a periodic pulse train sent to a light appears 
to the human eye to simply be dimmer than the same light sent a 
constant logic 1. This technique can be used to dim light emitting 
diodes (LEDs), devices that respond to only logic 1's or logic 0's. The 

Period =  
1 

2,000,000,000 Hz 

Period = 0.0000000005 seconds = 0.5 nanoseconds 

logic 1 pulse duration (tw) 

Period (T) 
Duty Cycle = (1.2)  x 100%  

T ¼T 

Logic 1

Logic 0



14   Computer Organization and Design Fundamentals 
 
brightness of the LED with respect to the full on state is equivalent to 
the duty cycle. For example, to make an LED shine half as bright as it 
would with a constant logic 1 sent to it, the duty cycle should be 50%. 
The frequency is irrelevant as long as it is higher than the human eye 
can detect. 

Example 
Assume that a 1 kHz (1,000 Hz) periodic pulse train is sent to an 

LED. What should the pulse width (tw) be to make the light emitted 
from the LED one-third of its full capability? 

Solution 
Examining equation 1.2 shows that to determine the pulse width, we 

must first get the values for the period and the duty cycle. 
The duty cycle is equal to the level of intensity that the LED is to be 

lit, i.e., one-third or 33%. The period, T, is equal to one over the 
frequency. 

 
 
 
 
 
 
 
 
To determine the pulse width, solve equation 1.2 for tw, then 

substitute the values for the period and the duty cycle. 
 

 
 

 
 
 
 
 
 
 
 

Period =  
1 

Frequency 

Period =  
1 

1,000 Hz 
Period = 0.001 seconds 

x 100% Duty Cycle =
tw 

T 

tw = T x (Duty Cycle) 

100% 
tw = 0.001 seconds x 0.33 

tw = 0.00033 seconds = 330 microseconds 



 Chapter 1:  Digital Signals and Systems    15 
 
1.7 Unit Prefixes 

You may have noticed that in some of our examples, a prefix was 
used with the units of seconds or Hertz. This is done to reduce the 
number of leading zeros between a decimal point and a magnitude or to 
reduce the number of trailing zeros in a very large magnitude.  

A prefix replaces a power of 10 multiplier. For example, the 
measurement 5,000 hertz is equivalent to 5 x 103 hertz. The multiplier 
103 can be replaced with the prefix "kilo" giving us 5 kilohertz. Each 
prefix has a single-letter abbreviation that can be used with the 
abbreviation of the units. For example, to use kilo with the abbreviation 
Hz, the single letter "k" would be used giving us kHz. 

Throughout this book, many prefixes will be used to describe the 
measurements being discussed. These are presented in the table in 
Table 1-1. Note that there are prefixes well beyond those presented in 
this table. They will not be used in this book. 

Table 1-1   Unit Prefixes 

Prefix Symbol Power of 10 
zetta Z 1021 
exa E 1018 
peta P 1015 
tera T 1012 
giga G 109 
mega M 106 
kilo k 103 
milli m 10-3 
micro  or u 10-6 
nano n 10-9 
pico p 10-12 

 
To use the table, just substitute the prefix for its power of ten. For 

example, substitute 10-6 for the prefix " " in the value 15.6 S. This 
would give us 15.6 x 10-6 seconds, which in turn equals 0.0000156 
seconds. 



16   Computer Organization and Design Fundamentals 
 
1.8 What's Next? 

In this chapter, we've seen how the methods that a computer uses to 
store and interpret values are different from the ways in which those 
values appear in the real world. We've also seen some of the methods 
used to measure and represent these digital signals. 

In Chapter 2 we will see how digital values are used to represent 
integers. This is the first major step toward understanding some of the 
idiosyncrasies of computing systems such as why a compiler might 
restrict the values of a data type from –32,768 to 32,767. In addition, it 
shows how some bugs occur in programs due to the misuse of data 
types. 

Problems 
1. Define the term "sample" as it applies to digital systems. 

2. Define the term "sampling rate" as it applies to digital systems. 

3. What are the two primary problems that sampling could cause? 

4. Name the three parts of the system used to input an analog signal 
into a digital system and describe their purpose. 

5. Name four benefits of a digital system over an analog system. 

6. Name three drawbacks of a digital system over an analog system. 

7. True or False:  Since non-periodic pulse trains do not have a 
predictable format, there are no defining measurements of the 
signal. 

8. If a computer runs at 12.8 GHz, what is the period of its clock 
signal? 

9. If the period of a periodic pulse train is 125 nanoseconds, what is 
the signal's frequency? 

10. If the period of a periodic pulse train is 50 microseconds, what 
should the pulse width, tw, be to achieve a duty cycle of 15%? 

11. True or False: A signal’s frequency can be calculated from its duty 
cycle alone. 



 17 

CHAPTER TWO 

Numbering Systems 

Chapter one discussed how computers remember numbers using 
transistors, tiny devices that act like switches with only two positions, 
on or off. A single transistor, therefore, can only remember one of two 
possible numbers, a one or a zero. This isn't useful for anything more 
complex than controlling a light bulb, so for larger values, transistors 
are grouped together so that their combination of ones and zeros can be 
used to represent larger numbers. 

This chapter discusses some of the methods that are used to 
represent numbers with groups of transistors or bits. The reader will 
also be given methods for calculating the minimum and maximum 
values of each representation based on the number of bits in the group. 

2.1 Unsigned Binary Counting 
The simplest form of numeric representation with bits is unsigned 

binary. When we count upward through the positive integers using 
decimal, we start with a 0 in the one's place and increment that value 
until we reach the upper limit of a single digit, i.e., 9. At that point, 
we've run out of the "symbols" we use to count, and we need to 
increment the next digit, the ten's place. We then reset the one's place to 
zero, and start the cycle again. 

 
Ten's
place 

One's
place 

 0 
 1 
 2 
 3 
 : 
 8 
 9 

1 0 

Figure 2-1   Counting in Decimal 

Since computers do not have an infinite number of transistors, the 
number of digits that can be used to represent a number is limited. This 



18   Computer Organization and Design Fundamentals 
 
would be like saying we could only use the hundreds, tens, and ones 
place when counting in decimal.  

This has two results. First, it limits the number of values we can 
represent. For our example where we are only allowed to count up to 
the hundreds place in decimal, we would be limited to the range of 
values from 0 to 999. 

Second, we need a way to show others that we are limiting the 
number of digits. This is usually done by adding leading zeros to the 
number to fill up any unused places. For example, a decimal 18 would 
be written 018 if we were limited to three decimal digits. 

Counting with bits, hereafter referred to as counting in binary, is 
subject to these same issues. The only difference is that decimal uses 
ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) while binary only uses two 
symbols (0 and 1).  

To begin with, Figure 2-2 shows that when counting in binary, we 
run out of symbols quickly requiring the addition of another "place" 
after only the second increment. 

 
 
 
 
 
 
 
 

Figure 2-2   Counting in Binary 

If we were counting using four bits, then the sequence would look 
like:  0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 
1010, 1011, 1100, 1101, 1110, and 1111. Notice that when restricted to 
four bits, we reach our limit at 1111, which happens to be the fifteenth 
value. It should also be noted that we ended up with 2 x 2 x 2 x 2 = 16 
different values. With two symbols for each bit, we have 2n possible 
combinations of symbols where n represents the number of bits. 

In decimal, we know what each digit represents: ones, tens, 
hundreds, thousands, etc. How do we figure out what the different 
digits in binary represent?  If we go back to decimal, we see that each 
place can contain one of ten digits. After the ones digit counts from 0 to 

0
1

10
11

100
101

Another digit is added when we run 
out of symbols for the first column.

Another digit is added when we run out 
of symbols for the second column. 



 Chapter 2:  Numbering Systems    19 
 
9, we need to increment the tens place. Subsequently, the third place is 
incremented after 9 tens and 9 ones, i.e., 99 increments, have been 
counted. This makes it the hundreds place. 

In binary, the rightmost place is considered the ones place just like 
decimal. The next place is incremented after the ones place reaches 1. 
This means that the second place in binary represents the value after 1, 
i.e., a decimal 2. The third place is incremented after a 1 is in both the 
ones place and the twos place, i.e., we've counted to a decimal 3. 
Therefore, the third place represents a decimal 4. Continuing this 
process shows us that each place in binary represents a successive 
power of two. 

Figure 2-3 uses 5 bits to count up to a decimal 17. Examine each 
row where a single one is present in the binary number. This reveals 
what that position represents. For example, a binary 01000 is shown to 
be equivalent to a decimal 8. Therefore, the fourth bit position from the 
right is the 8’s position. 

 
Decimal 

value 
Binary 
value 

 Decimal 
value 

Binary 
value 

0 00000  9 01001 
1 00001  10 01010 
2 00010  11 01011 
3 00011  12 01100 
4 00100  13 01101 
5 00101  14 01110 
6 00110  15 01111 
7 00111  16 10000 
8 01000  17 10001 

Figure 2-3   Binary-Decimal Equivalents from 0 to 17 

This information will help us develop a method for converting 
unsigned binary numbers to decimal and back to unsigned binary. 

Some of you may recognize this as "base-2" math. This gives us a 
method for indicating which representation is being used when writing 
a number down on paper. For example, does the number 100 represent 
a decimal value or a binary value?  Since binary is base-2 and decimal 
is base-10, a subscript "2" is placed at the end of all binary numbers in 



20   Computer Organization and Design Fundamentals 
 
this book and a subscript "10" is placed at the end of all decimal 
numbers. This means a binary 100 should be written as 1002 and a 
decimal 100 should be written as 10010. 

2.2 Binary Terminology 
When writing values in decimal, it is common to separate the places 

or positions of large numbers in groups of three digits separated by 
commas. For example, 34532374510 is typically written 345,323,74510 
showing that there are 345 millions, 323 thousands, and 745 ones. This 
practice makes it easier to read and comprehend the magnitude of the 
numbers. Binary numbers are also divided into components depending 
on their application. Each binary grouping has been given a name. 

To begin with, a single place or position in a binary number is called 
a bit, short for binary digit. For example, the binary number 01102 is 
made up of four bits. The rightmost bit, the one that represents the ones 
place, is called the Least Significant Bit or LSB. The leftmost bit, the 
one that represents the highest power of two for that number, is called 
the Most Significant Bit or MSB. Note that the MSB represents a bit 
position. It doesn't mean that a '1' must exist in that position. 

The next four terms describe how bits might be grouped together. 
 

 Nibble – A four bit binary number 
 Byte – A unit of storage for a single character, typically an eight 

bit (2 nibble) binary number (short for binary term) 
 Word – Typically a sixteen bit (2 byte) binary number 
 Double Word – A thirty-two bit (2 word) binary number 

 
The following are some examples of each type of binary number. 
 
Bit 12 
Nibble 10102 
Byte 101001012 
Word 10100101111100002 
Double Word 101001011111000011001110111011012 
 

2.3 Unsigned Binary to Decimal Conversion 
As shown in section 2.1, each place or position in a binary number 

corresponds to a specific power of 2 starting with the rightmost bit 



 Chapter 2:  Numbering Systems    21 
 
which represents 20=1. It is through this organization of the bits that we 
will convert binary numbers to their decimal equivalent. Figure 2-4 
shows the bit positions and the corresponding powers of two for each 
bit in positions 0 through 7. 

 
Numbered bit 

position 7 6 5 4 3 2 1 0 

Corresponding 
power of 2 27 26 25 24 23 22 21 20 

Decimal equivalent 
of power of 2 128 64 32 16 8 4 2 1 

Figure 2-4   Values Represented By Each of the First 8 Bit Positions 

To begin converting an unsigned binary number to decimal, identify 
each bit position that contains a 1. It is important to note that we 
number the bit positions starting with 0 identifying the rightmost bit. 

Next, add the powers of 2 for each position containing a 1. This sum 
is the decimal equivalent of the binary value. An example of this 
process is shown in Figure 2-5 where the binary number 101101002 is 
converted to its decimal equivalent. 

 
 
 
 
 
 
 
 

Figure 2-5   Sample Conversion of 101101002 to Decimal 

This brings up an important issue when representing numbers with a 
computer. Note that when a computer stores a number, it uses a limited 
number of transistors. If, for example, we are limited to eight 
transistors, each transistor storing a single bit, then we have an upper 
limit to the size of the decimal value we can store.  

Bit Position 7 6 5 4 3 2 1 0 
Binary Value 1 0 1 1 0 1 0 0 

 

 101101002 =  27 + 25 + 24 + 22

 = 12810 + 3210 + 1610 + 410 
 = 18010 

 



22   Computer Organization and Design Fundamentals 
 

The largest unsigned eight bit number we can store has a 1 in all 
eight positions, i.e., 111111112. This number cannot be incremented 
without forcing an overflow to the next highest bit. Therefore, the 
largest decimal value that 8 bits can represent in unsigned binary is the 
sum of all powers of two from 0 to 7. 

 
 111111112 =  27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 
  =  128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 
  =  25510 

 
If you add one to this value, the result is 256 which is 28, the power 

of two for the next bit position. This makes sense because if you add 1 
to 111111112, then beginning with the first column, 1 is added to 1 
giving us a result of 0 with a 1 carry to the next column. This 
propagates to the MSB where a final carry is passed to the ninth bit. 
The final value is then 1000000002 = 25610. 

 
111111112 + 1  =  1000000002  =  25610  =  28 

 
Therefore, the maximum value that can be represented with 8 bits in 
unsigned binary is 28 – 1 = 255. 

It turns out that the same result is found for any number of bits. The 
maximum value that can be represented with n bits in unsigned binary 
is 2n – 1. 

 
 Max unsigned binary value represented with n bits  =  2n – 1 (2.1) 

 
We can look at this another way. Each digit of a binary number can 

take on 2 possible values, 0 and 1. Since there are two possible values 
for the first digit, two possible values for the second digit, two for the 
third, and so on until you reach the n-th bit, then we can find the total 
number of possible combinations of 1's and 0's for n-bits by 
multiplying 2 n-times, i.e., 2n.  

How does this fit with our upper limit of 2n-1?  Where does the "-1" 
come from?  Remember that counting using unsigned binary integers 
begins at 0, not 1. Giving 0 one of the bit patterns takes one away from 
the maximum value. 



 Chapter 2:  Numbering Systems    23 
 
2.4 Decimal to Unsigned Binary Conversion 

Converting from decimal to unsigned binary is a little more 
complicated, but it still isn't too difficult. Once again, there is a well-
defined process. 

To begin with, it is helpful to remember the powers of 2 that 
correspond to each bit position in the binary numbering system. These 
were presented in Figure 2-4 for the powers of 20 up to 27. 

What we need to do is separate the decimal value into its power of 2 
components. The easiest way to begin is to find the largest power of 2 
that is less than or equal to our decimal value. For example if we were 
converting 7510 to binary, the largest power of 2 less than or equal to 
7510 is 26 = 64. 

The next step is to place a 1 in the location corresponding to that 
power of 2 to indicate that this power of 2 is a component of our 
original decimal value. 

Next, subtract this first power of 2 from the original decimal value. 
In our example, that would give us 7510 – 6410 = 1110. If the result is not 
equal to zero, go back to the first step where we found the largest 
power of 2 less than or equal to the new decimal value. In the case of 
our example, we would be looking for the largest power of 2 less than 
or equal to 1110 which would be 23 = 8. 

When the result of the subtraction reaches zero, and it eventually 
will, then the conversion is complete. Simply place 0's in the bit 
positions that do not contain 1's. Figure 2-6 illustrates this process 
using a flowchart. 

If you get all of the way to bit position zero and still have a non-zero 
result, then one of two things has happened. Either there was an error in 
one of your subtractions or you did not start off with a large enough 
number of bits. Remember that a fixed number of bits, n, can only 
represent an integer value up to 2n – 1. For example, if you are trying to 
convert 31210 to unsigned binary, eight bits will not be enough because 
the highest value eight bits can represent is 28 – 1 = 25510. Nine bits, 
however, will work because its maximum unsigned value is 29 – 1 = 
51110. 

 
 
 
 
 



24   Computer Organization and Design Fundamentals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-6   Decimal to Unsigned Binary Conversion Flow Chart 

Example 
Convert the decimal value 13310 to an 8 bit unsigned binary number. 

Solution 
Since 13310 is less than 28 – 1 = 255, 8 bits will be sufficient for this 

conversion. Using Figure 2-4, we see that the largest power of 2 less 
than or equal to 13310 is 27 = 128. Therefore, we place a 1 in bit 
position 7 and subtract 128 from 133. 

 
Bit position 7 6 5 4 3 2 1 0 

 1        
 

133 – 128 = 5 

Start 

End 

Find the largest power of 2  
less than or equal to the  

decimal value being converted 

Place a 1 in the bit  
position corresponding to  

that power of 2 

Subtract that power of 2 from 
the decimal value. This will 
be the new decimal value. 

Is new  
decimal value equal  

to zero? 
Yes 

No 



 Chapter 2:  Numbering Systems    25 
 

Our new decimal value is 5. Since this is a non-zero value, our next 
step is to find the largest power of 2 less than or equal to 5. That would 
be 22 = 4. So we place a 1 in the bit position 2 and subtract 4 from 5. 

 
Bit position 7 6 5 4 3 2 1 0 

1     1   
 

5 – 4 = 1 
 
Our new decimal value is 1, so find the largest power of 2 less than 

or equal to 1. That would be 20 = 1. So we place a 1 in the bit position 0 
and subtract 1 from 1. 

 
 

Bit position 7 6 5 4 3 2 1 0 
1     1  1 

 
1 – 1 = 0 

 
Since the result of our last subtraction is 0, the conversion is 

complete. Place zeros in the empty bit positions. 
 

Bit position 7 6 5 4 3 2 1 0 
1 0 0 0 0 1 0 1 

 
And the result is: 
 

13310 = 100001012 

2.5 Binary Representation of Analog Values 
Converting unsigned (positive) integers to binary is only one of the 

many ways that computers represent values using binary bits. This 
chapter still has two more to cover, and Chapter 3 will cover even 
more. 

This section focuses on the problems and solutions of trying to map 
real world values such as temperature or weight from a specified range 
to a binary integer. For example, a computer that uses 8 bits to 
represent an integer is capable of representing 256 individual values 
from 0 to 255. Temperature, however, is a floating-point value with 



26   Computer Organization and Design Fundamentals 
 
unrealistic upper and lower limits. Can we get a computer to represent a 
temperature using eight bits?  The answer is yes, but it will cost us in 
the areas of resolution and range. 

Another example of analog values is the pattern of sound waves 
such as that from music. Figure 2-7 represents such a signal. 

 

 

Figure 2-7   Sample Analog Signal of Sound 

Remember that a single binary bit can be set to only one of two 
values: logic 1 or logic 0. Combining many bits together allows for a 
range of integers, but these are still discrete values. The real world is 
analog, values represented with floating-point measurements capable of 
infinite resolution. To use an n-bit binary number to represent analog, 
we need to put some restrictions on what is being measured. 

First, an n-bit binary number has a limited range. We saw this when 
converting unsigned positive integers to binary. In this case, the lower 
limit was 0 and the upper limit was 2n-1. To use n-bits to represent an 
analog value, we need to restrict the allowable range of analog 
measurements. This doesn't need to be a problem.  

For example, does the typical bathroom scale need to measure 
values above 400 pounds? If not, then a digital system could use a 10-
bit binary number mapped to a range from zero to 400 pounds. A 
binary 00000000002 could represent zero pounds while 11111111112 
could represent 400 pounds.  

What is needed next is a method to map the values inside the range 
zero to 400 pounds to the binary integers in the range 00000000002 to 
11111111112. To do this, we need a linear function defining a one-to-
one mapping between each binary integer and the analog value it 
represents. To do this, we turn to the basic math expression for a linear 
function.  

 
y = mx + b 



 Chapter 2:  Numbering Systems    27 
 

This function defines m as the rate of the change in y with respect to 
changes in x and b as the value y is set to when x equals 0. We can use 
this expression to map a binary integer x to an analog value y. 

The slope of this function, m, can be calculated by dividing the 
range of analog values by the number of intervals defined by the n-bit 
binary integer. The number of intervals defined by the n-bit binary 
integer is equal to the upper limit of that binary number if it were being 
used as an unsigned integer, i.e., 2n-1. 

 
Range of analog values m = Number of intervals of binary integer  

 
Max analog value - Min analog value m = 2n – 1 (2.2) 

 
Let's go back to our example of the kitchen scale where the 

maximum analog value is 400 pounds while the minimum is zero 
pounds. If a 10-bit binary value is used to represent this analog value, 
then the number of intervals of the binary integer is 210 – 1 = 1023. 
This gives us a slope of: 

 
400 pounds – 0 pounds m = 1023 binary increments = 0.391 pounds/binary increment 

 
That means that each time the binary number increments, e.g., 

01101100102 goes to 01101100112, it represents an increment in the 
analog value of 0.391 pounds. Since a binary value of 00000000002 
represents an analog value of 0 pounds, then 00000000012 represents 
0.391 pounds, 00000000102 represents 2  0.391 = 0.782 pounds, 
00000000112 represents 3  0.391 = 1.173 pounds, and so on. 

In some cases, the lower limit might be something other than 0. This 
is important especially if better accuracy is required. For example, a 
kitchen oven may have an upper limit of 600oF. If zero were used as the 
lower limit, then the temperature range 600oF – 0oF = 600oF would 
need to be mapped to the 2n possible binary values of an n-bit binary 
number. For a 9-bit binary number, this would result in an m of: 

 
600oF– 0oF m = 29 – 1 = 1.1742 degrees/binary increment 



28   Computer Organization and Design Fundamentals 
 

Does an oven really need to measure values below 100oF though?  If 
not, a lower limit of 100oF could be used reducing the size of the 
analog range to 500oF. This smaller range would improve the accuracy 
of the system because each change in the binary value would result in a 
smaller increment in the analog value. 

 
600oF– 100oF m = 29 – 1 = 0.9785 degrees/binary increment 

 
The smaller increment means that each binary value will be a more 

accurate representation of the analog value. 
This non-zero lower limit is realized as a non-zero value for b in the 

linear expression y=mx + b. Since y is equal to b when x is equal to 
zero, then b must equal the lower limit of the range. 

 
b = Minimum analog value 2.3 

 
The final expression representing the conversion between an analog 

value at its binary representation is shown in Equation 2.4. 
 

Amax - Amin 
Acalc = ( 2n - 1 * X) + Amin (2.4) 

 
where: 
 

Acalc = analog value represented by binary value 
Amax = maximum analog value 
Amin = minimum analog value 
X = binary value representing analog value 
n = number of bits in binary value 

Example 
Assume that the processor monitoring the temperature of an oven 

with a temperature range from 100oF to 600oF measures a 9-bit binary 
value of 0110010102. What temperature does this represent? 

Solution 
Earlier, we calculated the rate of change, m, for an oven with a 

temperature range from 100oF to 600oF is 500oF  511 binary 



 Chapter 2:  Numbering Systems    29 
 
increments. Substituting this along with our minimum analog value of 
100oF into Equation 2.4 gives us: 

 
500 temperature = 511 

oF/binary increment * binary value + 100oF 

 
If the processor monitoring the temperature of this oven reads a 

binary value of 0110010102, the approximate temperature can be 
determined by converting 0110010102 to decimal and inserting it into 
the equation above. 

 
 0110010102  = 27 + 26 + 23 + 21  
  = 128 + 64 + 8 + 2 
  = 20210 
 

500oF temperature = 511 * 202 + 100oF 

 
temperature = 297.65oF 

 
The value from the above example is slightly inaccurate. The binary 

value 0110010102 actually represents a range of values 0.9785oF wide 
centered around or with a lower limit of 297.65oF. Only a binary value 
with an infinite number of bits would be entirely accurate. Since this is 
not possible, there will always be a gap or resolution associated with a 
digital system due to the quantized nature of binary integer values. That 
gap is equivalent to the increment or rate of change of the linear 
expression. 

 
Analog range Resolution = 2n – 1 (2.5) 

Example 
Assume that the analog range of a system using a 10-bit analog-to-

digital converter goes from a lower limit of 5 ounces to an upper limit 
of 11 ounces. What is the resolution of this system? 

Solution 
To determine the resolution, we begin with the analog range. 



30   Computer Organization and Design Fundamentals 
 
 Analog range  = Max analog value - Min analog value 

  = 11 ounces – 5 ounces  
  = 6 ounces 
 
Substituting this range into equation 2.5 and using n=10 to represent 

the number of bits, we get: 
 

6 ounces Resolution = 210 - 1 
 

6 ounces  = 1023 increments
 

= 0.005865 oz/inc 
 
If we examine the results of the example above, we see that our 

system can measure 0 ounces, 0.005865 ounces, 0.011730 ounces, (2 * 
0.005865 ounces), 0.017595 (3 * 0.005865 ounces), and so on, but it 
can never represent the measurement 0.015 ounces. Its resolution is not 
that good. In order to get that resolution, you would need to increase 
the number of bits in the binary integer or reduce the analog range. 

Example 
How many bits would be needed for the example above to improve 

the resolution to better than 0.001 ounces per increment? 

Solution 
Each time we increase the number of bits in our binary integer by 

one, the number of increments in the range is approximately doubled. 
For example, going from 10 bits to 11 bits increases the number of 
increments in the range from 210 – 1 = 1023 to 211 – 1 = 2047. The 
question is how high do we have to go to get to a specified resolution? 
To answer that, let's begin by setting Equation 2.5 to represent the fact 
that we want a resolution of better than 0.001 ounces/increment. 

 
6 ounces 0.001 oz/inc. > 2n – 1 

 
Solving for 2n – 1 gives us: 



 Chapter 2:  Numbering Systems    31 
 

6 ounces  2n – 1 > 0.001 oz/inc. 
 

2n – 1 > 6,000 increments
 
By substituting different integers for n into the above equation, we 

find that n=13 is the lowest value of n for which a resolution better than 
0.001 ounces/increment is reached. n=13 results in a resolution of  
6  8191 = 0.0007325 ounces/increment. 

2.6 Sampling Theory 
The previous discussion of the integer representation of analog 

values shows how the number of bits can affect the roundoff error of 
the representation. In general, an n-bit analog-to-digital converter 
divides the analog range into 2n – 1 increments. Figure 2-8 presents 
four graphs, each with a different number of bits providing different 
levels of resolution. The figure shows how the addition of a bit can 
improve the resolution of the values represented by the binary integers. 

Earlier, it was mentioned how a computer can only capture a "snap 
shot" or sample of an analog voltage. This is sufficient for slowly 
varying analog values, but if a signal is varying quickly, details might 
be missed. To improve the signal's digital representation, the rate at 
which the samples are taken, the sampling rate, needs to be increased. 

There is also a chance of missing a higher frequency because the 
sampling rate is too slow. This is called aliasing, and there are 
examples of it in everyday life.  

When riding in a car at night, you may have noticed that at times the 
wheels of an adjacent car appear to be spinning at a different rate than 
they really are or even appear to spin backwards. (If you have no idea 
what I'm talking about, watch the wheels of the car next to you the next 
time you are a passenger riding at night under street lights.)   

The effect is caused by the fact that the light from street lamps 
actually pulses, a fact that is usually not detectable with the human eye. 
This pulsing provides a sampling rate, and if the sampling rate is not 
fast enough for the spinning wheel, the wheel appears to be spinning at 
a different rate than it really is. Street lights are not necessary to see this 
effect. Your eye has a sampling rate of its own which means that you 
may experience this phenomenon in the day time. 

 



32   Computer Organization and Design Fundamentals 
 

2-bits – 4 levels 
 

3-bits – 8 levels 
 

4-bits – 16 levels 
 

5-bits – 32 levels 
 

Figure 2-8   Effects of Number of Bits on Roundoff Error 

Aliasing is also the reason fluorescent lights are never used in 
sawmills. Fluorescent lights blink much like a very fast strobe light and 
can make objects appear as if they are not moving. If the frequency of 
the fluorescent lights and the speed of a moving saw blade are 
multiples of each other, it can appear as if the spinning blade is not 
moving at all. 

Both of these examples are situations where aliasing has occurred. If 
a signal's frequency is faster than the sampling rate, then information 
will be lost, and the collected data will never be able to duplicate the 
original. 

The graphs in Figure 2-9 show how different sampling rates can 
result in different interpretations of the collected data, the dark points 
representing the samples. Note that the bottom-right graph represents a 
good sampling rate. When the computer reproduces the signal, the 



 Chapter 2:  Numbering Systems    33 
 
choppiness of the reproduction will be removed due to the natural 
filtering effects of analog circuitry. 

 

  

  

Figure 2-9   Aliasing Effects Due to Slow Sampling Rate 

To avoid aliasing, the rate at which samples are taken must be more 
than twice as fast as the highest frequency you wish to capture. This is 
called the Nyquist Theorem. For example, the sampling rate for audio 
CDs is 44,100 samples/second. Dividing this number in half gives us 
the highest frequency that an audio CD can play back, i.e., 22,050 Hz.  

For an analog telephone signal, a single sample is converted to an 8-
bit integer. If these samples are transmitted across a single channel of a 
T1 line which has a data rate of 56 Kbps (kilobits per second), then we 
can determine the sampling rate.  

 
56,000 bits/second Sampling rateT1 = 8 bits/sample 

 
Sampling rateT1 = 7,000 samples/second 

 
This means that the highest analog frequency that can be transmitted 

across a telephone line using a single channel of a T1 link is 7,000 2 = 
3,500 Hz. That's why the quality of voices sent over the telephone is 
poor when compared to CD quality. Although telephone users can still 



34   Computer Organization and Design Fundamentals 
 
recognize the voice of the caller on the opposite end of the line when 
the higher frequencies are eliminated, their speech often sounds muted. 

2.7 Hexadecimal Representation 
It is usually difficult for a person to look at a binary number and 

instantly recognize its magnitude. Unless you are quite experienced at 
using binary numbers, recognizing the relative magnitudes of 
101011012 and 101001012 is not immediate (17310 is greater than 
16510). Nor is it immediately apparent to us that 10011011012 equals 
62110 without going through the process of calculating 512 + 64 + 32 + 
8 + 4 + 1. 

There is another problem: we are prone to creating errors when 
writing or typing binary numbers. As a quick exercise, write the binary 
number 10010111111011010010001112 onto a sheet of paper. Did you 
make a mistake? Most people would have made at least one error. 

To make the binary representation of numbers easier on us humans, 
there is a shorthand representation for binary values. It begins by 
partitioning a binary number into its nibbles starting at the least 
significant bit (LSB). An example is shown below: 

 
The number: 1001011110110100100111 

…can be divided into: 10 0101 1110 1101 0010 0111 
 
Next, a symbol is used to represent each of the possible 

combinations of bits in a nibble. We start by numbering them with the 
decimal values equivalent to their binary value, i.e.: 

 
00002 = 010 
00012 = 110 
00102 = 210 

:  :  : 
10002 = 810 
10012 = 910 

 
At 9, however, we run out of decimal characters. There are six more 

nibbles to label, so we begin using letters: A, B, C, D, E, and F. These 
represent the decimal values 1010, 1110, 1210, 1310, 1410, and 1510 
respectively. 

 



 Chapter 2:  Numbering Systems    35 
 

10102 = A 
10112 = B 

:  :  : 
11112 = F 

 
Table 2-1 presents the mapping between the sixteen patterns of 1's 

and 0's in a binary nibble and their corresponding decimal and 
hexadecimal (hex) values. 

Table 2-1   Converting Binary to Decimal and Hexadecimal 

Binary Decimal Hex  Binary Decimal Hex 
0000 0 0  1000 8 8 
0001 1 1  1001 9 9 
0010 2 2  1010 10 A 
0011 3 3  1011 11 B 
0100 4 4  1100 12 C 
0101 5 5  1101 13 D 
0110 6 6  1110 14 E 
0111 7 7  1111 15 F 

 
Another way to look at it is that hexadecimal counting is also similar 

to decimal except that instead of having 10 numerals, it has sixteen. 
This is also referred to as a base-16 numbering system. 

How do we convert binary to hexadecimal? Begin by dividing the 
binary number into its nibbles (if the number of bits is not divisible by 
4, add leading zeros), then nibble-by-nibble use the table above to find 
the hexadecimal equivalent to each 4-bit pattern. For example: 

 
The number: 1001011110110100100111 

…is divided into: 0010 0101 1110 1101 0010 0111 
...which translates to: 2 5 E D 2 7 

 
Therefore, 10010111101101001001112 = 25ED2716. Notice the use 

of the subscript "16" to denote hexadecimal representation. 
Going the other way is just as easy. Translating 5D3F2116 to binary 

goes something like this: 
 



36   Computer Organization and Design Fundamentals 
 

 
The hexadecimal value: 5 D 3 F 2 1 

…translates to: 0101 1101 0011 1111 0010 0001 
 
Therefore, 5D3F2116 = 0101110100111111001000012. 
It is vital to note that computers do not use hexadecimal, humans do. 

Hexadecimal provides humans with a reliable, short-hand method of 
writing large binary numbers. 

2.8 Binary Coded Decimal 
When was the last time you multiplied your house number by 5?  Or 

have you ever added 215 to your social security number?  These 
questions seem silly, but they reveal an important fact about numbers. 
Some numbers do not need to have mathematical operations performed 
on them, and therefore, do not need to have a mathematically correct 
representation in binary. 

In an effort to afford decimal notation the same convenience of 
conversion to binary that hex has, Binary Coded Decimal (BCD) was 
developed. It allows for fast conversion to binary of integers that do not 
require mathematical operations. 

As in hex, each decimal digit represents a nibble of the binary 
equivalent. Table 2-2 shows the conversion between each decimal digit 
and the binary equivalent. 

Table 2-2   Converting BCD to Decimal 

BCD  
Nibble 

Decimal 
Digit 

 BCD 
Nibble 

Decimal 
Digit 

0000 0  1000 8 
0001 1  1001 9 
0010 2  1010 Invalid 
0011 3  1011 Invalid 
0100 4  1100 Invalid 
0101 5  1101 Invalid 
0110 6  1110 Invalid 
0111 7  1111 Invalid 

 
For example, the BCD value 0001 0110 1001 0010 equals 169210. 



 Chapter 2:  Numbering Systems    37 
 

It is important to note that there is no algorithmic conversion 
between BCD and decimal. BCD is only a method for representing 
decimal numbers in binary. 

Another item of note is that not all binary numbers convert from 
BCD to decimal. 0101 1011 0101 for example is an illegal BCD value 
because the second nibble, 1011, does not have a corresponding 
decimal value. 

There are two primary advantages of BCD over binary. First, any 
mathematical operation based on a factor of ten is simpler in BCD. 
Multiplication by ten, for example, appends a nibble of zeros to the 
right side of the number. All it takes to truncate or round a base-10 
value in BCD is to zero the appropriate nibbles. Because of this 
advantage, BCD is used frequently in financial applications due to legal 
requirements that decimal values be exactly represented. Binary cannot 
do this for fractions as we shall see in Chapter 3. 

The second advantage is that conversion between entered or 
displayed numeric characters and the binary value being stored is fast 
and does not require much code. 

The primary disadvantage is that unless the operation is based on a 
power of ten, mathematical operations are more complex and require 
more hardware. In addition, BCD is not as compact as unsigned binary 
and may require more memory for storage. 

BCD can be used to represent signed values too, although there are 
many implementations. Different processor manufacturers use different 
methods making it hard to select a standard. One of the easiest ways to 
represent negative numbers in BCD is to add a nibble at the beginning 
of the number to act as a plus/minus sign. By using one of the illegal 
BCD values to represent a negative sign and another to represent a 
positive sign, BCD values can be made negative or positive. Binary 
values of 1010, 1100, or 1110 typically mean the number is positive 
while binary values of 1011 or 1101 mean the number is negative. For 
example, –1234 in signed BCD would be 1101 0001 0010 0011 0100 
while +1234 would be 1100 0001 0010 0011 0100. BCD values 
preceded with 1111 typically indicate unsigned values. 

2.9 Gray Codes 
The use of binary counting sequences is common in digital 

applications. For example, an n-bit binary value can be used to identify 
the position of a rotating shaft as being within one of 2n different arcs. 



38   Computer Organization and Design Fundamentals 
 
As the shaft turns, a sensor can detect which of the shaft's arcs it is 
aligned with by reading a digital value and associating it with a specific 
arc. By remembering the previous position and timing the changes 
between positions, a processor can also compute speed and direction. 

Figure 2-10 shows how a shaft's position might be divided into eight 
arcs using three bits. This would allow a processor to determine the 
shaft's position to within 360o/8 = 45o. 

 
 
 
 
 
 
 
 
 

Figure 2-10   Eight Binary Values Identifying Rotating Shaft Position 

One type of shaft position sensor uses a disk mounted to the shaft 
with slots cut into the disk at different radii representing different bits. 
Light sources are placed on one side of the disk while sensors on the 
other side of the disk detect when a hole is present, i.e., the sensor is 
receiving light. Figure 2-11 presents a disk that might be used to 
identify the shaft positions of the example from Figure 2-10. 

 

 

Figure 2-11   Example of a Position Encoder 

Light Sources 
Sensor 

000 
001

110 

101

010

011

100

111 



 Chapter 2:  Numbering Systems    39 
 

In its current position in the figure, the slots in the disk are lined up 
between the second and third light sensors, but not the first. This means 
that the sensor will read a value of 110 indicating the shaft is in 
position number 1102 = 6. 

There is a potential problem with this method of encoding. It is 
possible to read the sensor at the instant when more than one gap is 
opening or closing between its light source and sensor. When this 
happens, some of the bit changes may be detected while others are not. 
If this happens, an erroneous measurement may occur.  

For example, if the shaft shown above turns clockwise toward 
position 1012 = 5, but at the instant when the sensor is read, only the 
first bit change is detected, then the value read will be 1112 = 7 
indicating counter-clockwise rotation. 

To solve this problem, alternate counting sequences referred to as 
the Gray code are used. These sequences have only one bit change 
between values. For example, the values assigned to the arcs of the 
above shaft could follow the sequence 000, 001, 011, 010, 110, 111, 
101, 100. This sequence is not correct numerically, but as the shaft 
turns, only one bit will change as the shaft turns from one position to 
the next. 

There is an algorithm to convert an n-bit unsigned binary value to its 
corresponding n-bit Gray code. Begin by adding a 0 to the most 
significant end of the unsigned binary value. There should now be n 
boundaries between the n+1 bits. For each boundary, write a 0 if the 
adjacent bits are the same and a 1 if the adjacent bits are different. The 
resulting value is the corresponding n-bit Gray code value. Figure 2-12 
presents an example converting the 6 bit value 1000112 to Gray code. 

 
 
 
 
 
 
 
 
 

Figure 2-12   Conversion from Unsigned Binary to Gray Code 

1 0 0 0 1 10Add zero to left-
most side of the 
value to convert 

1 1 0 0 1 0

Adjacent bits that are 
different generate a 1. 

Adjacent bits that are 
the same generate a 0. 



40   Computer Organization and Design Fundamentals 
 

Using this method, the Gray code for any binary value can be 
determined. Table 2-3 presents the full Gray code sequence for four 
bits. The shaded bits in third column are bits that are different then the 
bit immediately to their left. These are the bits that will become ones in 
the Gray code sequence while the bits not shaded are the ones that will 
be zeros. Notice that exactly one bit changes in the Gray code from one 
row to the next and from the bottom row to the top row. 

Table 2-3   Derivation of the Four-Bit Gray Code 

Decimal Binary
Binary  

w/starting 
zero 

Gray 
Code 

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 0 1 1 0 0 1 0
4 0 1 0 0 0 0 1 0 0 0 1 1 0
5 0 1 0 1 0 0 1 0 1 0 1 1 1
6 0 1 1 0 0 0 1 1 0 0 1 0 1
7 0 1 1 1 0 0 1 1 1 0 1 0 0
8 1 0 0 0 0 1 0 0 0 1 1 0 0
9 1 0 0 1 0 1 0 0 1 1 1 0 1
10 1 0 1 0 0 1 0 1 0 1 1 1 1
11 1 0 1 1 0 1 0 1 1 1 1 1 0
12 1 1 0 0 0 1 1 0 0 1 0 1 0
13 1 1 0 1 0 1 1 0 1 1 0 1 1
14 1 1 1 0 0 1 1 1 0 1 0 0 1
15 1 1 1 1 0 1 1 1 1 1 0 0 0

 

2.10 What's Next? 
In this chapter, we've covered the different methods of representing 

values, specifically positive integers, using digital circuitry. In addition 
to counting integers, the issues surrounding the conversion of analog or 
"real world" values to digital were examined along with some of the 
problems encountered when sampling. Finally, two methods of binary 
representation were presented: hexadecimal and BCD. 



 Chapter 2:  Numbering Systems    41 
 

Chapter 3 examines the special needs surrounding the digital 
representation of addition, subtraction, and floating-point values. It also 
introduces the operation of the processor in handling some arithmetic 
functions. 

Problems 
1. What is the minimum number of bits needed to represent 76810 

using unsigned binary representation? 

2. What is the largest possible integer that can be represented with a 
6-bit unsigned binary number? 

3. Convert each of the following values to decimal. 
a) 100111012       b) 101012       c) 1110011012       d) 011010012 

4. Convert each of the following values to an 8-bit unsigned binary 
value. 
a) 3510       b) 10010       c) 22210       d) 14510 

5. If an 8-bit binary number is used to represent an analog value in 
the range from 010 to 10010, what does the binary value 011001002 
represent? 

6. If an 8-bit binary number is used to represent an analog value in 
the range from 32 to 212, what is the accuracy of the system?  In 
other words, if the binary number is incremented by one, how 
much change does it represent in the analog value? 

7. Assume a digital to analog conversion system uses a 10-bit integer 
to represent an analog temperature over a range of -25oF to 125oF. 
If the actual temperature being read was 65.325oF, what would be 
the closest possible value that the system could represent? 

8. What is the minimum sampling rate needed in order to successfully 
capture frequencies up to 155 KHz in an analog signal? 

9. Convert the following numbers to hexadecimal. 
a) 10101111001011000112 
b) 100101010010011010012 
c) 011011010010100110012 
d) 101011001000102 

10. Convert each of the following hexadecimal values to binary. 
a) ABCD16       b) 1DEF16       c) 864516       d) 925A16 



42   Computer Organization and Design Fundamentals 
 
11. True or False:  A list of numbers to be added would be a good 

candidate for conversion using BCD. 

12. Determine which of the following binary patterns represent valid 
BCD numbers (signed or unsigned). Convert the valid ones to 
decimal. 
a.) 1010111100101100011 
b.) 10010101001001101001 
c.) 01101101001010011001 
d.) 11000110010000010000 
e.) 1101100101110010 
f.) 111100010010010101101000 
g.) 10101100100010 

13. Convert the decimal number 9640410 to BCD. 

14. Create the 5-bit Gray code sequence. 

 

 



 43 

CHAPTER THREE 

Binary Math and Signed Representations 

Representing numbers with bits is one thing. Doing something with 
them is an entirely different matter. This chapter discusses some of the 
basic mathematical operations that computers perform on binary 
numbers along with the binary representations that support those 
operations. These concepts will help programmers better understand the 
limitations of doing math with a processor, and thereby allow them to 
better handle problems such as the upper and lower limits of variable 
types, mathematical overflow, and type casting. 

3.1 Binary Addition 
Regardless of the numbering system, the addition of two numbers 

with multiple digits is performed by adding the corresponding digits of 
a single column together to produce a single digit result. For example, 3 
added to 5 using the decimal numbering system equals 8. The 8 is 
placed in the same column of the result where the 3 and 5 came from. 
All of these digits, 3, 5, and 8, exist in the decimal numbering system, 
and therefore can remain in a single column.  

In some cases, the result of the addition in a single column might be 
more than 9 making it necessary to place a '1' overflow or carry to the 
column immediately to the left. If we add 6 to 5 for example, we get 11 
which is too large to fit in a single decimal digit. Therefore, 10 is 
subtracted from the result leaving 1 as the new result for that column. 
The subtraction of 10 is compensated for by placing a carry in the next 
highest column, the ten's place. Another way of saying this is that 6 
added to 5 equals 1 with a carry of 1. It is important to note that the 
addition of two digits in decimal can never result in a value greater than 
18. Therefore, the carry to the next highest position will never be larger 
than 1. 

Binary addition works the same way except that we're limited to two 
digits. Three of the addition operations, 0+0, 0+1, and 1+0, result in 0 
or 1, digits that already exist in the binary numbering system. This 
means no carry will be needed. 



44   Computer Organization and Design Fundamentals 
 

Adding 1 to 1, however, results in a decimal 2, a digit which does 
not exist in binary. In this case, we need to create a carry or overflow 
that will go to the next column. 

The next highest bit position represents 21 = 2. Just as we did with 
decimal, we subtract one instance of the next highest bit position from 
our result. In the case of 1+1=2, we subtract 2 from 2 and get 0. 
Therefore, 0 is the result that is placed in the current column, and the 
subtraction of 2 becomes a carry to the next column. Therefore, 1+1 in 
binary equals 0 with a carry of 1. Each of the possible binary additions 
of two variables is shown in Figure 3-1. 

 
   1 
0  0 1 1

+ 0  + 1 + 0 + 1
0  1 1 10

Figure 3-1   Four Possible Results of Adding Two Bits 

The last addition 12 + 12 = 102 is equivalent to the decimal addition 
110 + 110 = 210. Converting 210 to binary results in 102, the result shown 
in the last operation of Figure 3-1, which confirms our work. 

Now we need to figure out how to handle a carry from a previous 
column. In decimal, a carry from a previous column is simply added to 
the next column. This is the same as saying that we are adding three 
digits where one of the digits, the carry, is always a one. 

In binary, accounting for a carry adds four new scenarios to the 
original four shown in Figure 3-1. Just like decimal, it is much like 
adding three values together: 1+0+0, 1+0+1, 1+1+0, or 1+1+1. The 
four additional cases where a carry is added from the previous column 
are shown in Figure 3-2. 

 
Previous 
Carry  1

 1 
1

 1 
1

 1 
1 

 0 0 1 1 
 + 0 + 1 + 0 + 1 
 1 10 10 11 

Figure 3-2   Four Possible Results of Adding Two Bits with Carry 



 Chapter 3: Binary Math and Signed Representations    45 
 

The second and third cases are similar to the last case presented in 
Figure 3-1 where two 1's are added together to get a result of 0 with a 
carry. The last case in Figure 3-2, however, has three 1's added together 
which equals 310. Subtracting 2 from this result places a new result of 1 
in the current column and sends a carry to the next column. And just as 
in decimal addition, the carry in binary is never greater than 1. 

Now let's try to add binary numbers with multiple digits. The 
example shown below presents the addition of 100101102 and 
001010112. The highlighted values are the carries from the previous 
column's addition, and just as in decimal addition, they are added to the 
next most significant digit/bit. 

 
    1 1 1 1 1     
  1 0 0 1 0 1 1 0 
+ 0 0 1 0 1 0 1 1 
  1 1 0 0 0 0 0 1 

3.2 Binary Subtraction 
Just as with addition, we're going to use the decimal numbering 

system to illustrate the process used in the binary numbering system for 
subtraction.  

There are four possible cases of single-bit binary subtraction:  0 – 0, 
0 – 1, 1 – 0, and 1 – 1. As long as the value being subtracted from (the 
minuend) is greater than or equal to the value subtracted from it (the 
subtrahend), the process is contained in a single column. 

 
  Minuend 0 1 1 
Subtrahend - 0 - 0 - 1 

0 1 0 
 
But what happens in the one case when the minuend is less than the 

subtrahend? As in decimal, a borrow must be taken from the next most 
significant digit. The same is true for binary. 

 
 
 
 

1 0 
- 1 
  1 

A "borrow" is made from 
the next highest bit position



46   Computer Organization and Design Fundamentals 
 
Pulling 1 from the next highest column in binary allows us to add 102 
or a decimal 2 to the current column. For the previous example, 102 
added to 0 gives us 102 or a decimal 2. When we subtract 1 from 2, the 
result is 1. 

Now let's see how this works with a multi-bit example. 

Starting at the rightmost bit, 1 is subtracted from 1 giving us zero. In 
the next column, 0 is subtracted from 1 resulting in 1. We're okay so far 
with no borrows required. In the next column, however, 1 is subtracted 
from 0. Here we need to borrow from the next highest digit. 

The next highest digit is a 1, so we subtract 1 from it and add 10 to 
the digit in the 22 column. (This appears as a small "1" placed before 
the 0 in the minuend's 22 position.) This makes our subtraction 10 - 1 
which equals 1. Now we go to the 23 column. After the borrow, we 
have 0 – 0 which equals 0. 

We need to make a borrow again in the third column from the left, 
the 26 position, but the 27 position of the minuend is zero and does not 
have anything to borrow. Therefore, the next highest digit of the 
minuend, the 28 position, is borrowed from. The borrow is then 
cascaded down until it reaches the 26 position so that the subtraction 
may be performed. 

3.3 Binary Complements 
In decimal arithmetic, every number has an additive complement, 

i.e., a value that when added to the original number results in a zero. 
For example, 5 and -5 are additive complements because 5 + (-5) = 0. 
This section describes the two primary methods used to calculate the 
complements of a binary value. 

3.3.1 One's Complement 
When asked to come up with a pattern of ones and zeros that when 

added to a binary value would result in zero, most people respond with, 
"just flip each bit in the original value."  This "inverting" of each bit, 
substituting 1's for all of the 0's and 0's for all of the 1's, results in the 
1's complement of the original value. An example is shown below. 

  0 1    0 
  1 10 10 1 1 1 10 1 1 
 - 0 0 1 0 1 0 1 0 1 
  0 1 1 1 0 0 1 1 0 



 Chapter 3: Binary Math and Signed Representations    47 
 

 
Previous value  1 0 0 1 0 1 1 1 

1's complement 0 1 1 0 1 0 0 0 
 
The 1's complement of a value is useful for some types of digital 

functions, but it doesn't provide much of a benefit if you are looking for 
the additive complement. See what happens when we add a value to its 
1's complement. 

 
 1 0 0 1 0 1 1 0 
 + 0 1 1 0 1 0 0 1 
 1 1 1 1 1 1 1 1 
 
If the two values were additive complements, the result should be 

zero, right? Well, that takes us to the 2's complement. 

3.3.2 Two's Complement 
The result of adding an n-bit number to its one's complement is 

always an n-bit number with ones in every position. If we add 1 to that 
result, our new value is an n-bit number with zeros in every position 
and an overflow or carry to the next highest position, the (n+1)th 
column which corresponding to 2n. For our 8-bit example above, the 
result of adding 100101102 to 011010012 is 111111112. Adding 1 to 
this number gives us 000000002 with an overflow carry of 1 to the 
ninth or 28 column. If we restrict ourselves to 8 bits, this overflow carry 
can be ignored. 

This gives us a method for coming up with the additive complement 
called the 2's complement representation. The 2's complement of a 
value is found by first taking the 1's complement, then incrementing 
that result by 1. For example, in the previous section, we determined 
that the 1's complement of 100101112 is 011010002. If we add 1 to this 
value, we get: 

 
 0 1 1 0 1 0 0 0 
 +               1  
 0 1 1 0 1 0 0 1 
 

Therefore, the 2's complement of 100101112 is 011010012. Let's see 
what happens when we try to add the value to its 2's complement. 



48   Computer Organization and Design Fundamentals 
 

 
 1 1 1 1 1 1 1 1   
 1 0 0 1 0 1 1 1 
 + 0 1 1 0 1 0 0 1 
 0 0 0 0 0 0 0 0 
 
The result is zero! Okay, so most of you caught the fact that I didn't 

drop down the last carry which would've made the result 1000000002. 
This is not a problem, because in the case of signed arithmetic, the 
carry has a purpose other than that of adding an additional digit 
representing the next power of two. As long as we make sure that the 
two numbers being added have the same number of bits, and that we 
keep the result to that same number of bits too, then any carry that goes 
beyond that should be discarded. 

Actually, discarded is not quite the right term. In some cases we will 
use the carry as an indication of a possible mathematical error. It should 
not, however, be included in the result of the addition. This is simply 
the first of many "anomalies" that must be watched when working with 
a limited number of bits. 

Two more examples of 2's complements are shown below. 
 

Original value (1010) 0 0 0 0 1 0 1 0 
1's complement 1 1 1 1 0 1 0 1 

2's complement (-1010)  1 1 1 1 0 1 1 0 
 

Original value (8810) 0 1 0 1 1 0 0 0 
1's complement 1 0 1 0 0 1 1 1 

2's complement (-8810) 1 0 1 0 1 0 0 0 
 
Now let's see if the 2's complement representation stands up in the 

face of addition. If 8810 = 010110002 and -1010 = 111101102, then the 
addition of these two numbers should equal 7810 = 010011102. 

  
 1 1 1 1       
 0 1 0 1 1 0 0 0 
 + 1 1 1 1 0 1 1 0 
 0 1 0 0 1 1 1 0 
 



 Chapter 3: Binary Math and Signed Representations    49 
 

There is also a "short-cut" to calculating the 2's complement of a 
binary number. This trick can be used if you find the previous way too 
cumbersome or if you'd like a second method in order to verify the 
result you got from using the first. 

The trick works by copying the zero bit values starting with the least 
significant bit until you reach your first binary 1. Copy that 1 too. If the 
least significant bit is a one, then only copy that bit. Next, invert all of 
the remaining bits. Figure 3-3 presents an example of the short-cut. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-3   Two's Complement Short-Cut 

This result matches the result for the previous example. 
In decimal, the negative of 5 is -5. If we take the negative a second 

time, we return to the original value, e.g., the negative of -5 is 5. Is the 
same true for taking the 2's complement of a 2's complement of a 
binary number?  Well, let's see. 

The binary value for 4510 is 001011012. Watch what happens when 
we take the 2's complement twice. 

 
Original value = 45  0 0 1 0 1 1 0 1 

1's complement of 45 1 1 0 1 0 0 1 0 
2's complement of 45 = -45 1 1 0 1 0 0 1 1 

1's complement of -45 0 0 1 0 1 1 0 0 
2's complement of -45 = 45 0 0 1 0 1 1 0 1 

 
It worked! The second time the 2's complement was taken, the 

pattern of ones and zeros returned to their original values. It turns out 
that this is true for any binary number of a fixed number of bits. 

1 0 1 0 1 0 0 0

Step 1:  Copy bits 
up to and including 

the first '1'. 

Step 2:  Invert 
the remaining 

bits. 

First '1' reading 
right to left 

0 1 0 1 1 0 0 0



50   Computer Organization and Design Fundamentals 
 
3.3.3 Most Significant Bit as a Sign Indicator 

As was stated earlier, 2's complement is used to allow the computer 
to represent the additive complement of a binary number, i.e., negative 
numbers. But there is a problem. As we showed earlier in this section, 
taking the 2's complement of 4510 = 001011012 gives us –4510 = 
110100112. But in Chapter 2, the eight bit value 110100112 was shown 
to be equal to 27 + 26 + 24 + 21 + 20 = 128 + 64 + 16 + 2 + 1 = 21110. So 
did we just prove that –4510 is equal to 21110?  Or maybe 001011012 is 
actually –21110. 

It turns out that when using 2's complement binary representation, 
half of the binary bit patterns must lose their positive association in 
order to represent negative numbers. So is 110100112 –4510 or 21110?  
It turns out that 110100112 is one of the bit patterns meant to represent 
a negative number, so in 2's complement notation, 110100112 = –4510. 
But how can we tell whether a binary bit pattern represents a positive or 
a negative number? 

From the earlier description of the 2's complement short-cut, you 
can see that except for two cases, the MSB of the 2's complement is 
always the inverse of the original value. The two cases where this isn't 
true are when all bits of the number except the most significant bit 
equal 0 and the most significant bit is a 0 or a 1. In both of these cases, 
the 2's complement equals the original value. 

In all other cases, when we apply the shortcut we will always 
encounter a 1 before we get to the MSB when reading right to left. 
Since every bit after this one will be inverted, then the most significant 
bit must be inverted toggling it from its original value. If the original 
value has a zero in the MSB, then its 2's complement must have a one 
and vice versa. Because of this characteristic, the MSB of a value can 
be used to indicate whether a number is positive or negative and is 
called a sign bit. 

A binary value with a 0 in the MSB position is considered positive 
and a binary value with a 1 in the MSB position is considered negative. 
This makes it vital to declare the number of bits that a signed binary 
number uses. If this information is not given, then the computer or the 
user looking at a binary number will not know which bit is the MSB. 

Since the MSB is being used to indicate the sign of a signed binary 
number, it cannot be used to represent a power of 2, i.e., if a number is 
said to represent a 2's complement value, only n-1 of its n bits can be 



 Chapter 3: Binary Math and Signed Representations    51 
 
used to determine the magnitude since the MSB is used for the sign. 
This cuts in half the number of positive integers n bits can represent. 

And the special cases?  Well, a binary number with all zeros is equal 
to a decimal 0. Taking the negative of zero still gives us zero. The other 
case is a bit trickier. In the section on minimums and maximums, we 
will see that an n-bit value with an MSB equal to one and all other bits 
equal to zero is a negative number, specifically, –2(n-1). The largest 
positive number represented in 2's complement has an MSB of 0 with 
all the remaining bits set to one. This value equals 2(n-1) – 1. Therefore, 
since 2(n-1) > 2(n-1) – 1, we can see that there is no positive equivalent to 
the binary number 100…002.  

3.3.4 Signed Magnitude 
A second, less useful way to represent positive and negative binary 

numbers is to take the MSB and use it as a sign bit, much like a plus or 
minus sign, and leave the remaining bits to represent the magnitude. 
The representation is called signed magnitude representation. For 
example, –45 and +45 would be identical in binary except for the MSB 
which would be set to a 1 for –45 and a 0 for +45. This is shown below 
for an 8-bit representation. 

  
+4510 in binary  0 0 1 0 1 1 0 1 

–4510 using signed magnitude 1 0 1 0 1 1 0 1 

3.3.5 MSB and Number of Bits 
Since the MSB is necessary to indicate the sign of a binary value, it 

is vital that we know how many bits a particular number is being 
represented with so we know exactly where the MSB is. In other 
words, the leading zeros of a binary value may have been removed 
making it look like the binary value is negative since it starts with a 
one. 

For example, if the binary value 100101002 is assumed to be an 8-bit 
signed number using 2's complement representation, then converting it 
to decimal would give us -10810. (We will discuss converting signed 
values to decimal later in this chapter.)  If, however, it was a 10-bit 
number, then the MSB would be 0 and it would convert to the positive 
value 14810. 



52   Computer Organization and Design Fundamentals 
 
3.3.6 Issues Surrounding the Conversion of Binary Numbers 

Since computers don't use an infinite number of bits to represent 
values, the software must know two things before it can interpret a 
binary value: the number of bits and the type of binary representation 
being used. This usually is confusing for the novice. 

Identifying 101001102 as an 8-bit number isn't enough. Note that the 
MSB is equal to 1. Therefore, this value represents one number in 
unsigned binary, another number in 2's complement, and yet a third in 
signed magnitude. 

First, let's do the conversion of 101001102 assuming it is an 8-bit, 
unsigned binary like those described in Chapter 2. 

 
101001102 = 27 + 25 + 22 + 21 = 128 + 32 + 4 + 2 = 16610 

 
Now let's do the conversion in 2's complement. Before we do, 

however, let's examine the process. First, if the MSB is equal to 0, then 
the value is a positive number. In 2's complement notation, positive 
numbers look just like unsigned binary and should be treated exactly 
the same when performing a conversion to decimal. 

If, however, the MSB is equal to 1, then the value represented by 
this pattern of ones and zeros is negative. To turn it into a negative 
number, someone had to apply the process of taking the 2’s 
complement to the original positive value. Therefore, we must remove 
the negative sign before we do the conversion. 

It was shown earlier how a second application of the 2's complement 
conversion process returns the number back to its original positive 
value. If taking the 2's complement of a negative number returns it to 
its positive value, then the positive value can be converted to decimal 
using the same process used for an unsigned binary value. Adding a 
negative sign to the decimal result completes the conversion. Figure  
3-4 presents a flow chart showing this process graphically.  

A second method of converting an n-bit 2's complement value to 
decimal is to perform the conversion as you would an unsigned binary 
value except that the MSB digit is treated as –2n-1 instead of 2n-1. For 
example, the MSB of an 8-bit 2's complement value would represent  
–2-7 = –128. 

 
 
 



 Chapter 3: Binary Math and Signed Representations    53 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-4   Converting a Two's Complement Number to a Decimal 

In the case of 101001102, the MSB is a 1. Therefore, it is a negative 
number. By following the right branch of the flowchart in Figure 3-4, 
we see that we must take the two's complement to find the positive 
counterpart for our negative number. 

 
Negative value  1 0 1 0 0 1 1 0 

1's comp. of negative value 0 1 0 1 1 0 0 1 
2's comp. of negative value 0 1 0 1 1 0 1 0 
 
Now that we have the positive counterpart for the 2's complement 

value of the negative number 101001102, we convert it to decimal just 
as we did with the unsigned binary value. 

 
010110102 = 26 + 24 + 23 + 21 = 64 + 16 + 8 + 2 = 9010 

 
Since the original 2's complement value was negative to begin with, 

the value 101001102 in 8-bit, 2's complement form is –90. 

Start 
Positive 
Number 

Negative 
Number 

Does 
MSB=1? 

No Yes 
Take 2's 

complement 

Convert to 
decimal using 

unsigned 
integer method 

Insert negative 
sign 

End 

Convert to 
decimal using 

unsigned 
integer method 



54   Computer Organization and Design Fundamentals 
 

We can duplicate this result using the second method of conversion, 
i.e., converting 101001102 using the unsigned binary method while 
treating the MSB as –2-7. In this case, there is a 1 in the –2-7, 25, 22, and 
21 positions. 

 
101001102 = 2-7 + 25 + 22 + 21 = –128 + 32 + 4 + 2 = –9010 

 
Next, let's do the conversion assuming 101001102 is in 8-bit signed 

magnitude where the MSB represents the sign bit. As with the 2's 
complement form, an MSB of 1 means that the number is negative.  

The conversion of a signed magnitude binary number to decimal is 
different than 2's complement. In the case of signed magnitude, remove 
the MSB and convert the remaining bits using the same methods used 
to convert unsigned binary to decimal. When done, place a negative 
sign in front of the decimal result only if the MSB equaled 1. 

 
Meaning of bit position Sign 26 25 24 23 22 21 20 

Binary value 1 0 1 0 0 1 1 0 
 
To convert this value to a positive number, remove the sign bit. 

Next, calculate the magnitude just as we would for the unsigned case. 
 

01001102 = 25 + 22 + 21 = 32 + 4 + 2 = 3810 
 
Since the MSB of the original value equaled 1, the signed magnitude 

value was a negative number to begin with, and we need to add a 
negative sign. Therefore, 101001102 in 8-bit, signed magnitude 
representation equals –3810. 

But what if this binary number was actually a 10-bit number and not 
an 8 bit number? Well, if it's a 10 bit number (00101001102), the MSB 
is 0 and therefore it is a positive number. This makes our conversion 
much easier. The method for converting a positive binary value to a 
decimal value is the same for all three representations. The conversion 
goes something like this: 

 
Bit position MSB 28 27 26 25 24 23 22 21 20 

Binary value 0 0 1 0 1 0 0 1 1 0 
 
00101001102 = 27 + 25 + 22 + 21 = 128 + 32 + 4 + 2 = 16610 



 Chapter 3: Binary Math and Signed Representations    55 
 

This discussion shows that it is possible for a binary pattern of ones 
and zeros to have three interpretations. It all depends on how the 
computer has been told to interpret the value. 

In a programming language such as C, the way in which a computer 
treats a variable depends on how it is declared. Variables declared as 
unsigned int are stored in unsigned binary notation. Variables declared 
as int are treated as either 2's complement or signed magnitude 
depending on the processor and/or compiler. 

3.3.7 Minimums and Maximums 
When using a finite number of bit positions to store information, it is 

vital to be able to determine the minimum and maximum values that 
each binary representation can handle. Failure to do this might result in 
bugs in the software you create. This section calculates the minimum 
and maximum values for each of the three representations discussed in 
this and the previous chapter using a fixed number of bits, n. 

Let's begin with the most basic representation, unsigned binary. The 
smallest value that can be represented with unsigned binary 
representation occurs when all the bits equal zero. Conversion from 
binary to decimal results in 0 + 0 + ... + 0 = 0. Therefore, for an n bit 
number: 

 
 Minimum n-bit unsigned binary number = 0 (3.1) 

 
The largest value that can be represented with unsigned binary 

representation is reached when all n bits equal one. When we convert 
this value from binary to decimal, we get 2n-1 + 2n-2 + ... + 20. As was 
shown in Chapter 2, adding one to this expression results in 2n. 
Therefore, for an n-bit unsigned binary number, the maximum is: 

 
 Maximum n-bit unsigned binary number = 2n – 1 (3.2) 

 
Next, let's examine the minimum and maximum values for an n-bit 

2's complement representation. Unlike the unsigned case, the lowest 
decimal value that can be represented with n-bits in 2's complement 
representation is not obvious. Remember, 2's complement uses the 
MSB as a sign bit. Since the lowest value will be negative, the MSB 
should be set to 1 (a negative value). But what is to be done with all of 
the remaining bits?  A natural inclination is to set all the bits after the 



56   Computer Organization and Design Fundamentals 
 
MSB to one. This should be a really big negative number, right? Well, 
converting it to decimal results in something like the 8 bit example 
below: 

 
2's comp. value 1 1 1 1 1 1 1 1 

Intermediate 1's complement 0 0 0 0 0 0 0 0 
Positive value of 2's comp. 0 0 0 0 0 0 0 1 

 
This isn't quite what we expected. Using the 2's complement method 

to convert 111111112 to a decimal number results in –110. This couldn't 
possibly be the lowest value that can be represented with 2's 
complement. 

It turns out that the lowest possible 2's complement value is an MSB 
of 1 followed by all zeros as shown in the 8 bit example below. For the 
conversion to work, you must strictly follow the sequence presented in 
Figure 3-4 to convert a negative 2's complement value to decimal. 

 
2's comp. value 1 0 0 0 0 0 0 0 

Intermediate 1's complement 0 1 1 1 1 1 1 1 
Positive value of 2's comp. 1 0 0 0 0 0 0 0 

 
Converting the positive value to decimal using the unsigned method 

shows that 100000002 = –27 = –128. Translating this to n-bits gives us: 
 

 Minimum n-bit 2's complement number = –2(n-1) (3.3) 
 
The maximum value is a little easier to find. It is a positive number, 

i.e., an MSB of 0. The remaining n-1 bits are then treated as unsigned 
magnitude representation. Therefore, for n bits: 

 
 Maximum n-bit 2's complement number = 2(n-1) – 1 (3.4) 

 
Last of all, we have the signed magnitude representation. To 

determine the magnitude of a signed magnitude value, ignore the MSB 
and use the remaining n–1 bits to convert to decimal as if they were in 
unsigned representation. This means that the largest and smallest values 
represented with an n-bit signed magnitude number equals the positive 
and negative values of an (n–1)-bit unsigned binary number. 

 



 Chapter 3: Binary Math and Signed Representations    57 
 
 Minimum n-bit signed magnitude number = –(2(n-1)– 1) (3.5) 
 
 Maximum n-bit signed magnitude number = (2(n-1)– 1) (3.6) 

 
As an example, Table 3-1 compares the minimum and maximum 

values of an 8-bit number for each of the binary representations. The 
last column shows the number of distinct integer values possible with 
each representation. For example, there are 256 integer values between 
0 and 255 meaning the 8-bit unsigned binary representation has 256 
possible combinations of 1's and 0's, each of which represents a 
different integer in the range. 

Table 3-1   Representation Comparison for 8-bit Binary Numbers 

Representation Minimum Maximum Number of integers 
represented 

Unsigned 0 255 256 
2's Complement -128 127 256 
Signed Magnitude -127 127 255 

 
So why can 8-bit signed magnitude only represent 255 possible 

values instead of 256? It is because in signed magnitude 000000002 and 
100000002 both represent the same number, a decimal 0. 

3.4 Floating Point Binary 
Binary numbers can also have decimal points, and to show you how, 

we will once again begin with decimal numbers. For decimal numbers 
with decimal points, the standard way to represent the digits to the right 
of the decimal point is to continue the powers of ten in descending 
order starting with -1 where 10-1=1/10th = 0.1. That means that the 
number 6.5342 has 5 increments of 10-1 (tenths), 3 increments of 10-2 
(hundredths), 4 increments of 10-3 (thousandths), and 2 increments of 
10-4 (ten-thousandths). The table below shows this graphically. 

 
Exponent 3 2 1 0 -1 -2 -3 -4 

Position value 1000 100 10 1 0.1 0.01 0.001 0.0001 
Sample values 0 0 0 6 5 3 4 2 
 



58   Computer Organization and Design Fundamentals 
 
Therefore, our example has the decimal value 6*1 + 5*0.1 + 3*0.01 + 
4*0.001 + 2*0.0001 = 6.5342. 

Binary representation of real numbers works the same way except 
that each position represents a power of two, not a power of ten. To 
convert 10.01101 to decimal for example, use descending negative 
powers of two to the right of the decimal point. 

         
Exponent 2 1 0 -1 -2 -3 -4 -5 

Position value 4 2 1 0.5 0.25 0.125 0.0625 0.03125 
Sample values 0 1 0 0 1 1 0 1 

 
Therefore, our example has the decimal value 0*4 + 1*2 + 0*1 

+0*0.5 + 1*0.25 + 1*0.125 + 0*0.0625 + 1*0.03125 = 2.40625. This 
means that the method of conversion is the same for real numbers as it 
is for integer values; we've simply added positions representing 
negative powers of two. 

Computers, however, use a form of binary more like scientific 
notation to represent floating-point or real numbers. For example, with 
scientific notation we can represent the large value 342,370,000 as 
3.4237 x 108. This representation consists of a decimal component or 
mantissa of 3.4237 with an exponent of 8. Both the mantissa and the 
exponent are signed values allowing for negative numbers and for 
negative exponents respectively.  

Binary works the same way using 1's and 0's for the digits of the 
mantissa and exponent and using 2 as the multiplier that moves the 
decimal point left or right. For example, the binary number 
100101101.010110 would be represented as: 

 
1.00101101010110 * 28 

 
The decimal point is moved left for negative exponents of two and right 
for positive exponents of two. 

The IEEE Standard 754 is used to represent real numbers on the 
majority of contemporary computer systems. It utilizes a 32-bit pattern 
to represent single-precision numbers and a 64-bit pattern to represent 
double-precision numbers. Each of these bit patterns is divided into 
three parts, each part representing a different component of the real 
number being stored. Figure 3-5 shows this partitioning for both single- 
and double-precision numbers. 



 Chapter 3: Binary Math and Signed Representations    59 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-5   IEEE Standard 754 Floating-Point Formats 

Both formats work the same differing only by the number of bits 
used to represent each component of the real number. In general, the 
components of the single-precision format are substituted into Equation 
3.7 where the sign of the value is determined by the sign bit (0 – 
positive value, 1 – negative value). Note that E is in unsigned binary 
representation. 

 
 (+)1.F x 2(E-127) (3.7) 

 
Equation 3.8 is used for the double-precision values. 
 

 (+)1.F x 2(E-1023) (3.8) 
 
In both cases, F is preceded with an implied '1' and a binary point. 
There are, however, some special cases. These are as follows: 
 

 Positive, E=255, F=0: represents positive infinite; 
 Negative, E=255, F=0: represents negative infinite; and 
 Positive or negative, E=0, F=0: represents zero. 

Sign 
bit Exponent, E Fraction, F 

1 bit 8 bits 23 bits 

a)  Single-Precision 

Sign 
bit Exponent, E Fraction, F 

1 bit 11 bits 52 bits 

b)  Double-Precision 



60   Computer Organization and Design Fundamentals 
 
Example 

Convert the 32-bit single-precision IEEE Standard 754 number 
shown below into its binary equivalent. 

 
11010110101101101011000000000000 

Solution 
First, break the 32-bit number into its components. 
 
 
 
 
 
 
A sign bit of 1 means that this will be a negative number.  
The exponent, E, will be used to determine the power of two by 

which our mantissa will be multiplied. To use it, we must first convert 
it to a decimal integer using the unsigned method. 

 
 Exponent, E  = 101011012  
  = 27 + 25 + 23 + 22 + 20 
  = 128 + 32 + 8 + 4 + 1 
  = 17310 
 
Substituting these components into Equation 3.7 gives us: 
 

 (+)1.F x 2(E-127) = –1.01101101011000000000000 x 2(173-127) 
  = –1.01101101011 x 246 

Example 
Create the 32-bit single-precision IEEE Standard 754 representation 

of the binary number 0.000000110110100101 

Solution 
Begin by putting the binary number above into the binary form of 

scientific notation with a single 1 to the left of the decimal point. Note 
that this is done by moving the decimal point seven positions to the 
right giving us an exponent of –7. 

1 10101101 01101101011000000000

Sign bit Exponent, E Fraction, F 



 Chapter 3: Binary Math and Signed Representations    61 
 

0.000000110110100101 = 1.10110100101 x 2-7 
 
The number is positive, so the sign bit will be 0. The fraction (value 

after the decimal point and not including the leading 1) is 10110100101 
with 12 zeros added to the end to make it 23 bits. Lastly, the exponent 
must satisfy the equation: 

 
E – 127 = –7 
E = –7 + 127 = 120 
 

Converting 12010 to binary gives us the 8-bit unsigned binary value 
011110002. Substituting all of these components into the IEEE 754 
format gives us: 

 
 
 
 
 
Therefore, the answer is 00111100010110100101000000000000. 

3.5 Hexadecimal Addition 
At the beginning of this chapter, it was shown how binary addition 

(base 2) with its two digits, 1 and 0, is performed the same way decimal 
addition (base 10) is with its ten digits, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 
The only difference is the limitation placed on the addition by the 
number of digits. In binary, the addition of two or three ones results in 
a carry since the result goes beyond 1, the largest binary digit. Decimal 
doesn't require a carry until the result goes beyond 9. 

Hexadecimal numbers (base 16) can be added using the same 
method. The difference is that there are more digits in hexadecimal 
than there are in decimal. For example, in decimal, adding 5 and 7 
results in 2 with a carry to the next highest position. In hexadecimal, 
however, 5 added to 7 does not go beyond the range of a single digit. In 
this case, 5 + 7 = C16 with no carry. It isn't until a result greater than F16 
is reached (a decimal 1510) that a carry is necessary. 

In decimal, if the result of an addition is greater than 9, subtract 1010 
to get the result for the current column and add a carry to the next 
column. In binary, when a result is greater than 1, subtract 102 (i.e., 210) 
to get the result for the current column then add a carry to the next 

0 01111000 10110100101000000000

Sign bit Exponent, E Fraction, F 



62   Computer Organization and Design Fundamentals 
 
column. In hexadecimal addition, if the result is greater than F16 (1510) 
subtract 1016 (1610) to get the result for the current column and add a 
carry to the next column.  

 
 D16 + 516  = 1310 + 510 = 1810 

 
By moving a carry to the next highest column, we change the result 

for the current column by subtracting 1610. 
 

 1810  = 210 + 1610 
  = 216 with a carry to the next column 

 
Therefore, D16 added to 516 equals 216 with a carry to the next column. 

Just like decimal and binary, the addition of two hexadecimal digits 
never generates a carry greater than 1. The following shows how 
adding the largest hexadecimal digit, F16, to itself along with a carry 
from the previous column still does not require a carry larger than 1 to 
the next highest column. 

   
 F16 + F16 +1  = 1510 + 1510 + 1 = 3110 
  = 1510 + 1610 
  = F16 with a 1 carry to the next column 

 
When learning hexadecimal addition, it might help to have a table 

showing the hexadecimal and decimal equivalents such as that shown 
in Table 3-2. This way, the addition can be done in decimal, the base 
with which most people are familiar, and then the result can be 
converted back to hex. 

Table 3-2   Hexadecimal to Decimal Conversion Table 

Hex Dec  Hex Dec Hex Dec Hex Dec 
016 010  416 410 816 810 C16 1210 
116 110  516 510 916 910 D16 1310 
216 210  616 610 A16 1010 E16 1410 
316 310  716 710 B16 1110 F16 1510 



 Chapter 3: Binary Math and Signed Representations    63 
 
Example 

Add 3DA3216 to 4292F16. 

Solution 
Just like in binary and decimal, place one of the numbers to be 

added on top of the other so that the columns line up. 
 
  3 D A 3 2 
 + 4 2 9 2 F 
 
Adding 216 to F16 goes beyond the limit of digits hexadecimal can 

represent. It is equivalent to 210 + 1510 which equals 1710, a value 
greater than 1610. Therefore, we need to subtract 1016 (1610) giving us a 
result of 1 with a carry into the next position. 

 
     1  
  3 D A 3 2 
 + 4 2 9 2 F 
      1 
 
For the next column, the 161 position, we have 1 + 3 + 2 which 

equals 6. This result is less than 1610, so there is no carry to the next 
column. 

 
     1  
  3 D A 3 2 
 + 4 2 9 2 F 
     6 1 
 
The 162 position has A16 + 916 which in decimal is equivalent to 1010 

+ 910 = 1910. Since this is greater than 1610, we must subtract 1610 to get 
the result for the 162 column and add a carry in the 163 column. 

 
   1  1  
  3 D A 3 2 
 + 4 2 9 2 F 
    3 6 1 



64   Computer Organization and Design Fundamentals 
 

For the 163 column, we have 116 + D16 + 216 which is equivalent to 
110 + 1310 + 210 = 1610. This gives us a zero for the result in the 163 
column with a carry. 

 
  1 1  1  
  3 D A 3 2 
 + 4 2 9 2 F 
   0 3 6 1 
 
Last of all, 1 + 3 + 4 = 8 which is the same in both decimal and 

hexadecimal, so the result is 3DA3216 + 4292F16 = 8036116: 
 
  1 1  1  
  3 D A 3 2 
 + 4 2 9 2 F 
  8 0 3 6 1 
 

3.6 BCD Addition 
When we introduced Binary Coded Decimal numbers, we said that 

the purpose of these numbers was to provide a quick conversion to 
binary that would not be used in mathematical functions. It turns out, 
however, that BCD numbers can be added too, there's just an additional 
step that occurs when each column of digits is added. 

When two BCD numbers are added, the digits 1010, 1011, 1100, 
1101, 1110, and 1111 must be avoided. This is done by adding an 
additional step anytime the binary addition of two nibbles results in one 
of these illegal values or if a carry is generated. When this happens, the 
invalid result is corrected by adding 6 to skip over the illegal values. 
For example: 

 
  BCD      Decimal 
 
  0011        3 
 +1000       +8 
  1011     Invalid 
 +0110       +6 
 10001       11 

 



 Chapter 3: Binary Math and Signed Representations    65 
 

This step is also necessary if a carry results from a BCD addition. 
 

   BCD     Decimal 
 
  1001        9 
 +1000       +8 
 10001     Carry 
 +0110       +6 
 10111       17 

3.7 Multiplication and Division by Powers of Two 
Due to factors to be examined later in this book, multiplication and 

division is a time-intensive operation for processors. Therefore, 
programmers and compilers have a trick they use to divide or multiply 
binary by powers of two. Examine Table 3-3 to see if you can find a 
pattern in the multiples of two of the binary number 10012. 

Table 3-3   Multiplying the Binary Value 10012 by Powers of Two 

 Binary 
Decimal 28 27 26 25 24 23 22 21 20 

9 0 0 0 0 0 1 0 0 1 
18 0 0 0 0 1 0 0 1 0 
36 0 0 0 1 0 0 1 0 0 
72 0 0 1 0 0 1 0 0 0 
144 0 1 0 0 1 0 0 0 0 
288 1 0 0 1 0 0 0 0 0 

 
Note that multiplying by two has the same effect as shifting all of 

the bits one position to the left. Similarly, a division by two is 
accomplished by a right shift one position. This is similar to moving a 
decimal point right or left when multiplying or dividing a decimal 
number by a power of ten. 

Since a shift operation is significantly faster than a multiply or 
divide operation, compilers will always substitute a shift operation 
when a program calls for a multiply or divide by a power of two. For 
example, a division by 1610 = 24 is equivalent to a right shift by 4 bit 
positions. 



66   Computer Organization and Design Fundamentals 
 

This works for all positive binary representations of integers and 
real numbers as well as 2's complement representation of negative 
numbers. Care must be taken in a few instances in order to maintain the 
data's integrity. 

First, carefully watch the bits that are shifted out to verify that data 
isn't being lost. If during a left shift (multiplication), a one is shifted out 
of an unsigned binary value or the MSB of a 2's complement number 
changes, then you've gone beyond the range of values for that number 
of bits. If during a right shift (division), a one is shifted out of an 
integer value, then a decimal value has been truncated. 

For negative 2's complement values, there is an additional concern. 
Since the MSB is a sign bit, if we fill in the empty bits coming in from 
the left with zeros when performing a right shift, then a negative 
number has been turned into a positive number. To avoid this, always 
duplicate the sign bit in the MSB for each right shift of a 2's 
complement value. 

 
 
 
 
 
 
 

Figure 3-6   Duplicate MSB for Right Shift of 2's Complement Values 

This operation can even be used for some multiplications by 
constants other than powers of two. For example, if a processor needed 
to multiply a value x by 10, it could first multiply x by 2 (a single left 
shift), then multiply x by 8 (a left shift by three bit positions), then add 
the two shifted values together. This would still be a time savings over 
a multiplication. 

A bit shift is easily accomplished in high-level programming 
languages such as C. In C, the operator used to perform a left shift is 
'<<' while a right shift is '>>'. Place the variable to be shifted to the left 
of the operator and to the right of the operator, enter the number of 
positions to shift. Some sample C code is shown below. 

 

1 0 1 0 0 0 1 0 

1 0 1 0 0 0 1 1 

When shifting 
right, fill in bits to 
the left with copies 
of the MSB. 



 Chapter 3: Binary Math and Signed Representations    67 
 
result = iVal << 3;    // Set result equal to iVal 
                       // shifted left 3 places 
result = iVal >> 4;    // Set result equal to iVal 
                       // shifted right 4 places 

 
The first line of code shifts iVal left three positions before putting 

the new value into result. This is equivalent to multiplying iVal by  
23 = 8. The second line shifts iVal right 4 positions which has the same 
effect as an integer divide by 24 = 16. 

3.8 Easy Decimal to Binary Conversion Trick 
The fact that a single shift right is equivalent to a division by two 

gives us a simple way to convert from decimal integers to unsigned 
binary. Each 1 that is shifted out because of a right shift is equivalent to 
a remainder of 1 after a division by two. Therefore, if you record the 
remainders generated by successive divisions by two, you will find that 
you've generated the binary equivalent of the original decimal value. 
For example, let's convert the decimal value 15610 to binary. 

 
 15610  2 = 7810 with a remainder of 0 
 7810  2 = 3910 with a remainder of 0 
 3910  2 = 1910 with a remainder of 1 
 1910  2 = 910 with a remainder of 1 
 910  2 = 410 with a remainder of 1 
 410  2 = 210 with a remainder of 0 
 210  2 = 110 with a remainder of 0 
 110  2 = 010 with a remainder of 1 
 
Listing the remainders by reversing the order in which they were 

generated gives us 100111002, the binary value for 15610. 

3.9 Arithmetic Overflow 
In Section 3.3, the carry was ignored when two 2's complement 

values were added. This is not always the case. For some numbering 
systems, a carry is an indication that an error has occurred.  

An arithmetic overflow error occurs when two numbers are added 
and the result falls outside the valid range of the binary representation 
being used. For example, the numbers 20010 and 17510 can be 
represented in 8-bit unsigned binary notation. The result of their 



68   Computer Organization and Design Fundamentals 
 
addition, however, 37510, is not. Therefore, the following 8-bit binary 
addition (20010 + 17510) results in an error. 

 
 1 
   1 1 0 0 1 0 0 0 
 + 1 0 1 0 1 1 1 1 
   0 1 1 1 0 1 1 1 

 
Remember that the result must have the same bit count as the 

sources, and in this case, the 8-bit unsigned binary result 011101112 
equals 11910, not 37510. 

When adding unsigned binary values, there is a simple way to 
determine if an arithmetic overflow has occurred. In unsigned binary 
addition, if a carry is produced from the column representing the MSBs 
thereby requiring another bit for the representation, an overflow has 
occurred. 

In 2's complement addition, there is a different method for 
determining when an arithmetic overflow has occurred. To begin with, 
remember that an arithmetic overflow occurs when the result falls 
outside the minimum and maximum values of the representation. In the 
case of 2's complement representation, those limits are defined by 
Equations 3.3 and 3.4. 

The only way that this can happen is if two numbers with the same 
sign are added together. It is impossible for the addition of two numbers 
with different signs to result in a value outside of the range of 2's 
complement representation. 

When two numbers of the same sign are added together, however, 
there is a simple way to determine if an error has occurred. If the result 
of the addition has the opposite sign of the two numbers being added, 
then the result is in error. In other words, if the addition of two positive 
numbers resulted in a negative number, or if the addition of two 
negative numbers resulted in a positive number, there were not enough 
bits in the representation to hold the result. The example below presents 
one possible case. 

 
 2's complement Decimal 
  01100011        99 
 +00110101       +53 
  10011000      -104 



 Chapter 3: Binary Math and Signed Representations    69 
 

If this had been done assuming unsigned notation, the result of 15210 
would have been fine because no carry was generated. From equation 
3.4, however, we see that the largest value that 8-bit 2's complement 
representation can hold is 2(8-1) – 1 = 12710. Since 15210 is greater than 
12710, it is outside the range of 8-bit 2's complement representation. In 
2's complement representation, the bit pattern 100110002 actually 
represents -10410. 

3.10 What's Next? 
Computers use different numeric representations depending on the 

application. For example, a person's weight may be stored as a 16-bit 
integer while their house address may be stored in BCD. At this point, 
five binary representations have been introduced (unsigned binary, 
signed magnitude, 2's complement, BCD, and floating-point), and 
hexadecimal representation has been presented as a quick means for 
writing binary values. 

Computers, however, do more with numbers than simply represent 
them. In Chapter 4, logic gates, the components that computers use to 
manipulate binary signals, will be presented. They are the lowest-level 
of computer hardware that we will be examining. We will use them to 
begin constructing the more complex components of the computer. 

Problems 
1. True or False: 011010112 has the same value in both unsigned and 

2's complement form. 

2. True or False: The single-precision floating-point number 
10011011011010011011001011000010 is negative. 

3. What is the lowest possible value for an 8-bit signed magnitude 
binary number? 

4. What is the highest possible value for a 10-bit 2's complement 
binary number? 

5. Convert each of the following decimal values to 8-bit 2's 
complement binary. 
a) 5410      b) –4910      c) –12810       d) –6610       e) –9810 

6. Convert each of the following 8-bit 2's complement binary 
numbers to decimal. 
a) 100111012      b) 000101012      c) 111001102       d) 011010012 



70   Computer Organization and Design Fundamentals 
 
7. Convert each of the following decimal values to 8-bit signed 

magnitude binary. 
a) 5410      b) –4910      c) –12710       d) –6610       e) –9810 

8. Convert each of the following 8-bit signed magnitude binary 
numbers to decimal. 
a) 100111012      b) 000101012      c) 111001102       d) 011010012 

9. Convert 1101.00110112 to decimal. 

10. Convert 10101.111012 to decimal. 

11. Convert 1.00011011101 x 234 to IEEE Standard 754 for single-
precision floating-point values.  

12. Convert the IEEE Standard 754 number 
11000010100011010100000000000000 to its binary equivalent.  

13. Using hexadecimal arithmetic, add 4D23116 to A413F16. 

14. Using BCD arithmetic, add 0111010010010110 to 
1000001001100001. 

15. Why is the method of shifting bits left or right to produce 
multiplication or division results by a power of 2 preferred? 

16. How many positions must the number 00011011012 be shifted left 
in order to multiply it by 8? 

17. True or False: Adding 011011012 to 101000102 in 8-bit unsigned 
binary will cause an overflow. 

18. True or False: Adding 011011012 to 101000102 in 8-bit 2's 
complement binary will cause an overflow. 

19. What would be the best binary representation for each of the 
following applications? 

- Phone number 

- Age (positive integer) 

- Exam grade 

- Checking account balance 

- Value read from a postal scale 

- Price 



 71 

CHAPTER FOUR 

Logic Functions and Gates 

Representing numbers using transistors is one thing, but getting the 
computer to do something with those numbers is an entirely different 
matter. Digital circuitry is used to perform operations such as addition 
or multiplication, manage data, or execute programs. This chapter 
presents the circuitry that is the foundation of data manipulation and 
management within a computer. 

4.1 Logic Gate Basics 
Unless you are an electrical engineer, an understanding of the 

operation of transistors is unnecessary. One level above the transistors, 
however, is a set of basic building blocks for digital circuitry. These 
building blocks are called logic gates, and it is at this level that we will 
begin our discussion. 

A logic gate has the basic format shown below in Figure 4-1. It 
takes one or more binary signals as its inputs, and using a specific 
algorithm, outputs a single bit as a result. Each time the inputs change, 
the output bit changes in a predictable fashion. 

 
 
 
 
 
 

Figure 4-1   Basic Format of a Logic Gate 

For example, the algorithm for a specific gate may cause a one to be 
output if an odd number of ones are present at the gate's input and a 
zero to be output if an even number of ones is present.  

A number of standard gates exist, each one of which has a specific 
symbol that uniquely identifies its function. Figure 4-2 presents the 
symbols for the four primary types of gates that are used in digital 
circuit design.  

 
Logic 
Gate 

One or more 
binary input 

signals

A single 
binary output 
signal 



72   Computer Organization and Design Fundamentals 
 

 
 
 
 

Figure 4-2   Basic Logic Symbols 

4.1.1 NOT Gate 
Let's begin with the NOT gate. This logic gate, sometimes referred 

to as an inverter, is the only one in Figure 4-2 that has a single input. 
Its input goes into the left side of a triangle symbol while its output 
exits the gate through a small circle placed at the tip of the opposite 
corner. Note that it is the small circle that defines the operation of this 
gate, so it should not be left out. 

The NOT gate is used to flip the value of a digital signal. In other 
words, it changes a logic 1 input to a logic 0 or it changes a logic 0 
input to a logic 1. An example of an inverter might be the light 
detection circuit used to control the automatic headlights of a car. 
During the daylight hours, sunshine enters the light detector which is 
typically installed on the top surface of the car's dashboard. This acts as 
a logic 1 input. Since it is daytime, the headlights need to be turned off, 
a logic 0. When the sun goes down and no light enters the light 
detector, a logic 0, then the headlights must be turned on, a logic 1. 
Figure 4-3 shows the operation of the NOT gate. 

 
 
 

Figure 4-3   Operation of the NOT Gate 

Note that with a single input, the NOT gate has only 2 possible states. 

4.1.2 AND Gate 
The operation of the AND gate is such that its output is a logic 1 

only if all of its inputs are logic 1. Otherwise the output is a logic 0. 
The AND gate in Figure 4-2 has only two inputs, but an AND gate may 
have as many inputs as the circuit requires. Regardless of the number of 
inputs, all inputs must be a logic 1 for the output to be a logic 1. 

0 1 1 0 

b.) AND  c.) OR  d.) Exclusive-OR a.) NOT  



 Chapter 4: Logic Functions and Gates    73 
 

As an example, picture a lamp that is connected to a plug in the wall 
that is subsequently controlled by the light switch that is protected with 
a circuit breaker. In order for the lamp to be on (logic 1), the switch at 
the lamp must be on, the wall switch must be on, and the circuit breaker 
must be on. If any of the switches turns to off (logic 0), then the lamp 
will turn off. Another way to describe the operation of this circuit might 
be to say, "The lamp is on if and only if the lamp switch is on and the 
wall switch is on and the circuit breaker is on."  This should give you a 
good idea of when an AND gate is used; just look for the use of the 
word "and" when describing the operation of the circuit. Figure 4-4 
shows all 22 = 4 states for a two-input AND gate.  

 
 
 
 
 
 

Figure 4-4   Operation of a Two-Input AND Gate 

4.1.3 OR Gate 
An OR gate outputs a logic 1 if any of its inputs are a logic 1. An 

OR gate only outputs a logic 0 if all of its inputs are logic 0. The OR 
gate in Figure 4-2 has only two inputs, but just like the AND gate, an 
OR gate may have as many inputs as the circuit requires. Regardless of 
the number of inputs, if any input is a logic 1, the output is a logic 1. 

A common example of an OR gate circuit is a security system. 
Assume that a room is protected by a system that watches three inputs: 
a door open sensor, a glass break sensor, and a motion sensor. If none 
of these sensors detects a break-in condition, i.e., they all send a logic 0 
to the OR gate, the alarm is off (logic 0). If any of the sensors detects a 
break-in, it will send a logic 1 to the OR gate which in turn will output 
a logic 1 indicating an alarm condition. It doesn't matter what the other 
sensors are reading, if any sensor sends a logic 1 to the gate, the alarm 
should be going off. Another way to describe the operation of this 
circuit might be to say, "The alarm goes off if the door opens or the 
glass breaks or motion is detected."  Once again, the use of the word 
"or" suggests that this circuit should be implemented with an OR gate. 

0
0 0

1
0 0 1

1 1

0
1 0



74   Computer Organization and Design Fundamentals 
 

Figure 4-5 shows the 22 = 4 possible states for a two-input OR gate.  
 
 
 
 
 
 

Figure 4-5   Operation of a Two-Input OR Gate 

4.1.4 Exclusive-OR (XOR) Gate 
An Exclusive-OR gate is sometimes called a parity checker. Parity 

checkers count the number of ones being input to a circuit and output a 
logic 1 or 0 based on whether the number of ones is odd or even. The 
Exclusive-OR (XOR) gate counts the number of ones at its input and 
outputs a logic 1 for an odd count and a logic 0 for an even count. 

A common application for XOR gates is in error checking circuits. 
If two digital signals are compared bit-by-bit, an error free condition 
means that a logic 0 will be compared to a logic 0 and a logic 1 will be 
compared with a logic 1. In both of these cases, there is an even 
number of logic 1's being input to the XOR gate. Therefore, as long as 
the XOR gate outputs a logic 0, there is no error.  

If, however, an error has occurred, then one signal will be logic 1 
and the other will be a logic 0. This odd number of logic 1's will cause 
the XOR gate to output a logic 1 indicating an error condition. 

Just as with the AND and OR gates, the XOR gate may have two or 
more inputs. Figure 4-6 shows all four states for a two-input XOR. 

 
 
 
 
 
 

Figure 4-6   Operation of a Two-Input XOR Gate 

These representations of logic gates can be an awkward way to 
describe the operation of a complex circuit. The next section will 

0
0 0 

1
0 1 

0
1 1 

1
1 1 

0
0 0 

1
0 1 

0
1 1 

1
1 0 



 Chapter 4: Logic Functions and Gates    75 
 
introduce an easier method for representing the operation of any digital 
circuit incorporating the NOT, AND, OR, and XOR gates. 

4.2 Truth Tables 
The previous section described the operation of each logic gate with 

words. This method isn't efficient and is prone to misinterpretation. 
What we need is a method to show the output of a digital system based 
on each of the possible input patterns of ones and zeros.  

A truth table serves this purpose by making a column for each of 
the inputs to a digital circuit and a column for the resulting output. A 
row is added for each of the possible patterns of ones and zeros that 
could be input to the circuit. For example, a circuit with three inputs, A, 
B, and C, would have 23 = 8 possible patterns of ones and zeros:  

 
A=0, B=0, C=0 
A=0, B=0, C=1 

A=0, B=1, C=0 
A=0, B=1, C=1 

A=1, B=0, C=0 
A=1, B=0, C=1 

A=1, B=1, C=0 
A=1, B=1, C=1 

 
This means that a truth table representing a circuit with three inputs 

would have 8 rows. Figure 4-7 presents a sample truth table for a 
digital circuit with three inputs, A, B, and C, and one output, X. Note 
that the output X doesn't represent anything in particular. It is just 
added to show how the output might appear in a truth table. 

 
A B C X 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

Figure 4-7   Sample Three-Input Truth Table 

For the rest of this book, the inputs to a digital circuit will be labeled 
with capital letters, A, B, C, etc., while the output will be labeled X.  

For some, the hardest part of creating a truth table is being able to 
list all possible patterns of ones and zeros for the inputs. One thing that 



76   Computer Organization and Design Fundamentals 
 
can help us is that we know that for n inputs, there must be 2n different 
patterns of inputs. Therefore, if your truth table doesn't have exactly 2n 
rows, then a pattern is either missing or one has been duplicated. 

There is also a trick to deriving the combinations. Assume we need 
to build a truth table with four inputs, A, B, C, and D. Since 24 = 16, we 
know that there will be sixteen possible combinations of ones and 
zeros. For half of those combinations, A will equal zero, and for the 
other half, A will equal one.  

When A equals zero, the remaining three inputs, B, C, and D, will 
go through every possible combination of ones and zeros for three 
inputs. Three inputs have 23 = 8 patterns, which coincidentally, is half 
of 16. For half of the 8 combinations, B will equal zero, and for the 
other half, B will equal one. Repeat this for C and then D. 

This gives us a process to create a truth table for four inputs. Begin 
with the A column and list eight zeros followed by eight ones. Half of 
eight is four, so in the B column write four zeros followed by four ones 
in the rows where A equals zero, then write four zeros followed by four 
ones in the rows where A equals one. Half of four equals two, so the C 
column will have two zeros followed by two ones followed by two 
zeros then two ones and so on. The process should end with the last 
column having alternating ones and zeros. If done properly, the first 
row should have all zeros and the last row should have all ones.  

 
A B C D X 
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

Figure 4-8   Listing All Bit Patterns for a Four-Input Truth Table 



 Chapter 4: Logic Functions and Gates    77 
 

In addition to verifying that all combinations of ones and zeros have 
been listed, this method also provides a consistency between all truth 
tables in the way that their rows are organized. 

Now let's use truth tables to describe the functions of the four basic 
logic gates beginning with the inverter. The inverter has one input and 
one output. Therefore, there is one column for inputs and one column 
for outputs. For single input, there are exactly two possible states: logic 
1 and logic 0. Therefore, there will be two rows of data for the inverter 
truth table. That table is shown in Figure 4-9. 

 
A X 
0 1 
1 0 

Figure 4-9   Inverter Truth Table 

Remember that an AND gate outputs a logic 1 only if all of its 
inputs are logic 1. The operation of a two-input AND gate can be 
represented with the truth table shown in Figure 4-10. 
 

A B X 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Figure 4-10   Two-Input AND Gate Truth Table 

The output of an OR gate is set to logic 1 if any of its inputs equal 1. 
The OR gate truth table is shown in Figure 4-11. 

 
A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Figure 4-11   Two-Input OR Gate Truth Table 



78   Computer Organization and Design Fundamentals 
 

The XOR gate's output is set to logic 1 if there are an odd number of 
ones being input to the circuit. Figure 4-12 below shows that for a two-
input XOR gate, this occurs twice, once for A=0 and B=1 and once for 
A=1 and B=0. 

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure 4-12   Two-Input XOR Gate Truth Table 

In some cases, the output of a digital circuit can be known without 
knowing what all of the inputs are. The AND gate, for instance, outputs 
a zero if any of the inputs equal zero. It doesn't matter what the other 
inputs are. This can be represented in a truth table with a third symbol 
called a "don't care". The "don't care", written as an 'X' in one of the 
input columns, indicates that the output does not depend on this input.  

Take for example a three-input AND gate. Inputs B and C can take 
on one of four different values when the input A=0: B=0 and C=0; B=0 
and C=1; B=1 and C=0; and B=1 and C=1. Each of these cases has an 
output of X=0. This can be shown in the truth table by replacing the 
four rows where A=0 with one row: A=0, B=X, and C=X. Figure 4-13 
shows the resulting truth table where "don't cares" are used to reduce 
the number of rows. In this example, the original eight-row truth table 
has been replaced with one having only 4 rows. 

 
A B C X 
0 X X 0 
X 0 X 0 
X X 0 0 
1 1 1 1 

Figure 4-13   Three-Input AND Gate Truth Table With Don't Cares 

A similar truth table can be made for the OR gate. In this case, if any 
input to an OR gate is one, the output is 1. The only time an OR gate 
outputs a 0 is when all of the inputs are set to 0. 



 Chapter 4: Logic Functions and Gates    79 
 
4.3 Timing Diagrams for Gates 

The operation of a logic gate can also be represented with a timing 
diagram. Figures 4-14, 4-15, and 4-16 show the output that results from 
three binary input signals for an AND gate, OR gate, and XOR gate 
respectively. Remember that the AND gate outputs a one only if all its 
inputs equal one, the OR gate outputs a one if any input equals one, and 
the XOR gate outputs a one if an odd number of ones is present at the 
input. Use these rules to verify the outputs shown in the figures. 

 
 
 
 
 
 
 

 

Figure 4-14   Sample Timing Diagram for a Three-Input AND Gate 

 
 
 
 
 
 
 

Figure 4-15   Sample Timing Diagram for a Three-Input OR Gate 

 
 
 
 
 
 
 

Figure 4-16   Sample Timing Diagram for a Three-Input XOR Gate 

A 

B 

C 

X 

A 

B 

C 

X 

A 

B 

C 

X 



80   Computer Organization and Design Fundamentals 
 
4.4 Combinational Logic 

By themselves, logic gates are not very practical. Their power 
comes when you combine them to create combinational logic. 
Combinational logic connects multiple logic gates by using the outputs 
from some of the gates as the inputs to others. Figure 4-17 presents a 
sample of combinational logic. 

 
 
 
 

Figure 4-17   Sample Combinational Logic 

In an earlier section, a security system was given as an example for 
an application of an OR gate: the alarm goes off if the door opens or 
the glass breaks or motion is detected. This circuit description is 
incomplete though; it doesn't take into account the fact that security 
systems can be armed or disarmed. This would extend our system 
description to: the alarm goes off if the system is armed and (the door 
opens or the glass breaks or motion is detected). The parentheses are 
added here to remove any ambiguity in the precedence of the logical 
operations. Figure 4-18 shows our new security circuit. 

 
 
 
 
 
 

Figure 4-18   Combinational Logic for a Simple Security System 

The operation of this circuit can also be represented with a truth 
table. Figure 4-19 shows how the four inputs, Door, Glass, Motion, and 
Armed, affect the output Alarm. Note that Alarm never goes high (logic 
1) if the system is disarmed, i.e., Armed = logic 0. If the system is 
armed, Armed = logic 1, but none of the alarm inputs are set to a logic 
1, then the alarm stays off. If, however, the system is armed and any 
one of the other inputs is a logic 1, then the Alarm goes to a logic 1. 

A
B
C

X 

Door
Glass

Motion
Alarm

Armed



 Chapter 4: Logic Functions and Gates    81 
 

Armed Door Glass Motion Alarm 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

Figure 4-19   Truth Table for Simple Security System of Figure 4-18 

We determined the pattern of ones and zeros for the output column 
of the truth table through an understanding of the operation of a 
security system. We could have also done this by examining the circuit 
itself. Starting at the output side of Figure 4-18 (the right side) the 
AND gate will output a one only if both inputs are one, i.e., the system 
is armed and the OR gate is outputting a one. 

The next step is to see when the OR gate outputs a one. This 
happens when any of the inputs, Door, Glass, or Motion, equal one. 
From this information, we can determine the truth table. The output of 
our circuit is equal to one when Armed=1 AND when either Door OR 
Glass OR Motion equal 1. For all other input conditions, a zero should 
be in the output column. 

There are three combinational logic circuits that are so common that 
they are considered gates in themselves. By adding an inverter to the 
output of each of the three logic gates, AND, OR, and XOR, three new 
combinational logic circuits are created. Figure 4-20 shows the new 
logic symbols. 



82   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-20   "NOT" Circuits 

The NAND gate outputs a 1 if any input is a zero. Later in this book, 
it will be shown how this gate is in fact a very important gate in the 
design of digital circuitry. It has two important characteristics: (1) the 
transistor circuit that realizes the NAND gate is typically one of the 
fastest circuits and (2) every digital circuit can be realized with 
combinational logic made entirely of NAND gates. 

The NOR gate outputs a 1 only if all of the inputs are zero. The 
Exclusive-NOR gate outputs a 1 as an indication that an even number 
of ones is being input to the gate. 

A similar method is used to represent inverted inputs. Instead of 
inserting the NOT gate symbol in a line going to the input of a gate, a 
circle can be placed at the gate's input to show that the signal is 
inverted before entering the gate. An example of this is shown in the 
circuit on the right in Figure 4-21. 

 
 
 
 

Figure 4-21   Schematic "Short-Hand" for Inverted Inputs 

A
B X 

A
B X 

a) AND gate + NOT gate = NAND gate 

A
B X 

A
B X 

b) OR gate + NOT gate = NOR gate 

A
B X 

A
B X 

c) Exclusive-OR gate + NOT gate = Exclusive NOR gate 

A
B
C

X
A
B
C

X 



 Chapter 4: Logic Functions and Gates    83 
 
4.5 Truth Tables for Combinational Logic 

Not all digital circuits lend themselves to quick conversion to a truth 
table. For example, input B in the digital circuit shown in Figure 4-22 
passes through four logic gates before its effect is seen at the output. 

 
 
 
 

Figure 4-22   Sample of Multi-Level Combinational Logic 

So how do we convert this circuit to a truth table?  One method is to 
go through each pattern of ones and zeros at the input and fill in the 
resulting output in the truth table row by row. Figure 4-23 takes A=0, 
B=0, and C=0 through each gate to determine its corresponding output. 

 
 

a.) A 0 is input to the first 
inverter which outputs 
a 1. 

 
b.) The 1 coming from the 

inverter is combined 
with a 0 in the AND 
gate to output a 0. 

 
c.) The OR gate receives a 

0 from the AND and a 
0 from the inputs which 
makes it output a 0. 

 
d.) The 0 output from the 

OR gate passes through 
the inverter output a 1. 

 

Figure 4-23   Process of Passing Inputs Through Combinational Logic 

A 
B 
C 

X

0 
0 
0

X 1

0 
0 
0

X 1 0

0 
0 
0

X 1 0 0

0 
0 
0

1 1 0 0



84   Computer Organization and Design Fundamentals 
 

This process can be rather tedious, especially if there are more than 
three inputs to the combinational logic. Note that the bit pattern in 
Figure 4-23 represents only one row of a truth table with eight rows. 
Add another input and the truth table doubles in size to sixteen rows. 

There is another way to determine the truth table. Notice that in 
Figure 4-23, we took the inputs through a sequence of steps passing it 
first through the inverter connected to the input B, then through the 
AND gate, then through the OR gate, and lastly through the inverter 
connected to the output of the OR gate. These steps are labeled (a), (b), 
(c), and (d) in Figure 4-24. 

 
 
 
 

Figure 4-24   Steps That Inputs Pass Through in Combinational Logic 

If we apply those same steps to the individual columns of a truth 
table instead of using the schematic, the process becomes more orderly. 
Begin by creating the input columns of the truth table listing all of the 
possible combinations of ones and zeros for the inputs. In the case of 
our sample circuit, that gives us a truth table with eight rows. 

 
A B C 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Figure 4-25   All Combinations of Ones and Zeros for Three Inputs 

Next, add a column for each layer of logic. Going back to Figure 4-
24, we begin by making a column representing the (a) step. Since (a) 
represents the output of an inverter that has B as its input, fill the (a) 
column with the opposite or inverse of each condition in the B column.  

A 
B 
C 

X(a) (b) (c) (d)



 Chapter 4: Logic Functions and Gates    85 
 

A B C (a) = NOT of B
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 0 

Figure 4-26   Step (a) in Sample Truth Table Creation 

Next, step (b) is the output of an AND gate that takes as its inputs 
step (a) and input A. Add another column for step (b) and fill it with the 
AND of columns A and (a). 

 
A B C (a) (b) = (a) AND A
0 0 0 1 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 1 0 0 
1 0 0 1 1 
1 0 1 1 1 
1 1 0 0 0 
1 1 1 0 0 

Figure 4-27   Step (b) in Sample Truth Table Creation 

Step (c) is the output from the OR gate that takes as its inputs step 
(b) and the input C. Add another column for (c) and fill it with the OR 
of column C and column (b).  This is shown in Figure 4-28. 

Last of all, Figure 4-29 shows the final output is the inverse of the 
output of the OR gate of step (c). Make a final column and fill it with 
the inverse of column (c). This will be the final output column for the 
truth table. 

 



86   Computer Organization and Design Fundamentals 
 

 
A B C (a) (b) (c) = (b) OR C
0 0 0 1 0 0 
0 0 1 1 0 1 
0 1 0 0 0 0 
0 1 1 0 0 1 
1 0 0 1 1 1 
1 0 1 1 1 1 
1 1 0 0 0 0 
1 1 1 0 0 1 

Figure 4-28   Step (c) in Sample Truth Table Creation 

A B C (a) (b) (c) X = (d) = NOT of (c) 
0 0 0 1 0 0 1 
0 0 1 1 0 1 0 
0 1 0 0 0 0 1 
0 1 1 0 0 1 0 
1 0 0 1 1 1 0 
1 0 1 1 1 1 0 
1 1 0 0 0 0 1 
1 1 1 0 0 1 0 

Figure 4-29   Step (d) in Sample Truth Table Creation 

This can be done with any combinational logic circuit. Begin by 
creating a table from the list of combinations of ones and zeros that are 
possible at the inputs. Next, determine the order of gates that the 
signals come to as they pass from the input to the output. As each set of 
signals passes through a gate, create another column in the truth table 
for the output of that gate. The final column should be the output of 
your combinational logic circuit.  

4.6 What's Next? 
The introduction of logic operations and logic gates opens up the 

field of computer design. Topics ranging from the mathematical 
circuitry inside the processor to the creation and delivery of an Ethernet 
message will no longer remain abstract concepts.  



 Chapter 4: Logic Functions and Gates    87 
 

Chapter 5 presents a mathematical-like method for representing 
logic circuits along with some techniques to manipulate them for faster 
performance or a lower chip count. These tools can then be used to 
effectively design the components of a computer system.  

Problems 
1. Identify a real-world example for an AND gate and one for an OR 

gate other than those presented in this chapter.  

2. How many rows does the truth table for a 4-input logic gate have?  

3. Construct the truth table for a four-input OR gate. 

4. Construct the truth table for a two-input NAND gate. 

5. Construct the truth table for a three-input Exclusive-NOR gate. 

6. Construct the truth table for a three-input OR gate using don't cares 
for the inputs similar to the truth table constructed for the three-
input AND gate shown in Figure 4-13. 

7. Draw the output X for the pattern of inputs shown in the figure 
below for a three input NAND gate. 

 

 

 

 

 

 

 

8. Repeat problem 7 for a NOR gate. 

A 

B 

C 

X 



88   Computer Organization and Design Fundamentals 
 
9. Show the output waveform of an AND gate with the inputs A, B, 

and C indicated in the figure below. 

 

 

 

 

 

 

 

 

 

10. Develop the truth table for each of the combinational logic circuits 
shown below. 

 

 

 

 

 

 

 

 

 

  

 

 

  

A 

B 

C 

A · B · C 

A
B
C

X 
a.) 

A
B
C

X 
b.) 

A 
B 
C X

c.) 



 89 

CHAPTER FIVE 

Boolean Algebra 

5.1 Need for Boolean Expressions 
At this point in our study of digital circuits, we have two methods 

for representing combinational logic: schematics and truth tables. 
 
 
 
 
 
 

A B C X 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

Figure 5-1   Schematic and Truth Table of Combinational Logic 

These two methods are inadequate for a number of reasons: 
 

 Both schematics and truth tables take too much space to describe 
the operation of complex circuits with numerous inputs. 

 The truth table "hides" circuit information.  
 The schematic diagram is difficult to use when trying to determine 

output values for each input combination. 
 

To overcome these problems, a discipline much like algebra is 
practiced that uses expressions to describe digital circuitry. These 
expressions, which are called boolean expressions, use the input 
variable names, A, B, C, etc., and combine them using symbols 

A 
B 
C 

X



90   Computer Organization and Design Fundamentals 
 

representing the AND, OR, and NOT gates. These boolean expressions 
can be used to describe or evaluate the output of a circuit. 

There is an additional benefit. Just like algebra, a set of rules exist 
that when applied to boolean expressions can dramatically simplify 
them. A simpler expression that produces the same output can be 
realized with fewer logic gates. A lower gate count results in cheaper 
circuitry, smaller circuit boards, and lower power consumption. 

If your software uses binary logic, the logic can be represented with 
boolean expressions. Applying the rules of simplification will make the 
software run faster or allow it to use less memory. 

The next section describes the representation of the three primary 
logic functions, NOT, AND, and OR, and how to convert 
combinational logic to a boolean expression. 

5.2 Symbols of Boolean Algebra 
Analogous behavior can be shown between boolean algebra and 

mathematical algebra, and as a result, similar symbols and syntax can 
be used. For example, the following expressions hold true in math. 

 
0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1 

 
This looks like the AND function allowing an analogy to be drawn 
between the mathematical multiply and the boolean AND functions. 
Therefore, in boolean algebra, A AND'ed with B is written A · B. 
 
 

Figure 5-2   Boolean Expression for the AND Function 

Mathematical addition has a similar parallel in boolean algebra, 
although it is not quite as flawless. The following four mathematical 
expressions hold true for addition. 

 
0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 2 

 
The first three operations match the OR function, and if the last 
operation is viewed as having a non-zero result instead of the decimal 
result of two, it too can be viewed as operating similar to the OR 

X = A · B 
A
B



Chapter 5: Boolean Algebra   91 
 

function. Therefore, the boolean OR function is analogous to the 
mathematical function of addition. 
 
 
 

Figure 5-3   Boolean Expression for the OR Function 

An analogy cannot be made between the boolean NOT and any 
mathematical operation. Later in this chapter we will see how the NOT 
function, unlike AND and OR, requires its own special theorems for 
algebraic manipulation. The NOT is represented with a bar across the 
inverted element. 
 
 

Figure 5-4   Boolean Expression for the NOT Function 

The NOT operation may be used to invert the result of a larger 
expression. For example, the NAND function which places an inverter 
at the output of an AND gate is written as: 

 
 

Since the bar goes across A · B, the NOT is performed after the AND. 
Let's begin with some simple examples. Can you determine the 

output of the boolean expression 1 + 0 + 1?  Since the plus-sign 
represents the OR circuit, the expression represents 1 or 0 or 1. 
 
 
 

Figure 5-5   Circuit Representation of the Boolean Expression 1+0+1 

Since an OR-gate outputs a 1 if any of its inputs equal 1, then 
1 + 0 + 1 = 1. 

The two-input XOR operation is represented using the symbol , 
but it can also be represented using a boolean expression. Basically, the 

X = A + B A
B

X = A A

X = A · B 

1 
1
0
1



92   Computer Organization and Design Fundamentals 
 

two-input XOR equals one if A = 0 and B = 1 or if A = 1 and B = 0. 
This gives us the following expression. 

 
 
The next section shows how the boolean operators ·, +, , and the 

NOT bar may be combined to represent complex combinational logic.  

5.3 Boolean Expressions of Combinational Logic  
Just as mathematical algebra combines multiplication and addition 

to create complex expressions, boolean algebra combines AND, OR, 
and NOT functions to represent complex combinational logic. Our 
experience with algebra allows us to understand the expression  
Y = X · (X +5) + 3. The decimal value 5 is added to a copy of X, the 
result of which is then multiplied by a second copy of X. Lastly, a 
decimal 3 is added and the final result is assigned to Y. 

This example shows us two things. First, each mathematical 
operation has a priority, e.g., multiplication is performed before 
addition. This priority is referred to as precedence. Second, variables 
such X can appear multiple times in an expression, each appearance 
representing the current value of X. 

Boolean algebra allows for the same operation. Take for example 
the circuit shown in Figure 5-6. 

 
 
 
 

Figure 5-6   Sample of Multi-Level Combinational Logic 

 In Chapter 4, we determined the truth table for this circuit by taking 
the input signals A, B, and C from left to right through each gate. As 
shown in Figure 5-7, we can do the same thing to determine the 
boolean expression. 

Notice the use of parenthesis in step c. Just as in mathematical 
algebra, parenthesis can be used to force the order in which operations 
are taken. In the absence of parenthesis, however, the AND, OR, and 
NOT functions have an order of precedence.  

A 
B 
C 

X

X = A  B = A·B + A·B 



Chapter 5: Boolean Algebra   93 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-7   Creating Boolean Expression from Combinational Logic 

To begin with, AND takes precedence over OR unless overridden by 
parenthesis. NOT is a special case in that it can act like a set of 
parenthesis. If the bar indicating the NOT function spans a single 
variable, it takes precedence over AND and OR. If, however, the NOT 
bar spans an expression, the expression beneath the bar must be 
evaluated before the NOT is taken. Figure 5-8 presents two examples 
of handling precedence with the NOT function. 

 
 
 
 
 
 
 
 

A 
B 
C 

XB 
a) B goes through the 

first inverter which 
outputs a B 

A 
B 
C 

XB 
b) A and B go through 

the AND gate 
which outputs 
A · B. 

A · B  

A 
B 
C 

XB 
c) A · B and C go 

through the OR 
gate which outputs 
(A · B) + C. 

A · B  (A · B) + C 

d) The output of the 
OR gate goes 
through a second 
inverter giving us 
our result. 

A 
B 
C 

XB 
A · B  (A · B) + C 

(A · B) + C 

A 
B 

X = A · B 

A 
B 

X = A · B 

Figure 5-8   Examples of the Precedence of the NOT Function 



94   Computer Organization and Design Fundamentals 
 

Understanding this is vital because unlike the mathematical inverse, the 
two expressions below are not equivalent. 

 
 
 
Let's do an example addressing precedence with a more complex 

boolean expression. Using parenthesis and the order of precedence, the 
boolean expression below has a single interpretation. 

 
 
 

The following steps show the order to evaluate the above expression. 
 

1. OR B with C because the operation is contained under a single 
NOT bar and is contained within the lowest set of parenthesis 

2. Invert the result of step 1 because NOT takes precedence over OR 
3. OR A with the result of step 2 because of the parenthesis 
4. Invert result of step 3  
5. AND A and D because AND takes precedence over OR 
6. OR the results of steps 4 and 5 

 
We can use this order of operations to convert the expression to its 

schematic representation. By starting with a list of inputs to the circuit, 
then passing each input through the correct gates, we can develop the 
circuit. Figure 5-9 does just this for the previous boolean expression. 
We list the inputs for the expression, A, B, C, and D, on the left side of 
the figure. These inputs are then passed through the gates using the 
same order as the steps shown above. The number inside each gate of 
the figure corresponds to the order of the steps. 

 
 
 
 
 
 

Figure 5-9   Example of a Conversion from a Boolean Expression 

X = A · D + (A + B + C)

A · B  A · B 

A 

B 
C 
D 

X 1 2 
3 4 

5 

6 



Chapter 5: Boolean Algebra   95 
 

The following sections show how boolean expressions can be used 
to modify combinational logic in order to reduce complexity or 
otherwise modify its structure. 

5.4 Laws of Boolean Algebra 
The manipulation of algebraic expressions is based on fundamental 

laws. Some of these laws extend to the manipulation of boolean 
expressions. For example, the commutative law of algebra which states 
that the result of an operation is the same regardless of the order of 
operands holds true for boolean algebra too. This is shown for the OR 
function applied to two variables in the truth tables of Figure 5-10. 

 
A B A + B  A B B + A 
0 0 0+0 = 0  0 0 0+0 = 0 
0 1 0+1 = 1  0 1 1+0 = 1 
1 0 1+0 = 1  1 0 0+1 = 1 
1 1 1+1 = 1  1 1 1+1 = 1 

Figure 5-10   Commutative Law for Two Variables OR'ed Together 

Not only does Figure 5-10 show how the commutative law applies 
to the OR function, it also shows how truth tables can be used in 
boolean algebra to prove laws and rules. If a rule states that two 
boolean expressions are equal, then by developing the truth table for 
each expression and showing that the output is equal for all 
combinations of ones and zeros at the input, then the rule is proven 
true. 

Below, the three fundamental laws of boolean algebra are given 
along with examples. 

 
Commutative Law:  The results of the boolean operations AND and 
OR are the same regardless of the order of their operands. 

 
A + B = B + A 
A · B = B · A 

 
Associative Law:  The results of the boolean operations AND and OR 
with three or more operands are the same regardless of which pair of 
elements are operated on first. 

 



96   Computer Organization and Design Fundamentals 
 

A + (B + C) = (A + B) + C 
A · (B · C) = (A · B) · C 

 
Distributive Law:  The AND'ing of an operand with an OR expression 
is equivalent to OR'ing the results of an AND between the first operand 
and each operand within the OR expression. 

 
A · (B + C) = A · B + A · C 

 
The next section uses truth tables and laws to prove twelve rules of 

boolean algebra. 

5.5 Rules of Boolean Algebra 

5.5.1 NOT Rule 
In algebra, the negative of a negative is a positive and taking the 

inverse of an inverse returns the original value. Although the NOT gate 
does not have an equivalent in mathematical algebra, it operates in a 
similar manner. If the boolean inverse of a boolean inverse is taken, the 
original value results.  

 
 

This is proven with a truth table. 
 
 
 
 
Since the first column and the third column have the same pattern of 

ones and zeros, they must be equivalent. Figure 5-11 shows this rule in 
schematic form. 

 
 

Figure 5-11   Schematic Form of NOT Rule 

5.5.2 OR Rules 
If an input to a logic gate is a constant 0 or 1 or if the same signal is 

connected to more than one input of a gate, a simplification of the 

A = A

 A A A 
 0 1 0 
 1 0 1 

A A = A 



Chapter 5: Boolean Algebra   97 
 

expression is almost always possible. This is true for the OR gate as is 
shown with the following four rules for simplifying the OR function. 

First, what happens when one of the inputs to an OR gate is a 
constant logic 0?  It turns out that the logic 0 input drops out leaving 
the remaining inputs to stand on their own. Notice that the two columns 
in the truth table below are equivalent thus proving this rule. 

 
 
 
 
 
What about inputting a logic 1 to an OR gate? In this case, a logic 1 

forces the other operands into the OR gate to drop out. Notice that the 
output column (A + 1) is always equal to 1 regardless of what A equals. 
Therefore, the output of this gate will always be 1. 

 
 
 
 
 
If the same operand is connected to all of the inputs of an OR gate, 

we find that the OR gate has no effect. Notice that the two columns in 
the truth table below are equivalent thus proving this rule. 

 
 
 
 
Another case of simplification occurs when an operand is connected 

to one input of a two-input OR gate and its inverse is connected to the 
other. In this case, either the operand is equal to a one or its inverse is. 
There is no other possibility. Therefore, at least one logic 1 is 
connected to the inputs of the OR gate. This gives us an output of logic 
1 regardless of the inputs. 

 
 
 

5.5.3 AND Rules 
Just as with the OR gate, if either of the inputs to an AND gate is a 

constant (logic 0 or logic 1) or if the two inputs are the same or inverses 

Rule: A + 0 = A
A A + 0 
0 0+0 = 0 
1 1+0 = 1 

Rule: A + 1 = 1
A A + 1 
0 0+1 = 1 
1 1+1 = 1 

Rule: A + A = A
A A + A 
0 0+0 = 0 
1 1+1 = 1 

Rule: A + A = 1
A A + A 
0 0+1 = 1 
1 1+0 = 1 



98   Computer Organization and Design Fundamentals 
 

of each other, a simplification can be performed. Let's begin with the 
case where one of the inputs to the AND gate is a logic 0. Remember 
that an AND gate must have all ones at its inputs to output a one. In 
this case, one of the inputs will always be zero forcing this AND to 
always output zero. The truth table below shows this. 

 
 
 
 
 
If one input of a two-input AND gate is connected to a logic 1, then 

it only takes the other input going to a one to get all ones on the inputs. 
If the other input goes to zero, the output becomes zero. This means 
that the output follows the input that is not connected to the logic 1. 

 
 
 
 
 
If the same operand is connected to all of the inputs of an AND gate, 

we get a simplification similar to that of the OR gate. Notice that the 
two columns in the truth table below are equivalent proving this rule. 

 
 
 
 
 
Last of all, when an operand is connected to one input of a two-input 

AND gate and its inverse is connected to the other, either the operand is 
equal to a zero or its inverse is equal to zero. There is no other 
possibility. Therefore, at least one logic 0 is connected to the inputs of 
the AND gate giving us an output of logic 0 regardless of the inputs. 

 
 
 
 

5.5.4 XOR Rules 
Now let's see what happens when we apply these same input 

conditions to a two-input XOR gate. Remember that a two-input XOR 

Rule: A · 0 = 0
A A · 0 
0 0 · 0 = 0 
1 1 · 0 = 0 

Rule: A · 1 = A
A A · 1 
0 0 · 1 = 0 
1 1 · 1 = 1 

Rule: A · A = 0
A A · A 
0 0 · 1 = 0 
1 1 · 0 = 0 

Rule: A · A = A
A A · A 
0 0 · 0 = 0 
1 1 · 1 = 1 



Chapter 5: Boolean Algebra   99 
 

gate outputs a 1 if its inputs are different and a zero if its inputs are the 
same. 

If one of the inputs to a two-input XOR gate is connected to a logic 
0, then the gate's output follows the value at the second input. In other 
words, if the second input is a zero, the inputs are the same forcing the 
output to be zero and if the second input is a one, the inputs are 
different and the output equals one. 

 
 
 
 
 
If one input of a two-input XOR gate is connected to a logic 1, then 

the XOR gate acts as an inverter as shown in the table below. 
 
 
 
 
 
If the same operand is connected to both inputs of a two-input XOR 

gate, then the inputs are always the same and the gate outputs a 0. 
 
 
 
 
 
Lastly, if the inputs of a two-input XOR gate are inverses of each 

other, then the inputs are always different and the output is 1. 
 
 
 
 

5.5.5 Derivation of Other Rules 
If we combine the NOT, OR, and AND rules with the commutative, 

associative, and distributive laws, we can derive other rules for boolean 
algebra. This can be shown with the following example. 

Example 
Prove that A + A·B = A 

Rule: A  0 = A
A A  0 
0 0  0 = 0 
1 1  0 = 1 

Rule: A  A = 1
A A  A 
0 0  1 = 1 
1 1  0 = 1 

Rule: A  A = 0
A A  A 
0 0  0 = 0 
1 1  1 = 0 

Rule: A  1 = A
A A  1 
0 0  1 = 1 
1 1  1 = 0 



100   Computer Organization and Design Fundamentals 
 

Solution 
 A + A·B  = A·1 + A·B Rule:  A · 1 = A 

  = A·(1 + B) Distributive Law 

  = A·(B + 1) Commutative Law 

  = A·1 Rule:  A + 1 = 1 

  = A Rule:  A · 1 = A 

Remember also that rules of boolean algebra can be proven using a 
truth table. The example below uses a truth table to derive another rule. 

Example 
Prove BABAA  

Solution 
The truth table below goes step-by-step through both sides of the 

expression to prove that BABAA . 
 
 
 
 
 
 
 
The mathematical "F-O-I-L" principle, based on the distributive law, 

works in boolean algebra too. FOIL is a memory aid referring to the 
multiplication pattern for multiplying quadratic equations. It stands for: 

 
F – AND the first terms from each OR expression 
O – AND the outside terms (the first term from the first OR 

expression and the last term from the last OR expression) 
I – AND the inside terms (the last term from the first OR 

expression and the first term from the last OR expression) 
L – AND the last terms from each OR expression 

Example 
Prove (A + B)·(A + C) = A + B·C 

A B A A·B A + A·B A + B 
0 0 1 0 0 0 
0 1 1 1 1 1 
1 0 0 0 1 1 
1 1 0 0 1 1 



Chapter 5: Boolean Algebra   101 
 

Solution 
(A + B)·(A + C) = (A + B)·A + (A + B)·C Distributive Law 

  = A·A + B·A + A·C + B·C Distributive Law 

  = A + B·A + A·C + B·C Rule: A·A  = A 

  = A + A·B + A·C + B·C Commutative Law 

  = A + A·C + B·C Rule: A + A·B = A 

  = A + B·C Rule: A + A·B = A 

Now that you have a taste for the manipulation of boolean 
expressions, the next section will show examples of how complex 
expressions can be simplified. 

5.6 Simplification 
Many students of algebra are frustrated by problems requiring 

simplification. Sometimes it feels as if extrasensory perception is 
required to see where the best path to simplification lies. Unfortunately, 
boolean algebra is no exception. There is no substitute for practice. 
Therefore, this section provides a number of examples of simplification 
in the hope that seeing them presented in detail will give you the tools 
you need to simplify the problems on your own. 

The rules of the previous section are summarized in Figure 5-12. 
 
1. AA  9. 0AA   
2. AA 0  10. AA 0  
3.  11A  11. AA 1  
4.  AAA  12. 0AA  
5.  1AA  13. 1AA  
6.  00A  14. ABAA  
7. AA 1  15. BABAA  
8. AAA  16. CBACABA )()(  

Figure 5-12   Rules of Boolean Algebra 



102   Computer Organization and Design Fundamentals 
 

Example 
Simplify (A·B + C)(A·B + D) 

Solution 
From the rules of boolean algebra, we know that (A + B)(A + C) = 

A + BC. Substitute A·B for A, C for B, and D for C and we get: 
 

(A·B + C)(A·B + D) = A·B + C·D 

Example 
Simplify )()( BBBA  

Solution 
 
(A + B)·1 

 
Anything OR'ed with its inverse is 1 

 
(A + B) 

 
Anything AND'ed with 1 is itself 

Example 
Simplify )( BAAB  

Solution 
_     _ _ 
B·A + B·A·B 

 
Distributive Law 

_     _ _ 
B·A + A·B·B 

 
Associative Law 

_     _ 
B·A + A·0 

 
Anything AND'ed with its inverse is 0 

_ 
B·A + 0 

 
Anything AND'ed with 0 is 0 

_ 
B·A 

 
Anything OR'ed with 0 is itself 

  _ 
A·B 

 
Associative Law 

Example 
Simplify )()( BABA  



Chapter 5: Boolean Algebra   103 
 

Solution 
_     _ _           _ 
A·A + A·B + B·A + B·B Use FOIL to distribute terms 
    _ _           
0 + A·B + B·A + 0 Anything AND'ed with its inverse is 0 
_ _           
A·B + B·A Anything OR'ed with 0 is itself 

Example 
Simplify CBACBACBACBA  

Solution 
_  _ _   _       _ 
A·(B·C + B·C + B·C + B·C) Distributive Law 
_  _  _           _ 
A·(B·(C + C) + B·(C + C)) Distributive Law 
_  _ 
A·(B·1 + B·1) Anything OR'ed with its inverse is 1 
_  _ 
A·(B + B) Anything AND'ed with 1 is itself 
_ 
A·1 Anything OR'ed with its inverse is 1 
_ 
A  Anything AND'ed with 1 is itself 

5.7 DeMorgan's Theorem 
Some of you may have noticed that the truth tables for the AND and 

OR gates are similar. Below is a comparison of the two operations. 
 

AND  OR 

A B X = A·B  A B X = A+B 
0 0 0  0 0 0 
0 1 0  0 1 1 
1 0 0  1 0 1 
1 1 1  1 1 1 

 
Okay, so maybe they're not exactly the same, but notice that the 

output for each gate is the same for three rows and different for the 



104   Computer Organization and Design Fundamentals 
 

fourth. For the AND gate, the row that is different occurs when all of 
the inputs are ones, and for the OR gate, the different row occurs when 
all of the inputs are zeros. What would happen if we inverted the inputs 
of the AND truth table? 

 
AND of inverted inputs  OR 
 
A 

 
B 

    _ _ 
X = A·B 

  
A 

 
B

 
X = A+B 

0 0 1  0 0 0 
0 1 0  0 1 1 
1 0 0  1 0 1 
1 1 0  1 1 1 

 
The two truth tables are still not quite the same, but they are quite 

close. The two truth tables are now inverses of one another. Let's take 
the inverse of the output of the OR gate and see what happens. 

 
AND of inverted inputs  OR with inverted output 
 
A 

 
B 

    _ _ 
X = A·B 

  
A 

 
B

    ____ 
X = (A+B) 

0 0 1  0 0 1 
0 1 0  0 1 0 
1 0 0  1 0 0 
1 1 0  1 1 0 

 
So the output of an AND gate with inverted inputs is equal to the 

inverted output of an OR gate with non-inverted inputs. A similar proof 
can be used to show that the output of an OR gate with inverted inputs 
is equal to the inverted output of an AND gate with non-inverted 
inputs. This resolves our earlier discussion where we showed that the 
NOT gate cannot be distributed to the inputs of an AND or an OR gate.  

This brings us to DeMorgan's Theorem, the last Boolean law 
presented in this chapter.  

 
 
 
The purpose of DeMorgan's Theorem is to allow us to distribute an 

inverter from the output of an AND or OR gate to the gate's inputs. In 
doing so, an AND gate is switched to an OR gate and an OR gate is 

A + B = A · B A + B = A · B 



Chapter 5: Boolean Algebra   105 
 

switched to an AND gate. Figure 5-13 shows how pushing the inverter 
from the output of a gate to its inputs. 

 
 
 
 
a.) Pushing an inverter through an AND gate flips it to an OR gate 
 
 
 
 
 
b.) Pushing an inverter through an OR gate flips it to an AND gate 

Figure 5-13   Application of DeMorgan's Theorem 

DeMorgan's Theorem applies to gates with three or more inputs too. 
 
 
 
 
 
 
 
One of the main purposes of DeMorgan's Theorem is to distribute 

any inverters in a digital circuit back to the inputs. This typically 
improves the circuit's performance by removing layers of logic and can 
be done either with the boolean expression or the schematic. Either 
way, the inverters are pushed from the output side to the input side one 
gate at a time. The sequence of steps in Figure 5-14 shows this process 
using a schematic. 

It is a little more difficult to apply DeMorgan's Theorem to a 
boolean expression. To guarantee that the inverters are being 
distributed properly, it is a good idea to apply DeMorgan's Theorem in 
the reverse order of precedence for the expression.  

 
 
 
 

_____________   _______ _______ 
A + B + C + D = (A + B)·(C + D) 
                 _ _   _ _ 
              = (A·B)·(C·D) 
                _ _ _ _ 
              = A·B·C·D 

A · B + C Step 1:  The AND takes precedence over the OR, so 
distribute inverter across the OR gate first. 



106   Computer Organization and Design Fundamentals 
 

 
  
 
 
 
 
 
 
 
 
 

a.) Push inverter through the OR gate distributing it to the inputs 
 
 
 
 
 

b.) Push inverter through the AND gate distributing it to the inputs 
 
 
 
 
 

c.) Two inverters at B input cancel each other 
 
 
 
 

Figure 5-14   Schematic Application of DeMorgan's Theorem 

5.8 What's Next? 
Using the methods presented in this chapter, a boolean expression 

can be manipulated into whatever form best suits the needs of the 
computer system. As far as the binary operation is concerned, two 
circuits are the same if their truth tables are equivalent. The circuits, 
however, may not be the same when measuring performance or when 
counting the number of gates it took to implement the circuit. The 

A 
B 
C 

X

A 
B 
C 

X

A 
B 
C 

X

A 
B 
C 

X

A · B · C Step 2:  Now distribute the inverter across the A·B 
term. 

(A + B) · C Step 3:  In this final case, the use of parenthesis is 
vital. 



Chapter 5: Boolean Algebra   107 
 

optimum circuit for a specific application can be designed using the 
tools presented in this chapter. 

In Chapter 6, we will show how the rules presented in this chapter 
are used to take any boolean expression and put it into one of two 
standard formats. The standard formats allow for quicker operation and 
support the use of programmable hardware components. Chapter 6 also 
presents some methods to convert truth tables into circuitry. It will be 
our first foray into designing circuitry based on a system specification. 

Problems 
1. List three drawbacks of using truth tables or schematics for 

describing a digital circuit. 

2. List three benefits of a digital circuit that uses fewer gates. 

3. True or False:  Boolean expressions can be used to optimize the 
logic functions in software. 

4. Convert the following boolean expressions to their schematic 
equivalents. Do not modify the original expression 

  ___                                         
 a.) A·B + C 
    _     _     ___ 
 b.) A B C + A B + A C 
  _________     _ 
 c.) (A + B C) + A D 
    _   _ 
 d.) A B + A B 

   
5. Convert each of the digital circuits shown below to their 

corresponding boolean expressions without simplification. 

 

 
A

B
X

a.)



108   Computer Organization and Design Fundamentals 
 

 

 

 

 

 

 

 
 

6. Apply DeMorgan's Theorem to each of the following expressions 
so that the NOT bars do not span more than a single variable. 

  _______                                        
 a.) A·C + B 
      _______________                              
 b.) D(C + B)(A + B) 
      _       ____                       
 c.) A + B + C + (AB) 
 

7. Simplify each of the following expressions. 
          _                                      
 a.) B·A + B·A 
              _                                  
 b.) (A + B)(B + A) 
      _       ____                       
 c.) A + B + C + (AB) 
  _                            
 d.) B(A + A·B) 
   _          _ 
 e.) (A + B)(A + B) 
  _   ____   _ 
 f.) B + (AB) + C 

A

B

C

X

A

B
X

b.)

c.)



 109 

CHAPTER SIX 

Standard Boolean Expression Formats 

The development of standards is important to the computer industry 
for a number of reasons. It allows independently developed systems 
and subsystems to be connected, it provides reliability through well-
tested design methods, and it shortens the design time by providing off-
the-shelf tools and components for quick development. 

In the design of digital systems, there are some standards that are 
regularly applied to combinational logic. Over time, design tools and 
programmable hardware have been developed to support these 
standards allowing for quick implementation of digital logic. 

This chapter outlines two standard representations of combinational 
logic: Sum-of-Products and Product-of-Sums. Both of these formats 
represent the fastest possible digital circuitry since, aside from a 
possible inverter, all of the signals pass through exactly two layers of 
logic gates. This also opens the door for the development of 
programmable hardware where a single computer chip can be 
programmed to handle any logic circuit. 

6.1 Sum-of-Products  
A sum-of-products (SOP) expression is a boolean expression in a 

specific format. The term sum-of-products comes from the expression's 
form: a sum (OR) of one or more products (AND). As a digital circuit, 
an SOP expression takes the output of one or more AND gates and 
OR's them together to create the final output.  

The inputs to the AND gates are either inverted or non-inverted 
input signals. This limits the number of gates that any input signal 
passes through before reaching the output to an inverter, an AND gate, 
and an OR gate. Since each gate causes a delay in the transition from 
input to output, and since the SOP format forces all signals to go 
through exactly two gates (not counting the inverters), an SOP 
expression gives us predictable performance regardless of which input 
in a combinational logic circuit changes. 

Below is an example of an SOP expression: 
_  _    _     _    _ 
ABCD + ABD + CD + AD 



110   Computer Organization and Design Fundamentals 
 

There are no parentheses in an SOP expression since they would 
necessitate additional levels of logic. This also means that an SOP 
expression cannot have more than one variable combined in a term with 
an inversion bar. The following is not an SOP expression: 

 __  _    _     _    _ 
(AB)CD + ABD + CD + AD 

 
This is because the first term has A and B passing through a NAND 
gate before being AND'ed with C and D thereby creating a third level 
of logic. To fix this problem, we need to break up the NAND using 
DeMorgan's Theorem. 

 __  _    _     _    _ 
(AB)CD + ABD + CD + AD 

 _   _  _    _     _    _ 
(A + B)CD + ABD + CD + AD 
_ _   _ _    _     _    _ 
ACD + BCD + ABD + CD + AD 

 
This expression is now considered to be in SOP format. 

As far as the implementation of an SOP expression is concerned, 
combinations of non-inverted and inverted signals are input to one or 
more AND gates. The outputs from these gates are all input to a single 
OR gate. Figure 6-1 shows a sample SOP binary circuit. 

 
 
 
 
 
 
 
 

Figure 6-1   Sample Sum-of-Products Binary Circuit 

6.2 Converting an SOP Expression to a Truth Table 
Examining the truth table for an AND gate reveals that exactly one 

row has a one for its output. All of the other rows have a zero output. If 
we invert one of the inputs, this simply moves the row with the one 

A 
B 
C 
D 

ABC + BD + CD 



   Chapter 6: Standard Boolean Expression Formats   111 
 

 

output to another position. There is still only one row outputting a one. 
Figure 6-2 shows some examples of this behavior. 

 
A 

 
B 

 
C 

 
A·B·C 

  
A 

 
B 

 
C 

_ 
A·B·C 

  
A 

 
B 

 
C 

_  _ 
A·B·C 

0 0 0 0  0 0 0 0  0 0 0 0 
0 0 1 0  0 0 1 0  0 0 1 0 
0 1 0 0  0 1 0 0  0 1 0 1 
0 1 1 0  0 1 1 0  0 1 1 0 
1 0 0 0  1 0 0 0  1 0 0 0 
1 0 1 0  1 0 1 1  1 0 1 0 
1 1 0 0  1 1 0 0  1 1 0 0 
1 1 1 1  1 1 1 0  1 1 1 0 

Figure 6-2   Samples of Single Product (AND) Truth Tables 

The output of an OR gate is a one if any of the inputs is a one. 
Therefore, when the products are OR'ed together, a one appears in the 
output column for each of the products. For example, if we OR'ed 
together each of the products from Figure 6-2, a one would be output in 
the rows corresponding to A=1, B=1, and C=1; A=1, B=0, and C=1; 
and A=0, B=1, and C=0. This is shown in Figure 6-3. 

 
A 

 
B 

 
C 

 
A·B·C 

_ 
A·B·C 

_  _ 
A·B·C 

       _    _ _ 
ABC + ABC + ABC 

0 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 1 0 0 0 1 1 
0 1 1 0 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 1 0 1 
1 1 0 0 0 0 0 
1 1 1 1 0 0 1 

Figure 6-3   Sample of a Sum-of-Products Truth Table 

Therefore, to convert an SOP expression to a truth table, examine 
each product to determine when it is equal to a one. Where that product 
is a one, a one will also be outputted from the OR gate. 

Each of the products in the above example contains all of the input 
variables for the SOP expression. What if one of the products doesn't 
do this?  For example, what if an SOP expression has inputs A, B, and 
C, but one of its products only depends on A and B? 



112   Computer Organization and Design Fundamentals 
 

This is not a problem if we remember that we are looking to see 
when that product is equal to a one. For a product containing only A 
and B in an SOP expression containing inputs A, B, and C, the product 
has ones in two rows, one for C=0 and one for C=1. As an example, 
let's convert the following SOP expression to a truth table. 

 _ _    _ 
 ABC + AB + ABC 

 
The first step is to determine where each product equals a one. 

Beginning with the first term, the different input conditions resulting in 
the output of a logic one from the AND gates are listed below. 
_ _  _  _ 
ABC = 1 when A=1, B=1, and C=1,  

which means when A=0, B=1, and C=0. 
 _   _ 
AB = 1 when A=1, B=1, and C=1 or 0,  

which means when A=1, B=0, and C=0 or 1, i.e., two 
rows will have a one output due to this term. 

 
ABC = 1 when A=1, B=1, and C=1. 
 
Placing a one in each row identified above should result in the truth 

table for the corresponding SOP expression. Remember to set the 
remaining row outputs to zero to complete the table.  

 
 
 
 
 
 
 
 
 

6.3 Converting a Truth Table to an SOP Expression 
Any truth table can be converted to an SOP expression. The 

conversion process goes like this: identify the rows with ones as the 
output, and then come up with the unique product to put a one in that 
row. Note that this will give us an SOP expression where all of the 

    _ _    _ 
X = ABC + AB + ABC 

A B C X 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 Figure 6-4   Conversion of an SOP Expression to a Truth Table 



   Chapter 6: Standard Boolean Expression Formats   113 
 

 

products use all of the variables for inputs. This usually gives us an 
expression that can be simplified using the tools from Chapter 5. 

Example 
Derive the SOP expression for the following truth table. 
 

A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Solution 
First, identify each row that contains a one as the output. 
 

A B C X  
0 0 0 0  
0 0 1 1 A = 0, B = 0, and C = 1 
0 1 0 0  
0 1 1 1 A = 0, B = 1, and C = 1 
1 0 0 1 A = 1, B = 0, and C = 0 
1 0 1 0  
1 1 0 1 A = 1, B = 1, and C = 0 
1 1 1 0  

 
Now we need to make a product for each of these rows. The product 

that outputs a one for the row where A=0, B=0, and C=1 must invert A 
and B in order to have a product of 1·1·1 = 1. Therefore, our product is: 

_ _ 
A·B·C 

 
The product that outputs a one for the row where A=0, B=1, and 

C=1 must invert A in order to have a product of 1·1·1 = 1. This gives us 
our second product: 

_ 
A·B·C 

 



114   Computer Organization and Design Fundamentals 
 

The third product outputs a one for the row where A=1, B=0, and 
C=0. Therefore, we must invert B and C in order to have a product of 
1·1·1 = 1.   _ _ 
 A·B·C 

 
The final product outputs a one for the row where A=1, B=1, and 

C=0. This time only C must be inverted. 
    _ 
A·B·C 

 
OR'ing all of these products together gives us our SOP expression. 

_ _     _         _ _       _ 
A·B·C + A·B·C + A·B·C + A·B·C 

 
The next three sections parallel the first three for a second standard 

boolean expression format: the product-of-sums. 

6.4 Product-of-Sums  
The product-of-sums (POS) format of a boolean expression is much 

like the SOP format with its two levels of logic (not counting 
inverters). The difference is that the outputs of multiple OR gates are 
combined with a single AND gate which outputs the final result. The 
expression below adheres to the format of a POS expression. 

_     _    _      _    _ 
(A+B+C+D)(A+B+D)(C+D)(A+D) 

 
As with SOP expressions, a POS expression cannot have more than 

one variable combined in a term with an inversion bar. For example, 
the following is not a POS expression: 

_____      _      _    _ 
(A+B+C+D)(A+B+D)(C+D)(A+D) 

 
In this example, the sum (OR) of A, B, and C is inverted thereby 
adding a third level of logic: A, B, and C are OR'ed together then 
inverted and then OR'ed with D before going to the AND gate. Getting 
this expression to adhere to the proper POS format where the NOT is 
distributed to the individual terms is not as easy as it was with the SOP. 
Often times it is easier to determine the truth table for the function and 
then convert that truth table to the correct POS format. This will be 
shown in a later section in this chapter. 



   Chapter 6: Standard Boolean Expression Formats   115 
 

 

As far as hardware is concerned, POS expressions take the output of 
OR gates and connect them to the inputs of a single AND gate. The 
sample circuit shown in Figure 6-5 adheres to this format. 

 
 
 
 
 
 
 
 

Figure 6-5   Sample Product-of-Sums Binary Circuit 

6.5 Converting POS to Truth Table 
Converting a POS expression to a truth table follows a similar 

process as the one used to convert an SOP expression to a truth table. 
The difference is this: where the SOP conversion focuses on rows with 
a one output, the POS conversion focuses on rows with a zero output. 

We do this because the OR gate has an output of zero on exactly one 
row while all of the other rows have an output of one. If we invert one 
of the inputs, this moves the row with the zero output to another 
position. There is still only one row outputting a zero.  

The row with the zero output is the row where all of the inputs equal 
zero. If one of the inputs is inverted, then its non-inverted value must 
be one for the OR gate to output a zero. Figure 6-6 shows a few 
examples of this behavior. 
 
A 

 
B 

 
C 

 
A+B+C 

  
A 

 
B 

 
C 

_ 
A+B+C 

  
A 

 
B 

 
C 

_   _ 
A+B+C 

0 0 0 0  0 0 0 1  0 0 0 1 
0 0 1 1  0 0 1 1  0 0 1 1 
0 1 0 1  0 1 0 0  0 1 0 1 
0 1 1 1  0 1 1 1  0 1 1 1 
1 0 0 1  1 0 0 1  1 0 0 1 
1 0 1 1  1 0 1 1  1 0 1 0 
1 1 0 1  1 1 0 1  1 1 0 1 
1 1 1 1  1 1 1 1  1 1 1 1 

Figure 6-6   Samples of Single Sum (OR) Truth Tables 

(A+B+C) (B+D) (C+D) 

A 
B 
C 
D 



116   Computer Organization and Design Fundamentals 
 

By AND'ing the output from these OR gates together, then the final 
output will be zero anytime one of the OR gates outputs a zero. 
Therefore, AND'ing the three sums in Figure 6-6 together will produce 
a zero output on the following conditions: 

 
A=0, B=0. and C=0 
A=0, B=1. and C=0 
A=1, B=0. and C=1 

 
This is shown in Figure 6-7. 

 
A 

 
B 

 
C 

 
A+B+C 

_ 
A+B+C 

_   _ 
A+B+C 

         _    _   _ 
(A+B+C)(A+B+C)(A+B+C) 

0 0 0 0 1 1 0 
0 0 1 1 1 1 1 
0 1 0 1 0 1 0 
0 1 1 1 1 1 1 
1 0 0 1 1 1 1 
1 0 1 1 1 0 0 
1 1 0 1 1 1 1 
1 1 1 1 1 1 1 

Figure 6-7   Sample of a Product-of-Sums Truth Table 

Therefore, to convert a POS expression to a truth table, examine 
each of the sums to determine where the sum is equal to zero. When 
that sum is equal to a zero, a zero will also be present at the final output 
of the circuit. 

When a sum does not contain all of the circuit's inputs, then more 
than one row will get a zero output from the OR gate. Every time an 
input drops out of a sum, the number of rows with a zero output from 
that OR gate is doubled. 

For example, if a POS expression uses as its inputs A, B, C, and D, 
then a sum within that expression that uses only B, C, and D as inputs 
will have two rows with zero outputs and a sum using only A and C as 
inputs will have four rows with zero outputs. 

The output of the first sum is equal to zero only when all of the 
inputs, A, B and the inverse of D, are equal to zero. This occurs in two 
places, once for C=0 and once for C=1. Therefore, the output of a 
product-of-sums circuit with this OR expression in it will have a zero in 
the rows where A=0, B=0, C=0, and D=1 and where A=0, B=0, C=1, 
and D=1. 



   Chapter 6: Standard Boolean Expression Formats   117 
 

 

The next sum uses only B and C from the four inputs. Therefore, 
there must be four rows with outputs of zero. This is because A and D 
have no effect on this sum and can have any of the four states: A=0 and 
D=0; A=0 and D=1; A=1 and D=0; or A=1 and D=1. 

A single variable sum as shown in the last column of the truth table 
in Figure 6-8 will force zeros to be output for half of the input 
conditions. In the case of this truth table, the inverse of A equals zero 
when A equals 1. 

 
A 

 
B 

 
C 

 
D 

    _ 
A+B+D 

  _ 
B+C 

_ 
A 

0 0 0 0 1  1  1 
0 0 0 1 0  1  1 
0 0 1 0 1  0  1 
0 0 1 1 0  0  1 
0 1 0 0 1  1  1 
0 1 0 1 1  1  1 
0 1 1 0 1  1  1 
0 1 1 1 1  1  1 
1 0 0 0 1  1  0 
1 0 0 1 1  1  0 
1 0 1 0 1  0  0 
1 0 1 1 1  0  0 
1 1 0 0 1  1  0 
1 1 0 1 1  1  0 
1 1 1 0 1  1  0 
1 1 1 1 1  1  0 

Figure 6-8   Sample Sums With Multiple Zero Outputs 

Example 
Convert the following POS expression to a truth table. 

 _   _    _ 
(A+B+C)(A+B)(A+B+C) 

Solution 
The first step is to determine where each sum equals zero. 

Beginning with the first term, the three different conditions for a zero 
output are listed below. 
_   _  _  _ 
A+B+C = 0 when A=0, B=0, and C=0,  

which means when A=1, B=0, and C=1. 



118   Computer Organization and Design Fundamentals 
 

  _   _ 
A+B = 0 when A=0, B=0, and C=1 or 0,  

which means when A=0, B=1, and C=0 or 1, i.e., 
two rows will have a zero output due to this term. 

 
A+B+C = 0 when A=0, B=0, and C=0. 
 
Placing a zero in each row identified above should result in the truth 

table for the corresponding POS expression. Remember to set the 
remaining row outputs to zero to complete the table.  

 
 
 
 
 
 
 

Figure 6-9   Conversion of a POS Expression to a Truth Table 

6.6 Converting a Truth Table to a POS Expression 
Just as with SOP expressions, any truth table can be converted to a 

POS expression. The conversion process goes like this: identify the 
rows with zeros as the output, and then come up with the unique sum to 
put a zero in that row. The final group of sums can then be AND'ed 
together producing the POS expression. 

Let's go through the process by deriving the POS expression for the 
following truth table. 

A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

 
First, identify each row that contains a zero as the output. 
 

     _   _    _ 
X = (A+B+C)(A+B)(A+B+C) 

A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 



   Chapter 6: Standard Boolean Expression Formats   119 
 

 

A B C X  
0 0 0 0 A = 0, B = 0, and C = 0 
0 0 1 1  
0 1 0 0 A = 0, B = 1, and C = 0 
0 1 1 1  
1 0 0 1  
1 0 1 0 A = 1, B = 0, and C = 1 
1 1 0 1  
1 1 1 0 A = 1, B = 1, and C = 1 

 
Next, make a sum for each of these rows. Remember that a sum 

outputs a zero when all of its inputs equal zero. Therefore, to make a 
sum for a row equal to zero, the inputs equal to one must be inverted. 
For the first row, a zero is output when A=0, B=0, and C=0. Since for 
this case, all of the inputs are already zero, simply OR the non-inverted 
inputs together. 

A+B+C 
 
The sum that outputs a zero for the row where A=0, B=1, and C=0 

must invert B in order to have a sum of 0+0+0=0. This gives us our 
second sum:   _ 
 A+B+C 

 
The third sum outputs a zero for the row where A=1, B=0, and C=1. 

Therefore, we must invert A and C in order to have a sum of 0+0+0=0.
 _   _ 
 A+B+C 

 
The final sum outputs a zero for the row where A=1, B=1, and C=1. 

In this case, all of the inputs must be inverted to get the sum 0+0+0=0. 
 _ _ _ 
 A+B+C 

 
AND'ing all of these sums together gives us our POS expression. 

         _    _   _  _ _ _ 
(A+B+C)(A+B+C)(A+B+C)(A+B+C) 

6.7 NAND-NAND Logic 
Chapter 5 presented DeMorgan's Theorem and its application to 

Boolean expressions. The theorem is repeated below for convenience. 



120   Computer Organization and Design Fundamentals 
 

 
 
 
 

Figure 6-10 depicts DeMorgan's Theorem with circuit diagrams. 
 
 
 
 
 
 
 

Figure 6-10   Circuit Depiction of DeMorgan's Theorem 

If we invert both sides of the first expression where the inverse of 
the sum is equal to the product of the inverses, then we get the new 
circuit equivalents shown in Figure 6-11. Note that the double inverse 
over the OR cancels. 

 
 
 
 

Figure 6-11   OR Gate Equals a NAND Gate With Inverted Inputs 

This means that an OR gate operates identically to a NAND gate 
with inverted inputs. This is also true for OR gates with three or more 
inputs. 

 
 
 
 
 
 

Figure 6-12   OR-to-NAND Equivalency Expanded to Four Inputs 

A + B = A · B 

A + B = A · B 

A
B

A
B

___   _ _
A+B = A·B

A
B

A
B

___   _ _
A·B = A+B

A
B

A
B

      _ _
A+B = A·B

A 
B 
C 
D 

A
B
C
D

          _ _ _ _
A+B+C+D = A·B·C·D



   Chapter 6: Standard Boolean Expression Formats   121 
 

 

Now let's turn our attention to SOP expressions. Assume we have an 
equation like the one below. 

    _   _     _ _           _ 
X = (A·B·C) + (A·B·C) + (A·B·C) 

 
Figure 6-13 shows the logic circuit equivalent of this expression.  
 
 

 
 
 
  
 
 
 
 

Figure 6-13   Sample SOP Circuit 

If we substitute the OR gate with a NAND gate with inverted inputs, 
we get the circuit shown in Figure 6-14. 

 
 
 
 
 
 
 
 
 

Figure 6-14   Sample SOP Circuit with Output OR Gate Replaced 

If we take each of the inverter circles at the inputs to the rightmost 
gate (the NAND gate that replaced the OR gate), and move them to the 
outputs of the AND gates, we get the circuit shown in Figure 6-15. 

This example shows that all of the gates of a sum-of-products 
expression, both the AND gates and the OR gate, can be replaced with 

A 
B 
C 

X 

A 
B 
C 

X 



122   Computer Organization and Design Fundamentals 
 

NAND gates. Though this doesn't appear at first to be significant, it is 
important to the implementation of digital logic. 

 
 
 
 
 
 
 
 
 

Figure 6-15   Sample SOP Circuit Implemented With NAND Gates 

Since an SOP expression can be created for any truth table, then any 
truth table can be implemented entirely with NAND gates. This allows 
a designer to create an entire digital system from a single type of gate 
resulting in a more efficient use of the hardware.  

There is an additional benefit to this observation. For most of the 
technologies used to implement digital logic, the NAND gate is the 
fastest available gate. Therefore, if a circuit can maintain the same 
structure while using the fastest possible gate, the overall circuit will be 
faster. 

Another way to make digital circuits faster is to reduce the number 
of gates in the circuit or to reduce the number of inputs to each of the 
circuit's gates. This will not only benefit hardware, but also any 
software that uses logic processes in its operation. Chapter 7 presents a 
graphical method for generating optimally reduced SOP expressions 
without using the laws and rules of boolean algebra. 

6.8 What's Next? 
At this point, we should be able to convert any truth table to a 

boolean expression and finally to digital circuitry. It should also be 
clear that no truth table is represented by a unique circuit.  

Chapter 7 introduces a simple graphical tool that uses the 
distributive law to generate the most reduced form of the SOP circuit 
for a given truth table. As long as the user can follow a set of rules used 
to generate the products for the circuit, it is a fail-safe tool to make 
simplified hardware.  

A 
B 
C 

X 



   Chapter 6: Standard Boolean Expression Formats   123 
 

 

Problems 
1. Which of the following boolean expressions are in proper sum-of-

products form? 
 
a.) 

_   _ _   _ _ 
A·B·D·E + B·C·D 

 
b.) 

          _ _   _ _ _    
A·B·C + A·B·C + A(B·C + B·C) 

 
c.) 

    _         _ 
A + B·C·E + D·E 

 
d.) 

        _   ___ 
A·D + A·C + A·B·C·D 

 
e.) 

_           _      _ 
B·C + B·D + B·(E + F) 

 

2. If a POS expression uses five input variables and has a sum within 
it that uses only three variables, how many rows in the POS 
expression's truth table have zeros as a result of that sum? 

3. Draw the digital circuit corresponding to the following SOP 
expressions. 
 
a.) 

_   _ _     _ _ 
A·B·D·E + A·B·C·D 

 
b.) 

          _ _   _ _ _   _ 
A·B·C + A·B·C + A·B·C + A·B·C 

 
c.) 

  _   _         _ 
A·C + B·C·E + D·E 

 

4. Draw the NAND-NAND digital logic circuit for each of the SOP 
expressions shown in problem 3. 

5. List the two reasons why the NAND-NAND implementation of an 
SOP expression is preferred over an AND-OR implementation. 

6. Put the following boolean expression into the proper SOP format. 
___     _   _     ___ 
A·B·C + A·B·C + A·B·C 
 



124   Computer Organization and Design Fundamentals 
 

7. Which form of boolean expression, SOP or POS, would best be 
used to implement the following truth table? 

A B C X 
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

 

8. Derive the SOP and POS expressions for each of the truth tables 
shown below. 

a.) 
 

   b.) 
 

   c.) 
 

  

A B C X  A B C X  A B C X 
0 0 0 0  0 0 0 0  0 0 0 1 
0 0 1 1  0 0 1 1  0 0 1 0 
0 1 0 0  0 1 0 0  0 1 0 1 
0 1 1 0  0 1 1 1  0 1 1 1 
1 0 0 0  1 0 0 1  1 0 0 1 
1 0 1 0  1 0 1 0  1 0 1 0 
1 1 0 1  1 1 0 0  1 1 0 1 
1 1 1 1  1 1 1 1  1 1 1 0 

 

9. Derive the truth table for each of the following SOP expressions. 
 
a.) 

_   _     _     _ _ 
A·B·C + A·B·C + A·B·C 

 
b.) 

_     _ _       _ 
A + A·B·C + A·B·C 

 
c.) 

  _   _       _ _ _ 
A·C + A·B·C + A·B·C 

 

10. Derive the truth table for each of the following POS expressions. 
 
a.) 

 _   _     _     _ _ 
(A+B+C)·(A+B+C)·(A+B+C) 

 
b.) 

         _   _ 
(A + B)·(A + C) 

 
c.) 

   _   _       _ _ _ 
(A+C)·(A+B+C)·(A+B+C) 

 



 125 

CHAPTER SEVEN 

Karnaugh Maps 

7.1 The Karnaugh Map 
With the introduction of SOP and POS functions in Chapter 6, we 

learned how to convert a truth table to a boolean expression, and if 
necessary, a digital circuit. Recall that in the SOP form of a boolean 
expression, each row with an output of one corresponded to a product. 
The OR of all of the products produced an expression that satisfied the 
truth table, but not necessarily one that was reduced to its simplest 
form. For example, the truth table below has four rows, each of which 
corresponds to a one output.  

 
A B C X  
0 0 0 1 A = 0, B = 0, and C = 0 
0 0 1 1 A = 0, B = 0, and C = 1 
0 1 0 0  
0 1 1 0  
1 0 0 1 A = 1, B = 0, and C = 0 
1 0 1 0  
1 1 0 1 A = 1, B = 1, and C = 0 
1 1 1 0  

 
The resulting boolean expression will produce the correct output 

satisfying the truth table, but it can be simplified.  
_ _ _   _ _       _ _       _ 
A·B·C + A·B·C + A·B·C + A·B·C  
_ _  _          _  _      
A·B·(C + C) + A·C·(B + B) Distributive Law 
_ _       _      
A·B·1 + A·C·1 OR'ing anything with its inverse is 1 
_ _     _      
A·B + A·C AND'ing anything with 1 is itself 

 
The application of the rule stating that OR'ing anything with its 

inverse results in a one (the third line in the above simplification) is the 
most common way to simplify an SOP expression. This chapter 
presents a graphical method to quickly pair up products where this rule 
can be applied in order to drop out as many terms as possible. 



126   Computer Organization and Design Fundamentals 
 

Karnaugh Maps are graphical representations of truth tables. They 
consist of a grid with one cell for each row of the truth table. The grid 
shown below in Figure 7-1 is the two-by-two Karnaugh map used to 
represent a truth table with two input variables. 

 
 B   
A  0 1 

0   
1   

Figure 7-1   2-by-2 Karnaugh Map Used with Two Inputs 

The intersection of each row and column corresponds to a unique set 
of input values. For example, the left column of the Karnaugh map in 
Figure 7-1 represents the outputs when the input B equals zero and the 
right column represents the outputs when the input B equals one. The 
top row represents the outputs when A equals zero and the bottom row 
represents the outputs when A equals one. Therefore, the left, top cell 
corresponds to A=0 and B=0, the right, top cell corresponds to A=0 and 
B=1, and so on. Figure 7-2 shows how the rows of a two-input truth 
table map to the cells of the Karnaugh map. The variables labeled Sn in 
the figure represent the binary output values. 

 
 
 
 
 
 
 

Figure 7-2   Mapping a 2-Input Truth Table to Its Karnaugh Map 

The purpose of Karnaugh maps is to rearrange truth tables so that 
adjacent cells can be represented with a single product using the 
simplification described above where OR'ing anything with its inverse 
equals one. This requires adjacent cells to differ by exactly one of their 
input values thereby identifying the input that will drop out. When four 
rows or columns are needed as with a 3- or 4-input Karnaugh map, the 

 B   
A  0 1 

0 S0 S1 
1 S2 S3 

A B X 
0 0 S0 
0 1 S1 
1 0 S2 
1 1 S3 



   Chapter 7: Karnaugh Maps   127 
 

 

2-bit Gray code must be used to ensure that only one input differs 
between neighboring cells. Take for example the three-input Karnaugh 
map shown in Figure 7-3. The four rows are each identified with one of 
the potential values for A and B. This requires them to be numbered 
00-01-11-10 in order to have only one input change from row to row. 

 
 C   

AB  0 1 
00   
01   
11   
10   

Figure 7-3   Three-Input Karnaugh Map 

If we were to use the normal convention for binary counting to 
number the four rows, they would be numbered 00-01-10-11. In this 
case, moving from the second to the third row would result in A 
changing from 0 to 1 and B changing from 1 to 0. This means two 
inputs would change with a vertical movement between two cells and 
we would lose the simplification benefit we get using Karnaugh maps. 

Figure 7-4 shows a four-input Karnaugh map. Notice that the Gray 
code had to be used for both the rows and the columns. 

 
 CD     

AB  00 01 11 10 
 00     
 01     
 11     
 10     

Figure 7-4   Four-Input Karnaugh Map 

Note that mapping the outputs from a larger truth table to a 
Karnaugh map is no different than it was for the two-by-two map 
except that there are more cells.  

We are limited to four input variables when it comes to using 
Karnaugh maps on paper. Remember that the purpose of a Karnaugh 



128   Computer Organization and Design Fundamentals 
 

map is to rearrange the truth table so that adjacent cells can be 
combined allowing for a term to drop out. In other words, the key to the 
effectiveness of a Karnaugh map is that each cell represents the output 
for a specific pattern of ones and zeros at the input, and that to move to 
an adjacent cell, one and only one of those inputs can change.  

Take for instance the Karnaugh map in Figure 7-4. The cell in the 
third column of the second row represents the condition where A=0, 
B=1, C=1, and D=1. Moving to the cell immediately to the left will 
change only C; moving right will change D; moving up changes B; and 
moving down changes A. Therefore, there is an adjacent cell that 
represents a change in any of the four input variables. 

If we were to add a fifth variable, not only would we need to double 
the number of cells in our map, we would also need to make sure that 
there were five directions to move adjacently out of every cell in the 
map. This is impossible to do and remain in two dimensions. A second 
layer of sixteen cells would have to be added on top of the four-input 
Karnaugh map to give us a fifth direction, i.e., perpendicular to the 
page. Although this can be done with a computer, we will not be 
addressing maps with more than four input variables here. 

Example 
Convert the three-input truth table below to its corresponding 

Karnaugh map. 
A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

Solution 
The three-input Karnaugh map uses the two-by-four grid shown in 

Figure 7-3. It doesn't matter which row is used to begin the transfer. 
Typically, we begin with the top row. 

 



   Chapter 7: Karnaugh Maps   129 
 

 

 
 
 
 
 
 
 
 
 
A few more of the transfers are shown in the map below.  
 
 
 
 
 
 
 
 
 
The final map is shown below. 
 

 C   
AB  0 1 

00 0 1 
01 0 1 
11 1 1 
10 1 0 

7.2 Using Karnaugh Maps 
Each cell represents a boolean product just as a row in a truth table 

does. Figure 7-5 identifies the products for each cell containing a one 
from the previous example. 

This shows that an SOP expression can be derived from a Karnaugh 
map just as it would be from a truth table. 
     _ _     _           _             _ _ 
X = (A·B·C)+(A·B·C)+(A·B·C)+(A·B·C)+(A·B·C) 
 

A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 C   
AB  0 1 

00 0 1 
01 0  
11 1  
10 1  

A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 C   
AB  0 1 

00 0  
01   
11   
10   



130   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 

Figure 7-5   Identifying the Products in a Karnaugh Map 

If this was all that Karnaugh maps could be used for, they wouldn't 
be of any use to us. Notice, however, that adjacent cells, either 
horizontally or vertically adjacent, differ by only one inversion. For 
example, the top right cell and the cell below it are identical except that 
B is inverted in the top cell and not inverted in the bottom cell. This 
implies that we can combine these two products into a single, simpler 
product depending only on A and C. 

 _ _     _        _        _    _ 
(A·B·C)+(A·B·C) = A·C·(B + B) = A·C 
 

The third row in the Karnaugh map in Figure 7-5 has another 
adjacent pair of products. 

     _                 _ 
(A·B·C)+(A·B·C) = A·B·(C + C) = B·C 

 
Karnaugh maps can go even further though. If a pair of adjacent 

cells containing ones are adjacent to a second pair of adjacent cells 
containing ones, then all four cells can be represented with a single 
product with two variables dropping out. For example, the four 
adjacent cells in Figure 7-6 reduce to a single term with only one of the 
three original variables left. 

 
 
 
 
 
 
 

Figure 7-6   Karnaugh Map with Four Adjacent Cells Containing '1' 

 C   
AB  0 1 

 00 0 1 
 01 1 1 
 11 1 1 
 10 0 0 

 

 _   _ 
(A·B·C)  _ 

(A·B·C) 
     _ 
(A·B·C)

(A·B·C)

 C   
AB  0 1 

 00 0 1 
 01 0 1 
 11 1 1 
 10 1 0 

 

 _ _ 
(A·B·C)  _ 

(A·B·C) 
     _ 
(A·B·C)

(A·B·C)   _ _ 
(A·B·C)



   Chapter 7: Karnaugh Maps   131 
 

 

By applying the rules of boolean algebra, we can see how the 
products represented by these four cells reduce to a single product with 
only one variable. 

    _   _   _           _ 
X = A·B·C + A·B·C + A·B·C + A·B·C 
    _    _             _ 
X = A·B·(C + C) + A·B·(C + C) 
    _ 
X = A·B + A·B 
       _ 
X = B·(A + A) 
 
X = B 

 
So the key to effectively using Karnaugh maps is to find the largest 

group of adjacent cells containing ones. The larger the group, the fewer 
products and inputs will be needed to create the boolean expression that 
produces the truth table. In order for a group of cells containing ones to 
be considered adjacent, they must follow some rules. 

 
 The grouping must be in the shape of a rectangle. There are no 

diagonal adjacencies allowed. 
 
 
 
 
 
 
 
 

 All cells in a rectangle must contain ones. No zeros are allowed. 
 

 CD       CD     
AB  00 01 11 10  AB  00 01 11 10 

 00 1 0 0 0   00 0 0 0 0 
 01 1 0 1 1   01 0 1 1 0 
 11 1 0 1 1   11 0 1 0 0 
 10 1 0 0 0   10 0 0 0 0 

  Right  Wrong 

 CD       CD     
AB  00 01 11 10  AB  00 01 11 10 

 00 0 0 0 1   00 0 0 0 0 
 01 1 1 0 1   01 0 0 1 0 
 11 1 1 0 1   11 0 1 0 0 
 10 0 0 0 1   10 0 0 0 0 

  Right  Wrong 
 



132   Computer Organization and Design Fundamentals 
 

 The number of cells in the grouping must equal a power of two, i.e., 
only groups of 1, 2, 4, 8, or 16 are allowed. 

 
 CD       CD     

AB  00 01 11 10  AB  00 01 11 10 
 00 1 0 1 1   00 1 1 0 0 
 01 0 0 1 1   01 1 1 0 0 
 11 0 1 1 1   11 1 1 0 0 
 10 0 0 1 1   10 0 0 0 0 

  Right  Wrong 
 

 Outside edges of Karnaugh maps are considered adjacent, so 
rectangles may wrap from left to right or from top to bottom. 

 
 CD      

AB  00 01 11 10  
 00 0 1 1 0  
 01 0 0 0 0  
 11 1 0 0 1  
 10 0 1 1 0  
       

 Cells may be contained in more than one rectangle, but every 
rectangle must have at least one cell unique to it. (In wrong 
example, the horizontal rectangle is an unnecessary duplicate.) 

 
 
 
 
 
 
 
 

 Every rectangle must be as large as possible. 
 
 
 
 
 
 
 
 
 
 
 

 CD       CD     
AB  00 01 11 10  AB  00 01 11 10 

 00 0 1 1 0   00 0 0 0 0 
 01 1 1 1 1   01 0 1 0 0 
 11 1 1 1 1   11 0 1 1 0 
 10 0 0 0 1   10 0 0 1 0 

  Right  Wrong 
 

 CD       CD     
AB  00 01 11 10  AB  00 01 11 10 

 00 1 1 0 0   00 1 1 0 0 
 01 1 1 0 0   01 1 1 0 0 
 11 1 1 0 0   11 1 1 0 0 
 10 1 1 0 0   10 1 1 0 0 

  Right  Wrong 
 



   Chapter 7: Karnaugh Maps   133 
 

 

 

 Every 1 must be covered by at least one rectangle. 
 
 
 
 
 
 
 
 
The ultimate goal is to create the fewest number of valid rectangles 

while still covering every 1 in the Karnaugh map. Each rectangle 
represents a product, and the larger the rectangle, the fewer variables 
will be contained in that product. 

For people new to Karnaugh maps, the easiest way to derive the 
product represented by a rectangle is to list the input values for all cells 
in the rectangle, and eliminate the ones that change. For example, the 
three-input Karnaugh map shown in Figure 7-7 has a four-cell rectangle 
with the following input values for each of its cells: 

 
 Top left cell: A = 0, B = 1, and C = 0 
 Top right cell: A = 0, B = 1, and C = 1 
 Bottom left cell: A = 1, B = 1, and C = 0 
 Bottom right cell: A = 1, B = 1, and C = 1 
 

 C   
AB  0 1 

 00 0 0 
 01 1 1 
 11 1 1 
 10 0 0 

Figure 7-7   Sample Rectangle in a Three-Input Karnaugh Map 

The inputs that are the same for all cells in the rectangle are the ones 
that will be used to represent the product. For this example, both A and 
C are 0 for some cells and 1 for others. That means that these inputs 
will drop out leaving only B which remains 1 for all four of the cells. 
Therefore, the product for this rectangle will equal 1 when B equals 1 

 CD       CD     
AB  00 01 11 10  AB  00 01 11 10 

 00 1 0 0 1   00 1 0 0 1 
 01 1 1 1 1   01 1 1 1 1 
 11 1 1 1 1   11 1 1 1 1 
 10 1 0 0 0   10 1 0 0 0 

  Right  Wrong 



134   Computer Organization and Design Fundamentals 
 

giving us the same expression we got from simplifying the Figure 7-6 
equation: 

 
X = B 

 
As for the benefits of simplification with Karnaugh maps, each time 

we are able to double the size of a rectangle, one input to the resulting 
product drops out. Rectangles containing only one cell will have all of 
the input variables represented in the final product. Two-cell rectangles 
will have one fewer input variables; four-cell rectangles will have two 
fewer input variables; eight-cell rectangles will have three fewer input 
variables; and so on. 

Example 
Determine the minimal SOP expression for the truth table below. 

A B C D X 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 1 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 1 1 1 1 

Solution 
First, we need to convert the truth table to a Karnaugh map. 
 

 CD     
AB  00 01 11 10 

 00 1 0 0 1 
 01 0 0 0 0 
 11 0 0 1 1 
 10 1 1 1 1 

 



   Chapter 7: Karnaugh Maps   135 
 

 

Now that we have the Karnaugh map, it is time to create the 
rectangles. Two of them are easy to see: all four cells of the bottom row 
make one rectangle and the four cells that make up the lower right 
corner quadrant of the map make up a second rectangle. 

Less obvious is the third rectangle that takes care of the two cells in 
the top row that contain ones. Remember that a rectangle can wrap 
from the left side of the map to the right side of the map. That means 
that these two cells are adjacent. What's less obvious is that this 
rectangle can wrap around from top to bottom too making it a four cell-
rectangle. 

 
 
 
 
 
 
 
 
It's okay to have the bottom right cell covered by three rectangles. 

The only requirement is that no rectangle can be fully covered by other 
rectangles and that no cell with a 1 be left uncovered. 

Now let's figure out the products of each rectangle. Below is a list of 
the input values for rectangle 1, the one that makes up the bottom row 
of the map. 

 
 Rectangle 1:  A B C D 
  1 0 0 0 
  1 0 0 1 
  1 0 1 1 
  1 0 1 0 
 
A and B are the only inputs to remain constant for all four cells: A is 

always 1 and B is always 0. This means that for this rectangle, the 
product must output a one when A equals one and B equals zero, i.e., 
the inverse of B equals one. This gives us our first product. 

    _ 
 Product for rectangle 1 = A·B 
 

 CD     
AB  00 01 11 10

 00 1 0 0 1 
 01 0 0 0 0 
 11 0 0 1 1 
 10 1 1 1 1 

Rectangle 1 

Rectangle 3 

Rectangle 2 



136   Computer Organization and Design Fundamentals 
 

The product for rectangle 2 is found the same way. Below is a list of 
the values for A, B, C, and D for each cell of rectangle 2. 

 
 Rectangle 2:  A B C D 
  1 1 1 1 
  1 1 1 0 
  1 0 1 1 
  1 0 1 0 
 
In this rectangle, A and C are the only ones that remain constant 

across all of the cells. To make the corresponding product equal to one, 
they must both equal one. 

   
 Product for rectangle 2 = A·C 
 
Below is a list of the input values for each cell of rectangle 3. 
 
 Rectangle 3:  A B C D 
  0 0 0 0  
  0 0 1 0 
  1 0 0 0  
  1 0 1 0 
 
In rectangle 3, B and D are the only ones that remain constant across 

all of the cells. To make the corresponding product equal to one, they 
must both equal 0, i.e., their inverses must equal 1. 

  _ _ 
 Product for rectangle 3 = B·D 
 
From these three products, we get our final SOP expression by 

OR'ing them together. 
      _         _ _ 
X = A·B + A·C + B·D 

 
This is a significant simplification over what we would have gotten 

had we created a product for each row in the truth table. Since the four-
input truth table had eight ones in it, the resulting SOP expression 
would have had eight products each with four input variables. This 
circuit would have taken eight four-input AND gates and one eight-
input OR gate. The circuit from the expression derived from the 



   Chapter 7: Karnaugh Maps   137 
 

 

Karnaugh map, however, only requires three two-input AND gates and 
one three-input OR gate. 

With practice, many Karnaugh map users can see the variables that 
will drop out of each rectangle without having to enumerate the input 
values for every cell. They usually do this by seeing where the 
rectangle spans variable changes for the rows and columns and drop out 
those variables. This skill is not necessary, however. Anyone can see 
which variables drop out by making a list of the bit patterns for each 
cell in the rectangle and identifying which input variables stay the same 
and which take on both one and zero as values.  

7.3 "Don't Care" Conditions in a Karnaugh Map 
Assume you've been invited to play some poker with some friends. 

The game is five card draw and jacks are wild. What does it mean that 
"jacks are wild"?  It means that if you are dealt one or more jacks, then 
you can change them to whatever suit or rank you need in order to get 
the best possible hand of cards. Take for instance the following hand. 

 
 
 
 
 
 
Three aces are pretty good, but since you can change the jack of 

diamonds to anything you want, you could make the hand better. 
Changing it to a two would give you a full house: three of a kind and a 
pair. Changing it to an ace, however, would give you an even better 
hand, one beatable by only a straight flush or five of a kind. (Note that 
five of a kind is only possible with wild cards.) 

If a truth table contains a "don't care" element as its output for one of 
the rows, that "don't care" is transferred to corresponding cell of the 
Karnaugh map. The question is, do we include the "don't care" in a 
rectangle or not?  Well, just like the poker hand, you do what best suits 
the situation. 

For example, the four-input Karnaugh map shown in Figure 7-8 
contains two "don't care" elements: one represented by the X in the far 
right cell of the second row and one in the lower left cell. 

 
 

A 
 

A 
 

A 
 

J 
 

2 
 



138   Computer Organization and Design Fundamentals 
 

 CD     
AB  00 01 11 10 

 00 1 0 0 0 
 01 1 0 0 X 
 11 1 0 1 1 
 10 X 0 0 0 

Figure 7-8   Karnaugh Map with a "Don't Care" Elements 

By changing the X in the lower left cell to a 1, we can make a larger 
rectangle, specifically one that covers the entire left column. If we 
didn't do this, we would need to use two smaller 2-cell rectangles to 
cover the ones in the left column. 

If we changed the X in the second row to a one, however, it would 
force us to add another rectangle in order to cover it thereby making the 
final SOP expression more complex. Therefore, we will assume that 
that "don't care" represents a zero. Figure 7-9 shows the resulting 
rectangles. 

 
 CD     

AB  00 01 11 10 
 00 1 0 0 0 
 01 1 0 0 X 
 11 1 0 1 1 
 10 X 0 0 0 

Figure 7-9   Karnaugh Map with a "Don't Care" Elements Assigned 

The final circuit will have a one or a zero in that position depending 
on whether or not it was included in a rectangle. Later in this book, we 
will examine some cases where we will want to see if those values that 
were assigned to "don't cares" by being included or not included in a 
rectangle could cause a problem. 

7.4 What's Next? 
This chapter has shown how any truth table with up to four input 

variables can be quickly converted to its minimum SOP circuit 
expression. This means that if a designer can come up with a truth 
table, hardware can achieve it. 



   Chapter 7: Karnaugh Maps   139 
 

 

Chapter 8 presents some common digital circuits by starting with 
their general concept, and then taking the reader all of the way through 
to the realization of the hardware. This is done so that the reader can 
get a feel for the more abstract parts of circuit design, specifically, 
taking the leap from a system level concept or specification to the 
boolean expression that will fulfill the requirements. 

Problems 
1. How many cells does a 3-input Karnaugh map have? 

2. What is the largest number of input variables a Karnaugh map can 
handle and still remain two-dimensional? 

3. In a 4-variable Karnaugh map, how many input variables (A, B, C, 
or D) does a product have if its rectangle of 1's contains 4 cells? 
Your answer should be 0, 1, 2, 3, or 4.  

4. Identify the problems with each of the three rectangles in the 
Karnaugh map below. 

 

 

 

 

 

 

5. When a Karnaugh map has four rows or columns, they are 
numbered 00, 01, 11, 10 instead of 00, 01, 10, 11. Why?  

6. Create Karnaugh maps for each of the truth tables below.  
A B C X  A B C X  A B C X 
0 0 0 0  0 0 0 1  0 0 0 1 
0 0 1 1  0 0 1 1  0 0 1 0 
0 1 0 1  0 1 0 1  0 1 0 0 
0 1 1 0  0 1 1 0  0 1 1 0 
1 0 0 0  1 0 0 0  1 0 0 1 
1 0 1 1  1 0 1 0  1 0 1 1 
1 1 0 1  1 1 0 1  1 1 0 1 
1 1 1 0  1 1 1 1  1 1 1 1 

 

1 1 0 0 

1 1 1 1 

1 1 0 1 

0 0 0 0 

AB 
CD 

Rectangle 1

Rectangle 2

Rectangle 3



140   Computer Organization and Design Fundamentals 
 

7. Derive the minimum SOP expressions for each of the Karnaugh 
maps below. 

 C     CD     
AB  0 1  AB  00 01 11 10 

 00 1 0   00 1 0 0 1 
 01 0 0   01 1 0 0 1 
 11 0 1   11 1 0 1 1 
 10 1 1   10 1 0 0 1 

 
 C     CD     

AB  0 1  AB  00 01 11 10 
 00 0 1   00 0 0 0 0 
 01 1 1   01 1 1 0 X 
 11 1 1   11 1 X 1 1 
 10 0 1   10 X 0 0 0 

 

8. Create a Karnaugh map that shows there can be more than one 
arrangement for the rectangles of ones in a Karnaugh map. 

 



 141 

CHAPTER EIGHT 

Combinational Logic Applications 

Thus far, our discussion has focused on the theoretical design issues 
of computer systems. We have not yet addressed any of the actual 
hardware you might find inside a computer. This chapter changes that.  

The following sections present different applications used either as 
stand-alone circuits or integrated into the circuitry of a processor. Each 
section will begin with a definition of a problem to be addressed. From 
this, a truth table will be developed which will then be converted into 
the corresponding boolean expression and finally a logic diagram. 

8.1 Adders 
Most mathematical operations can be handled with addition. For 

example, subtraction can be performed by taking the two's complement 
of a binary value, and then adding it to the binary value from which it 
was to be subtracted. Two numbers can be multiplied using multiple 
additions. Counting either up or down (incrementing or decrementing) 
can be performed with additions of 1 or -1. 

Chapter 3 showed that binary addition is performed just like decimal 
addition, the only difference being that decimal has 10 numerals while 
binary has 2. When adding two digits in binary, a result greater than 
one generates an "overflow", i.e., a one is added to the next position. 
This produces a sum of 0 with a carry of 1 to the next position. 

 
  1 
0 0 1 1

+ 0 + 1 + 0 + 1
0 1 1 10

Figure 8-1   Four Possible Results of Adding Two Bits 

A well-defined process such as this is easily realized with digital 
logic. Figure 8-2 shows the block diagram of a system that takes two 
binary inputs, A and B, and adds them together producing a bit for the 
sum and a bit indicating whether or not a carry occurred. This well-
known circuit is commonly referred to as a half-adder. 



142   Computer Organization and Design Fundamentals 
 

 
 
 
 

Figure 8-2   Block Diagram of a Half Adder 

With two inputs, there are four possible patterns of ones and zeros. 
 

 
 
 
 
 
 
 
 
 

Figure 8-3   Four Possible States of a Half Adder 

A truth table can be derived from Figure 8-3 from which the boolean 
expressions can be developed to realize this system. 

 
A B Sum Carryout

0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 
The simplicity of a two-input truth table makes the use of a 

Karnaugh map unnecessary. Examining the Sum column shows that we 
should have an output of one when A=0 and B=1 and when A=1 and 
B=0. This gives us the following SOP expression: 

      _       _ 
Sum = A·B + A·B 

 
Note that the output Sum is also equivalent to the 2-input XOR gate. 

A Sum 
 
B Carryout

Inputs Outputs

A Sum 
 
B Carryout 

0 
 

0 

0 
 

0 

0 + 0 = 0 w/no carry 1 + 0 = 1 w/no carry 

0 + 1 = 1 w/no carry 1 + 1 = 0 w/a carry 

A Sum
 
B Carryout

1

0

1 
 

0 

A Sum 
 
B Carryout 

0 
 

1 

1 
 

0 

A Sum
 
B Carryout

1

1

0 
 

1 



   Chapter 8: Combinational Logic Applications   143 
 

 

For Carryout, the output equals 1 only when both A and B are equal 
to one. This matches the operation of the AND gate. 

 
Carryout = A·B 

 
Figure 8-4 presents the logic circuit for the half adder. 
 
 
 
 
 
 
 

Figure 8-4   Logic Circuit for a Half Adder 

The half-adder works fine if we're trying to add two bits together, a 
situation that typically occurs only in the rightmost column of a multi-
bit addition. The remaining columns have the potential of adding a 
third bit, the carry from a previous column.  

For example, assume we want to add two 
four bit numbers, A = 01102 and B = 10112. 
The addition would go something like that 
shown to the right. 

Adding the least significant bits of a multi-bit value uses the half-
adder described above. Each input to the half-adder takes one of the 
least significant bits from each number. The outputs are the least 
significant digit of the sum and a possible carry to the next column. 

What is needed for the remaining columns is an adder similar to the 
half-adder that can add two bits along with a carry from the previous 
column to produce a Sum and the Carryout to the next column. Figure  
8-5 represents this operation where An is the bit in the nth position of A, 
Bn is the bit in the nth position of B, and Sn is the bit in the nth position 
in the resulting sum, S. 

Notice that a Carryout from the addition of a pair of bits goes into the 
carry input of the adder for the next bit. We will call the input Carryin. 
This implies that we need to create a circuit that can add three bits, An, 
Bn, and Carryin from the n-1 position. This adder has two outputs, the 

A
B

Sum

Carryout 

  1 1 1     
    0 1 1 0 
+   1 0 1 1 

  1 0 0 0 1 



144   Computer Organization and Design Fundamentals 
 

sum and the Carryout to the n+1 position. The resulting circuit is called 
a full adder. A block diagram of the full adder is shown in Figure 8-6. 

 
 
 
 
 
 
 
 
 

Figure 8-5   Block Diagram of a Multi-bit Adder 

 
 
 
 

Figure 8-6   Block Diagram of a Full Adder 

With three inputs there are 23 = 8 possible patterns of ones and zeros 
that could be input to our full adder. Table 8-1 lists these combinations 
along with the results of their addition which range from 0 to 310. 

Table 8-1   Addition Results Based on Inputs of a Full Adder 

Inputs Result 
A B Carryin Decimal Binary 
0 0 0 010 002 
0 0 1 110 012 
0 1 0 110 012 
0 1 1 210 102 
1 0 0 110 012 
1 0 1 210 102 
1 1 0 210 102 
1 1 1 310 112 

 

A Sum
 

B Carryout 
 

Carryin 

Inputs Outputs 

A3 

B3 

A2 

B2 

A1

B1

A0

B0

S3 S2 S1 S0S4 

Carryout Carryin 



   Chapter 8: Combinational Logic Applications   145 
 

 

The two-digit binary result in the last column of this table can be 
broken into its components, the sum and a carry to the next bit position. 
This gives us two truth tables, one for the Sum and one for the Carryout. 

Table 8-2   Sum and Carryout Truth Tables for a Full Adder 

A B Carryin Sum  A B Carryin Carryout 
0 0 0 0  0 0 0 0 
0 0 1 1  0 0 1 0 
0 1 0 1  0 1 0 0 
0 1 1 0  0 1 1 1 
1 0 0 1  1 0 0 0 
1 0 1 0  1 0 1 1 
1 1 0 0  1 1 0 1 
1 1 1 1  1 1 1 1 

 
With three inputs, a Karnaugh map can be use to create the logic 

expressions. One Karnaugh map will be needed for each output of the 
circuit. Figure 8-7 presents the Karnaugh maps for the Sum and the 
Carryout outputs of our full adder where Cin represents the Carryin input. 

 
 
 
 
 
 
 
 

Figure 8-7   Sum and Carryout Karnaugh Maps for a Full Adder 

The Carryout Karnaugh map has three rectangles, each containing 
two cells and all three overlapping on the cell defined by A=1, B=1, 
and Cin=1. By using the process presented in Chapter 7, we can derive 
the three products for the SOP expression defining Carryout. 

The Karnaugh map for the Sum is less promising. In fact, there is no 
way to make a more complex 3-input Karnaugh map than the one that 

  Sum    Carryout 
 Cin    Cin  

AB  0 1  AB  0 1 
 00 0 1  00 0 0 
 01 1 0  01 0 1 
 11 0 1  11 1 1 
 10 1 0  10 0 1 



146   Computer Organization and Design Fundamentals 
 

exists for the Sum output of the full adder. The addition or removal of a 
'1' in any cell of the map will result in a simpler expression. The four 
single-cell rectangles result in the four products of the SOP expression 
for the Sum output shown following the Carryout expression. 

 
Rectangle 1: A B Cin  
 0 1 1 B·Cin 
 1 1 1  
     
Rectangle 2: A B Cin  
 1 1 0 A·B 
 1 1 1  
     
Rectangle 3: A B Cin  
 1 1 1 A·Cin 
 1 0 1  

 
Carryout = B·Cin + A·B + A·Cin 

      _ _      _   __               _ __ 
Sum = A·B·Cin + A·B·Cin + A·B·Cin + A·B·Cin 
 
Figure 8-8 presents the circuit for the full adder. 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-8   Logic Circuit for a Full Adder 

Now we have the building blocks to create an adder of any size. For 
example, a 16-bit adder is made by using a half adder for the least 

A 
 

B Carryout

Sum



   Chapter 8: Combinational Logic Applications   147 
 

 

significant bit followed by fifteen full adders daisy-chained through 
their carries for the remaining fifteen bits. 

This method of creating adders has a slight drawback, however. Just 
as with the addition of binary numbers on paper, the sum of the higher-
order bits cannot be determined until the carry from the lower-order 
bits has been calculated and propagated through the higher stages. 
Modern adders use additional logic to predict whether the higher-order 
bits should expect a carry or not well before the sum of the lower-order 
bits is calculated. These adders are called carry look ahead adders. 

8.2 Seven-Segment Displays 
Most everyone has seen a seven-segment display. It is the most 

common way to display time on a clock radio, and it is one of the 
easiest ways to implement a numeric output for a digital circuit. The 
use of seven-segment displays is so extensive that special integrated 
circuits (ICs) have been developed to take a four-bit binary numeric 
input and create the output signals necessary to drive the display. 

 A seven-segment display consists of seven long, thin LEDs 
arranged in the pattern of an eight. Each segment is controlled 
individually so that any decimal digit can be displayed. Using a 
combination of both upper- and lower-case letters, A, B, C, D, E, and F 
can be displayed too allowing a seven-segment display to output all of 
the hexadecimal digits too. 

Figure 8-9 shows a diagram of the typical seven-segment display 
with each segment lettered for identification.  

 
 
 
 
 

Figure 8-9   7-Segment Display Figure 8-10   Displaying a '1' 

To make a digit appear, the user must know which segments to turn 
on and which to leave off. For example, to display a '1', we need to turn 
on segments b and c and leave the other segments off. This means that 
the binary circuits driving segments b and c would output 1 while the 
binary circuits driving segments a, d, e, f, and g would output 0. If the 

a 

b

c 

d 

f 

e g 

a

b

c

d

f

e g



148   Computer Organization and Design Fundamentals 
 

binary inputs to the display are set to a=1, b=1, c=0, d=1, e=1, f=0, and 
g=1, a '2' would be displayed. 

 
 
 
 
 

Figure 8-11   A Seven-Segment Display Displaying a Decimal '2' 

The digital circuitry used to drive a seven-segment display consists 
of seven separate digital circuits, one for each LED. Each circuit takes 
as its input the binary nibble that is to be displayed. For example, if the 
binary nibble 00102 = 210 is input to the digital circuitry driving the 
display, then the digital circuit for segment 'a' would output 1, the 
digital circuit for segment 'b' would output 1, the digital circuit for 
segment 'c' would output 0, and so on. Figure 8-12 shows a block 
diagram of the seven-segment display driver. 

 
 
 
 
 
 
 

Figure 8-12   Block Diagram of a Seven-Segment Display Driver 

To begin with, we need seven truth tables, one for the output of each 
circuit. The individual bits of the number to be displayed will be used 
for the inputs. Next, we need to know which segments are to be on and 
which are to be off for each digit. Figure 8-13 shows the bit patterns for 
each hexadecimal digit. 

Using the information from Figure 8-13, we can build the seven 
truth tables. The truth table in Figure 8-14 combines all seven truth 
tables along with a column indicating which digit is displayed for the 
corresponding set of inputs. Note that the capital letters denote the 
input signals while the lower case letters identify the segments of the 
seven-segment display. 

a

b

c

d

f

e g

Seven digital 
logic circuits, 
one for each 

output 

a 
b 
c 
d 
e 
f 
g 

A 
B 
C 
D 

One binary 
nibble

One output 
for each 
segment 



   Chapter 8: Combinational Logic Applications   149 
 

 

 Digit Segments  Digit Segments 
 0 a, b, c, d, e, f  1 b, c 

 2 a, b, d, e, g  3 a, b, c, d, g 

 4 b, c, f, g  5 a, c, d, f, g 

 6 a, c, d, e, f, g  7 a, b, c 

 8 a, b, c, d, e, f, g  9 a, b, c, d, f, g 

 A a, b, c, e, f, g  B c, d, e, f, g 

 C a, d, e, f  D b, c, d, e, g 

 E a, d, e, f, g  F a, e, f, g 

Figure 8-13   Segment Patterns for all Hexadecimal Digits 

Inputs Segments 
A B C D 

Hex 
Value a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 
0 0 0 1 1 0 1 1 0 0 0 0 
0 0 1 0 2 1 1 0 1 1 0 1 
0 0 1 1 3 1 1 1 1 0 0 1 
0 1 0 0 4 0 1 1 0 0 1 1 
0 1 0 1 5 1 0 1 1 0 1 1 
0 1 1 0 6 1 0 1 1 1 1 1 
0 1 1 1 7 1 1 1 0 0 0 0 
1 0 0 0 8 1 1 1 1 1 1 1 
1 0 0 1 9 1 1 1 1 0 1 1 
1 0 1 0 A 1 1 1 0 1 1 1 
1 0 1 1 B 0 0 1 1 1 1 1 
1 1 0 0 C 1 0 0 1 1 1 0 
1 1 0 1 D 0 1 1 1 1 0 1 
1 1 1 0 E 1 0 0 1 1 1 1 
1 1 1 1 F 1 0 0 0 1 1 1 

Figure 8-14   Seven Segment Display Truth Table 



150   Computer Organization and Design Fundamentals 
 

The next step is to create a Karnaugh map for each of the seven 
segments in order to determine the minimum SOP expression and 
digital circuit to be used to drive each segment. Here we will only do 
one of the circuits, segment e. Figure 8-15 takes the column for 
segment e and maps it into a four-by-four Karnaugh map. 

 
 CD     

AB  00 01 11 10 
 00 1 0 0 1 
 01 0 0 0 1 
 11 1 1 1 1 
 10 1 0 1 1 

Figure 8-15   Karnaugh Map for Segment 'e' 

Next, we need to identify the optimum set of rectangles for the 
Karnaugh map. These rectangles are shown in Figure 8-16. 

 
 
 
 
 
 
 

Figure 8-16   Karnaugh Map for Segment 'e' with Rectangles 

From the rectangles, we can derive the SOP expression products. 
 

 Rectangle 1:  A B C D   _ _ 
  0 0 0 0  Product: B·D 
  1 0 0 0 
  0 0 1 0 
  1 0 1 0 

 
 Rectangle 2:  A B C D  
  1 1 0 0    
  1 1 0 1  Product: A·B 
  1 1 1 1  
  1 1 1 0 

Rectangle 4 

Rectangle 3 

Rectangle 2 

Rectangle 1 

 CD     
AB  00 01 11 10 

 00 1 0 0 1 
 01 0 0 0 1 
 11 1 1 1 1 
 10 1 0 1 1 



   Chapter 8: Combinational Logic Applications   151 
 

 

 Rectangle 3:  A B C D  
  1 1 1 1    
  1 1 1 0  Product: A·C 
  1 0 1 1  
  1 0 1 0 

 
 Rectangle 4:  A B C D  
  0 0 1 0     _ 
  0 1 1 0  Product: C·D 
  1 1 1 0  
  1 0 1 0 

 
Our final SOP expression is then the OR of these four products. 

             _ _                       _ 
Segment e = (B·D) + (A·B) + (A·C) + (C·D) 

 
Figure 8-17 presents the digital logic that would control segment e 

of the seven-segment display. The design of the display driver is not 
complete, however, as there are six more logic circuits to design. 

 
 
 
 
 
 
 
 

Figure 8-17   Logic Circuit for Segment e of 7-Segment Display 

8.3 Active-Low Signals 
Computer systems are composed of numerous subsystems, some of 

which may be idle, some of which may be operating independent of the 
processor, and some of which may be in direct contact with the 
processor. For systems that are in direct contact with the processor, 
only one may be enabled at any one time. For example, although a 
computer system may have multiple memory devices, when a piece of 
data is stored, it is sent to only one of the modules while the other 
modules must remain idle. 

A 

B 

C 

D 

Segment e 



152   Computer Organization and Design Fundamentals 
 

A scheme is needed to select or enable a specific device or to route 
data to an appropriate subsystem. This scheme is implemented with a 
separate binary line that is connected to each subsystem where one of 
the binary values enables the subsystem and the other binary value 
disables it, i.e., an on/off binary control. 

Our discussion previous to this suggests that the "on" signal is 
equivalent to a logic 1, but for a number of reasons, the standard 
method of enabling a device is not to send a logic 1. Instead, due to the 
nature of electronics, it is standard practice to enable devices with a 
logic 0 and disable them with a logic 1. This is called active-low 
operation, i.e., the device is active when its enable signal is low or logic 
0. The device is inactive when the enable is high or logic 1. 

There is a special notation that identifies active-low signals. If you 
see a system's input or output labeled with a bar over it, then that signal 
is an active-low signal. Sometimes, the line that is drawn into or out of 
the system diagram will also pass through an inverter circle to identify 
the signal as active-low. For example, in the system shown in Figure  
8-18, the input C and the output EN are both active-low. 

 
 
 
 

Figure 8-18   Labeling Conventions for Active-Low Signals 

For the active-low circuits discussed in the remainder of this book, 
this notation will be used. 

8.4 Decoders 
One application where digital signals are used to enable a device is 

to identify the unique conditions to enable an operation. For example, 
the magnetron in a microwave is enabled only when the timer is 
running and the start button is pushed and the oven door is closed. 

This method of enabling a device based on the condition of a 
number of inputs is common in digital circuits. One common 
application is in the processor’s interface to memory. It is used to 
determine which memory device will contain a piece of data. 

In the microwave example, the sentence used to describe the 
enabling of the magnetron joined each of the inputs with the word 

A DATA 
B EN 
C 



   Chapter 8: Combinational Logic Applications   153 
 

 

"and". Therefore, the enabling circuit for the magnetron should be 
realized with an AND gate as shown in Figure 8-19. 

 
 
 

Figure 8-19   Sample Circuit for Enabling a Microwave 

There are many other types of digital systems that enable a process 
based on a specific combination of ones and zeros from multiple inputs. 
For example, an automobile with a manual transmission enables the 
starter when the clutch is pressed and the ignition key is turned. A 
vending machine delivers a soda when enough money is inserted and a 
button is pushed and the machine is not out of the selected soda. 

 
 
 

Figure 8-20   Sample Circuit for Delivering a Soda 

An AND gate outputs a one only when all of its inputs equal one. If 
one or more inputs are inverted, the output of the AND gate is one if 
and only if all of the inputs without inverters equal one and all of the 
inputs with inverters equal zero. 

The truth table for this type of circuit will have exactly one row with 
an output of one while all of the other rows output a zero. The row with 
the one can change depending on which inputs are inverted. For 
example, Figure 8-21 presents the truth table for the circuit that enables 
a device when A and B are true but C is false. 

When SOP expressions were introduced in Chapter 6, we found that 
each row of a truth table with a '1' output corresponded to a unique 
product. Therefore, the circuit that is used to enable a device can be 
realized with a single AND gate. The conditions that activate that AND 
gate are governed by the pattern of inverters at its inputs. When we 
apply the tools of Chapter 6 to the truth table in Figure 8-21, we get the 
boolean expression CBAEN . 

 

Timer
Start button
Door closed

Enable magnetron 

Correct money
Soda is selected

Soda empty
Deliver a soda 



154   Computer Organization and Design Fundamentals 
 

A B C EN 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Figure 8-21   Truth Table to Enable a Device for A=1, B=1, & C=0 

Decoder circuits are a group of enable circuits that have an 
individual output that satisfies each row of the truth table. In other 
words, a decoder has a unique output for each combination of ones and 
zeros possible at its inputs. 

For example, a 2-input decoder circuit with inputs A and B can have 
an output that is 1 only when A=0 and B=0, an output that is 1 only 
when A=0 and B=1, an output that is 1 only when A=1 and B=0, and 
an output that is 1 only when A=1 and B=1. The boolean expressions 
that satisfy this decoder circuit are: 
      _ _       _           _ 
EN0 = A·B EN1 = A·B EN2 = A·B EN3 = A·B 
 

This two-input circuit is called a 1-of-4 decoder due to the fact that 
exactly one of its four outputs will be enabled at any one time. A 
change at any of the inputs will change which output is enabled, but 
never change the fact that only one is enabled. As for the logic circuit, 
it has four AND gates, one satisfying each of the above boolean 
expressions. Figure 8-22 presents this digital circuit. 

 
 
 
 
 
 
 
 

Figure 8-22   Digital Circuit for a 1-of-4 Decoder 

A 

B 

EN0

EN1

EN2

EN3



   Chapter 8: Combinational Logic Applications   155 
 

 

As suggested in the previous section, it is common to implement 
enable signals as active-low due to the nature of electronics. To do this, 
the output of each AND gate must be inverted. This means that the 
active-low decoder circuit is implemented with NAND gates as shown 
in Figure 8-23. Notice the bar over the output names. This indicates the 
active-low nature of these signals. 

 
 
 
 
 
 
 

Figure 8-23   Digital Circuit for an Active-Low 1-of-4 Decoder 

Decoder circuits can have any number of inputs. The number of 
outputs, however, is directly related to the number of inputs. If, for 
example, a decoder has four inputs signals, A, B, C, and D, then there 
are 24 = 16 unique combinations of ones and zeros, each of which 
requires a NAND gate for its output. A decoder with four inputs is 
called a 1-of-16 decoder. Figure 8-24 presents the truth table for an 
active-low 1-of-8 decoder with three inputs. 

 
A B C EN0 EN1 EN2 EN3 EN4 EN5 EN6 EN7 
0 0 0 0 1 1 1 1 1 1 1 
0 0 1 1 0 1 1 1 1 1 1 
0 1 0 1 1 0 1 1 1 1 1 
0 1 1 1 1 1 0 1 1 1 1 
1 0 0 1 1 1 1 0 1 1 1 
1 0 1 1 1 1 1 1 0 1 1 
1 1 0 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 0 

Figure 8-24   Truth Table for an Active-Low 1-of-8 Decoder 

8.5 Multiplexers 
A multiplexer, sometimes referred to as a MUX, is a device that 

uses a set of control inputs to select which of several data inputs is to be 

A 

B 

EN0 

EN1 

EN2 

EN3 



156   Computer Organization and Design Fundamentals 
 

connected to a single data output. With n binary "select lines," one of 2n 
data inputs can be connected to the output. Figure 8-25 presents a block 
diagram of a multiplexer with three select lines, S2, S1, and S0, and 
eight data lines, D0 through D7. 

 
 
 
 
 
 
 
 
 

Figure 8-25   Block Diagram of an Eight Channel Multiplexer 

A multiplexer acts like a television channel selector. All of the 
stations are broadcast constantly to the television's input, but only the 
channel that has been selected is displayed. As for the eight-channel 
multiplexer in Figure 8-25, its operation can be described with the truth 
table shown in Figure 8-26. 

 
S2 S1 S0 Y 
0 0 0 D0 
0 0 1 D1 
0 1 0 D2 
0 1 1 D3 
1 0 0 D4 
1 0 1 D5 
1 1 0 D6 
1 1 1 D7 

Figure 8-26   Truth Table for an Eight Channel Multiplexer 

For example, if the selector inputs are set to S2 = 0, S1 = 1, and  
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y 
will output a 0. 

The number of data inputs depends on the number of selector inputs. 
For example, if there is only one selector line, S0, then there can only 
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the 

 S2 S1 S0 
D0 
D1 
D2 
D3 Y
D4 
D5 
D6 
D7 

Output 



   Chapter 8: Combinational Logic Applications   157 
 

 

output. When S0 equals one, D1 is routed to the output. Two selector 
lines, S1 and S0, allow for four data inputs, D0, D1, D2, and D3. 

Example 
For the multiplexer shown below, sketch the output waveform Y for 

the inputs S1 and S0 shown in the graph next to it. Assume S1 is the 
most significant bit. 

 
 
 
 
 
 
 
 

Solution 
The decimal equivalent to the binary value input by the selector 

inputs indicates the subscript of the channel being connected to the 
output. For example, when S1 equals one and S0 equals zero, then their 
decimal equivalent is 102 = 210. Therefore, D2 is connected to the 
output. Since D2 equals zero, then Y is outputting a zero. 

The graph below shows the values of Y for each of the states of S1 
and S0. The labels inserted above the waveform for Y indicate which 
channel is connected to Y at that time. 

 
 
 
 
 
 
 

8.6 Demultiplexers 
The previous section described how multiplexers select one channel 

from a group of input channels to be sent to a single output. 
Demultiplexers take a single input and select one channel out of a 
group of output channels to which it will route the input. It's like having 

Y
Starts as 
logic '1' 

Starts as 
logic '0' 

S1

S0

D0 
D1 
D2 
D3 Y 
 
S1 
S0 

0 
1 
0 
1 

 
 

Y
Starts as 
logic '1' 

Starts as 
logic '0' 

S1

S0

 D1 D1 D3 D2 D0 D0



158   Computer Organization and Design Fundamentals 
 

multiple printers connected to a computer. A document can only be 
printed to one of the printers, so the computer selects one out of the 
group of printers to which it will send its output. 

The design of a demultiplexer is much like the design of a decoder. 
The decoder selected one of many outputs to which it would send a 
zero. The difference is that the demultiplexer sends data to that output 
rather than a zero. 

The circuit of a demultiplexer is based on the non-active-low 
decoder where each output is connected to an AND gate. An input is 
added to each of the AND gates that will contain the demultiplexer's 
data input. If the data input equals one, then the output of the AND gate 
that is selected by the selector inputs will be a one. If the data input 
equals zero, then the output of the selected AND gate will be zero. 
Meanwhile, all of the other AND gates output a zero, i.e., no data is 
passed to them. Figure 8-27 presents a demultiplexer circuit with two 
selector inputs. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8-27   Logic Circuit for a 1-Line-to-4-Line Demultiplexer 

In effect, the select lines, S0, S1, … Sn, "turn on" a specific AND 
gate that passes the data through to the selected output. In Figure  
8-27, if S1=0 and S0=1, then the D1 output will match the input from the 
Data line and outputs D0, D2, and D3 will be forced to have an output of 
zero. If S1=0, S0=1, and Data=0, then D1=0. If S1=0, S0=1, and Data=1, 
then D1=1. Figure 8-28 presents the truth table for the 1-line-to-4-line 
demultiplexer shown in Figure 8-27. 

 
 

S1 

S0 

D0 

D1 

D2 

D3 
Data 



   Chapter 8: Combinational Logic Applications   159 
 

 

S1 S0 Data D0 D1 D2 D3 
0 0 0 0 0 0 0 
0 0 1 1 0 0 0 
0 1 0 0 0 0 0 
0 1 1 0 1 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 1 0 
1 1 0 0 0 0 0 
1 1 1 0 0 0 1 

Figure 8-28   Truth Table for a 1-Line-to-4-Line Demultiplexer 

8.7 Integrated Circuits 
It may appear that much of our discussion up to this point has been 

theoretical, but in reality, each of the circuits we've presented can easily 
be implemented given the right tools. Prototypes used to test or verify 
circuit designs can be made by wiring together small plastic chips that 
offer access to the internal components through thin metal pins. These 
chips, called integrated circuits (ICs), come in a wide variety of shapes, 
sizes, and pin configurations. Figure  
8-29 presents a sample of some ICs. 

 

 

Figure 8-29   Examples of Integrated Circuits 

Connecting the metal pins of these chips with other metal pins from 
the same chip or additional chips is what allows us to create digital 
circuits. 

As for what we are connecting to them, the metal pins of the ICs 
allow us access to the internal circuitry such as the inputs and outputs 
of logic gates. Detailed information is available for all ICs from the 
manufacturer allowing designers to understand the internal circuitry. 



160   Computer Organization and Design Fundamentals 
 

The documentation defining the purpose of each pin of the IC is usually 
referred to as the IC's "pin-out description."  It provides information not 
only on the digital circuitry, but also any power requirements needed to 
operate the IC. 

Figure 8-30 presents an example of the pin-out of a quad dual-input 
NAND gate chip, commonly referred to as a 7400. 

 
 
 
 
 
 
 

Figure 8-30   Pin-out of a Quad Dual-Input NAND Gate IC (7400) 

Note that the pins are numbered. In order to properly use one of 
these ICs, you must be able to identify the pin numbers. To help you do 
this, the manufacturers identify the first pin, referred to as "pin 1", on 
every IC. The Figure 8-31 presents some of the ways this pin is 
identified. 

 
 
 
 
 
 

Figure 8-31   Sample Pin 1 Identifications 

The pins are then numbered counter-clockwise around the chip. You 
can see this in the numbering of the pins in Figure 8-30. 

Many circuits are then built and tested using prototype boards or 
protoboards. A protoboard is a long, thin plastic board with small holes 
in it that allow ICs and short wire leads to be plugged in. A generic 
protoboard is shown in Figure 8-32. 

 

14 13 12 11 10 9 8

1 2 3 4 5 6 7

Vcc 

Gnd

Pin 1 Pin 1 Pin 1



   Chapter 8: Combinational Logic Applications   161 
 

 

 

Figure 8-32   Generic Protoboard 

Behind the sockets there is a pattern of metal connections that 
provides an electrical path between certain sockets on the protoboard. 
This allows us to interconnect and power ICs. Figure 8-33 below shows 
how the sockets are connected electrically. 

 

 
Figure 8-33   Generic Protoboard Internal Connections 

The protoboard allows the user to insert an IC so that it straddles the 
gap running along the center of the board. Wires can then be used to 
connect the pins to other sockets on the protoboard. The rows on the 
top and bottom edges of the board in Figure 8-32 are used to connect 



162   Computer Organization and Design Fundamentals 
 

power (Vcc) and ground (GND) to the IC. Figure 8-34 shows a sample 
circuit with two chips wired together. 

 

 

Figure 8-34   Sample Circuit Wired on a Protoboard 

The next step is to add input and output that will allow us to 
communicate with our circuit. The simplest output from a digital circuit 
is an LED. Figure 8-35 presents the schematic symbol of an LED. 

 
 
 
 
 
 

Figure 8-35   Schematic Symbol of a Light-Emitting Diode (LED) 

An LED will turn on only when a small current passes through it 
from node A to node B. No light will appear if there is no current or if 
the current tries to flow in the opposite direction. By the way, if your 
LED doesn't work like you think it should, try to turn it around. 

There are two things to note here. First, the current must be very 
small. In order to keep the current small enough to protect the LED, we 
need an electronic device called a resistor. This resistor is placed in 
series with the LED to limit the current. If you forget the resistor, you 
will hear a small pop and smell an awful burning odor when you power 
up your circuit. Figure 8-36 shows a typical LED circuit. 

A

B



   Chapter 8: Combinational Logic Applications   163 
 

 

It is important to note that the LED will turn on only when the 
output from the IC equals zero. This is the best way to drive an LED. It 
keeps the ICs from having to supply too much current. 

The simplest input to a digital circuit is a switch. It seems that the 
logical way to connect a switch to a digital circuit would be to connect 
it so that it toggles between a direct connection to a logic 1 and a direct 
connection to a logic 0. Switching back and forth between these 
connections should produce binary 1's and 0's, right? 

Due to the electronics behind IC inputs, this is not the case. Instead, 
connections to positive voltages are made through resistors called pull-
up resistors. This protects the IC by limiting the current flowing into it 
while still providing a positive voltage that can be read as a logic one. 
Figure 8-37 presents a generic switch design for a single input to a 
digital circuit. It uses a pull-up resistor connected to 5 volts which 
represents the circuit's power source. 

 
 
 
 
 
 
 
 
 
 

Figure 8-36   LED Circuit  Figure 8-37   Switch Circuit 

Any local electronics store should carry the protoboards, ICs, input 
switches, and output LEDs to create your prototype circuits. By using 
some simple circuits for switches and LEDs and the design principles 
outlined in this book, you can begin creating digital circuits of your 
own. 

8.8 What's Next? 
In this chapter, we have examined some of the lower-level hardware 

applications of digital logic. In the next chapter, we will present some 

Input to  
an IC 

+5 V 

Pull-up Resistor 

+5 V 

IC Output



164   Computer Organization and Design Fundamentals 
 

applications that pertain more to the software and system levels of 
computer system design. 

Problems 
1. Design the digital logic for segments c, f, and g of the seven-

segment display driver truth table in Figure 8-14. 

2. Draw the decoding logic circuit with an active-low output for the 
inputs A = 1, B = 1, C = 0, and D = 1. 

3. For the active-low output decoder shown  
to the right, fill in the values for the  
outputs D0 through D3. Assume S1 is the  
most significant bit. 

 
 

4. What is the binary value being output  
from Y in the multiplexer circuit shown  
to the right? 

 

 
 

5. What is the purpose of the resistor in the digital circuit for the LED 
shown in Figure 8-36? 

6. What is the purpose of the resistor in the digital circuit for the 
switch shown in Figure 8-37? 

 D0 
S1 D1 
S0 D2 

D3 

0
1

D0 
D1 
D2 
D3 Y 
 
S1 
S0 

0
1
1
0

0
1



 165 

 CHAPTER NINE 

 Binary Operation Applications 

Our discussion so far has focused on logic design as it applies to 
hardware implementation. Frequently software design also requires the 
use of binary logic. This section presents some higher-level binary 
applications, ones that might be found in software. These applications 
are mostly for error checking and correction, but the techniques used 
should not be limited to these areas. 

9.1 Bitwise Operations 
Most software performs data manipulation using mathematical 

operations such as multiplication or addition. Some applications, 
however, may require the examination or manipulation of data at the bit 
level. For example, what might be the fastest way to determine whether 
an integer is odd or even?   

The method most of us are usually taught to distinguish odd and 
even values is to divide the integer by two discarding any remainder 
then multiply the result by two and compare it with the original value. 
If the two values are equal, the original value was even because a 
division by two would not have created a remainder. Inequality, 
however, would indicate that the original value was odd. Below is an 
if-statement in the programming language C that would have performed 
this check. 

 
if(((iVal/2)*2) == iVal) 
    // This code is executed for even values 
else  
    // This code is executed for odd values 

 
Let's see if we can't establish another method. As we discussed in 

Chapter 3, a division by two can be accomplished by shifting all of the 
bits of an integer one position to the right. A remainder occurs when a 
one is present in the rightmost bit, i.e., the least significant bit. A zero 
in this position would result in no remainder. Therefore, if the LSB is 
one, the integer is odd. If the LSB is zero, the integer is even. This is 
shown with the following examples. 



166   Computer Organization and Design Fundamentals 
 

 3510 =  001000112 12410 =  011111002 
 9310 =  010111012 3010 =  000111102 

 
This reduces our odd/even detection down to an examination of the 

LSB. The question is can we get the computer to examine only a single 
bit, and if we can, will it be faster than our previous example? 

There is in fact a way to manipulate data at the bit level allowing us 
to isolate or change individual bits. It is based on a set of functions 
called bitwise operations, and the typical programming language 
provides operators to support them. 

The term bitwise operation refers to the setting, clearing, or toggling 
of individual bits within a binary number. To do this, all processors are 
capable of executing logical operations (AND, OR, or XOR) on the 
individual pairs of bits within two binary numbers. The bits are paired 
up by matching their bit position, performing the logical operation, then 
placing the result in the same bit position of the destination value. 

 
 
 
 
 
 
 

Figure 9-1   Graphic of a Bitwise Operation Performed on LSB 

As an example, Figure 9-2 presents the bitwise AND of the binary 
values 011010112 and 110110102. 

 
Value 1 0 1 1 0 1 0 1 1 
Value 2 1 1 0 1 1 0 1 0 

Resulting AND 0 1 0 0 1 0 1 0 

Figure 9-2   Bitwise AND of 011010112 and 110110102 

Remember that the output of an AND is one if and only if all of the 
inputs are one. In Figure 9-2, we see that ones only appear in the result 
in columns where both of the original values equal one. In a C program, 
the bitwise AND is identified with the operator '&'. The example in 
Figure 9-2 can then be represented in C with the following code. 

Value 2

Result 

Value 1 



   Chapter 9: Binary Operation Applications   167 
 

 

 int iVal1 = 0b01101011; 
 int iVal2 = 0b11011010; 
 int result = iVal1 & iVal2; 

 
Note that the prefix '0b' is a non-standard method of declaring a 

binary integer and is not supported by all C compilers. If your compiler 
does not support this type of declaration, use the hex prefix '0x' and 
declare iVal1 to be 0x6B and iVal2 to be 0xDA. As for the other 
bitwise operators in C, '|' (pipe) is the bitwise OR operator, '^' (caret) is 
the bitwise XOR operator, and '~' (tilde) is the bitwise NOT operator. 

Typically, bitwise operations are intended to manipulate the bits of a 
single variable. In order to do this, we must know two things: what 
needs to be done to the bits and which bits to do it to. 

As for the first item, there are three operations: clearing bits to zero, 
setting bits to one, and toggling bits from one to zero and from zero to 
one. Clearing bits is taken care of with the bitwise AND operation 
while setting bits is done with the bitwise OR. The bitwise XOR will 
toggle specific bits. 

A bit mask is a binary value that is of the same length as the original 
value. It has a pattern of ones and zeros that defines which bits of the 
original value are to be changed and which bits are to be left alone. 

The next three sections discuss each of the three types of bitwise 
operations: clearing bits, setting bits, and toggling bits. 

9.1.1 Clearing/Masking Bits 
Clearing individual bits, also known as bit masking, uses the bitwise 

AND to clear specific bits while leaving the other bits untouched. The 
mask that is used will have ones in the bit positions that are to be left 
alone while zeros are in the bit positions that need to be cleared. 

This operation is most commonly used when we want to isolate a bit 
or a group of bits. It is the perfect operation for distinguishing odd and 
even numbers where we want to see how the LSB is set and ignore the 
remaining bits. The bitwise AND can be used to clear all of the bits 
except the LSB. The mask we want to use will have a one in the LSB 
and zeros in all of the other positions. In Figure 9-3, the results of three 
bitwise ANDs are given, two for odd numbers and one for an even 
number. By ANDing a binary mask of 000000012, the odd numbers 
have a non-zero result while the even number has a zero result. 

This shows that by using a bitwise AND with a mask of 000000012, 
we can distinguish an odd integer from an even integer. Since bitwise 



168   Computer Organization and Design Fundamentals 
 

operations are one of the fastest operations that can be performed on a 
processor, it is the preferred method. In fact, if we use this bitwise 
AND to distinguish odd and even numbers on a typical processor, it can 
be twice as fast as doing the same process with a right shift followed by 
a left shift and over ten times faster than using a divide followed by a 
multiply.  

 
3510 (odd) 0 0 1 0 0 0 1 1 

Odd/Even Mask 0 0 0 0 0 0 0 1 
Bitwise AND Result 0 0 0 0 0 0 0 1 

 
9310 (odd) 0 1 0 1 1 1 0 1 

Odd/Even Mask 0 0 0 0 0 0 0 1 
Bitwise AND Result 0 0 0 0 0 0 0 1 

 
3010 (even) 0 0 0 1 1 1 1 0 

Odd/Even Mask 0 0 0 0 0 0 0 1 
Bitwise AND Result 0 0 0 0 0 0 0 0 

Figure 9-3   Three Sample Bitwise ANDs 

Below is an if-statement in the programming language C that uses a 
bitwise AND to distinguish odd and even numbers. 

 
if(!(iVal&0b00000001)) 
    // This code is executed for even values 
else  
    // This code is executed for odd values 

 
The bitwise AND can also be used to clear specific bits. For 

example, assume we want to separate the nibbles of a byte into two 
different variables. The following process can be used to do this: 

 
 Copy the original value to the variable meant to store the lower 

nibble, then clear all but the lower four bits 
 Copy the original value to the variable meant to store the upper 

nibble, then shift the value four bits to the right. (See Section 3.7, 
"Multiplication and Division by Powers of Two," to see how to 
shift right using C.)  Lastly, clear all but the lower four bits. 

 
This process is demonstrated below using the byte 011011012. 



   Chapter 9: Binary Operation Applications   169 
 

 

Isolating the lower nibble 
 

Original value 0 1 1 0 1 1 0 1 
Lower nibble mask 0 0 0 0 1 1 1 1 

Resulting AND 0 0 0 0 1 1 0 1 
 

Isolating the upper nibble 
 

Original value 0 1 1 0 1 1 0 1 
 

Shift right 4 places 0 0 0 0 0 1 1 0 
Lower nibble mask 0 0 0 0 1 1 1 1 

Resulting AND 0 0 0 0 0 1 1 0 
 

The following C code will perform these operations. 
 
lower_nibble = iVal & 0x0f; 
upper_nibble = (iVal>>4) & 0x0f; 

Example 
Using bitwise operations, write a function in C that determines if an 

IPv4 address is a member of the subnet 192.168.12.0 with a subnet 
mask 255.255.252.0. Return a true if the IP address is a member and 
false otherwise. 

Solution 
An IPv4 address consists of four bytes or octets separated from one 

another with periods or "dots". When converted to binary, an IPv4 
address becomes a 32 bit number. 

The address is divided into two parts: a subnet id and a host id. All 
of the computers that are connected to the same subnet, e.g., a company 
or a school network, have the same subnet id. Each computer on a 
subnet, however, has a unique host id. The host id allows the computer 
to be uniquely identified among all of the computers on the subnet. 

The subnet mask identifies the bits that represent the subnet id. 
When we convert the subnet mask in this example, 255.255.252.0, to 
binary, we get 11111111.11111111.11111100.00000000. 

The bits that identify the subnet id of an IP address correspond to the 
positions with ones in the subnet mask. The positions with zeros in the 
subnet mask identify the host id. In this example, the first 22 bits of any 
IPv4 address that is a member of this subnet should be the same, 



170   Computer Organization and Design Fundamentals 
 

specifically they should equal the address 192.168.12.0 or in binary 
11000000.10101000.00001100.00000000. 

So how can we determine if an IPv4 address is a member of this 
subnet?  If we could clear the bits of the host id, then the remaining bits 
should equal 192.168.12.0. This sounds like the bitwise AND. If we 
perform a bitwise AND on an IPv4 address of this subnet using the 
subnet mask 255.255.252.0, then the result must be 192.168.12.0 
because the host id will be cleared. Let's do this by hand for one 
address inside the subnet, 192.168.15.23, and one address outside the 
subnet, 192.168.31.23. First, convert these two addresses to binary. 

 
192.168.15.23 = 11000000.10101000.00001111.00010111 
192.168.31.23 = 11000000.10101000.00011111.00010111 

 
Now perform a bitwise AND with each of these addresses to come 

up with their respective subnets. 
 

IP Address 11000000.10101000.00001111.00010111 

Subnet mask 11111111.11111111.11111100.00000000 

Bitwise AND 11000000.10101000.00001100.00000000 
 

IP Address 11000000.10101000.00011111.00010111 

Subnet mask 11111111.11111111.11111100.00000000 

Bitwise AND 11000000.10101000.00011100.00000000 
 
Notice that the result of the first bitwise AND produces the correct 

subnet address while the second bitwise AND does not. Therefore, the 
first address is a member of the subnet while the second is not. 

The code to do this is shown below. It assumes that the type int is 
defined to be at least four bytes long. The left shift operator '<<' used in 
the initialization of sbnt_ID and sbnt_mask pushes each octet of 
the IP address or subnet mask to the correct position. 

 
int subnetCheck(int IP_address) 
{ 
  int sbnt_ID = (192<<24)+(168<<16)+(12<<8)+0; 
  int sbnt_mask = (255<<24)+(255<<16)+(252<<8)+0; 
  if((sbnt_mask & IP_address) == sbnt_ID)  
    return 1; 
  else return 0; 
} 



   Chapter 9: Binary Operation Applications   171 
 

 

9.1.2 Setting Bits 
Individual bits within a binary value can be set to one using the 

bitwise logical OR. To do this, OR the original value with a binary 
mask that has ones in the positions to be set and zeros in the positions 
to be left alone. For example, the operation below sets bit positions 1, 
3, and 5 of the binary value 100101102. Note that bit position 1 was 
already set. Therefore, this operation should have no affect on that bit. 

 
Original value 1 0 0 1 0 1 1 0 

Mask 0 0 1 0 1 0 1 0 
Bitwise OR 1 0 1 1 1 1 1 0 

 
In a C program, the bitwise OR is identified with the operator '|'.  

Example 
Assume that a control byte is used to control eight sets of lights in 

an auditorium. Each bit controls a set of lights as follows: 
 

bit 7 – House lighting 
bit 6 – Work lighting 
bit 5 – Aisle lighting 
bit 4 – Exit lighting 

 bit 3 – Emergency lighting 
bit 2 – Stage lighting 
bit 1 – Orchestra pit lighting 
bit 0 – Curtain lighting 

 
For example, if the house lighting, exit lighting, and stage lighting 

are all on, the value of the control byte should be 100101002. What 
mask would be used with the bitwise OR to turn on the aisle lighting 
and the emergency lighting? 

Solution 
The bitwise OR uses a mask where a one is in each position that 

needs to be turned on and zeros are placed in the positions meant to be 
left alone. To turn on the aisle lighting and emergency lighting, bits 5 
and 3 must be turned on while the remaining bits are to be left alone. 
This gives us a mask of 001010002. 

9.1.3 Toggling Bits 
We can also toggle or switch the value of individual bits from 1 to 0 

or vice versa. This is done using the bitwise XOR. Let's begin our 
discussion by examining the truth table for a two-input XOR. 



172   Computer Organization and Design Fundamentals 
 

Table 9-1   Truth Table for a Two-Input XOR Gate 

 

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
If we cover up the bottom two rows of this truth table leaving only 

the rows where A=0 visible, we see that the value of B is passed along 
to X, i.e., if A=0, then X equals B. If we cover up the rows where A=0 
leaving only the rows where A=1 visible, it looks like the inverse of B 
is passed to X, i.e., if A=1, then X equals the inverse of B. This 
discussion makes a two-input XOR gate look like a programmable 
inverter. If A is zero, B is passed through to the output untouched. If A 
is one, B is inverted at the output. 

Therefore, if we perform a bitwise XOR, the bit positions in the 
mask with zeros will pass the original value through and bit positions in 
the mask with ones will invert the original value. The example below 
uses the mask 001011102 to toggle bits 1, 2, 3, and 5 of a binary value 
while leaving the others untouched. 

 
Original value 1 0 0 1 0 1 1 0 

Mask 0 0 1 0 1 1 1 0 
Bitwise XOR 1 0 1 1 1 0 0 0 

Example 
Assume a byte is used to control the warning and indicator lights on 

an automotive dashboard. The following is a list of the bit positions and 
the dashboard lights they control. 

 
bit 7 – Oil pressure light 
bit 6 – Temperature light 
bit 5 – Door ajar light 
bit 4 – Check engine light

 bit 3 – Left turn indicator 
bit 2 – Right turn indicator 
bit 1 – Low fuel light 
bit 0 – High-beams light 

 
Determine the mask to be used with a bitwise XOR that when used 

once a second will cause the left and right turn indicators to flash when 
the emergency flashers are on. 



   Chapter 9: Binary Operation Applications   173 
 

 

Solution 
The bitwise XOR uses a mask with ones is in the positions to be 

toggled and zeros in the positions to be left alone. To toggle bits 3 and 
2 on and off, the mask should have ones only in those positions. 
Therefore, the mask to be used with the bitwise XOR is 000011002. 

9.2 Comparing Bits with XOR 
This brings us to our first method for detecting errors in data: 

comparing two serial binary streams to see if they are equal. Assume 
that one device is supposed to send a stream of bits to another device. 
An example of this might be a motion detector mounted in an upper 
corner of a room. The motion detector has either a zero output 
indicating the room is unoccupied or a one output indicating that 
something in the room is moving. The output from this motion detector 
may look like that shown in Figure 9-4. 

 
 
 
 
 

Figure 9-4   Possible Output from a Motion Detector 

To verify the output of the motion detector, a second motion 
detector could be mounted in the room so that the two separate outputs 
could be compared to each other. If the outputs are the same, the signal 
can be trusted; if they are different, then one of the devices is in error. 
At this point in our discussion, we won't know which one. 

 
 
 
 
 
 
 
 
 

Figure 9-5   A Difference in Output Indicates an Error 

logic 0 

logic 1 
unoccupied

occupied

detector 2 

detector 1 

Difference indicates 
an error occurred



174   Computer Organization and Design Fundamentals 
 

A two-input XOR gate can be used here to indicate when an error 
has occurred. Remember that the output of a two-input XOR gate is a 
zero if both of the inputs are the same and a one if the inputs are 
different. This gives us a simple circuit to detect when two signals 
which should be identical are not. 

 
 
 

Figure 9-6   Simple Error Detection with an XOR Gate 

This circuit will be used later in this chapter to support more 
complex error detection and correction circuits. 

9.3 Parity 
One of the most primitive forms of error detection is to add a single 

bit called a parity bit to each piece of data to indicate whether the data 
has an odd or even number of ones. It is considered a poor method of 
error detection as it sometimes doesn't detect multiple errors. When 
combined with other methods of error detection, however, it can 
improve their overall performance. 

There are two primary types of parity: odd and even. Even parity 
means that the sum of the ones in the data element and the parity bit is 
an even number. With odd parity, the sum of ones in the data element 
and the parity bit is an odd number. When designing a digital system 
that uses parity, the designers decide in advance which type of parity 
they will be using. 

Assume that a system uses even parity. If an error has occurred and 
one of the bits in either the data element or the parity bit has been 
inverted, then counting the number of ones results in an odd number. 
From the information available, the digital system cannot determine 
which bit was inverted or even if only one bit was inverted. It can only 
tell that an error has occurred. 

One of the primary problems with parity is that if two bits are 
inverted, the parity bit appears to be correct, i.e., it indicates that the 
data is error free. Parity can only detect an odd number of bit errors. 

Some systems use a parity bit with each piece of data in memory. If 
a parity error occurs, the computer will generate a non-maskable 
interrupt, a condition where the operating system immediately 
discontinues the execution of the questionable application. 

Signal A
Signal B

Equals 1 when A B



   Chapter 9: Binary Operation Applications   175 
 

 

Example 
Assume the table below represents bytes stored in memory along 

with an associated parity bit. Which of the stored values are in error? 
 

Data Parity 
1 0 0 1 0 1 1 0  0  
0 0 1 1 1 0 1 0  1  
1 0 1 1 0 1 0 1  1  
0 1 0 1 1 0 0 1  0  
1 1 0 0 0 1 0 1  1  

Solution 
To determine which data/parity combinations have an error, count 

the number of ones in each row. The rows with an odd sum have errors 
while the rows with an even sum are assumed to contain valid data. 

 
Data Parity  

1 0 0 1 0 1 1 0 0 4 ones – even  no error 
0 0 1 1 1 0 1 0 1 5 ones – odd  Error! 
1 0 1 1 0 1 0 1 1 6 ones – even  no error 
0 1 0 1 1 0 0 1 0 4 ones – even  no error 
1 1 0 0 0 1 0 1 1 5 ones – odd  Error! 

9.4 Checksum 
For digital systems that store or transfer multiple pieces of data in 

blocks, an additional data element is typically added to each block to 
provide error detection for the block. This method of error detection is 
common, especially for the transmission of data across networks. 

One of the simplest implementations of this error detection scheme 
is the checksum. As a device transmits data, it takes the sum of all of 
the data elements it is transmitting to create an aggregate sum. This 
sum is called the datasum. The overflow carries generated by the 
additions are either discarded or added back into the datasum. The 
transmitting device then sends a form of this datasum appended to the 
end of the block. This new form of the datasum is called the checksum. 

As the data elements are received, they are added a second time in 
order to recreate the datasum. Once all of the data elements have been 
received, the receiving device compares its calculated datasum with the 
checksum sent by the transmitting device. The data is considered error 



176   Computer Organization and Design Fundamentals 
 

free if the receiving device's datasum compares favorably with the 
transmitted checksum. Figure 9-7 presents a sample data block and the 
datasums generated both by discarding the two carries and by adding 
the carries to the datasum. 
 

 
 
 
 

Figure 9-7   Sample Block of Data with Accompanying Datasums 

Upon receiving this transmission, the datasum for this data block 
must be calculated. Begin by taking the sum of all the data elements. 

 
3F16 + D116 + 2416 + 5A16 + 1016 + 3216 + 8916 = 25916 

 
The final datasum is calculated by discarding any carries that went 

beyond the byte width defined by the data block (5916) or by adding the 
carries to the final sum (5916 + 2 = 5B16). This keeps the datasum the 
same width as the data. The method of calculating the datasum where 
the carries are added to the sum is called the one's complement sum.  

The checksum shown for the data block in Figure 9-7 is only one of 
a number of different possible checksums for this data. In this case, the 
checksum was set equal to the expected datasum. If any of the data 
elements or if the checksum was in error, the datasum would not equal 
the checksum. If this happens, the digital system would know that an 
error had occurred. In the case of a network data transmission, it would 
request the data to be resent. 

The only difference between different implementations of the 
checksum method is how the datasum and checksum are compared in 
order to detect an error. As with parity, it is the decision of the designer 
as to which method is used. The type of checksum used must be agreed 
upon by both the transmitting and receiving devices ahead of time. The 
following is a short list of some of the different types of checksum 
implementations: 

 
 A block of data is considered error free if the datasum is equal to 

the checksum. In this case, the checksum element is calculated by 
taking the sum of all of the data elements and discarding any 
carries, i.e., setting the checksum equal to the datasum. 

3F16 D116 2416 5A16 1016 3216 8916 5916

Data 
Datasum

(discarded 
carries) 

5B16 

Datasum 
(added 
carries) 



   Chapter 9: Binary Operation Applications   177 
 

 

 A block of data is considered error free if the sum of the datasum 
and checksum results in a binary value with all ones. In this case, 
the checksum element is calculated by taking the 1's complement of 
the datasum. This method is called a 1's complement checksum. 

 A block of data is considered error free if the sum of the datasum 
and checksum results in a binary value with all zeros. In this case, 
the checksum element is calculated by taking the 2's complement of 
the datasum. This method is called a 2's complement checksum. 

 
As shown earlier, the basic checksum for the data block in Figure  

9-7 is 5916 (010110012). The 1's complement checksum for the same 
data block is equal to the 1's complement of 5916. 

 
1's complement of 5916 = 101001102 = A616 

 
The 2's complement checksum for the data block is equal to the 2's 
complement of 5916. 
 

2s complement of 5916 = 101001112 = A716 

Example 
Determine if the data block and accompanying checksum below are 

error free. The data block uses a 1's complement checksum. 
 

Data Checksum 
0616 0016 F716 7E16 0116 5216  3116  

Solution 
First, calculate the datasum by adding all the data elements in the 

data block. 
 
 
 
 
 

 
This gives us a datasum of CE16. If we add this to the checksum 3116 

we get CE16 + 3116 = FF16, which tells us the data block is error free. 
There is a second way to check this data. Instead of adding the 

datasum to the checksum, you can use the datasum to recalculate the 

0616
+ 0016

0616

0616
+ F716

FD16

FD16
+ 7E16

17B16

7B16
+ 0116

7C16

7C16
+ 5216

CE16



178   Computer Organization and Design Fundamentals 
 

checksum and compare the result with the received checksum. Taking 
the 1's complement of CE16 gives us: 

 
CE16 = 110011102 
1's complement of CE16 = 0011000012 = 3116 

Example 
Write a C program to determine the basic checksum, 1's complement 

checksum, and 2's complement checksum for the data block 0716, 0116, 
2016, 7416, 6516, 6416, 2E16. 

Solution 
Before we get started on this code, it is important to know how to 

take a 1's complement and a 2's complement in C. The 1's complement 
uses a bitwise not operator '~'. By placing a '~' in front of a variable or 
constant, the bitwise inverse or 1's complement is returned. Since most 
computers represent negative numbers with 2's complement notation, 
the 2's complement is calculated by placing a negative sign in front of 
the variable or constant. 

The code below begins by calculating the datasum. It does this with 
a loop that adds each value from the array of data values to a variable 
labeled datasum. After each addition, any potential carry is stripped off 
using a bitwise AND with 0xff. This returns the byte value. 

Once the datasum is calculated, the three possible checksum values 
can be calculated. The first one is equal to the datasum, the second is 
equal to the bitwise inverse of the datasum, and the third is equal to the 
2's complement of the datasum. 

 
int datasum=0; 
int block[] = {0x07, 0x01, 0x20, 0x74,  
               0x65, 0x64, 0x2E}; 
 
// This for-loop adds all of the data elements 
for(int i=0; i < sizeof(block)/sizeof(int); i++) 
 datasum += block[i]; 
 
// The following line discards potential carries 
datasum &= 0xff; 
// Compute each of the three types of checksums 
int basic_checksum = datasum; 
int ones_compl_checksum = 0xff&(~datasum); 
int twos_compl_checksum = 0xff&(-datasum); 



   Chapter 9: Binary Operation Applications   179 
 

 

If we execute this code with the appropriate output statements, we 
get the following three values for the checksums. 
 
The basic checksum is 93 
The 1's complement checksum is 6c 
The 2's complement checksum is 6d 

9.5 Cyclic Redundancy Check 
The problem with using a checksum for error correction lies in its 

simplicity. If multiple errors occur in a data stream, it is possible that 
they may cancel each other out, e.g., a single bit error may subtract 4 
from the checksum while a second error adds 4. If the width of the 
checksum character is 8 bits, then there are 28 = 256 possible 
checksums for a data stream. This means that there is a 1 in 256 chance 
that multiple errors may not be detected. These odds could be reduced 
by increasing the size of the checksum to 16 or 32 bits thereby 
increasing the number of possible checksums to 216 = 65,536 or 232 = 
4,294,967,296 respectively. 

Assume Figure 9-8 represents a segment of an integer number line 
where the result of the checksum is identified. A minor error in one of 
the values may result in a small change in the checksum value. Since 
the erroneous checksum is not that far from the correct checksum, it is 
easy for a second error to put the erroneous checksum back to the 
correct value indicating that there hasn't been an error when there 
actually has been one. 

 
 
 
 
 
 

Figure 9-8   Small Changes in Data Canceling in Checksum 

What we need is an error detection method that generates vastly 
different values for small errors in the data. The checksum algorithm 
doesn't do this which makes it possible for two bit changes to cancel 
each other in the sum.  

A cyclic redundancy check (CRC) uses a basic binary algorithm 
where each bit of a data element modifies the checksum across its 

Valid checksum

First error makes only minor 
change in checksum 

Second error can 
easily mask first error.



180   Computer Organization and Design Fundamentals 
 

entire length regardless of the number of bits in the checksum. This 
means that an error at the bit level modifies the checksum so 
significantly that an equal and opposite bit change in another data 
element cannot cancel the effect of the first. 

First, calculation of the CRC checksum is based on the remainder 
resulting from a division rather than the result of an addition. For 
example, the two numbers below vary only by one bit. 

 
0111 1010 1101 11002 = 31,45210 
0111 1011 1101 11002 = 31,70810 

 
The checksums at the nibble level are: 
 

0111 + 1010 + 1101 + 1100 = 10102 = 1010 
0111 + 1011 + 1101 + 1100 = 10112 = 1110 

These two values are very similar, and a bit change from another nibble 
could easily cancel it out. 

If, on the other hand, we use the remainder from a division for our 
checksum, we get a wildly different result for the two values. For the 
sake of an example, let's divide both values by 910. 

 
31,452  9 = 3,494 with a remainder of 6 = 01102 
31,708  9 = 3,523 with a remainder of 1 = 00012 

 
This is not a robust example due to the fact that 4 bits only have 16 

possible bit patterns, but the result is clear. A single bit change in one 
of the data elements resulted in a single bit change in the addition 
result. The same change, however, resulted in three bits changing in the 
division remainder. 

The problem is that division in binary is not a quick operation. For 
example, Figure 9-9 shows the long division in binary of 31,45210 = 
01111010110111002 by 910 = 10012. The result is a quotient of 
1101101001102 = 3,49410 with a remainder of 1102 = 610. 

Remember that the goal is to create a checksum that can be used to 
check for errors, not to come up with a mathematically correct result. 
Keeping this in mind, the time it takes to perform a long division can be 
reduced by removing the need for "borrows". This would be the same 
as doing an addition while ignoring the carries. The truth table in Table 
9-2 shows the single bit results for both addition and subtraction when 
carries and borrows are ignored. 

 



   Chapter 9: Binary Operation Applications   181 
 

 

  110110100110 
1001 0111101011011100
 -1001 
   1100 
  -1001 
     1110 
    -1001 
      1011 
     -1001 
        1010 
       -1001 
           1111 
          -1001 
            1100 
           -1001 
              110

Figure 9-9   Example of Long Division in Binary 

Table 9-2   Addition and Subtraction Without Carries or Borrows 

A B  A+B A – B 
0 0  0  0 
0 1  1  1 (no borrow)
1 0  1  1 
1 1  0 (no carry)  0 

 
The A + B and A – B columns of the truth table in Table 9-2 should 

look familiar; they are equivalent to the XOR operation. This means 
that a borrow-less subtraction is nothing more than a bitwise XOR. 
Below is an example of an addition and a subtraction where there is no 
borrowing. Note that an addition without carries produces the identical 
result as a subtraction without borrows. 

 
 11011010         11011010 
+01101100        -01101100 
 10110110         10110110 

 
There is a problem when trying to apply this form of subtraction to 

long division: an XOR subtraction doesn't care whether one number is 



182   Computer Organization and Design Fundamentals 
 

larger than another. For example, 11112 could be subtracted from 00002 
with no ill effect. In long division, you need to know how many digits 
to pull down from the dividend before subtracting the divisor. 

To solve this, the assumption is made that one value can be 
considered "larger" than another if the bit position of its highest logic 1 
is the same or greater than the bit position of the highest logic 1 in the 
second number. For example, the subtractions 10110 – 10011 and  
0111 – 0011 are valid while 0110 – 1001 and 01011 – 10000 are not. 

Figure 9-10 repeats the long division of Figure 9-9 using borrow-
less subtractions. It is a coincidence that the resulting remainder is the 
same for the long division of Figure 9-9. This is not usually true. 

 
  111010001010 
1001 0111101011011100
 -1001 
   1100 
  -1001 
    1011 
   -1001 
      1001 
     -1001 
         01011 
         -1001 
            1010 
           -1001 
              110

Figure 9-10   Example of Long Division Using XOR Subtraction 

Since addition and subtraction without carries or borrows are 
equivalent to a bitwise XOR, we should be able to reconstruct the 
original value from the quotient and the remainder using nothing but 
XORs. Table 9-3 shows the step-by-step process of this reconstruction. 
The leftmost column of the table is the bit-by-bit values of the binary 
quotient of the division of Figure 9-10.  

Starting with a value of zero, 10012 is XORed with the result in the 
second column when the current bit of the quotient is a 1. The result is 
XORed with 00002 if the current bit of the quotient is a 0. The 
rightmost column is the result of this XOR. Before going to the next bit 
of the quotient, the result is shifted left one bit position. Once the end 



   Chapter 9: Binary Operation Applications   183 
 

 

of the quotient is reached, the remainder is added. This process brings 
back the dividend using a multiplication of the quotient and divisor.  

Table 9-3   Reconstructing the Dividend Using XORs 

Quotient 
(Q) 

Result from  
previous step 

shifted left one bit 

XOR Value 
Q=0: 0000 
Q=1: 1001 

XOR result 

1 0 1001 1001 
1 10010 1001 11011 
1 110110 1001 111111 
0 1111110 0000 1111110 
1 11111100 1001 11110101 
0 111101010 0000 111101010 
0 1111010100 0000 1111010100 
0 11110101000 0000 11110101000 
1 111101010000 1001 111101011001 
0 1111010110010 0000 1111010110010 
1 11110101100100 1001 11110101101101 
0 111101011011010 0000 111101011011010 

Add remainder to restore the dividend:  
111101011011010 + 110 = 111101011011100 

Example 
Perform the long division of 11001101101010112 by 10112 in binary 

using the borrow-less subtraction, i.e., XOR function. 

Solution 
Using the standard "long-division" procedure with the XOR 

subtractions, we divide 10112 into 11001101101010112. Table 9-4 
checks our result using the technique shown in Table 9-3. Since we 
were able to recreate the original value from the quotient and 
remainder, the division must have been successful.  

Note that in Table 9-4 we are reconstructing the original value from 
the quotient in order to demonstrate the application of the XOR in this 
modified division and multiplication. This is not a part of the CRC 
implementation. In reality, as long as the sending and receiving devices 
use the same divisor, the only result of the division that is of concern is 
the remainder. As long as the sending and receiving devices obtain the 
same results, the transmission can be considered error free. 



184   Computer Organization and Design Fundamentals 
 

  1110101001111 
1011  1100110110101011
 -1011 
   1111 
  -1011 
    1001 
   -1011 
      1001 
     -1011 
        1010 
       -1011 
           1101 
          -1011 
            1100 
           -1011 
             1111 
            -1011 
              1001
             -1011
               010

Table 9-4   Second Example of Reconstructing the Dividend 

Quotient 
(Q) 

Result from  
previous step 

shifted left one bit 

XOR Value 
Q=0: 0000 
Q=1: 1011 

XOR result 

1 0 1011 1011 
1 10110 1011 11101 
1 111010 1011 110001 
0 1100010 0000 1100010 
1 11000100 1011 11001111 
0 110011110 0000 110011110 
1 1100111100 1011 1100110111 
0 11001101110 0000 11001101110 
0 110011011100 0000 110011011100 
1 1100110111000 1011 1100110110011 
1 11001101100110 1011 11001101101101 
1 110011011011010 1011 110011011010001 
1 1100110110100010 1011 1100110110101001 

Add remainder to restore the dividend: 
1100110110101001 + 010 = 1100110110101011 

 



   Chapter 9: Binary Operation Applications   185 
 

 

9.5.1 CRC Process  
The primary difference between different CRC implementations is 

the selection of the divisor or polynomial as it is referred to in the 
industry. In the example used in this discussion, we used 10012, but this 
is by no means a standard value. Divisors of different bit patterns and 
different bit lengths perform differently. The typical divisor is 17 or 33 
bits, but this is only because of the standard bit widths of 16 and 32 bits 
in today's processor architectures. A few divisors have been selected as 
performing better than others, but a discussion of why they perform 
better is beyond the scope of this text. 

There is, however, a relationship between the remainder and the 
divisor that we do wish to discuss here. We made an assumption earlier 
in this section about how to decide whether one value is larger than 
another with regards to XOR subtraction. This made it so that in an 
XOR division, a subtraction from an intermediate value is possible only 
if the most significant one is in the same bit position as the most 
significant one of the divisor. This is true all the way up to the final 
subtraction which produces the remainder. These most significant ones 
cancel leaving a zero in the most significant bit position of each result 
including the remainder. Since the MSB is always a zero for the result 
of every subtraction in an XOR division, each intermediate result along 
with the final remainder must always be at least one bit shorter in 
length than the divisor. 

There is another interesting fact about the XOR division that is a 
direct result of the borrow-less subtraction, and the standard method of 
CRC implementation has come to rely on this fact. Assume that we 
have selected an n-bit divisor. The typical CRC calculation begins by 
appending n-1 zeros to the end of the data (dividend). After we divide 
this new data stream by the divisor to compute the remainder, the 
remainder is added to the end of the new data stream effectively 
replacing the n-1 zeros with the value of the remainder. 

Remember that XOR addition and subtraction are equivalent. 
Therefore, by adding the remainder to the end of the data stream, we 
have effectively subtracted the remainder from the dividend. This 
means that when we divide the data stream (which has the remainder 
added/subtracted) by the same divisor, the new remainder should 
equal zero. Therefore, if the receiving device generates a remainder of 
zero after dividing the entire data stream with the polynomial, the 
transmission was error-free. The following example illustrates this. 



186   Computer Organization and Design Fundamentals 
 

Example 
Generate the CRC checksum to be transmitted with the data stream 

10110110100101102 using the divisor 110112. 

Solution 
With a 5 bit divisor, append 5 – 1 = 4 zeros to the end of the data.  
 

 New data stream = "1011011110010110" + "0000" 
  = "10110111100101100000" 

 
Finish by computing the CRC checksum using XOR division. 
 

  1100001010110010 
11011  10110111100101100000
 -11011 
   11011 
  -11011 
       011100 
       -11011 
          11110 
         -11011 
            10111 
           -11011 
             11000 
            -11011 
                11000 
               -11011 
                  0110

 
The data stream sent to the receiving device becomes the original 

data stream with the 4-bit remainder appended to it. 
 

 Transmitted data stream = "1011011110010110" + "0110" 
  = "10110111100101100110" 

 
If the receiver divides the entire data stream by the same divisor 

used by the transmitting device, i.e., 110112, the remainder will be zero. 
This is shown in the following division. If this process is followed, the 
receiving device will calculate a zero remainder any time there is no 
error in the data stream. 

 
 



   Chapter 9: Binary Operation Applications   187 
 

 

  1100001010110010 
11011  10110111100101100110
 -11011 
   11011 
  -11011 
       011100 
       -11011 
          11110 
         -11011 
            10111 
           -11011 
             11000 
            -11011 
                11011 
               -11011 
                    00

9.5.2 CRC Implementation 
Up to now, the discussion has focused on the mathematics behind 

creating and using CRC checksums. As for the implementation of a 
CRC checksum, programmers use the following process: 

 
 A single n-bit divisor is defined. Both the sending and receiving 

devices use the same n-bit divisor. 
 The sending device adds n-1 zeros to the end of the data being sent, 

and then performs the XOR division in order to obtain the 
remainder. The quotient is thrown away. 

 The sending device takes the original data (without the n–1 zeros) 
and appends the n–1 bit remainder to the end. This is the same as 
subtracting the remainder from the data with the appended zeros. 

 The data and appended remainder is sent to the receiving device. 
 The receiving device performs an XOR division on the received 

message and its appended n–1 bit remainder using the same divisor. 
 If the result of the receiver's XOR division is zero, the message is 

considered error free. Otherwise, the message is corrupted. 
 
A number of CRC divisors or polynomials have been defined for 

standard implementations. For example, the CRC-CCITT divisor is the 
17-bit polynomial 1102116 while the divisor used in IEEE 802.3 
Ethernet is the 33-bit polynomial 104C11DB716. 



188   Computer Organization and Design Fundamentals 
 

As for implementing the XOR division, most data streams are far 
too large to be contained in a single processor register. Therefore, the 
data stream must be passed through a register that acts like a window 
revealing only the portion of the stream where the XOR subtraction is 
being performed. This is the second benefit of using the bitwise XOR. 
Without the XOR subtraction, the whole dividend would need to be 
contained in a register in order to support the borrow function. 

Remember that the MSB of both the intermediate value and the 
divisor in an XOR subtraction are always 1. This means that the MSB 
of the subtraction is unnecessary as it always result in a zero. 
Therefore, for an n-bit divisor or polynomial, only an n-1 bit register is 
needed for the XOR operation. 

The code presented in Figure 9-11 appends four zeros to the end of a 
32-bit data stream (data_stream), then performs an XOR division on it 
with the 5-bit polynomial 101112 (poly). The division is done in a 
division register (division_register). This division register in theory 
should only be four bits wide, but since there is no four bit integer type 
in C, an 8-bit char is used. After every modification of the division 
register, a bitwise AND is performed on it with the binary mask 11112 
in order to strip off any ones that might appear above bit 3. The binary 
mask is labeled division_mask. 

Running this code with a 32-bit constant assigned to the variable 
data_stream will produce the four-bit CRC checksum 00102 for the 
polynomial 101112.  

There are better ways to implement the CRC algorithm. This code is 
presented only to show how the division register might work. 

9.6 Hamming Code 
Errors can also occur in memory. One possibility is that a defect or a 

failure in the hardware could cause a memory cell to be un-writable. 
Random errors might also be caused by an electrical event such as 
static electricity or electromagnetic interference causing one or more 
bits to flip. Whatever the cause, we need to be able to determine if the 
data we are reading is valid. 

One solution might be to store an additional bit with each data byte. 
This bit could act as a parity bit making it so that the total number of 
ones stored in each memory location along with the corresponding 
parity bit is always even. When it is time to read the data, the number 
of ones in the in the data and the parity bit are counted. If an odd result 
occurs, we know that there was an error.  



   Chapter 9: Binary Operation Applications   189 
 

 

 
// This code generates a four-bit CRC from a 32 bit  
// data stream by passing it through a four-bit  
// division register where it is XORed with the last  
// four bits of a five bit polynomial 
__int32 data_stream = 0x48376dea; // Data stream 
#define poly 0x17                 // Polynomial=10111 
 
// The XOR is performed in a char variable which will  
// then be AND'ed with a 4-bit mask to clear the fifth  
// bit. A mask allowing us to check for a fifth bit is  
// also defined here. 
char division_register = 0; 
#define division_mask 0xf 
#define division_MSB 0x10 
 
// We will need to count how many times we've shifted 
// the data stream so that we know when we are done. 
// For a 32 bit stream, we need to shift 32+4 times. 
int shift_count = 0; 
#define shift_total (32+4) 
  
__int32 temp_ds = data_stream; 
while (shift_count < shift_total) 
{ 
// The following code shifts bits into the division  
// register from the data stream until a bit overflows  
// past the length of the division register. Once this  
// bit overflows, we know we have loaded a value from  
// which the polynomial can be subtracted. 
   while ((!(division_register & division_MSB)) 
      &&(shift_count < shift_total)) 
   { 
      division_register <<= 1; 
      if((temp_ds & 0x80000000) != 0) 
         division_register+=1; 
      temp_ds <<= 1; 
      shift_count++; 
   } 
   division_register &= division_mask; 
// If we have a value large enough to XOR with the  
// polynomial, then we should do a bitwise XOR 
   if(shift_count < shift_total) 
      division_register ^= (poly & division_mask); 
}  
printf("The four-bit CRC for the 32 bit data stream  
        0x%x using the polynomial 0x%x is 0x%x.\n",  
        data_stream, poly, division_register); 

Figure 9-11   Sample Code for Calculating CRC Checksums 



190   Computer Organization and Design Fundamentals 
 

As mentioned before, parity is not a very robust error checking 
method. If two errors occur, the parity still appears correct. In addition, 
it might be nice to detect and correct the error. 

One way to do this is to use multiple parity bits, each bit responsible 
for the parity of a smaller, overlapping portion of the data. For 
example, we could use four parity bits to represent the parity of four 
different groupings of the four bits of a nibble. Table 9-5 shows how 
this might work for the four-bit value 10112. Each row of the table 
groups three of the four bits of the nibble along with a parity bit, Pn. 
The value shown for the parity bit makes the sum of all the ones in the 
grouping of three bits plus parity an even number. 

Table 9-5   Data Groupings and Parity for the Nibble 10112 

 Data Bits Parity Bits 
 D3=1 D2=0 D1=1 D0=1 P0 P1 P2 P3
Group A 1 0 1  0    
Group B 1  1 1  1   
Group C 1 0  1   0  
Group D  0 1 1    0 

 
In memory, the nibble would be stored with its parity bits in an eight-
bit location as 101101002. 

Now assume that the bit in the D1 position which was originally a 1 
is flipped to a 0 causing an error. The new value stored in memory 
would be 100101002. Table 9-6 duplicates the groupings of Table  
9-5 with the new value for D1. The table also identifies groups that 
incur a parity error with the data change.  

Table 9-6   Data Groupings with a Data Bit in Error 

 Data Bits Parity Bits Parity Result 
 D3=1 D2=0 D1=0 D0=1 P0 P1 P2 P3  
Group A 1 0 0  0    Odd – Error 
Group B 1  0 1  1   Odd – Error 
Group C 1 0  1   0  Even – Okay 
Group D  0 0 1    0 Odd – Error 
 
Note that parity is now in error for groups A, C, and D. Since the D1 

position is the only bit that belongs to all three of these groups, then a 



   Chapter 9: Binary Operation Applications   191 
 

 

processor checking for errors would not only know that an error had 
occurred, but also in which bit it had occurred. Since each bit can only 
take on one of two possible values, then we know that flipping the bit 
D1 will return the nibble to its original data. 

If an error occurs in a parity bit, i.e., if P3 is flipped, then only one 
group will have an error. Therefore, when the processor checks the 
parity of the four groups, a single group with an error indicates that it is 
a parity bit that has been changed and the original data is still valid. 

Table 9-7   Data Groupings with a Parity Bit in Error 

 Data Bits Parity Bits Parity Result 
 D3=1 D2=0 D1=1 D0=1 P0 P1 P2 P3  
Group A 1 0 1  0    Even – Okay 
Group B 1  1 1  1   Even – Okay 
Group C 1 0  1   0  Even – Okay 
Group D  0 1 1    1 Odd – Error 
 
It turns out that not all four data groupings are needed. If we only 

use groups A, B, and C, we still have the same level of error detection, 
but we do it with one less parity bit. Continuing our example without 
Group D, if our data is error-free or if a single bit error has occurred, 
one of the following eight situations is true. 

Table 9-8   Identifying Errors in a Nibble with Three Parity Bits 

Groups with bad parity Bit in error
None Error-free 

A P0 
B P1 
C P2 

A and B D1 
A and C D2 
B and C D0 

A, B, and C D3 
 
The use of multiple parity bits to "code" an error correction scheme 

for data bits is called the Hamming Code. It was developed by Richard 
Hamming during the late 1940's when he worked at Bell Laboratories. 



192   Computer Organization and Design Fundamentals 
 

The Hamming Code can be shown graphically using a Venn 
diagram. We begin by creating three overlapping circles, one circle for 
each group. Each of the parity bits Pn is placed in the portion of their 
corresponding circle that is not overlapped by any other circle. D0 is 
placed in the portion of the diagram where circles B and C overlap, D1 
goes where circles A and B overlap, and D2 goes where circles A and C 
overlap. Place D3 in the portion of the diagram where all three circles 
overlap. Figure 9-12 presents just such an arrangement. 

 
 
 
 
 
 

Figure 9-12   Venn Diagram Representation of Hamming Code 

Figure 9-13a uses this arrangement to insert the nibble 10112 into a 
Venn diagram. Figures 9-13b, c, and d show three of the seven possible 
error conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-13   Example Single-Bit Errors in Venn Diagram 

P0 P1

P2

D2 D0
D3

D1

Circle C

Circle A Circle B

0 1 

0 

0 1 
1 
1 

a.)  Error-free condition

C 

A B 
1 1

0

0 1
1
1

b.)  Parity error in circle A

C

A B

0 1 

0 

1 1 
1 
1 

c.)  Parity errors in A & C

C 

A B 
0 1

0

0 1
0
1

d.) Parity errors in A, B, & C 

C

A B



   Chapter 9: Binary Operation Applications   193 
 

 

In 9-13b, a single error in circle A indicates only the parity bit P0 is 
in error. In 9-13c, since both circles A and C have errors, then the bit 
change must have occurred in the region occupied only by A and C, 
i.e., where D2 is located. Therefore, D2 should be 0. Lastly, in 9-13d, an 
error in all three circles indicates that there has been a bit change in the 
region shared by all three circles, i.e., in bit D3. Therefore, we know 
that bit D3 is in error. Each of these errors can be corrected by inverting 
the value of the bit found in error. 

Double errors, however, cannot be detected correctly with this 
method. In Figure 9-14b, both the parity bit P1 and the data bit D0 are in 
error. If we do a parity check on each of the three circles in this Venn 
diagram, we find erroneous parity only in circle C. This would indicate 
that only the parity bit P2 is in error. This is a problem because it 
incorrectly assumes the data 10102 is correct. 

This is a problem. Apparently, this error checking scheme can detect 
when a double-bit error occurs, but if we try to correct it, we end up 
with erroneous data. We need to expand our error detection scheme to 
be able to detect and correct single bit errors and distinguish them from 
double bit errors. 

 
 
 
 
 
 
 
 
 

Figure 9-14   Example of a Two-Bit Error 

This can be done by adding one more bit that acts as a parity check 
for all seven data and parity bits. Figure 9-15 represents this new bit 
using the same example from Figure 9-14. 

If a single-bit error occurs, then after we go through the process of 
correcting the error, this new parity bit will be correct. If, however, 
after we go through the process of correcting the error and the new 
parity bit is in error, then it can be assumed that a double-bit error has 
occurred and that correction is not possible. This is called Single-Error 
Correction/Doubled-Error Detection. 

0 1 

0 

0 1 
1 
1 

a.)  Error-free condition

C 

A B
0 0

0

0 0
1
1

b.)  Two-Bit Error Condition 

C

A B



194   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 
 

Figure 9-15   Using Parity to Check for Double-Bit Errors 

This error detection and correction scheme can be expanded to any 
number of bits. All we need to do is make sure there are enough parity 
bits to cover the error-free condition plus any possible single-bit error 
in the data or the parity. For example, in our four data bit and three 
parity bit example above, there can be one of seven single bit errors. 
Add the error-free condition and that makes eight possible conditions 
that must be represented with parity bits. Since there are three parity 
bits, then there are 23 = 8 possible bit patterns represented using the 
parity bits, one for each of the outcomes. 

For the general case, we see that p parity bits can uniquely identify 
2p – 1 single-bit errors. Note that the one is subtracted from 2p to 
account for the condition where there are no errors. If 2p – 1 is less than 
the number of data bits, n, plus the number of parity bits, p, then we 
don't have enough parity bits. This relationship is represented with 
equation 9-1. 

 
 p + n < 2p – 1 (9.1) 
 
 Table 9-9 presents a short list of the number of parity bits that are 

required for a specific number of data bits. To detect double-bit errors, 
an additional bit is needed to check the parity of all of the p + n bits. 

Let's develop the error-checking scheme for 8 data bits. Remember 
from the four-bit example that there were three parity checks:  

 
 P0 was the parity bit for data bits for D1, D2, and D3; 
 P1 was the parity bit for data bits for D0, D1, and D3; and 
 P2 was the parity bit for data bits for D0, D2, and D3. 

 

0 0

0

0 0
1
1

b.)  Two-Bit Error Condition 

C

A B

0

0 1 

0 

0 1 
1 
1 

a.)  Error-free condition

C 

A B 

0 New parity 
bit 



   Chapter 9: Binary Operation Applications   195 
 

 

Table 9-9   Parity Bits Required for a Specific Number of Data Bits 

Number of 
data bits (n)

Number of 
parity bits (p)

p + n 2p – 1

4 3 7 7 
8 4 12 15 
16 5 21 31 
32 6 38 63 
64 7 71 127 
128 8 136 255 

 
In order to check for a bit error, the sum of ones for each of these 

groups is taken. If all three sums result in even values, then the data is 
error-free. The implementation of a parity check is done with the XOR 
function. Remember that the XOR function counts the number of ones 
at the input and outputs a 1 for an odd count and a 0 for an even count. 
This means that the three parity checks we use to verify our four data 
bits can be performed using the XOR function. Equations 9.2, 9.3, and 
9.4 show how these three parity checks can be done. The XOR is 
represented here with the symbol . 

 
Parity check for group A = P0  D1  D2  D3 (9.2) 
Parity check for group B = P1  D0  D1  D3 (9.3) 
Parity check for group C = P2  D0  D2  D3 (9.4) 
 
The data bits of our four-bit example were D3 = 1, D2 = 0, D1 = 1, 

and D0 = 1 while the parity bits were P0 = 0, P1 = 1, and P2 = 0. 
Substituting these into equations 9.2, 9.3, and 9.4 gives us: 

 
Parity check for group A = 0  1  0  1 = 0 
Parity check for group B = 1  1  1  1 = 0  
Parity check for group C = 0  1  0  1 = 0  
 
Assume that a single-bit error has occurred. If the single-bit error 

was a parity bit, then exactly one of the parity checks will be one while 
the others are zero. For example, if P0 changed from a 0 to a 1, we 
would get the following parity checks. 

 



196   Computer Organization and Design Fundamentals 
 

Parity check for group A = 1  1  0  1 = 1 
Parity check for group B = 1  1  1  1 = 0  
Parity check for group C = 0  1  0  1 = 0  
 
The single parity bit error reveals itself as a single parity check 

outputting a 1. If, however, a data bit changed, then we have more than 
one parity check resulting in a 1. Assume, for example, that D1 changed 
from a 1 to a 0. 

 
Parity check for group A = 0  0  0  1 = 1 
Parity check for group B = 1  1  0  1 = 1  
Parity check for group C = 0  1  0  1 = 0  
 
Since D1 is the only bit that belongs to both the parity check of 

groups A and B, then D1 must have been the one to have changed. 
Using this information, we can go to the eight data bit example. 

With four parity bits, we know that there will be four parity check 
equations, each of which will have a parity bit that is unique to it. 

 
Parity check A = P0  (XOR of data bits of group A) 
Parity check B = P1  (XOR of data bits of group B)  
Parity check C = P2  (XOR of data bits of group C)  
Parity check D = P3  (XOR of data bits of group D) 
 
The next step is to figure out which data bits, D0 through D7, belong 

to which groups. Each data bit must have a unique membership pattern 
so that if the bit changes, its parity check will result in a unique pattern 
of parity check errors. Note that all of the data bits must belong to at 
least two groups to avoid an error with that bit looking like an error 
with the parity bit. 

Table 9-10 shows one way to group the bits in the different parity 
check equations or groups. It is not the only way to group them. 

By using the grouping presented in Table 9-10, we can complete our 
four parity check equations. 

 
Parity check A = P0  D0  D1  D3  D4  D6 (9.5) 
Parity check B = P1  D0  D2  D3  D5  D6 (9.6) 
Parity check C = P2  D1  D2  D3  D7 (9.7) 
Parity check D = P3  D4  D5  D6  D7 (9.8) 

 



   Chapter 9: Binary Operation Applications   197 
 

 

Table 9-10   Membership of Data and Parity Bits in Parity Groups 

 Parity check group
 A B C D 

P0     
P1     
P2     
P3     
D0     
D1     
D2     
D3     
D4     
D5     
D6     
D7     

 
When it comes time to store the data, we will need 12 bits, eight for 

the data and four for the parity bits. But how do we calculate the parity 
bits?  Remember that the parity check must always equal zero. 
Therefore, the sum of the data bits of each parity group with the parity 
bit must be an even number. Therefore, if the sum of the data bits by 
themselves is an odd number, the parity bit must equal a 1, and if the 
sum of the data bits by themselves is an even number, the parity bit 
must equal a 0. This sounds just like the XOR function again. 
Therefore, we use equations 9.9, 9.10, 9.11, and 9.12 to calculate the 
parity bits before storing them. 

 
P0 = D0  D1  D3  D4  D6 (9.9) 
P1 = D0  D2  D3  D5  D6 (9.10) 
P2 = D1  D2  D3  D7 (9.11) 
P3 = D4  D5  D6  D7 (9.12) 

 
Now let's test the system. Assume we need to store the data 

100111002. This gives us the following values for our data bits: 
 

D7 = 1 D6 = 0 D5 = 0 D4 = 1 D3 = 1 D2 = 1 D1 = 0 D0 = 0 
 



198   Computer Organization and Design Fundamentals 
 

The first step is to calculate our parity bits. Using equations 9.9, 
9.10, 9.11, and 9.12 we get the following values. 

 
P0 = 0  0  1  1  0 = 0 
P1 = 0  1  1  0  0 = 0 
P2 = 0  1  1  1 = 1 
P3 = 1  0  0  1 = 0 

 
Once again, the XOR is really just a parity check. Therefore, if there 

is an odd number of ones, the result is 1 and if there is an even number 
of ones, the result is 0.  

Now that the parity bits have been calculated, the data and parity 
bits can be stored together. This means that memory will contain the 
following value: 

 
D7 D6 D5 D4 D3 D2 D1 D0 P0 P1 P2 P3 
1 0 0 1 1 1 0 0 0 0 1 0 

 
If our data is error free, then when we read it and substitute the 

values for the data and parity bits into our parity check equations, all 
four results should equal zero. 

 
Parity check A = 0  0  0  1  1  0 = 0 
Parity check B = 0  0  1  1  0  0 = 0 
Parity check C = 1  0  1  1  1 = 0 
Parity check D = 0  1  0  0  1 = 0 

 
If, however, while the data was stored in memory, it incurs a single-

bit error, e.g., bit D6 flips from a 0 to a 1, then we should be able to 
detect it. If D6 does flip, the value shown below is what will be read 
from memory, and until the processor checks the parity, we don't know 
that anything is wrong with it. 

 
D7 D6 D5 D4 D3 D2 D1 D0 P0 P1 P2 P3 
1 1 0 1 1 1 0 0 0 0 1 0 

 
Start by substituting the values for the data and parity bits read from 

memory into our parity check equations. Computing the parity for all 
four groups shows that an error has occurred. 

 



   Chapter 9: Binary Operation Applications   199 
 

 

Parity check A = 0  0  0  1  1  1 = 1 
Parity check B = 0  0  1  1  0  1 = 1 
Parity check C = 1  0  1  1  1 = 0 
Parity check D = 0  1  0  1  1 = 1 

 
Since we see from Table 9-10 that the only bit that belongs to parity 

check groups A, B, and D is D6, then we know that D6 has flipped and 
we need to invert it to return to our original value. 

The same problem appears here as it did in the nibble case if there 
are two bit errors. It is solved here the same way as it was for the nibble 
application. By adding a parity bit representing the parity of all twelve 
data and parity bits, then if one of the group parities is wrong but the 
overall parity is correct, we know that a double-bit error has occurred 
and correction is not possible. 

9.7 What's Next? 
In this chapter we've discussed how to correct errors that might 

occur in memory without having discussed the technologies used to 
store data. Chapter 10 begins our discussion of storing data by 
examining the memory cell, a logic element capable of storing a single 
bit of data. 

Problems 
1. Using an original value of 110000112 and a mask of 000011112, 

calculate the results of a bitwise AND, a bitwise OR, and a bitwise 
XOR for these values. 

2. Assume that the indicators of an automotive dashboard are 
controlled by an 8-bit binary value named dash_lights. The table 
below describes the function of each bit. Assume that a '1' turns on 
the light corresponding to that bit position and a '0' turns it off. 

D0 Low fuel  D4 Left turn signal 
D1 Oil pressure  D5 Right turn signal 
D2 High temperature  D6 Brake light 
D3 Check engine  D7 Door open 

 
For each of the following situations, write the line of code that uses 
a bitwise operation to get the desired outcome. 
 



200   Computer Organization and Design Fundamentals 
 

a.) Turn on the low fuel, oil pressure, high temperature, check 
engine, and brake lights without affecting any other lights. This 
would be done when the ignition key is turned to start. 

b.) Toggle both the right and left turn signals as if the flashers 
were on without affecting any other lights. 

c.) Turn off the door open light when the door is closed. 
 

3. True or False:  A checksum changes if the data within the data 
block is sorted differently. 

4. There are two ways of handling the carries that occur when 
generating the datasum for a checksum. One way is to simply 
discard all carries. What is the other way? (2 points) 

5. Compute the basic checksum, the 1's complement checksum, and 
the 2's complement checksum for each of the following groups of 
8-bit data elements using both the basic calculation of the datasum 
and the one's complement datasum. All data is in hexadecimal. 
a.) 34, 9A, FC, 28, 74, 45 
b.) 88, 65, 8A, FC, AC, 23, DC, 63 
c.) 00, 34, 54, 23, 5C, F8, F1, 3A, 34 
 

6. Use the checksum to verify each of the following groups of 8-bit 
data elements. All of the data is represented in hexadecimal. 
a.) 54, 47, 82, CF, A9, 43   basic checksum = D8 
b.) 36, CD, 32, CA, CF, A8, 56, 88   basic checksum = 55 
c.) 43, A3, 1F, 8F, C5, 45, 43   basic checksum = E1 
 

7. Identify the two reasons for using the XOR "borrow-less" 
subtraction in the long-division used to calculate the CRC. 

8. What problem does the checksum error correction method have that 
is solved by using CRCs? 

9. True or False:  A CRC changes if the data within the data block is 
sorted differently. 

10. True or False:  By using the CRC process where the transmitting 
device appends the remainder to the end of the data stream, the 
remainder calculated by the receiving device should be zero. 

11. How many possible CRC values (i.e., remainders) are possible with 
a 33-bit polynomial? 



   Chapter 9: Binary Operation Applications   201 
 

 

12. Assume each of the following streams of bits is received by a 
device and that each of the streams has appended to it a CRC 
checksum. Using the polynomial 10111, check to see which of the 
data streams are error free and which are not. 
a.) 1001011101011001001 
b.) 101101010010110100100101 
c.) 11010110101010110111011011011 
 

13. Compute the number of parity bits needed to provide single-bit 
error correction for 256 bits of data.  

14. Using the error detection/correction equations 9.5 through 9.8, 
determine the single-bit error that would result from the following 
parity check values. 

 Results of parity check 
 a.) b.) c.) d.) 
Parity check A 1 1 0 1 
Parity check B 1 1 0 0 
Parity check C 1 0 1 1 
Parity check D 0 1 0 0 

 

15. Using the programming language of your choice, implement the 
parity generating function of the single-bit error correction scheme 
for eight data bits discussed in this chapter. Use equations 9.9 
through 9.12 to generate the parity bits. You may use the C 
prototype shown below as a starting point where the integer data 
represents the 8 data bits and the returned value will contain the 
four parity bits in the least significant four positions in the order P0, 
P1, P2, and P3. 
 
int generateParityBits (int data) 
 

16. Using the programming language of your choice, implement the 
parity checking function of the single-bit error correction scheme 
for eight data bits discussed in this chapter. Use equations 9.5 
through 9.8 to verify the data read from memory. You may use the 
C prototype shown below as a starting point where the integer data 
represents the 8 data bits and the integer parity represents the four 
parity bits in the least significant four positions in the order P0, P1, 
P2, and P3. The returned value is the data, unmodified if no error 



202   Computer Organization and Design Fundamentals 
 

was detected or corrected if a single-bit error was detected. 
 
int generateCorrectedData (int data, parity); 
 

17. Determine the set of parity check 
equations for eight data bits and four 
parity bits if we use the table to the right in 
place of the memberships defined by 
Table 9-10. 

 
 
 
 
 
 
 
 
18. Identify the error in the parity check equations below. Note that the 

expressions are supposed to represent a different grouping than 
those in equations 9.2, 9.3, and 9.4. There is still an error though 
with these new groupings. 

Parity check for group A = P0  D0  D2  D3 
Parity check for group B = P1  D0  D1 
Parity check for group C = P2  D1  D2 

Parity check group 
 A B C D 

P0     
P1     
P2     
P3     
D0     
D1     
D2     
D3     
D4     
D5     
D6     
D7     



 203 

CHAPTER TEN 

Memory Cells 

The previous chapters presented the concepts and tools behind 
processing binary data. This is only half of the battle though. For 
example, a logic circuit uses inputs to calculate an output, but where do 
these inputs come from?  Some of them come from switches and other 
hardwired inputs, but many times a processor uses signals it has stored 
from previous operations. This might be as simple as adding a sequence 
of values one at a time to a running total: the running total must be 
stored somewhere so that it can be sent back to the inputs of the adder 
to be combined with the next value.  

This chapter introduces us to memory by presenting the operation of 
a single memory cell, a device that is capable of storing a single bit.  

10.1 New Truth Table Symbols 
The truth tables that represent the operation of memory devices have 

to include a few new symbols in order to represent the functionality of 
the devices. For example, a memory cell is capable of storing a binary 
value, either a one or a zero. A new symbol, however, is needed to 
represent the stored value since its specific value is known only at the 
instant of operation. 

10.1.1 Edges/Transitions 
Many devices use as their input a change in a signal rather than a 

level of a signal. For example, when you press the "on" button to a 
computer, it isn't a binary one or zero from the switch that turns on the 
computer. If this was the case, as soon as you removed your finger, the 
machine would power off. Instead, the computer begins its power up 
sequence the instant your finger presses the button, i.e., the button 
transitions from an off state to an on state. 

There are two truth table symbols that represent transitions from one 
logic value to another. The first represents a change in a binary signal 
from a zero to a one, i.e., a transition from a low to a high. This 
transition is called a rising edge and it is represented by the symbol . 
The second symbol represents a transition from a one to a zero. This 
transition is called a falling edge and it is represented by the symbol . 



204   Computer Organization and Design Fundamentals 
 

Figure 10-1 presents a binary signal with the points where transitions 
occur identified with these two new symbols. 

 
 
 
 

Figure 10-1   Symbols for Rising Edge and Falling Edge Transitions 

10.1.2 Previously Stored Values 
If a memory cell is powered, it contains a stored value. We don't 

know whether that value is a one or a zero, but there is something 
stored in that cell. If a logic circuit uses the stored value of that cell as 
an input, we need to have a way of labeling it so that it can be used 
within a boolean expression. 

Just as A, B, C, and D are used to represent inputs and X is used to 
represent an output, a standard letter is used to represent stored values. 
That letter is Q. To indicate that we are referring to the last value of Q 
stored, we use Q0.  

10.1.3 Undefined Values 
Some circuits have conditions that either are impossible to reach or 

should be avoided because they might produce unpredictable or even 
damaging results. In these cases, we wish to indicate that the signal is 
undefined. We do this with the letter U. 

For example, consider the binary circuit that operates the light inside 
a microwave oven. The inputs to this circuit are a switch to monitor 
whether the door has been opened and a signal to indicate whether the 
magnetron is on or off. Note that the magnetron never turns on when 
the door is opened, so this circuit has an undefined condition. 
 

Door Magnetron Light  D M L 
Closed Off Off  0 0 0 
Closed On On 0 1 1 
Open Off On  1 0 1 
Open On Shouldn't happen  1 1 U 

Figure 10-2   Sample Truth Table Using Undefined Output 

       



 Chapter 10: Memory Cells    205 
 

10.2 The S-R Latch 
Computer memory is made from arrays of cells, each of which is 

capable of storing a single bit, a one or a zero. The goal is to send a 
logic one or a logic zero to a device, then after leaving it unattended for 
a period of time, come back and find the value still there. A simple wire 
alone cannot do this. A digital value placed on a wire will, after the 
value is removed, quickly loose the charge and vanish.  

Early memory stored data in small doughnut shaped rings of iron. 
Wires that were woven through the centers of the iron rings were 
capable of magnetizing the rings in one of two directions. If each ring 
was allowed to represent a bit, then one direction of magnetization 
would represent a one while the other represented a zero. As long as 
nothing disturbed the magnetization, the value of the stored bit could be 
detected later using the same wires that stored the original value. 

With the advent of digital circuitry, the magnetic material was 
replaced with gates. A circuit could be developed where the output 
could be routed back around to the circuit's inputs in order to maintain 
the stored value. This "ring" provided feedback which allowed the 
circuit's current data to drive the circuit's future data and thus maintain 
its condition. The circuit in Figure 10-3 is a simple example of this. 

The output of the first inverter in the circuit of Figure 10-3 is fed 
into the input of a second inverter. Since the inverse of an inverse is the 
original value, the input to the first inverter is equal to the output of the 
second inverter. If we connect the output of the second inverter to the 
input of the first inverter, then the logic value will be maintained until 
power to the circuit is removed.  

 
 
 
 
 

Figure 10-3   Primitive Feedback Circuit using Inverters 

The problem with the circuit of Figure 10-3 is that there is no way to 
modify the value that is stored. We need to replace either one or both of 
the inverters with a device that has more than one input, but one that 
can also operate the same way as the inverter during periods when we 
want the data to be stable. It turns out that the NAND gate can do this. 



206   Computer Organization and Design Fundamentals 
 

Figure 10-4 presents the truth table for the NAND gate where one of 
the inputs is always connected to a one. 

 
 
 
 

Figure 10-4   Operation of a NAND Gate with One Input Tied High 

Notice that the output X is always the inverse of the input A. The 
NAND gate operates just like an inverter with a second input. Figure 
10-5 replaces the inverters of Figure 10-3 with NAND gates. 

 
 
 
 
 
 

Figure 10-5   Primitive Feedback Circuit Redrawn with NAND Gates 

As long as the free inputs to the two NAND gates remain equal to 
one, the circuit will remain stable since it is acting as a pair of inverters 
connected together in series. It is also important to note that if the top 
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a 
one is output from the top inverter, then a zero is output from the 
bottom one. These two possible states are shown in Figure 10-6. 

 
 
 
 
 

Figure 10-6   Only Two Possible States of Circuit in Figure 10-5 

What happens if we change the free input of either NAND gate?  
Remember that if either input to a NAND gate is a zero, then the output 
is forced to be a 1 regardless of the other input. That means that if a 

A 1 X
0 1 1 
1 1 0 

A 
1 X 

1 

1 

1 

1 

0 

1 

1 

1 

1 

0 



 Chapter 10: Memory Cells    207 
 

zero is placed on the free input of the top NAND gate, then the output 
of that NAND gate is forced to one. That one is routed back to the input 
of the lower NAND gate where the other input is one. A NAND gate 
with all of its inputs set to one has an output of zero. That zero is routed 
back to the input of the top NAND gate whose other input is a zero. A 
NAND gate with all of its inputs set to zero has an output of one. This 
means that the system has achieved a stable state. 

If the free input of the top NAND gate returns to a one, the zero 
input to it from the lower NAND gate makes it so that there is no 
change to the one currently being output from it. In other words, 
returning the free input of the top NAND gate back to a one does not 
change the output of the circuit. These steps are represented graphically 
in the circuit diagrams of Figure 10-7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10-7   Operation of a Simple Memory Cell 

This means that the circuit can be used to store a one in the top 
NAND gate and a zero in the bottom NAND gate by toggling the free 

0

1

1 0

1

1

01

0

1

1

01

0
1

1

1

01

0

a.) A zero to the free input 
of the top NAND gate 
forces a one to its output

b.) That one passes to the 
bottom NAND which in 
turn outputs a zero 

c.) A zero from the bottom 
NAND returns to the lower 
input of the top NAND 

d.) The second zero at the top 
NAND holds its output even 
if the free input returns to 1 



208   Computer Organization and Design Fundamentals 
 

input on the top NAND gate from a one to a zero and back to a one. 
Figure 10-8 shows what happens when we toggle the free input on the 
bottom NAND gate from a one to a zero and back to a one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10-8   Operation of a Simple Memory Cell (continued) 

This NAND gate circuit represents the basic circuit used to store a 
single bit using logic gates. Notice that in step d of both figures the 
circuit is stable with the opposing NAND gates outputting values that 
are inverses of each other. In addition, notice that the circuit's output is 
changed by placing a zero on the free input of one of the NAND gates. 

Figure 10-9 presents the standard form of this circuit with the inputs 
labeled S and R and the outputs labeled Q  and Q . The bars placed 
over the inputs indicate that they are active low inputs while the bar 
over one of the outputs indicates that it is an inverted value of Q. 

This circuit is referred to as the S-R latch. The output Q is set to a 
one if the S  input goes low while R  stays high. The output Q is reset 
to a zero if the R  input goes low while S  stays high. If both of these 

1

0
1

1

0

0

1

1

1

0

0

10

1
1

1

0

10

1

a.) A zero to the free input of 
the bottom NAND gate 
forces a one to its output 

b.) That one passes to the 
top NAND which in turn 
outputs a zero 

c.) A zero from the top NAND 
returns to the lower input of 
the bottom NAND 

d.) The second zero at the bottom 
NAND holds its output even 
if the free input returns to 1 



 Chapter 10: Memory Cells    209 
 

inputs are high, i.e., logic one, then the circuit maintains the current 
value of Q. The truth table for the S-R latch is shown in Figure 10-10. 

 
 
 
 
 
 

Figure 10-9   S-R Latch Figure 10-10   S-R Latch Truth Table 

Notice that the row of the truth table where both inputs equal zero 
produces an undefined output. Actually, the output is defined: both Q 
and its inverse are equal to one. What makes this case undefined is that 
when both of the inputs return to one, the output of the system becomes 
unpredictable, and possibly unstable. It is for this reason that the top 
row of this truth table is considered illegal and is to be avoided for any 
implementation of the S-R latch circuit. 

10.3 The D Latch 
The S-R latch is presented here to show how latches store data. In 

general, every logic gate-based memory device has an S-R latch 
embedded in it. For the rest of this book, we will be treating latches as 
"black boxes" addressing only the inputs and how they affect Q.  

The typical data storage latch is referred to as a data latch or a D 
latch. There are slight variations between different implementations of 
the D latch, but in general, every D latch uses the same basic inputs and 
outputs. Figure 10-11 presents the block diagram of a fully 
implemented D-latch. 

 
 
 
 
 
 
 

Figure 10-11   Block Diagram of the D Latch 

S 

R 

Q 

Q 

S R Q Q 
0 0 U U 
0 1 1 0 
1 0 0 1 
1 1 Q0 Q0

 S 
D  Q 
 
  Q 

R
Clock



210   Computer Organization and Design Fundamentals 
 

The outputs Q and Q operate just as they did for the S-R latch 
outputting the stored data and its inverse. The active low inputs S  and 
R  also operate the same as they did for the S-R latch. If S  goes low 
while R  is held high, the output Q is set to a one. If R  goes low while 
S  is held high, the output Q is reset to zero. If both S  and R  are high, 
then Q maintains the data bit it was last storing. The output of the 
circuit is undefined for both S  and R  low. 

The two new inputs, D and Clock, allow the circuit to specify the 
data being stored in Q. D, sometimes called the data input, is the binary 
value that we wish to store in Q. Clock tells the circuit when the data is 
to be stored. 

This circuit acts much like a camera. Just because a camera is 
pointing at something does not mean that it is storing that image. The 
only way the image is going to be captured is if someone presses the 
button activating the shutter. Once the shutter is opened, the image is 
captured. The Clock input acts like the button on the camera. A specific 
transition or level of the binary value at the Clock input captures the 
binary value present at the D input and stores it to Q.  

There is another characteristic of taking a picture with a camera that 
has an analogy with the storage of data in a D latch. Assume for a 
moment that we are talking about cameras that use film instead of 
digital media to store an image. If the camera's shutter is opened thus 
exposing the film to light for the entire time the user's finger was 
pressing the button, then every picture would be over exposed. The 
shutter should just open for an instant, typically, the instant that the 
user's finger is coming down on the button.  

Alternatively, if the shutter was activated when the user's finger 
came up instead of down on the button, a number of good shots might 
be missed thus frustrating the user. It is important to define specifically 
when the image is captured with regards to the button. 

Different implementations of the D latch use different definitions of 
when the data is captured with respect to Clock. Some operate like 
cameras do only capturing data when the Clock signal transitions, 
either rising edge or falling edge. These D latches are referred to as 
edge-triggered latches. The instant the D latch detects the appropriate 
transition, the binary value that is present at the input D is copied to Q. 
The data will remain at Q until the next appropriate transition. The truth 
tables in Figure 10-12 show how the inputs Clock and D of both the 
rising and falling edge-triggered latches affect the data stored at Q. 



 Chapter 10: Memory Cells    211 
 

 
 
 
 
 
 
 
 

 

Figure 10-12   Edge-Triggered D Latch Truth Tables 

Notice that the value on D does not affect the output if the Clock 
input is stable, nor does it have an effect during the clock transition 
other than the one for which it was defined. During these periods, the 
values stored at the latch's outputs remain set to the values stored there 
from a previous data capture. 

D latches can also be designed to capture data during a specified 
level on the Clock signal rather than a transition. These are called 
transparent latches. They latch data much like an edge triggered latch, 
but while Clock is at the logic level previous to the transition, they pass 
all data directly from the D input to the Q output. For example, when a 
zero is input to the Clock input of a D latch designed to capture data 
when Clock equals zero, the latch appears to vanish, passing the signal 
D straight to Q. The last value present on D when the Clock switches 
from zero to one is stored on the output until Clock goes back to zero. 
Figure 10-13 presents this behavior using truth tables for both the 
active low and active high transparent D latches. 
 
 

 
 
 
 

 
 

Figure 10-13   Transparent D Latch Truth Tables 

D Clock Q Q  D Clock Q Q 
X 0 Q0 Q0  X 0 Q0 Q0 
X 1 Q0 Q0  X 1 Q0 Q0 
X  Q0 Q0  X  Q0 Q0 
0  0 1  0  0 1 
1  1 0  1  1 0 

a.) Rising Edge  b.) Falling Edge 

D Clock Q Q  D Clock Q Q 
X 1 Q0 Q0  X 0 Q0 Q0 
0 0 0 1  0 1 0 1 
1 0 1 0  1 1 1 0 

a.) Active Low  b.) Active High 



212   Computer Organization and Design Fundamentals 
 

A transparent D latch acts like a door. If Clock is at the level that 
captures data to the output, i.e., the door is open, any signal changes on 
the D input pass through to the output. Once Clock goes to the opposite 
level, the last value in Q is maintained in Q. 

The rest of this chapter presents some applications of latches 
including processor support circuitry, I/O circuits, and memory. 

10.4 Divide-By-Two Circuit 
In some cases, the frequency of a clock input on a circuit board is 

too fast for some of the computer's peripherals. An edge-triggered D 
latch can be used to divide a clock frequency in half. The circuit 
presented in Figure 10-14 does this. 

 
 
 
 
 

Figure 10-14   Divide-By-Two Circuit 

Assume, for example, that we are using a rising edge-triggered latch 
for this circuit. By connecting the inverse of the Q output to the D 
input, the output Q is inverted or toggled every time the clock goes 
from a zero to a one. Since there is only one rising edge for a full cycle 
of a periodic signal, it takes two cycles to make the output Q go 
through a full cycle. This means that the frequency of the output Q is 
one half that of the input frequency at the clock input. Figure 10-15 
presents a timing diagram of this behavior. 

 
 
 
 
 

Figure 10-15   Clock and Output Timing in a Divide-By-Two Circuit 

By cascading multiple divide-by-two circuits, we get divisions of 
the original frequency by 2, 4, 8, … , 2n as shown in Figure 10-16. 

D Q
 
 Q

High frequency 
clock input 

Clock output with 
frequency cut in half 

clock input

Q



 Chapter 10: Memory Cells    213 
 

 
 
 

 
 
 
 

Figure 10-16   Cascading Four Divide-By-Two Circuits 

10.5 Counter 
By making a slight modification to the cascaded divide-by-two 

circuits of Figure 10-16, we can create a circuit with a new purpose. 
Figure 10-17 shows the modified circuit created by using the inverted 
outputs of the latches to drive the Clock inputs of the subsequent 
latches instead of using the Q outputs to drive them. 

 
 
 
 
 

Figure 10-17   Counter Implemented with Divide-By-Two Circuits 

If we draw the outputs of all four latches with respect to each other 
for this new circuit, we see that the resulting ones and zeros from their 
outputs have a familiar pattern to them, specifically, they are counting 
in binary. 

If the leftmost latch is considered the LSB of a four-bit binary 
number and the rightmost latch is considered the MSB, then a cycle on 
the input clock of the leftmost latch will increment the binary number 
by one. This means that by connecting the inverted output of a divide-
by-two circuit to the clock input of a subsequent divide-by-two circuit n 
times, we can create an n-bit binary counter that counts the pulses on an 
incoming frequency. 

 

D Q
 
 Q

Clock 
input

Frequency 
divided by 2 

D Q
 
 Q

D Q
 
 Q

D Q 
 
 Q 

Frequency 
divided by 4 

Frequency 
divided by 8 

Frequency 
divided by 16 

D Q 
 
 Q 

Clock 
input

D Q
 
 Q

D Q
 
 Q

D Q 
 
 Q 

 Latch A Latch B Latch C Latch D 



214   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10-18   Output of Binary Counter Circuit 

10.6 Parallel Data Output 
Not all binary values stay inside the processor. Sometimes, external 

circuitry needs to have data sent to it. For example, before the advent of 
the USB port, computers used a 25-pin connector to transmit data. It 
was called the parallel port, and it was used to send and receive eight 
bits at a time to a device such as a printer or a storage device. 

The processor needed to be able to place data on the eight data bits 
of this port, then latch it so that the data would remain stable while the 
processor performed another task. The device connected to the other 
end of the port could then access the data, and when it was done, alert 
the processor that it needed additional data. The processor would then 
latch another byte to the data lines for the external device. 

The typical circuit used for the data lines of this port was the D 
latch. By placing an active-low transparent latch at each output bit, the 
processor could use the Clock to store data in each latch. This 
arrangement was so common that IC manufacturers made a single chip 
that contained all of the latches necessary for the circuit. Figure 10-19 
presents that circuit. 

 

 
Latch A 

 
Latch B 

 
Latch C 

 
Latch D 
 

 B O 
 i u 
 n t 
 a p 
 r u 
 y t 

 0 1 0 1 0 1 0 1 0 1 0 1 0 
 0 0 1 1 0 0 1 1 0 0 1 1 0 
 0 0 0 0 1 1 1 1 0 0 0 0 1 
 0 0 0 0 0 0 0 0 1 1 1 1 1 

Input 
clock 



 Chapter 10: Memory Cells    215 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10-19   Output Port Data Latch Circuitry 

By connecting all of the Clocks to a single "write" input, then the 
processor only needed to place the appropriate data on the data lines 
and toggle the write line. This would latch the data onto the Q lines of 
the eight latches where it would remain until the processor placed new 
data on the data lines and toggled the write line again. 

Memory based on logic gates works the same way. To store data, 
the processor places the data it wants to store onto data lines, then 
pulses a write signal low then high. This stores the data into latches 
within the memory circuit. 

10.7 What's Next? 
The next chapter introduces state machines, the tools that are used to 

design them, and the circuits that are used to implement them. A state 
machine is any system that is designed to remember its condition. For 
example, for a traffic signal to turn yellow, it has to know that it was 
green. For an elevator to know that it should go down to get to the fifth 
floor must first know that it is currently on the eighth floor. State 
machines require memory, and therefore, many of the implementations 
of state machines use latches. 

 

D Q

"Write" line

Inputs 
for data 

bits

Outputs to 
external 
device 

D Q

D Q

D Q

D Q

D Q

D Q

D Q



216   Computer Organization and Design Fundamentals 
 

Problems 
 

1. For the circuit shown to the right,  
what value does Q have? 

2. Describe why the S-R latch  
has an illegal condition. 

3. Describe the purpose of each of the following truth table symbols. 

a.)  b.)  c.) U d.) Q0 

4. What is the output Q of a D latch with 0S , 1R , D = 1, and 
Clock = 0? 

5. True or false:  A D latch with only two inputs D and CLK has no 
illegal states. 

6. Which of the following circuits is used to divide the frequency of 
the signal F in half? 

 

 

 

 

 

 

 

7. Show the D latch output  
waveform Q based on the  
inputs R , D, and Clock  
indicated in the timing  
diagram shown to the  
right. Assume the latch  
captures on the rising  
edge. 

 1 Q 

 0 Q 

D Q
 
 QF 

D Q
 
 QF

D Q
 
 Q

F D Q
 
 Q

F

a.) 

c.) 

b.) 

d.) 

D

Clock

Q

R



 217 

CHAPTER ELEVEN 

State Machines 

11.1 Introduction to State Machines 
Now that Chapter 10 has introduced us to memory cells, we can 

begin designing circuits that rely on stored values. With a single latch, 
we can store a one or a zero. By combining latches, we can store larger 
binary numbers. 

Our first design application using these latches will be state 
machines. A state machine is a digital circuit that relies not only on the 
circuit's inputs, but also the current state of the system to determine the 
proper output. For example, assume an elevator is stopped on the eighth 
floor and someone from the fourth floor presses the elevator call 
button. The elevator needs to decide whether to go up or down. As long 
as it remembers its current state, i.e., that it is on the eighth floor, it will 
know that it needs to go down to access the fourth floor. 

To remember the current state of a system, memory will have to be 
added to our circuits. This memory will act as additional inputs to the 
circuitry used to create the outputs. 

 
 
 
 
 
 
 
 
 

Figure 11-1   Adding Memory to a Digital Logic Circuit 

11.1.1 States 
So what is a state?  A state defines the current condition of a system. 

It was suggested at the end of Chapter 10 that a traffic signal system is 
a state machine. The most basic traffic signal controls an intersection 
with two directions, North-South and East-West for example. There are 

D Latch 

D Latch 

D Latch 

System 
inputs

Latches storing 
current state

 
 
 

Combinational 
Logic 

 

Output 



218   Computer Organization and Design Fundamentals 
 

certain combinations of lights (on or off) that describe the intersection's 
condition. These are the system's states. 

 
 
 
 
 
   
 
 

Figure 11-2   States of a Traffic Signal System 

A state machine might also be as simple as a light bulb. The light 
bulb can have two states: on and off. The light switch moves the 
condition of the bulb from one state to another. 

 
 
 
 
 

 

Figure 11-3   States of a Light Bulb 

11.1.2 State Diagrams 
We will begin our design of state machines by introducing the 

primary design tool: the state diagram. A state diagram models a state 
machine by using circles to represent each of the possible states and 
arrows to represent all of the possible transitions between the states. 
For example, Figure 11-4 presents the state diagram for the light bulb 
state machine shown in Figure 11-3. 

 
 
 
 

Figure 11-4   State Diagram for Light Bulb State Machine 

N-S E-W N-S E-W N-S E-W N-S E-W 

State 0 State 1 State 2 State 3 

Switch goes on

Switch goes offOFF ON

OFF ON



 Chapter 11: State Machines    219 
 

This state diagram is incomplete. For example, what triggers a 
change from one state to the other?  Even though the words ON and 
OFF mean something to you, they don't mean much to a computer. We 
need to include the boolean output associated with each of the states. 
Figure 11-5 presents the completed state diagram. 

 
 
 
 

Figure 11-5   Complete State Diagram for Light Bulb State Machine 

The upper half of each circle indicates the name of the state. The 
lower half indicates the binary output associated with that state. In the 
case of the light bulb state machine, a zero is output while we are in the 
OFF state and a one is output while we are in the ON state. The arrows 
along with the input value say that when we are in state OFF and the 
switch input goes to a 1, move to state ON. When we are in state ON 
and the switch input goes to a 0, move to state OFF. 

Before creating a state diagram, we must define the parameters of 
the system. We begin with the inputs and outputs. The inputs are vital 
to the design of the state diagram as their values will be used to dictate 
state changes. As for the outputs, their values will be determined for 
each state as we create them. 

It is also important to have an idea of what will define our states. For 
example, what happens to the states of our traffic signal system if we 
add a crosswalk signal?  It turns out that the number of states we have 
will increase because there will be a difference between the state when 
the crosswalk indicator says "Walk" and when it flashes "Don't Walk" 
just before the traffic with the green light gets its yellow. 

Here we will introduce an example to illustrate the use of state 
diagrams. Chapter 10 presented a simple counter circuit that 
incremented a binary value each time a pulse was detected. What if we 
wanted to have the option to decrement too?  Let's design a state 
machine that stores a binary value and has as its input a control that 
determines whether we are incrementing that binary value or 
decrementing it when a pulse is received. 

OFF
0

ON
1 

Switch = 1 

Switch = 0 



220   Computer Organization and Design Fundamentals 
 

 
 
 
 

Figure 11-6   Block Diagram of an Up-Down Binary Counter 

One of the inputs to this counter is a clock. Many state machines 
have a clock. It is used to drive the system from one state to the next. 
To do this, it is connected to the clock input of the latches. When a 
pulse is received, the next state is stored in the latches where it 
becomes the current state. 

The other input to our system is direction. The direction signal is a 
binary input telling the system whether the stored value is to be 
incremented or decremented. Let's make a design decision now and say 
that when direction equals 0 we will be decrementing and when 
direction equals 1 we will be incrementing. 

As for the states of our counter, the current state at any time can be 
represented with the binary number it is outputting. Therefore, the 
binary number is the state. For example, if the output from a three-bit 
counter is the binary number 1102 and a pulse is detected on the clock 
input, the state of the system should change to state 1012 if direction = 
0 or state 1112 if direction = 1. 

We now have the characteristics of our counter specified well 
enough for us to begin creating the state diagram for a three-bit up-
down counter. This counter has an output that is a three-bit number. 
Every time a clock pulse occurs, the counter will change state to either 
increment or decrement the output depending on the value of direction. 
For example, if direction equals one, then each clock pulse will 
increment the output through the sequence 000, 001, 010, 011, 100, 
101, 110, 111, 000, 001, etc. If direction equals zero, then the output 
will decrement once for each clock pulse, i.e., 000, 111, 110, 101, 100, 
011, 010, 001, 000, 111, 001, etc. 

Figure 11-7 presents the state diagram for our system using the 
binary value to identify the states and the letter D to represent the input 
direction. 

Binary 

Counter 
binary 
number 

clock
 

direction



 Chapter 11: State Machines    221 
 

000 001 

111 
D = 1 

D = 1 

D = 0 

D = 0 Reset

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11-7   State Diagram for a 3-Bit Up-Down Binary Counter 

In Figure 11-7, the arrows going clockwise around the inside of the 
diagram represent the progression through the states at each clock pulse 
when direction equals 1. Notice that each pulse from clock should take 
us to the next highest three-bit value. The arrows going counter-
clockwise around the outside of the diagram represent the progression 
through the states at each clock pulse when direction equals zero. 

There is an additional detail that must be represented with a state 
diagram. When a system first powers up, it should be initialized to a 
reset state. We need to indicate on the diagram which state is defined as 
the initial state. For example, the up-down counter may be initialized to 
the state 0002 when it is first powered up. The state diagram represents 
this by drawing an arrow to the initial state with the word "reset" 
printed next to it. A portion of Figure 11-7 is reproduced in Figure 11-8 
showing the reset condition. 

 
 
 
 
 
 

Figure 11-8   Sample of a Reset Indication in a State Diagram 

000 001 

010 

011 

111 

110 

101 100 

D = 1 

D = 1 

D = 1 

D = 1 

D = 1 
D = 1 

D = 1 
D = 1 

D = 0 

D = 0 

D = 0 

D = 0 

D = 0 

D = 0 

D = 0 

D = 0 



222   Computer Organization and Design Fundamentals 
 

11.1.3 Errors in State Diagrams 
A state diagram must fully describe the operation of a state machine. 

It is for this reason that we need to watch for any missing or redundant 
information. Possible errors include the following situations. 

 
 Any state other than an initial state that has no transitions going 

into it should be removed since it is impossible to reach that state. 
 For a system with n inputs, there should be exactly 2n transitions 

coming out of every state, one for each pattern of ones and zeros 
for the n inputs. Some transitions may come back to the current 
state, but every input must be accounted for. Missing transitions 
should be added while duplicates should be removed.  

 
The following example shows how some of these errors might appear. 

Example 
Identify the errors in the following state diagram.  
 
 
 
 
 
 
 
 
 
 
 

Solution 
Error 1 – There is no way to get to state E. It should be removed. 
Although state A has no transitions to it, it is not a problem because it 
is the initial state. 
Error 2 – The transition from state D for P=0 is defined twice while the 
transition for P=1 is never defined. 

11.1.4 Basic Circuit Organization 
From the state diagram, we can begin implementing the state 

machine. Figure 11-1 only revealed a portion of the organization of a 

A 
0 P=0 

P=0 

P=0 

P=1 

P=0 

P=1 

P=0 
P=1 C 

0 
E 
0 

B 
0 

D 
0 

P=0 

P=1 
Reset 



 Chapter 11: State Machines    223 
 

state machine. Figure 11-9 presents a more accurate diagram of the 
state machine circuitry. The current state is contained in the latches 
while a block of logic is used to determine the next state from the 
current state and the external inputs. A second block of logic 
determines the system output from the current state. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11-9   Block Diagram of a State Machine 

There is a step-by-step process we will present here to design each 
block of logic. Although the three main pieces are connected, the 
design of the state machine involves three rather independent designs. 

Let's begin with the latches, the center block of the block diagram of 
Figure 11-9. This component of the system consists only of one or 
more D latches, the combined outputs of which represent the current 
state of the state machine. The inputs to the latches represent what the 
next state would be if the clock were to pulse at that particular moment.  

The number of latches in this portion of the circuit is based on the 
number of states the system can have. If, for example, a state diagram 
showed ten states for a system, then we would have to have enough 
latches so that their outputs, Q, could represent at least ten different 
patterns of ones and zeros. By numbering the ten states in binary, 0, 1, 
10, 11, 100, 101, 110, 111, 1000, 1001, we see that we will need at 
least four latches, the number of digits it takes to represent the highest 
value, 1001.  

The latches are labeled Sn where n represents the bit position of the 
number stored in that latch. For example, if a set of four latches stored 
the binary value 11012 indicating that the state machine was currently 

Logic 
deter-

mining 
the next 

state 

Latches 
outputting 
the current 

state 

Logic deter-
mining  

the output 
from current 

state 

External 
inputs 

Outputs

Next state Current state

Clock



224   Computer Organization and Design Fundamentals 
 

in state 11012 = 1310, then latch S0 contains a 1, latch S1 contains a 0, 
latch S2 contains a 1, and latch S3 contains a 1. 

The D inputs serve to hold the binary value of the next state that the 
latches, and hence the state machine, will be set to. When a clock pulse 
occurs, the next state is stored in the latches making it the current state. 

The leftmost block in the block diagram of Figure 11-9 represents 
the digital logic used to determine the next state of the system. It 
determines this from the inputs to the system and the current state of 
the system. We will use the state diagram to construct a truth table 
describing the operation of this block of logic. 

The rightmost block in the block diagram of Figure 11-9 represents 
the digital logic used to determine the output of the system based on its 
current state. The state diagrams presented here have an output 
associated with each state. From this information, a truth table is 
developed which can be used to determine the output logic. 

Example 
The block diagram below represents a state machine. Answer the 

following questions based on the state machine's components and the 
digital values present on each of the connections. 

 
 What is the maximum number of states this system could have? 
 How many rows are in the truth table defining the output? 
 How many rows are in the truth table defining the next state? 
 What is the current state of this system? 
 If the clock were to pulse right now, what would the next state be? 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Next 
state 
logic 

D Q
 S2

D Q
 S1

D Q
 S0

 
 

Output 
logic 

Clock

0 

1 

1

0

0 1

1

0
0



 Chapter 11: State Machines    225 
 

Solution 
What is the maximum number of states this system could have?  
Since the system has 3 latches, then the numbers 0002, 0012, 0102, 
0112, 1002, 1012, 1102, and 1112 can be stored. Therefore, this state 
machine can have up to eight states. 

How many rows are in the truth table defining the output?  Since the 
output is based on the current state which is represented by the latches, 
and since there are three latches, the logic circuit for the output has 
three inputs. With three inputs, there are 23 = 8 possible patterns of 
ones and zeros into the circuit, and hence, 8 rows in the truth table. 

How many rows are in the truth table defining the next state?  Since 
the next state of the state machine, i.e., the value on the input lines to 
the latches, depends on the current state fed back into the next state 
logic and the system inputs, then there are five inputs that determine the 
next state. Therefore, the inputs to the next state logic have 25 = 32 
possible patterns of ones and zeros. This means that the next state logic 
truth table has 32 rows.  

What is the current state of this system?  The current state equals the 
binary value stored in the latches. Remembering that S0 is the LSB 
while S2 is the MSB, this means that the current state is 0112 = 310. 

If the clock were to pulse right now, what would the next state be?  
The next state is the binary value that is present at the D inputs to the 
latches. Once again, S0 is the LSB and S2 is the MSB. Therefore, the 
next state is 1002 = 410. 

11.2 State Machine Design Process 
This section presents the state machine design process by taking an 

example through each of the design steps. The example we will be 
using is a push button circuit used to control a light bulb. When the 
button is pressed, the light bulb turns on. When the button is released, it 
stays on. Pushing the button a second time turns off the bulb, and the 
bulb stays off when the button is released.  

First, let's define the system. It has a single input, i.e., the button. 
We will label this input 'B' and assume that when B = 0 the button is 
released and when B = 1 the button is pressed. The system has a single 
output, the light bulb. We will label this output 'L' and assume that  
L = 0 turns off the light and L = 1 turns on the light. 



226   Computer Organization and Design Fundamentals 
 

Now let's design the state diagram. We begin by assuming that the 
reset state has the light bulb off (L = 0) with the user's finger off of the 
button. Figure 11-10 presents this initial state labeled as state 0. 

 
 
 
 
 

Figure 11-10   Initial State of the Push Button Light Control 

The fact that we selected an initial state with the light bulb off might 
be clear, but it might not be clear why we added the condition that the 
user's finger is not touching the button. As we go through the design, 
we will see how the transitions between states depend on whether the 
button is currently pressed or released. This means that the condition of 
the button directly affects the state of the system. 

So where do we go from this initial state?  Well, when a clock pulse 
occurs, the decision of which state to go to from state 0 depends on the 
inputs to the system, namely whether the button is pressed (B=1) or 
released (B=0). Since the button has two possible conditions, then there 
will be two possible transitions out of state 0. Figure 11-11 shows how 
these transitions exit state 0 as arrows. 

Each of these transitions must pass to a state, so the next step is to 
determine which state each transition goes to. To do this, we either 
need to create a new state or have the transition return to state 0. 

 
 
 
 

Figure 11-11   Transitions from State 0 of Push Button Circuit 

If B=0, the button is not pressed and the light should stay off. We 
need to pass to a state that represents the condition that the light is off 
and the button is released. It just so happens that this is the same as the 
initial state, so the transition for B=0 should just return to state 0. 

0 
off 

Reset 

0 
off 

Reset B=0 

B=1 



 Chapter 11: State Machines    227 
 

 
 
 
 
 

Figure 11-12   B=0 Transition from State 0 of Push Button Circuit 

When the button is pressed, the light should come on. Therefore, the 
transition for B=1 should pass to a state where the light is on and the 
button is pressed. We don't have this state in our diagram, so we need 
to add it. 

 
 
 

 
 

Figure 11-13   B=1 Transition from State 0 of Push Button Circuit 

At this point, we have defined all of the transitions out of state 0. In 
the process, however, we created a new state. We now need to define 
all of the transitions for the input B for this new state. 

If B=0 at the next clock pulse, then the button has been released. 
Going back to the original definition of the system, we see that if the 
button is pressed to turn on the light and then it is released, the light 
should stay on. Therefore, the transition out of state 1 for B=0 should 
go to a state where the light is on, but the button is released. We don't 
have this state, so we will need to make it. We will name it state 2. 

 
 
 
 
 
 
 
 

Figure 11-14   B=0 Transition from State 1 of Push Button Circuit 

0 
off 

Reset B=0 

B=1 

0 
off 

Reset B=0 

B=1 
1 
on 

0 
off 

Reset B=0 

B=1 
1 
on 

2 
on B=0 



228   Computer Organization and Design Fundamentals 
 

Going back to state 1, if the user's finger is still on the button (B=1) 
at the next clock pulse, then the light needs to remain on. We therefore 
need to go to a state where the button is pressed and the light is on. This 
is state 1, so the transition for B=1 needs to loop back into state 1. 

 
 
 
 
 
 
 
 
 
 

Figure 11-15   B=1 Transition from State 1 of Push Button Circuit 

Now that all of the transitions from state 1 have been defined, we 
need to begin defining the transitions from state 2. If B=0, the button 
has not been pressed and the current state must be maintained. If the 
button is pressed, the light is supposed to turn off. Therefore, we need 
to pass to a state where the light is off and the button is pressed. This 
state doesn't exist, so we need to create state 3. 

 
 
 
 
 
 
 
 
 
 

Figure 11-16   Transitions from State 2 of Push Button Circuit 

As you can see, each time we create a new state, we need to add the 
transitions for both B=0 and B=1 to it. This will continue until the 
addition of all the transitions does not create any new states. The last 

0 
off 

Reset B=0 

B=1 
1 
on 

2 
on 

B=0 

B=1 

0 
off 

Reset B=0 

B=1 
1 
on 

2 
on 

B=0 

B=1 

3 
off B=1 

B=0 



 Chapter 11: State Machines    229 
 

step added state 3 so we need to add the transitions for it. If B=0, then 
the button has been released, and we need to move to a state where the 
button is released and the light bulb is off. This is state 0. If B=1, then 
the button is still pressed and the bulb should remain off. This is state 3. 
Since we didn't create any new states, then the state diagram in Figure 
11-17 should be the final state diagram for the system. 

 
 
 
 
 
 
 
 
 
 
 

Figure 11-17   Final State Diagram for Push Button Circuit 

At this point, there are a couple of items to note. First, as each state 
was created, it was assigned a number beginning with state 0 for the 
initial state. The order in which the states are numbered is not important 
right now. Advanced topics in state machine design examine how the 
numbering affects the performance of the circuit, but this chapter will 
not address this issue. It is a good idea not to skip values as doing this 
may add latches to your design. 

The second item to note regards the operation of the state machine. 
The state diagram shows that to know which state we are going to be 
transitioning to, we need to know both the current state and the current 
values on the inputs. 

The next step is a minor one, but it is necessary in order to 
determine the number of latches that will be used in the center block of 
Figure 11-9. Remember that the latches maintain the current state of the 
state machine. Each latch acts as a bit for the binary value of the state. 
For example, if the current state of the system is 210 = 102, then the 
state machine must have at least two latches, one to hold the '1' and one 
to hold the '0'. By examining the largest state number, we can 

0 
off 

Reset B=0 

B=1 
1 
on 

2 
on 

B=0 

B=1 

3 
off B=1 

B=0 

B=0 
B=1 



230   Computer Organization and Design Fundamentals 
 

determine the minimum number of bits it will take to store the current 
state. This is why we begin numbering out states at zero. 

For our system, the largest state number is 310 = 112. Since 3 takes 
two bits to represent, then two latches will be needed to store any of the 
states the system could enter. Table 11-1 presents each of the states 
along with their numeric value in decimal and binary. 

Table 11-1   List of States for Push Button Circuit 

Numeric Value State 
Decimal Binary

Bulb off; button released 0 00 
Bulb on; button pressed 1 01 
Bulb on; button released 2 10 
Bulb off; button pressed 3 11 

 
We will label the two bits used to represent these values S1 and S0 

where S1 represents the MSB and S0 represents the LSB. This means, 
for example, that when S1 = 0 and S0 = 1, the bulb is on and the button 
is pressed. Each of these bits requires a latch. Using this information, 
we can begin building the hardware for our state machine. 

 
 
 
 
 
 
 
 

Figure 11-18   Block Diagram for Push Button Circuit 

The next step is to develop the truth tables that will be used to create 
the two blocks of logic on either side of the latches in Figure 11-18. We 
begin with the "next state logic."  The inputs to this logic will be the 
system input, B, and the current state, S1 and S0. The outputs represent 
the next state that will be loaded into the latches from their D inputs 

 
Next 
state 
logic 

D Q
 S1

D Q
 S0

 
Output 
logic 

Clock

B 
L

S1'

S0'



 Chapter 11: State Machines    231 
 

when a clock pulse occurs. These are represented in Figure 11-18 by 
the signals S1' and S0'. 

The next state truth table lists every possible combination of ones 
and zeros for the inputs which means that every possible state along 
with every possible system input will be listed. Each one of these rows 
represents an arrow or a transition on the state diagram. The output 
columns show the state that the system will be going to if a clock pulse 
occurs. For example, if the current state of our push button circuit is 
state 0 (S1 = 0 and S0 = 0) and the input B equals one, then we are 
going to state 1 (S1' = 0 and S0' = 1). If the current state is state 0 and 
the input B equals zero, then we are staying in state 0 (S1' = 0 and S0' = 
0). Table 11-2 presents the truth table where each transition of the state 
diagram in Figure 11-17 has been translated to a row. 

We also need to create a truth table for the output logic block of 
Figure 11-18. The output logic produces the correct output based on the 
current state. This means that the circuit will take as its inputs S1 and S0 
and produce the system output, L. The truth table is created by looking 
at the output (the lower half of each circle representing a state), and 
placing it in the appropriate row of a truth table based on the values of 
S1 and S0. Table 11-3 presents the output truth table. 

Table 11-2   Next State Truth Table for Push Button Circuit 

S1 S0 B S1' S0'  
0 0 0 0 0  State 0 stays in state 0 when B=0 
0 0 1 0 1  State 0 goes to state 1 when B=1 
0 1 0 1 0  State 1 goes to state 2 when B=0 
0 1 1 0 1  State 1 stays in state 1 when B=1 
1 0 0 1 0  State 2 stays in state 2 when B=0 
1 0 1 1 1  State 2 goes to state 3 when B=1 
1 1 0 0 0  State 3 goes to state 0 when B=0 
1 1 1 1 1  State 3 stays in state 3 when B=1 

Table 11-3   Output Truth Table for Push Button Circuit 

S1 S0 L  
0 0 0  State 0: bulb is off
0 1 1  State 1: bulb is on 
1 0 1  State 2: bulb is on 
1 1 0  State 3: bulb is off



232   Computer Organization and Design Fundamentals 
 

Now that we have our system fully defined using truth tables, we 
can design the minimum SOP logic using Karnaugh maps. Figure  
11-19 presents the Karnaugh maps for the outputs S1', S0', and L. 
 

  S1'   S0'   L 
 B    B    S1   

S1S0  0 1 S1S0  0 1 S0  0 1 
 00 0 0  00 0 1  0 0 1 
 01 1 0  01 0 1  1 1 0 
 11 0 1  11 0 1     
 10 1 1  10 0 1     

Figure 11-19   K-Maps for S1', S0', and L of Push Button Circuit 

From these Karnaugh maps, we get the following boolean expressions: 
      _    _             _ 
S1' = S1·S0·B + S1·B + S1·S0  
 
S0' = B 
    _         _ 
L = S1·S0 + S1·S0 = S1  S0  

 
These expressions give us the final implementation of our state 

machine. By converting the expressions to logic circuits and 
substituting them for the logic blocks in Figure 11-18, we get the 
circuit shown in Figure 11-20. 

 
 
 
 
 
 
 
 
 
 

Figure 11-20   Finished Push Button Circuit 

D Q
 S1

D Q
 S0

Clock

B 

L 

S1'

S0'



 Chapter 11: State Machines    233 
 

As was mentioned earlier, the numbering of the states directly 
affects the logic that results from a design. Let's use our design to see 
how this might happen. Assume we were to leave everything in the 
design of our circuit the same except for swapping the numbers for 
states 2 and 3. Table 11-4 shows the new binary values for our states.  

Table 11-4   Revised List of States for Push Button Circuit 

Numeric Value State 
Decimal Binary

Bulb off; button released 0 00 
Bulb on; button pressed 1 01 
Bulb on; button released 3 11 
Bulb off; button pressed 2 10 

 
This modification affects all of the logic, but let's only look at how it 

affects the output logic that drives the signal L. In this case, the light is 
on in states 1 and 3, but off for states 0 and 2. Figure 11-21 presents the 
new output truth table and the resulting Karnaugh map. 

 
S1 S0 L      
0 0 0   S1   
0 1 1  S0  0 1
1 0 0   0 0 1
1 1 1   1 0 1

Figure 11-21   Revised Truth Table and K Map for Push Button Circuit 

This gives us a new boolean expression for L. 
 

L = S1 
 
The final SOP expression for L with our previous numbering 

scheme used two AND gates and an OR gate. (This is the way an XOR 
gate is implemented.)  Our new numbering scheme now consists only 
of a wire connecting the output of S1 to the light bulb. 



234   Computer Organization and Design Fundamentals 
 

11.3 Another State Machine Design: Pattern Detection 
A common application for state machines is to watch for a specific 

binary pattern within a serial data stream. The binary pattern may be 
used to indicate the start or end of a message or to alert the receiving 
device that a control sequence is about to come. Figure 11-22 presents a 
sample binary stream where the binary bit pattern "101" is identified. 

 
 

Figure 11-22   Identifying the Bit Pattern "101" in a Bit Stream 

If a clock can be produced that pulses once for each incoming bit, 
then we can develop a state machine that detects this pattern. The state 
machine will initially output a zero indicating no pattern match and will 
continue to output this zero until the full pattern is received. When the 
full pattern is detected, the state machine will output a 1 for one clock 
cycle.  

The state machine used to detect the bit pattern "101" will have four 
states, each state representing the number of bits that we have received 
up to this point that match the pattern: 0, 1, 2, or 3. For example, a 
string of zeros would indicate that we haven't received any bits for our 
sequence. The state machine should remain in the state indicating no 
bits have been received. 

If, however, a 1 is received, then it is possible we have received the 
first bit of the sequence "101". The state machine should move to the 
state indicating that we might have the first bit. If we receive another 1 
while we are in this new state, then we know that the first 1 was not 
part of the pattern for which we are watching. The second 1, however, 
might indicate the beginning of the pattern, so we should remain in the 
state indicating that we might have received the first bit of the pattern. 
This thought process is repeated for each state.  

The list below identifies each of the states along with the states they 
would transition to based on the input conditions. 

 
 State 0 – This is the initial state representing the condition that no 

bits of the sequence have been received. As long as zeros are 
received, we should remain in this state. Since the first bit of the 
sequence is a 1, whenever a 1 is received we should move to the 
state indicating that we might have received the first bit. 

1101001111011001011101010000111101101111001 



 Chapter 11: State Machines    235 
 

 State 1 – This state is entered when we have received the first bit of 
the sequence. Receiving a 0, the second bit of the sequence, should 
move us to a state indicating that we've received "10". Receiving a 
1 means that the last 1 was not part of the sequence, but this new 1 
might be, so we should remain in State 1. 

 State 2 – We are in this state when we believe we might have the 
first two bits of the sequence, i.e., we got here after receiving "10". 
If we receive a 0, then the last three bits we received were "100". 
Since it is not possible to pull any part of the sequence out of this 
pattern, we should go back to state 0 indicating none of the 
sequence has been received. If, however, we receive a 1 while in 
this state, then the last three bits were "101" and we should go to the 
state indicating that the first three bits might have been received. 

 State 3 – This is the state we go to when we've received all three 
bits of the sequence, and therefore, it is the only state where a 1 will 
be output. If while in this state we receive a 0, then the last four bits 
we received were "1010". Notice that the last two bits of this 
sequence are "10" which are the first two bits of the pattern for 
which we are looking. Therefore, we should go to state 2 indicating 
that we've received two bits of the sequence. If we receive a 1, then 
the last four bits we received were "1011". This last 1 could be the 
first bit of a new pattern of "101", so we should go to state 1. 

 
These states along with the appropriate transitions are presented in 

Figure 11-23 using the letter 'I' to represent the latest bit received from 
the input stream. 

 
 
 
 
 
 
 
 
 
 
 

Figure 11-23   State Diagram for Identifying the Bit Pattern "101" 

0 
digits 

0 

Initial 
state 1 

digit 
0

2 
digits 

0 

3 
digits

1

I=1 

I=1 I=0 

I=1 

I=0 I=1 I=0 

I=0 



236   Computer Organization and Design Fundamentals 
 

Next, we need to assign binary values to each of the states so that we 
know how many latches will be needed to store the current state and 
provide the inputs to the next state logic and the output logic. Table 11-
5 presents the list of states along with their decimal and binary values.  

From the state diagram and the numbering of the states, we can 
create the next state truth table and the output truth table. These are 
presented in Figure 11-24 with S1 representing the MSB of the state, S0 
representing the LSB of the state, and P representing the output. 

Table 11-5   List of States for Bit Pattern Detection Circuit 

Numeric Value State 
Decimal Binary 

No bits of the pattern have been received 0 00 
One bit of the pattern has been received 1 01 
Two bits of the pattern have been received 2 10 
Three bits of the pattern have been received 3 11 

 
 
 

Next State  Output 
S1 S0 I S1' S0'  S1 S0 P
0 0 0 0 0  0 0 0
0 0 1 0 1  0 1 0
0 1 0 1 0  1 0 0
0 1 1 0 1  1 1 1
1 0 0 0 0     
1 0 1 1 1     
1 1 0 1 0     
1 1 1 0 1     

Figure 11-24   Next State and Output Truth Tables for Pattern Detect 

Figure 11-25 shows the Karnaugh maps and resulting equations 
from the truth tables of Figure 11-24. Figure 11-26 presents the final 
circuit design. 
 
 



 Chapter 11: State Machines    237 
 

  S1'   S0'   P 
 I    I    S1   

S1S0  0 1 S1S0  0 1 S0  0 1 
1 00 0 0  00 0 1  0 0 0 
 01 1 0  01 0 1  1 0 1 
 11 1 0  11 0 1     
 10 0 1  10 0 1     

 
 

Figure 11-25   K-Maps for S1', S0', and P of Pattern Detect Circuit 

 
 
 
 
 
 
 
 

Figure 11-26   Final Circuit to Identify the Bit Pattern "101"  

11.4 Mealy Versus Moore State Machines 
The state machine design covered in the previous sections is referred 

to as a Moore machine. The distinguishing characteristic of a Moore 
machine is that its output is determined only by the current state. 

The output of the second type of state machine, the Mealy machine,  
is based on both the current state of the machine and the system's input. 
Figure 11-27 shows how this is accomplished by including the system's 
inputs with the current state to drive the output logic. 

To do this, the state diagram must be modified. The output values 
are removed from the states in the state diagram for a Mealy machine. 
The output values are then associated with each transition. Figure 11-28 
shows how each transition is labeled using the format X/Y where X 
identifies the input driving the transition and Y is the resulting output. 

 

D Q
 S1

D Q
 S0Clock

I 

L 

S1'

S0'

        _      _ 
S1' = S0·I + S1·S0·I 

      
S0' = I 

       
P = S1·S0 



238   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 

 

Figure 11-27   Basic Configuration of a Mealy Machine  

 
 
 
 
 
 

 

Figure 11-28   Sample State Diagram of a Mealy Machine  

The next state truth table for the Mealy machine is the same as that 
for the Moore machine: the current state and the system input govern 
the next state. The Mealy machine's output truth table is different, 
however, since it now uses the system input as one of the truth table's 
inputs. Figure 11-29 presents the output truth table for the state diagram 
in Figure 11-28 where state A is S0 = 0, S1 = 0, B is S0 = 0, S1 = 1, C is 
S0 = 1, S1 = 0, and D is S0 = 1, S1 = 1. 

11.5 What's Next? 
Chapter 12 expands the application of latches to the arrays used in 

some forms of memory. It also presents the interface circuitry that the 
processor uses to communicate with memory. This may seem to be too 
detailed an examination of hardware for the typical computer science 
student, but the theories behind these designs are identical to those used 
to decode the subnet and host IDs of an IP network. 

 

Next  
state  
logic 

Latches 
containing 

current state

Output  
logic 

System 
inputs 

System 
outputs 

Clock

System inputs also 
go to output logic 

A B 

D C 

0/1 1/0

0/0

1/0

0/1

1/1

0/0

1/1



 Chapter 11: State Machines    239 
 

State S1 S0 I Y
0 0 0 1 A 0 0 1 0 
0 1 0 0 B 0 1 1 0 
1 0 0 1 C 1 0 1 1 
1 1 0 0 D 1 1 1 1 

Figure 11-29   Output Truth Table for Sample Mealy Machine 

Problems 
1. What is the maximum number of states a state machine with four 

latches can have? 

2. How many latches will a state machine with 28 states require? 

3. Apply the design process presented in Section 11.2 to design a 
two-bit up/down counter using the input direction such that when 
direction = 0, the system decrements (00  11  10  01  00) 
and when direction = 1, the system increments (00  01  10  
11  00). 

4. The three Boolean expressions below represent the next state bits, 
S1' and S0', and the output bit, X, based on the current state, S1 and 
S0, and the input I. Draw the logic circuit for the state machine 
including the latches and output circuitry. Label all signals. 

          _      _ 
S1' = S1·S0 S0' = S1·S0·I X = S1 + S0 

 

5. Create the next state truth table and the output truth table for the 
following state diagrams. Use the variable names S1 and S0 to 
represent the most significant and least significant bits respectively 
of the binary number identifying the state.  

 



240   Computer Organization and Design Fundamentals 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Identify the error in this state diagram. Be as specific as you can. 

 

 

 

 

 

 

 

7. Design a state machine to detect the bit pattern "110" in a stream 
of bits. 

8. How many latches would be needed in a state machine that 
detected the pattern "011110" in a stream of bits?   

9. Create the logic diagram for the Mealy machine described in 
Figure 11-28. 

P=0 P=0 

P=1 P=0 

00 
1 

10 
0 P=1 

11 
1 

P=1 

P=0 

01 
1 

P=1 

init
0

one
1

two
1

K=1

K=0 

K=1

K=0
K=0

K=0K=0

K=1

three
0

four
0

K=0 

K=1

Reset

a.) 

10 
1 

00 
0 

01 
1 P=0 

P=1 

P=1 

P=0 

P=0 
P=1 b.) 



 241 

CHAPTER TWELVE 

Memory Organization 

12.1 Early Memory 
Every year new memory technologies are developed promising 

faster response and higher throughput. This makes it difficult to 
maintain a printed document discussing the latest advances in memory 
technologies. Although this chapter does present some basic memory 
technologies and how they are used to improve performance, the focus 
is on memory organization and interfacing with the processors. 

One of the earliest types of computer memory was called magnetic 
core memory. It was made by weaving fine copper wires through tiny 
rings of magnetic material in an array. Figure 12-1 shows the basic 
arrangement of core memory. 

 
 
 
 
 
 
 
 

Figure 12-1   Diagram of a Section of Core Memory 

Much like recording music to a magnetic tape, when electrical 
current was sent through the center of one of the magnetic rings, it 
polarized it with a magnetic charge. Each of these rings could have a 
charge that flowed clockwise or counter-clockwise. One direction was 
considered a binary 1 while the other was considered a binary 0.  

The horizontal and vertical wires of the core memory were used to 
write data to a specific ring. By putting half the current necessary to 
polarize the magnetic material on one of the horizontal wires and the 
same level of current on one of the vertical wires, the ring where the 
two wires intersected had enough total current to modify the ring's 
polarity. The polarity of the remaining rings would be left unaltered. 



242   Computer Organization and Design Fundamentals 
 

The diagonal wires, called sense wires, were used to read data. They 
could detect when the polarity on one of the rings was changed. To 
read data, therefore, the bit in question would be written to with the 
horizontal and vertical wires. If the sense wire detected a change in 
polarity, the bit that had been stored there must have been opposite 
from the one just written. If no polarity change was detected, the bit 
written must have been equal to the one stored in that ring.  

Magnetic core memory looks almost like fabric, the visible rings 
nestled among a lacework of glistening copper wires. It is for these 
reasons, however, that it is also impractical. Since the rings are 
enormous relative to the scale of electronics, a memory of 1024 bytes 
(referred to as a 1K x 8 or "1K by 8") had physical dimensions of 
approximately 8 inches by 8 inches. In addition, the fine copper wires 
were very fragile making manufacturing a difficult process. A typical 
1K x 8 memory would cost thousands of dollars. Therefore, magnetic 
core memory disappeared from use with the advent of transistors and 
memory circuits such as the latch presented in Chapter 10. 

12.2 Organization of Memory Device 
Modern memory has the same basic configuration as magnetic core 

memory although the rings have been replaced with electronic memory 
cells such as the D-Latch. The cells are arranged so that each row 
represents a memory location where a binary value would be stored and 
the columns represent different bits of those memory locations. This is 
where the terminology "1K x 8" used in Section 12.1 comes from. 
Memory is like a matrix where the number of rows identifies the 
number of memory locations in the memory and the number of 
columns identifies the number of bits in each memory location. 

To store to or retrieve data from a memory device, the processor 
must place a binary number called an address on special inputs to the 
memory device. This address identifies which row of the memory 
matrix or array the processor is interested in communicating with, and 
enables it.  

Once a valid address is placed on the address lines, the memory cells 
from that row are connected to bi-directional connections on the 
memory device that allow data either to be stored to or read from the 
latches. These connections are called the data lines. Three additional 
lines, chip select, read enable, and write enable, are used to control the 
transaction. 

Figure 12-2 presents the basic organization of a memory device. 



 Chapter 12: Memory Organization    243 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12-2   Basic Organization of a Memory Device 

Remember from Chapter 8 that a decoder with n inputs has 2n 
outputs, exactly one of which will be active for each unique pattern of 
ones and zeros at its input. For example, an active-low 2-input decoder 
will have four outputs. A different output will equal zero for each 
unique input pattern while all of the other inputs will be ones. 

An address decoder selects exactly one row of the memory array to 
be active leaving the others inactive. When the microprocessor places a 
binary number onto the address lines, the address decoder selects a 
single row in the memory array to be written to or read from. For 
example, if 0112 = 310 is placed on the address lines, the fourth row of 
the memory will be connected to the data lines. The first row is row 0. 

The processor uses the inputs read enable and write enable to 
specify whether it is reading data from or writing data to the selected 
row of the memory array. These signals are active low. When read 
enable is zero, we are reading data from memory, and when write 
enable is zero, we are writing data to memory. These two signals 
should never be zero at the same time. 

Sometimes, the read enable and write enable signals are combined 
into a single line called WR / (pronounced "read write-bar"). In this 
case, a one on WR / initiates a data read while a zero initiates a write. 

 
 A D 
 d e 
 d c 
 r o 
 e d 
 s e 
 s r 

Address 
lines 

Data lines 

Chip 
select 

Write 
enable 

Read 
enable 



244   Computer Organization and Design Fundamentals 
 

If latches are used for the memory cells, then the data lines are 
connected to the D inputs of the memory location latches when data is 
written, and they are connected to the Q outputs when data is read.  

The last input to the memory device shown in Figure 12-2 is the 
chip select. The chip select is an active low signal that enables and 
disables the memory device. If the chip select equals zero, the memory 
activates all of its input and output lines and uses them to transfer data. 
If the chip select equals one, the memory becomes idle, effectively 
disconnecting itself from all of its input and output lines. The reason for 
this is that the typical memory device shares the address and data lines 
of a processor with other devices. 

Rarely does a processor communicate with only one memory device 
on its data lines. Problems occur when more than one device tries to 
communicate with the processor over shared lines at the same time. It 
would be like ten people in a room trying to talk at once; no one would 
be able to understand what was being said. 

The processor uses digital logic to control these devices so that only 
one is talking or listening at a time. Through individual control of each 
of the chip select lines to the memory devices, the processor can enable 
only the memory device it wishes to communicate with. The processor 
places a zero on the chip select of the memory device it wants to 
communicate with and places ones on all of the other chip select inputs. 

The next section discusses how these chip selects are designed so 
that no conflicts occur. 

12.3 Interfacing Memory to a Processor 
The previous section presented the input and output lines for a 

memory device. These lines are shared across all of the devices that 
communicate with the processor. If you look at the electrical traces 
across the surface of a motherboard, you should see collections of 
traces running together in parallel from the processor to then from one 
memory device to the next. These groups of wires are referred to as the 
bus, which is an extension of the internal structure of the processor. 
This section discusses how the memory devices share the bus. 

12.3.1 Buses 
In order to communicate with memory, a processor needs three 

types of connections: data, address, and control. The data lines are the 
electrical connections used to send data to or receive data from 



 Chapter 12: Memory Organization    245 
 

memory. There is an individual connection or wire for each bit of data. 
For example, if the memory of a particular system has 8 latches per 
memory location, i.e., 8 columns in the memory array, then it can store 
8-bit data and has 8 individual wires with which to transfer data. 

The address lines are controlled by the processor and are used to 
specify which memory location the processor wishes to communicate 
with. The address is an unsigned binary integer that identifies a unique 
location where data elements are to be stored or retrieved. Since this 
unique location could be in any one of the memory devices, the address 
lines are also used to specify which memory device is enabled. 

The control lines consist of the signals that manage the transfer of 
data. At a minimum, they specify the timing and direction of the data 
transfer. The processor also controls this group of lines. Figure 12-3 
presents the simplest connection of a single memory device to a 
processor with n data lines and m address lines. 

Unfortunately, the configuration of Figure 12-3 only works with 
systems that have a single memory device. This is not very common. 
For example, a processor may interface with a BIOS stored in a non-
volatile memory while its programs and data are stored in the volatile 
memory of a RAM stick. In addition, it may use the bus to 
communicate with devices such as the hard drive or video card. All of 
these devices share the data, address, and control lines of the bus. 
(BIOS stands for Basic Input/Output System and it is the low-level 
code used to start the processor when it is first powered up.)    

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12-3   Basic Processor to Memory Device Interface 

  D0
  D1

 P :
 r Dn-1
 o 
 c A0
 e A1
 s :
 s Am-1
 o 
 r R
  W
  Clock

D0 
D1 
: 
Dn-1 M 
 e 
A0 m 
A1 o 
: r 
Am-1 y 
 
R 
W 
Clock

:     : 

:     : 

Data Lines Address Lines Control Lines



246   Computer Organization and Design Fundamentals 
 

A method had to be developed to allow a processor to communicate 
to multiple memory devices across the same set of wires. If this wasn't 
done, the processor would need a separate set of data, address, and 
control lines for each device placing an enormous burden on circuit 
board designers for routing wires. 

By using a bus, the processor can communicate with exactly one 
device at a time even though it is physically connected to many 
devices. If only one device on the bus is enabled at a time, the 
processor can perform a successful data transfer. If two devices tried to 
drive the data lines simultaneously, the result would be lost data in a 
condition called bus contention.  

Figure 12-4 presents a situation where data is being read from 
memory device 1 while memory device 2 remains "disconnected" from 
the bus. Disconnected is in quotes because the physical connection is 
still present; it just doesn't have an electrical connection across which 
data can pass. 

Notice that Figure 12-4 shows that the only lines disconnected from 
the bus are the data lines. This is because bus contention only occurs 
when multiple devices are trying to output to the same lines at the same 
time. Since only the microprocessor outputs to the address and control 
lines, they can remain connected. 

In order for this scheme to work, an additional control signal must 
be sent to each of the memory devices telling them when to be 
connected to the bus and when to be disconnected. This control signal 
is called a chip select.  

 
 
 
 
 
 
 
 
 
 
 

Figure 12-4   Two Memory Devices Sharing a Bus 

DATA 

ADDRESS 

CONTROL 

 
Micro-

processor 

Memory 
1

Memory 
2

Data lines  
are connected 
to the bus. 

Data lines are 
disconnected 
from the bus. 



 Chapter 12: Memory Organization    247 
 

A chip select is an active low signal connected to the enable input of 
the memory device. If the chip select is high, the memory device 
remains idle and its data lines are disconnected from the bus. When the 
processor wants to communicate with the memory device, it pulls that 
device's chip select low thereby enabling it and connecting it to the bus. 

Each memory device has its own chip select, and at no time do two 
chip selects go low at the same time. For example, Table 12-1 shows 
the only possible values of the chip selects for a system with four 
memory devices. 

Table 12-1   The Allowable Settings of Four Chip Selects 

 

 CS0 CS1 CS2 CS3 
Only memory device 0 connected 0 1 1 1 
Only memory device 1 connected 1 0 1 1 
Only memory device 2 connected 1 1 0 1 
Only memory device 3 connected 1 1 1 0 
All devices disconnected 1 1 1 1 

 
The disconnection of the data lines is performed using tristate 

outputs for the data lines of the memory chips. A tristate output is 
digital output with a third state added to it. This output can be a logic 1, 
a logic 0, or a third state that acts as a high impedance or open circuit. 
It is like someone opened a switch and nothing is connected.  

This third state is controlled by the chip select. When the active low 
chip select equals 1, data lines are set to high impedance, sometimes 
called the Z state. A chip select equal to 0 causes the data lines to be 
active and allow input or output. 

In Figure 12-5a, three different outputs are trying to drive the same 
wire. This results in bus contention, and the resulting data is 
unreadable. Figure 12-5b shows two of the outputs breaking their 
connection with the wire allowing the first output to have control of the 
line. This is the goal when multiple devices are driving a single line. 
Figure 12-5c is the same as 12-5b except that the switches have been 
replaced with tristate outputs. With all but one of the outputs in a Z 
state, the top gate is free to drive the output without bus contention. 

The following sections describe how memory systems are designed 
using chip selects to take advantage of tristate outputs. 

 



248   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 
 
 

Figure 12-5   Three Buffers Trying to Drive the Same Output 

12.3.2 Memory Maps 
Think of memory as several filing cabinets where each folder can 

contain a single piece of data. The size of the stored data, i.e., the 
number of bits that can be stored in a single memory location, is fixed 
and is equal to the number of columns in the memory array. Each piece 
of data can be either code (part of a program) or data (variables or 
constants used in the program). Code and data are typically stored in 
the same memory, each piece of which is stored in a unique address or 
row of memory. 

Some sections of memory are assigned to a predefined purpose 
which may place constraints on how they are arranged. For example, 
the BIOS from which the computer performs its initial startup sequence 
is located at a specific address range in non-volatile memory. Video 
memory may also be located at a specific address range. 

System designers must have a method to describe the arrangement 
of memory in a system. Since multiple memory devices and different 
types of memory may be present in a single system, hardware designers 
need to be able to show what addresses correspond to which memory 
devices. Software designers also need to have a way to show how the 
memory is being used. For example, which parts of memory will be 
used for the operating system, which parts will be used to store a 
program, or which parts will be used to store the data for a program.  

System designers describe the use of memory with a memory map. 
A memory map represents a system's memory with a long, vertical 
column. It is meant to model the memory array where the rows 
correspond to the memory locations. Within the full range of addresses 

0 0 

1 1 

0 0 

a.) Bus  
contention 

0 0

1 

0 

b.) Open 
connection 

0 0 

1 Z 

0 Z 

c.) Tristate  
buffers 

CS0 = 0

CS1 = 1

CS2 = 1



 Chapter 12: Memory Organization    249 
 

are smaller partitions where the individual resources are present. Figure 
12-6 presents two examples of memory maps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12-6   Sample Memory Maps 

The numbers along the left side of the memory map represent the 
addresses corresponding to each memory resource. The memory map 
should represent the full address range of the processor. This full 
address range is referred to as the processor's memory space, and its 
size is represented by the number of memory locations in the full range, 
i.e., 2m where m equals the number of address lines coming out of the 
processor. It is up to the designer whether the addresses go in ascending 
or descending order on the memory map. 

As an example, let's calculate the memory space of the processor 
represented by the memory map in Figure 12-6b. The top address for 
this memory map is FFFFF16 = 1111 1111 1111 1111 11112. Since the 
processor accesses its highest address by setting all of its address lines 
to 1, we know that this particular processor has 20 address lines. 
Therefore, its memory space is 220 = 1,048,57610 = 1 Meg. This means 
that all of the memory resources for this processor must be able to fit 
into 1 Meg without overlapping. 

In the next section, we will see how to compute the size of each 
partition of memory using the address lines. For now, however, we can 
determine the size of a partition in memory by subtracting the low 

FFFF16 
 

FF0016 
BIOS 

FEFF16 

 
 

800016 

Empty 

7FFF16 
 

700016 

Video 
memory 

6FFF16 
 
 

000016 

RAM 

FFFFF16 
 

C000016 
Program 

C 
BFFFF16 

 
 

8000016 

Program 
B 

7FFFF16 
 

2800016 
Unused 

27FFF16 
 

2000016 
Program 

A 
1FFFF16 

 

0000016 
O/S 

a.) Hardware-specific b.) Software-specific 



250   Computer Organization and Design Fundamentals 
 

address from the high address, then adding one to account for the fact 
that the low address itself is a memory location. For example, the range 
of the BIOS in Figure 12-6a starts at FF0016 = 65,28010 and goes up to 
FFFF16 = 65,53510. This means that the BIOS fits into  
65,535 – 65,280 +1 = 256 memory locations.  

It is vital to note that there is an exact method to selecting the upper 
and lower addresses for each of the ranges in the memory map. Take 
for example the memory range for Program A in Figure 12-6b. The 
lower address is 2000016 while the upper address is 27FFF16. If we 
convert these addresses to binary, we should see a relationship. 

 
 2000016 =  0010 0000 0000 0000 00002 
 27FFF16 = 0010 0111 1111 1111 11112 
 
It is not a coincidence that the upper five bits of these two addresses 

are identical while the remaining bits go from all zeros in the low 
address to all ones in the high address. Converting the high and the low 
address of any one of the address ranges in Figure 12-6 should reveal 
the same characteristic. 

The next section shows how these most significant address bits are 
used to define which memory device is being selected. 

12.3.3 Address Decoding 
Address decoding is a method for using an address to enable a 

unique memory device while leaving all other devices idle. The method 
described here works for many more applications than memory though. 
It is the same method that is used to identify which subnet a host 
computer is connected to based on its IP address. 

All address decoding schemes have one thing in common: the bits of 
the full address are divided into two groups, one group that is used to 
identify the memory device and one group that identifies the memory 
location within the selected memory device. In order to determine how 
to divide the full address into these two groups of bits, we need to 
know how large the memory device is and how large the memory space 
is. Once we know the size of the memory device, then we know the 
number of bits that will be required from the full address to point to a 
memory location within the memory device. 

Just as we calculated the size of the memory space of a processor, 
the size of the memory space of a device is calculated by raising 2 to a 
power equal to the number of address lines going to that device. For 



 Chapter 12: Memory Organization    251 
 

example, a memory device with 28 address lines going into it has 228 = 
256 Meg locations. This means that 28 address bits from the full 
address must be used to identify a memory location within that device. 
All of the remaining bits of the full address will be used to enable or 
disable the device. It is through these remaining address bits that we 
determine where the memory will be located within the memory map. 

Table 12-2 presents a short list of memory sizes and the number of 
address lines required to access all of the locations within them. 
Remember that the memory size is simply equal to 2m where m is the 
number of address lines going into the device. 

Table 12-2   Sample Memory Sizes versus Required Address Lines 

Memory  
size 

Number of 
address lines

 Memory 
size 

Number of 
address lines 

1 K 10  256 Meg 28 
256 K 18  1 Gig 30 
1 Meg 20  4 Gig 32 
16 Meg 24  64 Gig 36 

 
The division of the full address into two groups is done by dividing 

the full address into a group of most significant bits and least 
significant bits. The block diagram of an m-bit full address in Figure 
12-7 shows how this is done. Each bit of the full address is represented 
with an where n is the bit position. 

 
full address of m-bits 

am–1 am–2 am–3 … ak ak–1 ak–2 … a2 a1 a0 
m – k bits defining when

memory device is enabled
k bits wired directly 
to memory device 

Figure 12-7   Full Address with Enable Bits and Device Address Bits 

The bits used to enable the memory device are always the most 
significant bits while the bits used to access a memory location within 
the device are always the least significant bits. 



252   Computer Organization and Design Fundamentals 
 

Example 
A processor with a 256 Meg address space is using the address 

35E3C0316 to access a 16 Meg memory device. 
 

 How many address lines are used to define when the 16 Meg 
memory space is enabled? 

 What is the bit pattern of these enable bits that enables this 
particular 16 Meg memory device? 

 What is the address within the 16 Meg memory device that this 
address is going to transfer data to or from? 

 What is the lowest address in the memory map of the 16 Meg 
memory device? 

 What is the highest address in the memory map of the 16 Meg 
memory device? 

Solution 
First, we need to determine where the division in the full address is 

so that we know which bits go to the enable circuitry and which are 
connected directly to the memory device's address lines. From Table 
12-2, we see that to access 256 Meg, we need 28 address lines. 
Therefore, the processor must have 28 address lines coming out of it. 

The memory device is only 16 Meg which means that it requires 24 
address lines to uniquely identify all of its addresses. 

 
a27 a26 a25 a24 a23 a22 … a2 a1 a0
4 bits that enable
memory device 

24 bits going to address 
lines of memory device 

 
Therefore, the four most significant address lines are used to enable 

the memory device. 
By converting 35E3C0316 to binary, we should see the values of 

each of these bit positions for this memory location in this memory 
device. 

 
 35E3C0316 = 0011 0101 1110 0011 1100 0000 00112 

 
The four most significant bits of this 28-bit address are 00112. This, 

therefore, is the bit pattern that will enable this particular 16 Meg 
memory device: a27 = 0, a26 = 0, a25 = 1, and a24 = 1. Any other pattern 



 Chapter 12: Memory Organization    253 
 

of bits for these four lines will disable this memory device and disallow 
any data transactions between it and the processor. 

The 16 Meg memory device never sees the most significant four bits 
of this full address. The only address lines it ever sees are the 24 that 
are connected directly to its address lines: a0 through a23. Therefore, the 
address the memory device sees is: 

 
 0101 1110 0011 1100 0000 00112 = 5E3C0316 
 

As for the highest and lowest values of the full address for this 
memory device, we need to examine what the memory device interprets 
as its highest and lowest addresses. The lowest address occurs when all 
of the address lines to the memory device are set to 0. The highest 
address occurs when all of the address lines to the memory device are 
set to 1. Note that this does not include the four most significant bits of 
the full address which should stay the same in order for the memory 
device to be active. Therefore, from the standpoint of the memory map 
which uses the full address, the lowest address is the four enable bits 
set to 00112 followed by 24 zeros. The highest address is the four 
enable bits set to 00112 followed by 24 ones.  

 
 4 bits that enable

memory device 
24 bits going to address  
lines of memory device 

 a27 a26 a25 a24 a23 a22 … a2 a1 a0 
Highest address 0 0 1 1 1 1 … 1 1 1 
Lowest address 0 0 1 1 0 0 … 0 0 0 

 
Therefore, from the perspective of the memory map, the lowest and 

highest addresses of this memory device are: 
 

 Highest = 0011 1111 1111 1111 1111 1111 11112 = 3FFFFFF16 
 Lowest = 0011 0000 0000 0000 0000 0000 00002 = 300000016 

 
The following memory map shows how this 16 Meg memory is 

placed within the full range of the processor's memory space. The full 
address range of the processor's memory space is determined by the 
fact that there are 28 address lines from the processor. Twenty-eight 
ones is FFFFFFF16 in hexadecimal and 28 zeros is 000000016. 

 
 
 



254   Computer Organization and Design Fundamentals 
 

FFFFFFF16 
 
 

 
 
 
 

400000016 

 
 

3FFFFFF16 
 

300000016 

16 Meg
memory 

2FFFFFF16 
 

000000016 
 

 
The method for resolving the subnet of an IP address is the same as 

enabling a specific memory device within a processor's memory space. 
When configuring a computer to run on a network that uses the Internet 
Protocol version 4 addressing scheme, it must be assigned a 32-bit 
address that uniquely identifies it among all of the other computers on 
that network. This 32-bit address serves a second purpose though: it 
identifies the sub-network or subnet that this computer is a member of 
within the entire network. A subnet within the entire IP network is 
equivalent to a memory device within the memory space of a processor. 

 
 32-bit IP address  

Network address Host or local address
Bits used to  

identify subnet 
Bits used to identify 
host within subnet 

Figure 12-8   IPv4 Address Divided into Subnet and Host IDs 

According to IPv4 standard, there are four classes of addressing, 
Class A, Class B, Class C, and Class D. Each of these classes is defined 
by the number of bits that are assigned to identify the subnet and how 
many bits are left for the host ID. For example, a Class A subnet uses 8 
bits to identify the subnet. This leaves 24 bits to identify the host within 
the subnet. Therefore, a Class A network can ideally contain a 
maximum of 224 = 16,777,216 hosts. The actual number of hosts is two 
less. Two addresses for every subnet are reserved: one for a broadcast 
address and one for the subnet itself. 



 Chapter 12: Memory Organization    255 
 

A Class C network uses 24 bits to identify the subnet and 8 bits to 
identify the host within the subnet. Therefore, a Class C network can 
have at most 28 – 2 = 254 machines on it, far fewer than a Class A. The 
drawback of a Class A network, however, is that if the entire network 
were assigned to Class A subnets, then there would ideally only be 
room for 28 = 256 subnets. Whenever the number of bits used to 
identify the subnet is increased, the number of possible subnets is 
increased while the number of hosts within a subnet is decreased. 

Example 
The IPv4 address 202.54.151.45 belongs to a Class C network. What 

are the subnet and the host ids of this address? 

Solution 
First, IPv4 addresses are represented as four bytes represented in 

decimal notation. Therefore, let's convert the IP address above into its 
32-bit binary equivalent. 
 20210 =  110010102 
 5410 =  001101102 
 15110 =  100101112 
 4510 =  001011012 

 
This means that the binary address of 202.54.151.45 is: 

11001010.00110110.10010111.00101101 
 
Remember that the Class C network uses the first twenty-four bits 

for the subnet id. This gives us the following value for the subnet id. 
 

Subnet id202.54.151.45 = 1100101000110110100101112 
 

Any IPv4 address with the first 24 bits equal to this identifies a host in 
this subnet. 

The host id is taken from the remaining bits. 
 

Host id202.54.151.45 = 001011012 

12.3.4 Chip Select Hardware 
What we need is a circuit that will enable a memory device 

whenever the full address is within the address range of the device and 



256   Computer Organization and Design Fundamentals 
 

disable the memory device when the full address falls outside the 
address range of the device. This is where those most significant bits of 
the full address come into play. 

Remember from our example where we examined the addressing of 
a 16 Meg memory device in the 256 Meg memory space of a processor 
that the four most significant bits needed to remain 00112. In other 
words, if the four bits a27, a26, a25, and a24 equaled 00002, 00012, 00102, 
01002, 01012, 01102, 01112, 10002, 10012, 10102, 10112, 11002, 11012, 
11102, or 11112, the 16 Meg memory device would be disabled. 
Therefore, we want a circuit that is active when a27 = 0, a26 = 0, a25 = 1, 
and a24 = 1. This sounds like the product from an AND gate with a27 
and a26 inverted. Chip select circuits are typically active low, however, 
so we need to invert the output. This gives us a NAND gate. 

 
 
 
 

Figure 12-9   Sample Chip Select Circuit for a Memory Device 

So the process of designing a chip select is as follows: 
 

 Using the memory space of the processor and the size of the 
memory device, determine the number of bits of the full address 
that will be used for the chip select. 

 Using the base address where the memory device is to be located, 
determine the values that the address lines used for the chip select 
are to have. 

 Create a circuit with the address lines for the chip select going into 
the inputs of a NAND gate with the bits that are to be zero inverted. 

Example 
Using logic gates, design an active low chip select for a 1 Meg 

BIOS to be placed in the 1 Gig memory space of a processor. The 
BIOS needs to have a starting address of 1E0000016. 

Solution 
First of all, let's determine how many bits are required by the 1 Meg 

BIOS. We see from Table 12-2 that a 1 Meg memory device requires 

a27
a26
a25
a24



 Chapter 12: Memory Organization    257 
 

20 bits for addressing. This means that the lower 20 address lines 
coming from the processor must be connected to the BIOS address 
lines. Since a 1 Gig memory space has 30 address lines (230 = 1 Gig), 
then 30 – 20 = 10 address lines are left to determine the chip select.  

Next, we figure out what the values of those ten lines are supposed 
to be. If we convert the starting address to binary, we get: 

 
1E0000016 = 00 0001 1110 0000 0000 0000 0000 0000 

 
Notice that enough leading zeros were added to make the address 30 
bits long, the appropriate length in a 1 Gig memory space. 

We need to assign each bit a label. We do this by labeling the least 
significant bit a0, then incrementing the subscript for each subsequent 
position to the left. This gives us the following values for each address 
bit. (a18 through a2 have been deleted in the interest of space.) 

 
a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 … a1 a0 
0 0 0 0 0 1 1 1 1 0 0 0 … 0 0 
               

 
Bits a20 through a29 are  

used for the chip select. 
 
 
 
 

Example 
What is the largest memory device that can be placed in a memory 

map with a starting address of A4000016? 

Solution 
This may seem like a rather odd question, but it actually deals with 

an important aspect of creating chip selects. Notice that for every one 
of our starting addresses, the bits that go to the chip select circuitry can 
be ones or zeros. The bits that go to the address lines of the memory 
device, however, must all be zero. This is because the first address in 
any memory device is 010. The ending or highest address will have all 
ones going to the address lines of the memory device. 

a29

a27

a25

a23

a21

a28

a26

a24

a22

a20



258   Computer Organization and Design Fundamentals 
 

Let's begin by converting the address A4000016 to binary. 
 

A4000016 = 1010 0100 0000 0000 0000 00002 
 

If we count the zeros starting with the least significant bit and 
moving left, we see that there are 18 zeros before we get to our first 
one. This means that the largest memory device we can place at this 
starting address has 18 address lines. Therefore, the largest memory 
device we can start at this address has 218 = 256 K memory locations. 

Example 
True or False: B00016 to CFFF16 is a valid range for a single 

memory device. 

Solution 
This is much like the previous example in that it requires an 

understanding of how the address lines going to the chip select circuitry 
and the memory device are required to behave. The previous example 
showed that the address lines going to the memory device must be all 
zero for the starting or low address and all ones for the ending or high 
address. The address lines going to the chip select, however, must all 
remain constant. 

Let's begin by converting the low and the high addresses to binary. 
 

 a15  
a 14

a 13  
a 12 

a 11  
a 10

a 9  
a 8 

a 7  
a 6 

a 5  
a 4 

a 3  
a 2 

a 1  
a 0 

Low 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
High 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 
Note that it is impossible to make a vertical division through both 

the high and the low addresses where all of the bits to the left are the 
same for both the high and the low addresses while every bit to the 
right goes from all zeros for the low address to all ones for the high 
address. Since we cannot do this, we cannot make a chip select for this 
memory device and the answer is false. 

Example 
What is the address range of 

the memory device that is enabled  
with the chip select shown? 

a27
a26
a25
a24
a23



 Chapter 12: Memory Organization    259 
 

Solution 
To begin with, the addressing can be determined from the subscripts 

of the address lines identified in the figure. The address lines coming 
out of the processor go from a0 (always assumed to be the least 
significant bit of the address) to a27. This means that the processor has 
28 address lines and can access a memory space of 228 = 256 Meg. 

The chip select only goes low when all of the inputs to the NAND 
gate (after the inverters) equal 1. This means that a27 = 0, a26 = 1,  
a25 = 0, a24 = 0, and a23 = 1. We find the lowest address by setting all of 
the remaining bits, a22 through a0, to zero and we find the highest 
address by setting all of the remaining bits to 1. This gives us the 
following binary addresses. 

 
 a27 a26 a25 a24 a23 a22 a21 … a1 a0 

High address 0 1 0 0 1 1 1 … 1 1 
Low address 0 1 0 0 1 0 0 … 0 0 

           
 
When we convert these values to hexadecimal, we get: 
 

 High address = 0100 1111 1111 1111 1111 1111 11112 = 4FFFFFF16 
 Low address = 0100 1000 0000 0000 0000 0000 00002 = 480000016 

12.4 Memory Mapped Input/Output 
Some devices do not contain a memory array, yet their interface to 

the processor uses data lines and control lines just like a memory 
device. For example, an analog-to-digital converter (ADC) reads an 
analog value and converts it to a digital number that the processor can 
use. The processor reads this digital value from ADC exactly the same 
way that it would read a value it had stored in a memory device. 

The ADC may also require parameters to be sent to it from the 
processor. These parameters might include the method it uses for 
conversion, the time it waits between conversions, and which analog 
input channels are active. The processor sets these values by writing to 
the ADC in the same way it would store data to a memory device. 

The practice of interfacing an input/output (I/O) device as if it was a 
memory device is called memory mapping. Just like the bus interface 
for a memory device, the memory mapped interface to a bus uses a chip 
select to tell the device when it's being accessed and data lines to pass 



260   Computer Organization and Design Fundamentals 
 

data between the device and the processor. Some memory mapped I/O 
even use a limited number of address lines to identify internal registers. 
In addition, I/O devices use the write enable and read enable signals 
from the processor to determine whether data is being sent to the device 
or read from it. Some devices may only support writing (purely output) 
while others may only support reading (purely input). 

 
 
 
 
 
 
 
 
 
 

 

Figure 12-10   Some Types of Memory Mapped I/O Configurations 

12.5 Memory Terminology 
There are many different purposes for memory in the operation of a 

computer. Some memory is meant to store data and programs only 
while the computer is turned on while other memory is meant to be 
permanent. Some memory contains application code while other 
memory is meant to store the low-level driver code to control devices 
such as an IDE interface or a video card. Some memory may have a 
larger capacity while other memory may be faster.  

In order to understand what memory technologies to apply to which 
processor operation, we need to understand a little bit more about the 
technologies themselves. This section discusses some of the 
terminology used to describe memory. 

12.5.1 Random Access Memory 
The term Random Access Memory (RAM) is typically applied to 

memory that is easily read from and written to by the microprocessor. 
In actuality, this is a misuse of this term. For a memory to be random 
access means that any address can be accessed at any time. This is to 
differentiate it from storage devices such as tapes or hard drives where 

a.) Memory-mapped output device 

D0 
D1 
: 
Dn-1 
 
 
Clock 

: 
Data 
lines 

: 

Chip 
select 

address 
lines 

b.) Memory-mapped I/O device 

D0 
D1 
: 
Dn-1 
 
R 
W 
 
Clock 

: 
Data 
lines

: 

Chip 
select 

address 
lines 

Direction 
control 



 Chapter 12: Memory Organization    261 
 

the data is accessed sequentially. We will discuss hard drive 
technologies in Chapter 13. 

In general, RAM is the main memory of a computer. Its purpose is 
to store data and applications that are currently in use. The operating 
system controls the use of this memory dictating when items are to be 
loaded into RAM, where they are to be located in RAM, and when they 
need to be removed from RAM. RAM is meant to be very fast both for 
reading and writing data. RAM also tends to be volatile in that as soon 
as power is removed, all of the data is lost. 

12.5.2 Read Only Memory 
In every computer system, there must be a portion of memory that is 

stable and impervious to power loss. This kind of memory is called 
Read Only Memory or ROM. Once again, this term is a misnomer. If it 
was not possible to write to this type of memory, we could not store the 
code or data that is to be contained in it. It simply means that without 
special mechanisms in place, a processor cannot write to this type of 
memory. If through an error of some sort, the processor tries to write to 
this memory, an error will be generated.  

The most common application of ROM is to store the computer's 
BIOS. Since the BIOS is the code that tells the processor how to access 
its resources upon powering up, it must be present even when the 
computer is powered down. Another application is the code for 
embedded systems. For example, it is important for the code in your 
car's computer to remain even if the battery is disconnected. 

There are some types of ROM that the microprocessor can write to, 
but usually the time needed to write to them or the programming 
requirements needed to do so make it unwise to write to them regularly. 
Therefore, these memories are still considered read only.  

In some cases, the processor cannot write to a ROM under any 
circumstances. For example, the code in your car's computer should 
never need to be modified. This ROM is programmed before it is 
installed. To put a new program in the car's computer, the old ROM is 
removed and discarded and a new ROM is installed in its place. 

12.5.3 Static RAM versus Dynamic RAM 
For as long as memory has existed, scientists and engineers have 

experimented with new technologies to make RAM faster and to cram 
more of it into a smaller space, two goals that are typically at odds. 



262   Computer Organization and Design Fundamentals 
 

Nowhere is this more obvious than in the two main classifications of 
RAM: Static RAM (SRAM) and Dynamic RAM (DRAM). 

SRAM is made from an array of latches such as the D-latch we 
studied in Chapter 10. Each latch can maintain a single bit of data 
within a single memory address or location. For example, if a memory 
stores eight bits per memory address, then there are eight latches for a 
single address. If this same memory has an address space of 256 K, 
then there are 218 · 8 = 221 = 2,097,152 latches in the device. 

Latches are not small devices as logic circuits go, but they are very 
fast. Therefore, in the pursuit of the performance goals of speed and 
size, SRAMs are better adapted to speed. In general, SRAMs: 

 
 store data in transistor circuits similar to D-latches;  
 are used for very fast applications such as RAM caches (discussed 

in Chapter 13);  
 tend to be used in smaller memories which allows for very fast 

access due to the simpler decoding logic; and  
 are volatile meaning that the data remains stored only as long as 

power is available. 
  
There are circuits that connect SRAMs to a back up battery that 

allows the data to be stable even with a loss of power. These batteries, 
about the size of a watch battery, can maintain the data for long periods 
of time much as a battery in a watch can run for years. On the negative 
side, the extra battery and circuitry adds to the overall system cost and 
takes up physical space on the motherboard 

A bit is stored in a DRAM using a device called a capacitor. A 
capacitor is made from a pair of conductive plates that are held parallel 
to each other and very close together, but not touching. If an electron is 
placed on one of the plates, its negative charge will force an electron on 
the other plate to leave. This works much like the north pole of a 
magnet pushing away the north pole of a second magnet. 

If enough electrons are deposited on the one plate creating a strong 
negative charge, enough electrons will be moved away from the 
opposite plate creating a positive charge. Like a north pole attracting 
the south pole of a second magnet, the charges on these two plates will 
be attracted to each other and maintain their charge. This is considered 
a logic '1'. The absence of a charge is considered a logic '0'. 



 Chapter 12: Memory Organization    263 
 

Since a capacitor can be made very small, DRAM technology is 
better adapted to high density memories, i.e., cramming a great deal of 
bits into a small space. 

Capacitors do have a problem though. Every once in a while, one of 
the electrons will escape from the negatively charged plate and land on 
the positively charged plate. This exchange of an electron decreases the 
overall charge difference on the two plates. If this happens enough, the 
stored '1' will disappear. This movement of electrons from one plate to 
the other is referred to as leakage current. 

The electrons stored on the plates of the capacitors are also lost 
when the processor reads the data. It requires energy to read data from 
the capacitors, energy that is stored by the position of the electrons. 
Therefore, each read removes some of the electrons. 

In order to avoid having leakage current or processor reads corrupt 
the data stored on the DRAMs, i.e., turning the whole mess to zeros, 
additional logic called refresh circuitry is used that periodically reads 
the data in the DRAM then restores the ones with a full charge of 
electrons. This logic also recharges the capacitors each time the 
processor reads from a memory location. The refresh circuitry is 
included on the DRAM chip making the process of keeping the DRAM 
data valid transparent to the processor. Although it adds to the cost of 
the DRAM, the DRAM remains cheaper than SRAM. 

The refresh process involves disabling memory circuitry, then 
reading each word of data and writing it back. This is performed by 
counting through the rows. The process does take time thus slowing 
down the apparent performance of the memory. 

In general, DRAMs: 
 

 have a much higher capacity due to the smaller size of the capacitor 
(The RAM sticks of your computer's main memory are DRAMs.);  

 will "leak" charge due to the nature of capacitors eventually causing 
the data to disappear unless it is refreshed periodically; 

 are much cheaper than SRAM; and  
 are volatile meaning that the data is fixed and remains stored only 

as long as power is available. 

12.5.4 Types of DRAM and Their Timing 
The basic DRAM storage technology is unchanged since first RAM 

chips, but designers have used alternate techniques to improve the 



264   Computer Organization and Design Fundamentals 
 

effective performance of the DRAM devices. For example, the number 
of pins that electrically connect the DRAM to the system can be quite 
large, one of the largest culprits being addressing. A 1 Gbyte memory, 
for example, requires 30 pins for addressing. If the number of pins 
could be reduced, the memory would have a smaller footprint on the 
circuit board and a more reliable connection. 

The number of address lines can be cut in half by presenting the 
memory address to the DRAM in two stages. During the first stage, the 
first half of the address is presented on the address lines and stored or 
latched in the memory device. The second stage presents the last half of 
the address on the same pins. Once it receives both halves of the 
address, the DRAM can process the request. 

 
Time  

 Cycle 1 Cycle 2 Cycle 3 
Address lines: 1st half of addr. 2nd half of addr.  

Data lines: No data No data Valid data 

Figure 12-11   Basic Addressing Process for a DRAM 

This allows the addressable space of the DRAM to be twice that 
which could be supported by the address pins. Unfortunately, it comes 
at the cost of the delay of the second addressing cycle. It will be shown 
later, however, that this can be turned into an advantage. 

The presentation of the address in two stages is viewed as a logical 
reorganization of the memory into three-dimensions. The upper half of 
the address identifies a row. The lower half of the address identifies a 
column. The intersection of the row and column is where the data is 
stored, the multiple bits of the storage location is the third dimension. 
This concept of rows and columns is represented in Figure 12-12 for a 
memory with four data bits per addressable location. 

To support the two-stage delivery of the address, two additional 
active-low control signals are needed. The first is called row address 
select or RAS . This signal is used to strobe the row address into the 
DRAM's row address latch. The second, column address select or 
CAS , strobes the column address into the DRAM's column address 
latch. This requires two additional input pins on the DRAM. 

By using the two-stage addressing of a DRAM, the addition of a 
single address line will quadruple the memory size. This is because an 



 Chapter 12: Memory Organization    265 
 

additional address line doubles both the number of rows and the 
number of columns. 

 
 
 
 
 
 
 
 
 
 
 

Figure 12-12   Organization of DRAM 

Now let's get back to the issue of the delay added by a second 
address cycle. Most data transfers to and from main memory take the 
form of block moves where a series of instructions or data words are 
pulled from memory as a group. (For more information on memory 
blocks, see the section on caches in Chapter 13.) 

If the processor needs a block from memory, the first half of the 
address should be the same for all the items of the block. Because of 
this, the memory access process begins with the row address then uses 
only the column address for subsequent retrievals. This is called Fast 
Page Mode (FPM), the data of a single row being referred to as a page. 
The RAS  line is held low as long as the row address is valid. Figure 
12-13 presents an example of FPM for a memory block of size four. 

 
Time  

Address: Row 
addr 

Col. 
addr. 

0 
 

Col.
addr. 

1 
 

Col.
addr. 

2 
 

Col. 
addr. 

3 
 

Data: No 
data 

No 
data 

Data 
word 

0 

No 
data 

Data 
word 

1 

No 
data 

Data 
word 

2 

No 
data 

Data  
word 

3 

Figure 12-13   Example of an FPM Transfer 

1st half of 
address decoded 
to select a row 

Number of 
bits per 
address-
able 
location 

2nd half of
address decoded 

to select a column



266   Computer Organization and Design Fundamentals 
 

FPM requires both the row and column addresses to be presented for 
the first cycle only. For subsequent addresses, only the column address 
is needed thereby saving one address cycle. Furthermore, since the 
decoding circuitry for the column address only uses half of the bits of 
the full address, the time it takes to decode each individual column 
address is shorter than it would have been for the full address. 

The memory access time can be further shorted by having the 
processor present the column address for the next data element while 
the current data element is being returned on the data lines. This 
overlap of the DRAM returning a word of data while the processor is 
writing the column address for the next word is called Extended Data-
Out (EDO). For data reads within the same page, EDO results in a 
savings of approximately 10 ns for each read. Figure 12-14 presents an 
example of EDO for a memory block of size four. 

 
Time  

Address: Row 
addr. 

Column
addr. 0 

Column
addr. 1 

Column
addr. 2 

Column
addr. 3  

Data: No  
data 

No 
data 

Data  
word 0 

Data  
word 1 

Data  
word 2 

Data  
word 3 

Figure 12-14   Example of an EDO Transfer 

If the processor needs to fetch a sequence of four data words from 
memory, Burst EDO (BEDO) can further speed up the process by using 
the initial column address, and then using a counter to step through the 
next three addresses. This means that the processor would only be 
required to send the row address and column address once, then simply 
clock in the four sequential data words. 

12.5.5 Asynchronous versus Synchronous Memory Interfacing 
In all logic circuits, there is a delay between the time that inputs are 

set and the outputs appear. The inputs of a memory include address 
lines and control lines while the data lines can be either inputs or 
outputs. When a processor sets the inputs of a memory device, it has to 
wait for the memory to respond. This is called asynchronous operation. 

Asynchronous operation makes it difficult to design the timing of 
motherboards. The processor has to run slow enough to account for the 
slowest type and size of memory that is expected to be used. One 



 Chapter 12: Memory Organization    267 
 

memory may be ready with the data before the processor expects it 
while a different memory may take longer. 

Some processors, however, are designed so that the memory follows 
a precise timing requirement governed by a clock that is added to the 
bus to keep everything attached in lock-step. This type of interface is 
referred to as synchronous and the memory that uses this type of 
interface is referred to as synchronous DRAM or SDRAM.  

The main benefit derived from controlling the memory interface 
with a clock is that the memory's internal circuitry can be set up in what 
is referred to as a pipelined structure. Pipelining is discussed in Chapter 
15, but at this point it is sufficient to say that pipelining allows a device 
to perform multiple operations at the same time. For example, an 
SDRAM might be able to simultaneously output data to the processor 
and receive the next requested address. Overlapping functions such as 
these allows the memory to appear faster. 

One improvement to SDRAM allows two words of data to be 
written or read during a single clock cycle. This means that every time 
the processor accesses the memory it transfers two words, one on the 
rising edge of the clock and one on the falling edge. This type of 
memory is referred to as Double Data Rate SDRAM or DDR SDRAM. 
DDR2 and DDR3 double and quadruple the DDR rate by allowing four 
and eight data words respectively to be transferred during a single clock 
pulse. This is made possible by taking advantage of the fact that the 
when a DRAM row is accessed, simply counting through the columns 
retrieves consecutive bytes of data which can be buffered and send out 
the data lines as quickly as the processor can receive them. 

12.6 What's Next? 
This chapter has only examined a small part of the information 

storage solutions used in a computer system. In the next section, we 
will discuss the operation and purpose of all levels of data storage by 
examining the different characteristics of each. The major 
characteristics that will be examined are speed, size, and whether data 
is lost with a power loss. Each level has specific needs and therefore is 
implemented with different technologies. 

Problems 
1. What is the largest memory that can have a starting or lowest 

address of 16000016? 



268   Computer Organization and Design Fundamentals 
 

2. What are the high and low addresses of the memory ranges defined 
by each of the chip selects shown below? 

 

 

 

 

3. What is the processor memory space for each chip select in 
problem 2? 

4. What is the memory device size for each chip select in problem 2? 

5. How many 16 K memories can be placed (without overlapping) in 
the memory space of a processor that has 24 address lines?   

6. Using logic gates, design an active low chip select for the memory 
device described in each of the following situations. 

a.) A 256 K memory device starting at address 28000016 in a 4 
Meg memory space 

b.) A memory device in the range 3000016 to 37FFF16 in a 1 Meg 
memory space. 

7. How many latches are contained in a SRAM that has 20 address 
lines and 8 data lines? 

8. True or false: DRAM is faster than SRAM. 

9. True or false: DRAM is cheaper per bit than SRAM. 

10. True or false: More DRAM can be packed into the same area 
(higher density) than SRAM. 

11. Which is usually used for smaller memories, DRAM or SRAM? 

12. When data is passed from a memory chip to the processor, what 
values do the bus signals R and W have? 

13. What is the subnet and host id of the Class C IPv4 address 
195.164.39.2? 

14. Taking into account the addresses for the subnet and broadcast, 
how many hosts can be present on a Class C IPv4 subnet? 

a15
a14
a13
a12

a31
a30
a29
a28
a27

b.) c.) a27 
a26 
a25 
a24 
a23 

a.) 



 269 

CHAPTER THIRTEEN 

Memory Hierarchy 

13.1 Characteristics of the Memory Hierarchy 
We've discussed the organization and operation of RAM, but RAM 

is only one level of the group of components used to store information 
in a computer. The hard drive, for example, stores all of the data and 
code for the computer in a non-volatile format, and unless a file has 
been opened, this information can only be found on the hard drive.  

Even though the hard drive stores all of the data necessary to operate 
the computer, other storage methods are needed. This is for a number 
of reasons, most notably the hard drive is slow and running programs 
from it would be impossible. When the processor needs data or 
applications, it first loads them into main memory (RAM). 

Main memory and the hard drive are two levels of the computer's 
memory hierarchy. A memory hierarchy is an organization of storage 
devices that takes advantage of the characteristics of different storage 
technologies in order to improve the overall performance of a computer 
system. Figure 13-1 presents the components of the standard memory 
hierarchy of a computer. Each of these components and their function 
in the hierarchy is described in this chapter. 

 
 
 
  
 
 
 

Figure 13-1   Block Diagram of a Standard Memory Hierarchy 

13.2 Physical Characteristics of a Hard Drive 
At the bottom of the hierarchy is long-term, high-capacity storage. 

This type of storage is slow making a poor choice for the processor to 
use for execution of programs and data access. It is, however, necessary 
to provide computer systems with high capacity, non-volatile storage. 

registers 
cache RAM(s) 
main memory 

long term storage, e.g., hard drive 

Increasing 
capacity 

Increasing
speed



270   Computer Organization and Design Fundamentals 
 

Hard drives are the most cost-effective method of storing data. In 
the mid-1980's, a 30 Megabyte hard drive could be purchased for 
around $300 or about $10 per MB. In 2007, retailers advertised a 320 
Gigabyte SATA Hard drive for around $80 or about $0.00025 per MB. 
In other words, the cost to store a byte of data is almost 1/40,000th 
cheaper today than it was a little over two decades ago. 

Hard drives store data in well-organized patterns of ones and zeros 
across a thin sheet of magnetic material. This magnetic material is 
spread either on one or both sides of a lightweight, rigid disk called a 
substrate. The substrate needs to be lightweight because it is meant to 
spin at very high speeds. The combination of magnetic material and 
substrate is called a platter.  

The more rigid the substrate is, the better the reliability of the disk. 
This was especially true when the mechanisms that were used to read 
and write data from and to the disks were fixed making them prone to 
scraping across the substrate's surface if the substrate was not perfectly 
flat. The condition where the read-write mechanism comes in contact 
with the disk is called a "crash" which results in magnetic material 
being scraped away from the disk. 

Substrates used to be made from aluminum. Unfortunately, extreme 
heat sometimes warped the aluminum disk. Now glass is used as a 
substrate. It improves on aluminum by adding: 

 
 better surface uniformity which increases reliability;  
 fewer surface defects which reduces read/write errors;  
 better resistance to warping;  
 better resistance to shock; and  
 the ability to have the read/write mechanism ride closer to the 

surface allowing for better data density.  

13.2.1 Hard Drive Read/Write Head 
Data is recorded to the platter using a conductive coil called a head. 

Older drives and floppy drives use the same head for reading the data 
too. The head is shaped like a "C" with the gap between the ends 
positioned to face the magnetic material. A coil of wire is wrapped 
around the portion of the head that is furthest from the magnetic 
material. Figure 13-2 shows the configuration of this type of head. 

In order to write data, an electrical current is passed through the wire 
creating a magnetic field within the gap of the head close to the disk. 



 Chapter 13: Memory Hierarchy    271 
 

This field magnetizes the material on the platter in a specific direction. 
Reversing the current would polarize the magnetic material in the 
opposite direction. By spinning the platter under the head, patterns of 
magnetic polarization can be stored in circular paths on the disk. By 
moving the head along the radius, nested circular paths can be created. 
The magnetized patterns on the platter represent the data. 

 
 
 
 
 
 
 
 

Figure 13-2   Configuration of a Hard Drive Write Head 

It is possible to use the same head to read data back from the disk. If 
a magnetized material moves past a coil of wire, it produces a small 
current. This is the same principle that allows the alternator in your car 
to produce electricity. The direction of the current generated by the 
disk's motion changes if the direction of the magnetization changes. In 
this way, the same coil that is used to write the data can be used to read 
it. Just like the alternator in your car though, if the disk is not spinning, 
no current is generated that can be used to read the data. 

Newer hard drives use two heads, one for reading and one for 
writing. The newer read heads are made of a material that changes its 
resistance depending on the magnetic field that is passing under it. 
These changes in resistance affect a current that the hard drive 
controller is passing through the read head during the read operation. In 
this way, the hard drive controller can detect changes in the magnetic 
polarization of the material directly under the read head. 

There is another characteristic of the read/write head that is 
important to the physical operation of the hard drive. As was stated 
earlier, the area that is polarized by the head is equal to the gap in the 
write head. To polarize a smaller area thereby increasing the data 
density, the gap must be made smaller. To do this, the distance between 
the head and the platter must be reduced. Current technology allows 
heads to "fly" at less then three micro inches above the platter surface. 

Direction of rotation

Magnetic 
coating

Substrate 

Write 
head 

Write 
current



272   Computer Organization and Design Fundamentals 
 

When the magnetic material is deposited on a flexible substrate such 
as a floppy diskette or a cassette tape, the flex in the material makes it 
possible for the head to come in contact with the substrate without 
experiencing reliability problems. This is not true for hard disks. Since 
the platters are rigid and because the platters spin at thousands of 
rotations per minute, any contact that the head makes with the platter 
will result in magnetic material being scraped off. In addition, the heat 
from the friction will eventually cause the head to fail. 

These two issues indicate that the read/write head should come as 
close to the platters as possible without touching. Originally, this was 
done by making the platter as flat as possible while mounting the head 
to a rigid arm. The gap would hopefully stay constant. Any defects or 
warpage in the platter, however, would cause the head to crash onto the 
platter resulting in damaged data. 

A third type of head, the Winchester head or "flying head" is 
designed to float on a cushion of air that keeps it a fixed distance from 
the spinning platter. This is done by shaping the head into an airfoil that 
takes advantage of the air current generated by the spinning platter. 
This means that the head can operate much closer to the surface of the 
platter and avoid crashing even if there are imperfections. 

13.2.2 Data Encoding 
It might seem natural to use the two directions of magnetic 

polarization to represent ones and zeros. This is not the case, however. 
One reason for this is that the controllers detect the changes in 
magnetic direction, not the direction of the field itself. Second, large 
blocks of data that are all ones or all zeros would be difficult to read 
because eventually the controller might lose track or synchronization of 
where one bit ended and the next began. 

The typical method for storing data to a platter involves setting up a 
clock to define the bit positions, and watching how the magnetic field 
changes with respect to that clock. Each period of the clock defines a 
single bit time, e.g., if a single bit takes 10 nanoseconds to pass under 
the read-write head when the platter is spinning, then a clock with a 
period of 10 nanoseconds, i.e., a frequency of (10 10-9)-1 = 100 MHz is 
used to tell the controller when the next bit position is coming. 

Originally, a magnetic field change at the beginning and middle of a 
bit time represented a logic one while a magnetic field change only at 
the beginning represented a logic zero. This method was referred to as 
Frequency Modulation (FM). Figure 13-3 uses an example to show the 



 Chapter 13: Memory Hierarchy    273 
 

relationship between the bit-periods, the magnetic field changes, and 
the data stored using FM encoding. 

 
 
 
 
 
 

Figure 13-3   Sample FM Magnetic Encoding 

To store a one using FM encoding, the polarization of the magnetic 
field must change twice within the space of a bit. This means that in 
order to store a single bit, FM encoding takes twice the width of the 
smallest magnetic field that can be written to the substrate. If the 
maximum number of polarity changes per bit could be reduced, more 
data could be stored to the same disk. 

Modified Frequency Modulation (MFM) does this by changing the 
way in which the magnetic polarization represents a one or a zero. 
MFM defines a change in polarization in the middle of a bit time as a 
one and no change in the middle as a zero. If two or more zeros are 
placed next to each other, a change in polarization is made between 
each of the bit times. This is done to prevent a stream zeros from 
creating a long block of unidirectional polarization. Figure 13-4 uses an 
example to show the relationship between the bit-periods, the magnetic 
field changes, and the data stored using MFM encoding. 

For MFM encoding, the longest period between polarity changes 
occurs for the bit sequence 1-0-1. In this case, the polarity changes are 
separated by two bit periods. The shortest period between polarity 
changes occurs when a one follows a one or a zero follows a zero. In 
these cases, the polarity changes are separated by a single bit period. 
This allows us to double the data density over FM encoding using the 
same magnetic surface and head configuration. The hard drive 
controller, however, must be able to handle the increased data rate. 

Run Length Limited (RLL) encoding uses polarity changes to 
define sequences of bits rather than single bits. By equating different 
patterns of polarity changes to different sequences of ones and zeros, 
the density of bits stored to a platter can be further increased. There is a 

    Polarity

Reversals

Value  1 0 0 1 0 1 1 1 0 

 

single bit time 



274   Computer Organization and Design Fundamentals 
 

science behind generating these sequences and their corresponding 
polarity changes. It is based on satisfying the following requirements: 

 
 to ensure enough polarity changes to maintain bit synchronization; 
 to ensure enough bit sequences are defined so that any sequence of 

ones and zeros can be handled; and 
 to allow for the highest number of bits to be represented with the 

fewest number of polarity changes. 
 

 
 
 
 
 
 

Figure 13-4   Sample MFM Magnetic Encoding 

Figure 13-5 presents a sample set of RLL encoding polarity changes 
and the bit sequences that correspond to each of them. Any pattern of 
ones and zeros can be represented using this sample set of sequences. 

 
 
 
 
 
 
 
 
 
 
 

Figure 13-5   RLL Relation between Bit Patterns and Polarity Changes 

Now the shortest period between polarity changes is one and a half 
bit periods producing a 50% increased density over MFM encoding. 
Figure 13-6 presents the same sample data with RLL encoding.  

10

11

000

010

011

0010

0011

single  
bit time

  Polarity

Reversals

Value

single bit time 

 1 0 0 1 0 1 1 1 0 

 



 Chapter 13: Memory Hierarchy    275 
 

 
 
 
 
 
 
 

Figure 13-6   Sample RLL Magnetic Encoding 

Improved encoding methods have been introduced since the 
development of RLL that use digital signal processing and other 
methods to realize better data densities. These methods include Partial 
Response, Maximum Likelihood (PRML) and Extended PRML 
(EPRML) encoding. A discussion of the details of these methods is 
beyond the scope of this text because it depends on a better 
understanding of sampling theory and electrical principles. 

13.2.3 Hard Drive Access Time 
There are a number of issues affecting the latency between a device 

requesting data and the hard drive responding with the data. Some of 
these issues depend on the current state of the system while others 
depend on the physical design of the drive and the amount of data being 
requested. There are four basic aspects to hard drive access time: 
queuing time, seek time, rotational latency, and transfer time. 

After an initial request is made to a hard drive, the system must wait 
for the hard drive to become available. This is called queuing time. The 
hard drive may be busy serving another request or the bus or I/O 
channel that the hard drive uses may be busy serving another device 
that shares the link. In addition, the system's energy saving features 
may have powered down the drive meaning that an additional delay is 
incurred waiting for the drive to spin up. 

The second aspect, seek time, is the amount of time it takes to get 
the read/write head from its current track to the desired track. Seek time 
is dependent on many things. First, it depends on the distance between 
the current and desired tracks. In addition, mechanical movement of 
any sort requires a ramping up before attaining maximum speed and a 
ramping down to avoid overshooting the desired target position. It is 
for these reasons that manufacturers publish a typical seek time. 

   Polarity

Reversals

Value  1 0 0 1 0 1 1 1 0 

bit group bit group bit group bit group 



276   Computer Organization and Design Fundamentals 
 

Seek times have improved through the use of lighter components 
and better head positioning so that shorter seek distances are needed. 
As of this writing, the typical seek time for a hard drive is around 8 ms 
while higher performance drives might be as low as 4 ms. The heads 
used in CDROMs are heavier, and therefore, the seek time of a 
CDROM is longer than that of a hard drive. Older fixed head designs 
used multiple heads (one per track), each of which was stationary over 
its assigned track. In this case, the seek time was minimal, limited to 
the amount of time it took to electrically switch to the desired head. 

Once the head has been positioned over the desired track, the drive 
must wait for the platters to rotate to the sector containing the requested 
data. This is called rotational latency. The worst case occurs when the 
start of the desired sector has just passed under the head when the drive 
begins looking for the data. This requires almost a full rotation of the 
platters before the drive can begin transferring the data. We can use the 
following calculation to determine the time required for a platter in a 
7200 RPM drive to make a full rotation. 

 
 
 
If we make the assumption that on average the desired sector will be 

one half of a rotation away from the current position, then the average 
rotational latency should be half the time it takes for a full rotation. 
This means that for a 7200 RPM drive, the estimated rotational latency 
should be about 4.2 milliseconds. 

Queuing time, seek time, and rotational latency are somewhat 
random in nature. Transfer time, however, is more predictable. Transfer 
time is the time it takes to send the requested data from the hard drive 
to the requesting device. Theoretically, the maximum transfer time 
equals the amount of time it takes for the data to pass beneath the head. 
If there are N sectors per track, then the amount of time it takes to 
retrieve a single sector can be calculated as shown below. 

 
Theoretical transfer time for a sector = (N  rotational speed)-1 

 
Figure 13-7 presents a graphical representation of seek time, 

rotational latency, and transfer time. 
As an example, let's calculate the amount of time it would take to 

read a 1 Mbyte file from a 7200 RPM drive with a typical 8 ms seek 
time that has 500 sectors per track each of which contains 512 bytes. 

1 minute 
7200 rotations 

60 seconds
1 minute  = 8.3 ms per rotation



 Chapter 13: Memory Hierarchy    277 
 

Begin by determining how many sectors the file requires. Dividing 1 
Mbyte (1 106 bytes) by 512 bytes/sector shows that 1954 sectors will 
be required. There are two things to note about this number. First, 
1 106  512 actually equals 1953.125, but since files are stored on 
sector boundaries, the last sector must be partially empty. Second, 
authorities such as NIST, IEEE, and IEC have recommend Mbyte to 
represent 106 instead of 220 as is used in the section on memory. 

 
 
 
 
 
 
 
 

Figure 13-7   Components of Disk Access Time 

Next, let's determine the transfer time for a single sector. If it takes 
8.3 milliseconds for a complete revolution of the spindle, then during 
that time 500 sectors pass beneath the head. This means that a sector 
passes beneath the head every 8.3 ms/rotation  500 sectors/rotation = 
16.7 microseconds/sector. This can also be calculated using the 
expression presented above. 

 
 Transfer time for a sector = (500  7200 RPM  1/60 minutes/sec)-1 
 = 1/60000 seconds/sector 
 = 0.0000167 seconds/sector 

 
Transferring 1954 sectors should take 1954  16.7 = 32.6 ms. By 

adding the average seek time and rotational latency, we can predict the 
total access time not counting queuing time. 

 
Time to access 1 Mbyte file = 8 ms + 4.2 ms + 32.6 ms = 44.8 ms 

 
There are a few of problems with this example. First, it will be 

discussed later how not all hard drives have a constant number of 
sectors per track. Therefore, the use of 500 sectors per track in the 
problem statement is not accurate. Second, this example assumes that 

Rotational 
latency 

Seek time

Transfer 
time 

Desired 
sector 



278   Computer Organization and Design Fundamentals 
 

the sectors of the file have been stored in consecutive locations. This is 
referred to as sequential access. Unfortunately sequential access is not 
always possible. File system fragmentation where the blocks of a file 
end up scattered across dissociated sectors of the hard disk hurts disk 
performance because each discontinuity in the order of the sectors 
forces the drive to incur an additional seek time and rotational latency. 

Lastly, with 500 sectors per track, the almost 2000 sectors of this 
file will need to be stored on at least four tracks. Each time a drive is 
forced to switch tracks, an additional seek time and rotational latency 
will be incurred. In the case of our example, 12.2 ms must be added for 
each of the three additional tracks bringing the access time to 81.4 ms. 

If the sectors of the file are stored randomly across the tracks of the 
platters, individual seek times and rotational latencies will be required 
for each sector. This is referred to as random access. In this case, each 
sector will take 8 ms + 4.2 ms + 0.017 ms = 12.217 ms to retrieve. 
Multiplying this by 1954 sectors means that retrieving the 1 Mbyte file 
in random access will take 23.872 seconds. 

13.2.4 Self-Monitoring, Analysis & Reporting Technology System 
A hard drive crash rarely comes without a warning. The user may be 

unaware of any changes in their hard drive's operation preceding a 
mechanical failure, but there are changes. For example, if a hard drive's 
platters are taking longer to get up to full speed, it may be that the 
bearings are going bad. A hard drive that has been experiencing higher 
than normal operating temperatures may also be about to fail. 

Newer drives now support a feature referred to as Self-Monitoring 
Analysis and Reporting Technology (SMART). SMART enabled 
drives can provide an alert to the computer's BIOS warning of a 
parameter that is functioning outside of its normal range. This usually 
results in a message to the user to replace the drive before it fails. 

SMART attribute values are stored in the hard drive as integers in 
the range from 1 to 253. Lower values indicate worse conditions. 
Depending on the parameter and the manufacturer, different failure 
thresholds are set for each of the parameters. The parameters measured 
vary from drive to drive with each drive typically monitoring about 
twenty. The following is a sample of some types of measurements: 

 
 Power On Hours: This indicates the age of the drive. 
 Power Cycle Count: This also might be an indication of age. 



 Chapter 13: Memory Hierarchy    279 
 

 Spin Up Time: A longer spin up time may indicate a problem with 
the assembly that spins the platters. 

 Temperature: Higher temperatures also might indicate a problem 
with the assembly that spins the platters. 

 Head Flying Height: A reduction in the flying height of a 
Winchester head may indicate it is about to crash into the platters. 

 
There are still unpredictable failures such as the failure of an IC or a 

failure caused by a catastrophic event such as a power surge, but now 
the user can be forewarned of most mechanical failures. 

13.3 Organization of Data on a Hard Drive 
The width of a hard drive's read/write head is much smaller than that 

of the platter. This means that there are a number of non-overlapping 
positions for the read/write head along the platter's radius. By allowing 
the movable read/write head to be positioned at intervals along the 
radius of the disk, information can be recorded to any of a number of 
concentric circles on the magnetic material. Each one of these circles is 
called a track. A typical hard drive disk contains thousands of tracks 
per inch (TPI) on a single side of a platter, each track being the width 
of the read/write head. Figure 13-8 shows how these tracks correspond 
to the movement and size of the read/write head. 

 
 
 
 
 
 
 
 

Figure 13-8   Relation between Read/Write Head and Tracks 

A small gap called an intertrack gap is placed between the tracks to 
avoid interference from neighboring data. Reducing this gap allows for 
more data to be stored on a disk, but it also increases the risk of having 
data corrupted when data from an adjacent track bleeds over. 

Each track is divided into sections of around 512 bytes apiece. 
These sections are called sectors. A platter may have sectors that are 

Head moves along 
disk's radius so it can be 
positioned over any of 
the concentric tracks. 

The width of a track  
is equal to the width  
of the read/write head. 

Direction 
of rotation



280   Computer Organization and Design Fundamentals 
 

Intertrack gaps 

Intersector gaps 

Sectors 

fixed in size for the whole platter or they may have variable amounts of 
data depending on their location on the platter relative to the center of 
rotation. There are typically hundreds of sectors per track. 

In addition to the gaps left between the tracks, gaps are also left 
between the sectors. These gaps allow for a physical separation 
between the blocks of data and are typically used to help the hard drive 
controller when reading from or writing to the disk. These gaps are 
called intersector gaps. Figure 13-9 shows the relationship of these 
gaps to the tracks and sectors. 

 
 
  
 
 
 
 
 

Figure 13-9   Organization of Hard Disk Platter 

One way to increase the capacity of a hard drive is to increase the 
number of surfaces upon which the magnetic material is placed. The 
first way to do this is to place magnetic material on both sides of the 
platter. When this is done, a second read-write head must be placed on 
the opposite side of the platter to read the second magnetic surface. By 
using the same organization of sectors and tracks, this doubles the 
capacity of the hard drive. 

A second method for increasing capacity is to mount multiple 
platters on a single spindle, the axis around which all of the platters 
rotate. Each additional magnetic surface adds to the capacity of the 
drive, and as with putting magnetic material on both sides of a single 
platter, all magnetic surfaces have the same organization of sectors and 
tracks, each sector lining up with the ones above it and below it. Every 
additional magnetic surface requires an additional read-write head. 

All of the heads of a hard drive are locked together so that they are 
reading from the exact same location on each of their respective 
surfaces. Therefore, each track on each surface that is the same distance 
from the spindle can be treated as a unit because the hard drive 
controller is accessing them simultaneously. The set of all tracks, one 



 Chapter 13: Memory Hierarchy    281 
 

from each surface, that are equidistant from the spindle are referred to 
as a cylinder. This virtual entity is depicted in Figure 13-10. 

 
 
 
 
 
 
 
 
 
 

Figure 13-10   Illustration of a Hard Drive Cylinder 

Using this information, we can develop a method for calculating the 
capacity of a hard drive. In general, the capacity of a hard drive equals 
the number of bytes per sector multiplied by the number of sectors per 
track multiplied by the number of cylinders multiplied by 2 if the 
platters have magnetic material on both sides and finally multiplied by 
the number of platters. 

Figure 13-9 shows a platter that has the same number of sectors per 
track regardless of the radius of the track. From this figure, it can be 
seen that the physical size of a sector becomes smaller as its distance 
from the spindle is reduced. Since the number of bits per sector is 
constant, the size of a bit is also reduced. 

Because the smallest allowable size for a bit is dictated by the size 
of the read-write head, the number of bits per track is limited by the 
number of bits that can fit on the smallest track, the one closest to the 
spindle. Because of this limitation, the outside tracks waste space when 
the bits become wider than is required by the head. Regardless of where 
the head is positioned, bits will pass under the head at a constant rate. 
This arrangement is called constant angular velocity (CAV). 

A better use of the space on the platter can be realized by letting the 
width of all bits be defined by the width of the read-write head 
regardless of the track position. This allows for more bits to be stored 
on the outer tracks. This tighter arrangement of bits can be seen in the 
comparison of CAV Figure 13-11a with the equal sized bits in Figure 
13-11b. 

Platters 

Tracks 

Cylinder 



282   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 
 

Figure 13-11   Equal Number of Bits per Track versus Equal Sized Bits 

The problem with doing this is that as the read-write head moves to 
the outer tracks, the rate at which the bits pass under the head increases 
dramatically over that for the smallest track. This contrasts with the 
fixed number of bits per track which has the same data rate regardless 
of the position of the read-write head. This means that the hard drive 
with the equal sized bits requires a more complex controller. 

Regardless of how the bits are arranged on the platters, the number 
of bits per sector must remain constant for all tracks. Since partial 
sectors are not allowed, additional bits cannot be added to tracks further 
from the spindle until a full sector's worth of bits can be added. This 
creates "zones" where groups of neighboring tracks have the same 
number of sectors, and therefore, the same number of bits. This method 
is called Zone Bit Recording (ZBR). Figure 13-12 compares CAV with 
ZBR. 

  
 
 
 
 
 
 
 
 
 
 

Figure 13-12   Comparison of Sector Organizations 

a.) Equal number of bits b.) Equal sized bits

a.) Constant Angular Velocity b.) Zone Bit Recording 



 Chapter 13: Memory Hierarchy    283 
 

This brings us to the next layer of data organization on a hard drive: 
formatting. Formatting is the process of setting or clearing bits on the 
platters in an effort to organize and locate the files that will be stored 
on the hard drive. The methods used by hard drives to organize data 
can also be found on other rotational storage media such as floppy 
disks and Zip  disks. 

Every hard drive utilizes two types of formatting: low-level and 
O/S-level. Low-level formatting (LLF) depends on the mechanics of 
the hard drive and its controller. It divides the platters into usable 
subsections by defining the tracks and sectors. In addition to defining 
the divisions, it also stores digital information allowing the controller to 
properly access the data. This additional information includes: 

 
 Synchronization fields that provide timing and positional 

information to the controller; 
 ID information to allow the controller to identify which track and 

sector its heads are currently positioned over; and 
 Error correcting codes to detect and correct errors in the data. 

 
LLF is driven by the mechanical operation of the hard drive and is 

independent of the operating system that uses it. At one time, an LLF 
could be performed with a computer's BIOS, but because of the 
complexity of modern hard drives, LLF is now performed at the factory 
only. The closest function currently available is a utility called a zero 
fill. This function erases all data on a hard drive by filling the sectors 
with zeroes. 

O/S-level formatting is used to create a file system so that the 
operating system can find and load data from the hard drive. This 
includes information such as the folder structure, file attributes, and on 
which sectors the files are stored.  

There is a level of logical hard drive organization between low-level 
formatting and O/S level formatting called partitioning. Partitioning 
uses a table contained on the hard drive that defines individual, non-
overlapping "logical drives," i.e., drives that look like separate drives 
themselves, but in actuality are all contained on a single set of platters.  

One of the original uses of partitioning was to divide a hard drive 
into smaller logical units when the hard drives that manufacturers 
produced became too large for a BIOS or operating system to handle. 
For example, to install a 2 Gigabyte hard drive on a system where the 



284   Computer Organization and Design Fundamentals 
 

BIOS was only capable of seeing 512 Megabyte drives, the hard drive 
has to be logically divided into at least four drives. 

Another application of partitioning is if different O/S-level 
formatting is needed on a single hard drive. If, for example, a user 
wishes to load both Windows and Linux on the same hard drive, three 
logical drives would be needed, one with a Windows format, one with a 
Linux native format, and one with a Linux swap format. 

At one time, performance benefits could be realized with effective 
partitioning, but this is no longer true with advances in hard drive 
design. 

13.4 Cache RAM 
Even with increases in hard drive performance, it will never be 

practical to execute programs or access data directly from these 
mechanical devices. They are far too slow. Therefore, when the 
processor needs to access information, it is first loaded from the hard 
drive into main memory where the higher performance RAM allows 
fast access to the data. When the processor is finished with the data, the 
information can either be discarded or used to update the hard drive. 

Because of its expense, the capacity of a computer's main memory 
falls short of that of its hard drive. This should not matter though. Not 
all of the data on a hard drive needs to be accessed all of the time by the 
processor. Only the currently active data or applications need to be in 
RAM. Additional performance improvements can be realized by taking 
this concept to another level.  

Remember from our discussion in Chapter 12 that there are two 
main classifications of RAM: static RAM (SRAM) and dynamic RAM 
(DRAM). SRAM is faster, but that speed comes at a price: it has a 
lower density and it is more expensive. Since main memory needs to be 
quite large and inexpensive, it is implemented with DRAM. 

Could, however, the same relation that exists between main memory 
and a hard drive be realized between a small block of SRAM and a 
large main memory implemented in DRAM?  Main memory improves 
the performance of the system by loading only the information that is 
currently in use from the hard drive. If a method could be developed 
where the code that is in immediate use could be stored in a small, fast 
SRAM while code that is not quite as active is left in the main memory, 
the system's performance could be improved again.  

Due to the nature of programming, instructions that are executed 
within a short period of time tend to be clustered together. This is due 



 Chapter 13: Memory Hierarchy    285 
 

primarily to the basic constructs of programming such as loops and 
subroutines that make it so that when one instruction is executed, the 
chances of it or its surrounding instructions being executed again in the 
near future are very good. Over a short period of time, a cluster of 
instructions may execute over and over again. This is referred to as the 
principle of locality. Data also behaves according to this principle due 
to the fact that related data is often defined in consecutive locations. 

To take advantage of this principle, a small, fast SRAM is placed 
between the processor and main memory to hold the most recently used 
code and data under the assumption that they will most likely be used 
again soon. This small, fast SRAM is called a RAM cache. 
 

 
 

Figure 13-13   Cache Placement between Main Memory and Processor 

The reason the SRAM of the cache needs to be small is that larger 
address decoder circuits are slower than small address decoder circuits. 
The larger the memory is, the more complex the address decoder 
circuit. The more complex the address decoder circuit is, the longer it 
takes to select a memory location based on the address it received. 
Therefore, making a memory smaller makes it faster. 

It is possible to take this concept a step further by placing an even 
smaller SRAM between the cache and the processor thereby creating 
two levels of cache. This new cache is typically contained inside of the 
processor. By placing the new cache inside the processor, the wires that 
connect the two become very short, and the interface circuitry becomes 
more closely integrated with that of the processor. Both of these 
conditions along with the smaller decoder circuit result in even faster 
data access. When two caches are present, the one inside the processor 
is referred to as a level 1 or L1 cache while the one between the L1 
cache and memory is referred to as a level 2 or L2 cache. 

  
 
 
 

Figure 13-14   L1 and L2 Cache Placement 

Processor Main 
Memory 
(DRAM) 

L2 
Cache L1 

Cache 

 
Processor RAM

Cache 
Main Memory 

(DRAM) 



286   Computer Organization and Design Fundamentals 
 

The split cache is another cache system that requires two caches. In 
this case, a processor will use one cache to store code and a second 
cache to store data. Typically, this is to support an advanced type of 
processor architecture such as pipelining where the mechanisms that 
the processor uses to handle code are so distinct from those used for 
data that it does not make sense to put both types of information into 
the same cache. 

 
  
 
 
 
 

Figure 13-15   Split Cache Organization 

13.4.1 Cache Organization 
The success of caches is due primarily to the principle of locality. 

This suggests that when one data item is loaded into a cache, the items 
close to it in memory should be loaded too. For example, if a program 
enters a loop, most of the instructions that make up that loop will be 
executed multiple times. Therefore, when the first instruction of a loop 
is loaded into the cache, time will be saved if its neighboring 
instructions are loaded at the same time. That way the processor will 
not have to go back to main memory for subsequent instructions. 

Because of this, caches are typically organized so that when one 
piece of data or code is loaded, the block of neighboring items is loaded 
too. Each block loaded into the cache is identified with a number called 
a tag that can be used to determine the original addresses of the data in 
main memory. This way, when the processor is looking for a piece of 
data or code (hereafter referred to as a word), it only needs to look at 
the tags to see if the word is contained in the cache. 

The each block of words and its corresponding tag are combined in 
the cache to form a line. The lines are organized into a table much like 
that shown in Figure 13-16. It is important to note that when a word 
from within a block of words is needed from main memory, the whole 
block is moved into one of the lines of the cache along with the tag 
used to identify from where it came. 

 
 

Processor 
Main 

Memory 
(DRAM) 

Code 
Cache 

Data 
Cache 



 Chapter 13: Memory Hierarchy    287 
 

13.4.2 Dividing Memory into Blocks 
Main memory stores all of its words in sequential addresses. The 

cache, however, has no sequential order. Therefore, it is the addressing 
scheme of main memory that is used to define the blocks of words and 
the method for locating them. The definition of blocks in main memory 
is logical only; it has no effect on how the words are stored. 

 
 
 
 
 
 
 
 
 
 

Figure 13-16   Organization of Cache into Lines 

The full main memory address defines a specific memory location 
within memory. For example, a unique twenty-bit address such as 
3E9D116=0011 1110 1001 1101 00012 points to exactly one memory 
location within a 1 Meg memory space. 

If we "hide" the last bit of the address, i.e., that bit could be a one or 
a zero, than the resulting address could refer to one of two possible 
locations, 3E9D116 (0011 1110 1001 1101 00012) or 3E9D016 (0011 
1110 1001 1101 00002). If we hide the last two bits, then the last two 
bits could be 002, 012, 102, or 112. Therefore, the address could be 
referring to one of the following four possible sequential locations: 

 
3E9D016 = 0011 1110 1001 1101 00002 
3E9D116 = 0011 1110 1001 1101 00012 
3E9D216 = 0011 1110 1001 1101 00102 
3E9D316 = 0011 1110 1001 1101 00112 

 
This is how a block is defined. By removing a small group of bits at 

the end of an address, the resulting identifier points to a group of 
memory locations rather than a specific address. Every additional bit 

TAG0 Block of words corresponding to TAG0 

TAG1 Block of words corresponding to TAG1 

TAG2 Block of words corresponding to TAG2 

TAG3 Block of words corresponding to TAG3 

TAGn-1 Block of words corresponding to TAGn-1 

L 
I 
N 
E 
S 



288   Computer Organization and Design Fundamentals 
 

that is removed doubles the size of the group. This group of memory 
locations is what is referred to as a block. 

The number of words in a block is defined by the number of bits 
removed from the end of the address to create the block identifier. For 
example, when one bit is removed, a block contains two memory 
locations. When two bits are removed, a block contains four memory 
locations. In the end, the size of a block, k, is defined by: 

 

 k = 2w (13.1) 
 

where w represents the number of bits "removed". Figure 13-17 shows 
an example of a 1 Meg memory space divided into four word blocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-17   Division of Memory into Blocks 

To organize memory into blocks, a memory address is divided into 
two logical sets of bits, one to represent the block number and one to 
identify the word's position or offset within the block. The memory 
address for the example in Figure 13-17 uses the most significant 18 
bits to identify the block and the last two bits to identify a word's 
position within the block. Figure 13-18 presents this division using the 
address 101001010110100101102 (A569616). 

 

Memory address Data   Block identification 

0000 0000 0000 0000 00 00  
0000 0000 0000 0000 00 01  
0000 0000 0000 0000 00 10  
0000 0000 0000 0000 00 11  

Block 0 

0000 0000 0000 0000 01 00  
0000 0000 0000 0000 01 01  
0000 0000 0000 0000 01 10  
0000 0000 0000 0000 01 11  

Block 1 

0000 0000 0000 0000 10 00  
0000 0000 0000 0000 10 01  
0000 0000 0000 0000 10 10  
0000 0000 0000 0000 10 11  

Block 2 

 
 
 
 

  

1111 1111 1111 1111 11 00  
1111 1111 1111 1111 11 01  
1111 1111 1111 1111 11 10  
1111 1111 1111 1111 11 11  

Block 2(20-2) – 1 = 262,143 

 

Each gray block 
represents an addressable 
memory location 
containing a word 



 Chapter 13: Memory Hierarchy    289 
 

 
 
 

Figure 13-18   Organization of Address Identifying Block and Offset 

Example 
How many blocks of 8 words are there in a 1 Gig memory space? 

Solution 
Eight words require three bits to uniquely identify their position 

within a block. Therefore, the last three bits of the address represent the 
word's offset into the block. Since a 1 Gig (230) address space uses 30 
address lines, there are 30 – 3 = 27 remaining bits in the address. These 
bits are used to identify the block. Below is a diagram of the logical 
organization of the address. 

 
 
 
 
 
 

13.4.3 Cache Operation 
When the processor needs a word from memory, it first checks the 

cache. The circuits used to access the same word from main memory 
may be activated simultaneously so no time is lost in case the data is 
not available in the cache, a condition known as a miss. If the search of 
the cache is successful, then the processor will use the cache's word and 
disregard the results from main memory. This is referred to as a hit. 

In the case of a miss, the entire block containing the requested word 
is loaded into a line of the cache, and the word is sent to the processor. 
Depending on the design of the cache/processor interface, the word is 
either loaded into the cache first and then delivered to the processor or 
it is loaded into the cache and sent to the processor at the same time. In 
the first case, the cache is in control of the memory interface and lies 
between memory and the processor. In the second case, the cache acts 
like an additional memory on the same bus with the main memory. 

101001010110100101

Block ID = 169,38110 

10

Offset of 2 into block 

Memory address  a29 a28 a27 … a4 a3 a2 a1 a0 

 
Bits identifying block Bits identifying  

offset 



290   Computer Organization and Design Fundamentals 
 

13.4.4 Cache Characteristics 
The cache system used by a processor is defined by six traits: 
 

 the size of the cache; 
 the size of a block, which when combined with the size of the cache 

defines the number of lines; 
 the number of caches (i.e., multiple levels or a split cache); 
 the mapping function (the link between a block's address in 

memory and its location in the cache); 
 the replacement algorithm (the method used to figure out which 

block to remove from the cache in order to free up a line); and 
 the write policy (how the processor writes data to the cache so that 

main memory eventually gets updated). 
 
As far as the size of a cache is concerned, designers need to perform 

a balancing act to determine the best size cache for a system. The larger 
a cache is, the more likely it is that the processor will find the word it 
needs in the cache. The problem is that as a cache gets larger, the 
address decoding circuits also get larger and therefore slower. In 
addition, more complicated logic is required to search a cache because 
of the seemingly random way that the blocks are stored in it. Larger 
caches are also more expensive. 

There is also a relationship between size of a block and the 
performance of the cache. As the block size goes up, the possibility of 
getting a hit when looking for data could go up due to more words 
being available within a region of active code. For a fixed cache size, 
however, as the block size increases, the number of blocks that can be 
stored in a cache goes down thereby potentially reducing the number of 
hits. A typical size of a block is fairly low, between 4 and 8 words. 

13.4.5 Cache Mapping Functions 
There are three main methods used to map a line in the cache to an 

address in memory so that the processor can quickly find a word: direct 
mapping, full associative mapping, and set associative mapping. Let's 
begin with direct mapping. 

Assume main memory is divided up into n blocks and the cache has 
room to contain exactly m blocks. Because of the nature of the cache, m 
is much smaller than n. If we divide m into n, we should get an integer 



 Chapter 13: Memory Hierarchy    291 
 

which represents the number of times that the main memory could fill 
the cache with different blocks from its contents.  

For example, if main memory is 128 Meg (227) and a block size is 
four words (22), then main memory contains n = 227–2 = 225 blocks. If 
the cache for this system can hold 256 K (218) words, then m = 218–2 = 
216 blocks. Therefore, the main memory could fill the cache n/m = 
225/216 = 225–16 = 29 = 512 times. 

Another way of putting it is this: the memory is much larger than a 
cache, so each line in the cache is responsible for storing one of many 
blocks from main memory. In the case of our example above, each line 
of the cache is responsible for storing one of 512 different blocks from 
main memory at any one time. 

Direct mapping is a method used to assign each memory block in 
main memory to a specific line in the cache. If a line is already filled 
with a memory block when a new block needs to be loaded, the old 
block is discarded from the cache. Figure 13-19 shows how multiple 
blocks from our example are mapped to each line in the cache. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-19   Direct Mapping of Main Memory to Cache 

As with locating a word within a block, bits are taken from the main 
memory address to uniquely define the line in the cache where a block 
should be stored. For example, if a cache has 29 = 512 lines, then a line 
would need 9 bits to be uniquely identified. Therefore, the nine bits of 
the address immediately to the left of the word identification bits would 
identify the line in the cache where the block is to be stored. The bits of 

Memory 
Block 0 
Block 1 

Block 512 
Block 513 

Block 1024 
Block 1025 

Block 1536 
Block 1537 

Line 0 Tag0 Block for Tag0 
Line 1 Tag1 Block for Tag1 
Line 2 Tag2 Block for Tag2 
Line 3 Tag3 Block for Tag3 

Line 511 Tag511 Block for Tag511 

Cache 



292   Computer Organization and Design Fundamentals 
 

the address not used for the word offset or the cache line would be used 
for the tag. Figure 13-20 presents this partitioning of the bits. 

Once the block is stored in the line of the cache, the tag is copied to 
the tag location of the line. From the cache line number, the tag, and the 
word position within the block, the original address of the word can be 
reconstructed. 

 
 
 
 
 

Figure 13-20   Direct Mapping Partitioning of Memory Address 

In a nutshell, direct mapping breaks an address into three parts: t tag 
bits, l line bits, and w word bits. The word bits are the least significant 
bits identifying the specific word within a block of memory. The line 
bits are the next least significant identifying in which line of the cache 
the block will be stored. The remaining bits are stored with the block as 
the tag identifying where the block is located in main memory. 

Example 
Assume a cache system has been designed such that each block 

contains 4 words and the cache has 1024 lines, i.e., the cache can store 
up to 1024 blocks. What line of the cache is supposed to hold the block 
that contains the word from the twenty-bit address 3A45616? In 
addition, what is the tag number that will be stored with the block? 

Solution 
Start by dividing the address into its word id, line id, and tag bits. 

Since 4=22, then the two least significant bits identify the word, i.e.,  
w = 2. Since the cache has 1024=210 lines, then the next 10 bits identify 
the line number where the data is supposed to be stored in the cache, 
i.e., l = 10. The remaining t = 20 – w – l = 8 bits are the tag bits. This 
partitions the address 3A45616 = 001110100100010101102 as follows: 

 
00111010 0100010101 10 

tag bits line id bits word 
id bits

t bits l bits w bits 

Tag Bits identifying
row in cache 

Bits identifying word 
offset into block 



 Chapter 13: Memory Hierarchy    293 
 

Therefore, the block from address 3A45416 to 3A45716 will be stored 
in line 01000101012 = 27710 of the cache with the tag 001110102. 

Example 
The first 10 lines of a 256 line cache are shown in the table below. 

Identify the address of the data that is shaded (D816). For this cache, a 
block contains 4 words. The tags are given in binary in the table. 

 
Line # Tag word 00 word 01 word 10 word 11 

0 110101 12 34 56 78 
1 010101 54 32 6A D3 
2 000111 29 8C ED F3 
3 001100 33 A2 2C C8 
4 110011 9A BC D8 F0 
5 001101 33 44 55 66 
6 010100 92 84 76 68 
7 000100 FE ED 00 ED 
8 100000 00 11 22 33 
9 101000 99 88 77 66 

Solution 
Start by finding the number of bits that represent each part of the 

address, i.e., the word id, the line id, and the tag. From the table, we can 
see that 2 bits represent the positions of each of the four words in a 
block and that 6 bits are used to represent the tag. 

Since the cache has 256=28 lines, then the line number in the cache 
is represented with 8 bits, and the address is partitioned as follows: 

 
 
 
 
 
 
The shaded cell in the table has a tag number of 1100112. The line 

number is 4, which in 8 bit binary is 000001002. Last of all, the word is 
in the third column which means that it is the 102 word within the 
block. (Remember to start counting from 002.) Putting the tag, line id, 
and word id bits together gives us: 

 
 

6 bits 8 bits 2 bits 

Tag Bits identifying
row in cache 

Bits identifying word 
offset into block 



294   Computer Organization and Design Fundamentals 
 

110011 00000100 10 
tag bits line id bits word 

id bits 
 

Therefore, the address that the shaded cell containing D816 came from 
is 1100 1100 0001 00102 = CC1216. 

Example 
Using the table from the previous example, determine if the data 

stored in main memory at address 101C16 is contained in this cache, 
and if it is, retrieve the data. 

Solution 
Converting 101C16 to binary gives us 0001 0000 0001 11002. By 

using the breakdown of bits for the tag, line id, and word id, the binary 
value can be divided into its components. 

 
000100 00000111 00 
tag bits line id bits word 

id bits 
 
From this we see that the line in the cache where this data should be 

stored is 000001112 = 710. The tag currently stored in this line is 
0001002 which equals the tag from the above partitioned address. 
Therefore, the data from main memory address 101C16 is stored in this 
cache. If the stored tag did not match the tag pulled from the address, 
we would have known that the cache did not contain our address. 

Lastly, we can find the data by looking at the offset 002 into the 
block at line 7. This gives us the value FE16. 

Example 
Using the same table from the previous two examples, determine if 

the data from address 982716 is in the cache. 

Solution 
Converting the hexadecimal address 982716 to binary gives us 

982716 = 1001 1000 0010 01112. By using the breakdown of bits for the 
tag, line id, and word id, we can divide this value into its components. 

 



 Chapter 13: Memory Hierarchy    295 
 

100110 00001001 11 
tag bits line id bits word 

id bits 
 
From this we see that the tag is 1001102, the line number is 

000010012 = 910, and the word offset into the block is 112. Looking at 
line number 9 we see that the tag stored there equals 1010002. Since 
this does not equal 1001102, the data from that address is not contained 
in this cache, and we will have to get it from the main memory. 

 
Fully associative mapping does not use line numbers at all. It 

divides the main memory address into two parts: the word id and a tag. 
In order to see if a block is stored in memory, the tag is pulled from the 
memory address and a search is performed through all of the lines of 
the cache to see if the block is present. 

 
 
 
 

Figure 13-21   Fully Associative Partitioning of Memory Address 

This method of searching for a block within a cache sounds like it 
might be a slow process, but it is not. Each line of the cache contains its 
own compare circuitry that is able to discern in an instant whether or 
not the block is contained at that line. With all of the lines performing 
this compare in parallel, the correct line is identified quickly. 

This mapping algorithm is meant to solve a problem that occurs with 
direct mapping where two active blocks of memory map to the same 
line of the cache. When this happens, neither block of memory is 
allowed to stay in the cache long before it is replaced by the competing 
block. This results in a condition referred to as thrashing where a line in 
the cache goes back and forth between two or more blocks, usually 
replacing a block before the processor was through with it. Thrashing is 
avoided by allowing a block of memory to map to any line of the cache. 

This benefit has a price, however. When a fully associative cache is 
full and the processor needs to load a new block from memory, a 
decision has to be made regarding which of the existing blocks is to be 
discarded. The selection method, known as a replacement algorithm, 

t bits w bits 

Tag 
Bits identifying word 

offset into block 



296   Computer Organization and Design Fundamentals 
 

should have a goal of replacing the block least likely to be needed by 
the processor in the near future. 

There are numerous replacement algorithms, no one of which is 
significantly better then the others. In an effort to realize the fastest 
operation, each of these algorithms is implemented in hardware. 

 
 Least Recently Used (LRU) – This method replaces the block that 

hasn't been read by the processor in the longest period of time. 
 First In First Out (FIFO) – This method replaces the block that 

has been in cache the longest. 
 Least Frequently Used (LFU) – This method replaces the block 

which has had fewest hits since being loaded into the cache. 
 Random – This method randomly selects a block to be replaced. It 

has only slightly lower performance than LRU, FIFO, or LFU. 

Example 
The table below represents five lines from a cache that uses fully 

associative mapping with a block size of eight. Identify the address of 
the shaded data (C916). 

 
 Word id bits (in binary) 

Tag 000 001 010 011 100 101 110 111 
01101101100102 16 36 66 28 A1 3B D6 78 
01000110101012 54 C9 6A 63 54 32 00 D3 
00010001110112 29 8C ED FD 29 54 12 F3 
00011110011002 39 FA B5 C1 33 9E 33 C8 
10011001011012 23 4C D2 40 6A 76 A3 F0 

Solution 
The tag for C916 is 01000110101012. When combining this with the 

word id of 0012, the address in main memory from which C916 was 
retrieved is 01000110101010012 = 46A916. 

Example 
Is the data from memory address 1E6516 contained in the table from 

the previous example? 



 Chapter 13: Memory Hierarchy    297 
 

Solution 
For this cache, the last three bits identify the word and the rest of the 

bits act as the tag. Since 1E6516 = 00011110011001012, then 1012 is the 
word id and 00011110011002 is the tag. Scanning the rows shows that 
the fourth row contains this tag, and therefore the table contains the 
data in which we are interested. The word identified by 1012 is 9E16. 

 
The last mapping algorithm presented here is set associative 

mapping. Set associative mapping combines direct mapping with fully 
associative mapping by grouping together lines of a cache into sets. 
The sets are identified using a direct mapping scheme while the lines 
within each set are treated like a miniature fully associative cache 
where any block that is to be stored in the set can be stored to any line 
within the set. Figure 13-22 represents this arrangement with a sample 
cache that uses four lines to a set. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-22   Set Associative Mapping of Main Memory to Cache 

A set associative cache that has k lines per set is referred to as a k-
way set associative cache. Since the mapping scheme uses the memory 
address just as direct mapping does, the number of lines contained in a 
set must be equal to an integer power of two, e.g., two, four, eight, 
sixteen, and so on. 

Let's use an example to further explain set associative mapping. 
Assume that a system uses a cache with 29 = 512 lines, a block of 
memory contains 23 = 8 words, and the full memory space contains 230 
= 1 Gig words. In a direct mapping scheme, this would leave 30 – 9 – 3 

Memory 
Block 0 
Block 1 

Block 128 
Block 129 

Block 256 
Block 257 

Block 384 
Block 385 

Tag0 Block for Tag0 
Tag1 Block for Tag1 
Tag2 Block for Tag2 
Tag3 Block for Tag3 

Tag511 Block for Tag511 

Cache 

Tag4 Block for Tag4 
Tag5 Block for Tag5 
Tag6 Block for Tag6 
Tag7 Block for Tag7 
Tag8 Block for Tag8 

Set 0

Set 1



298   Computer Organization and Design Fundamentals 
 

= 18 bits for the tag. Note that the direct mapping method is equivalent 
to the set associative method where the set size is equal to one line.  

By going from direct mapping to set associative with a set size of 
two lines per set, the number of sets is equal to half the number of lines. 
In the case of the cache with 512 lines, that would give us 256 sets of 
two lines each which would require eight bits from the memory address 
to identify the set. This would leave 30 – 8 – 3 = 19 bits for the tag. By 
going to four lines per set, the number of sets is reduced to 128 sets 
requiring seven bits to identify the set and twenty bits for the tag. 

Figure13-23 shows how each time the number of lines per set in the 
example is doubled, the number of bits used to identify the set is 
reduced by one thereby increasing the number of tag bits by one. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-23   Effect of Cache Set Size on Address Partitioning 

When a block from memory needs to be stored to a set already filled 
with other blocks, one of the replacement algorithms described for fully 
associative mapping is used. For a 2-way set associative cache, one of 
the easiest replacement algorithms to implement is the least recently 
used method. Each set contains a single bit identifying which of the two 
lines was used last. If the bit contains a zero, then the first line was used 
last and the second line is the one that should be replaced. If the bit 
contains a one, the first line should be replaced. 

Example 
Identify the set number where the block containing the address 

29ABCDE816 will be stored. In addition, identify the tag and the lower 

Tag bits Set ID bits 
Word 

ID  bits

18 bits 9 bits 3 bits Direct mapping (1 line/set) 
19 bits 8 bits 3 bits 2-way set associative (21 lines/set) 
20 bits 7 bits 3 bits 4-way set associative (22 lines/set) 
21 bits 6 bits 3 bits 8-way set associative (23 lines/set) 

25 bits 2 bits 3 bits 128-way set associative (27 lines/set) 
26 bits 1 bit 3 bits 256-way set associative (28 lines/set) 

27 bits 3 bits Fully associative (1 big set) 



 Chapter 13: Memory Hierarchy    299 
 

and upper addresses of the block. Assume the cache is a 4-way set 
associative cache with 4K lines, each block containing 16 words, with 
the main memory of size 1 Gig memory space. 

Solution 
First, we need to identify the partitioning of the bits in the memory 

address. A 1 Gig memory space requires 30 address lines. Four of those 
address lines will be used to identify one out of the 16 words within the 
block. Since the cache is a 4-way set associative cache, the number of 
sets equals 4K lines divided by four lines per set, i.e., 1K = 210. 
Therefore, ten address lines will be needed to identify the set. The 
figure below represents the partitioning of the 30 bit address. 

 
 
 
 
 
 
Converting 29ABCDE816 to a 30-bit binary value gives us 

001010011010101111001101111010002. The first sixteen bits, 
0010100110101011112, represent the tag. The next ten bits, 
00110111102 =  22210, represent the set in which the block will be 
stored. The last four bits, 10002 = 810, represent the word position 
within the block. The lowest address will be the one where word 00002 
is stored and the highest address will be the one where the word 11112 
is stored. Replacing the last four bits of 29ABCDE816 with 00002 gives 
us a low address of 29ABCDE016 while replacing them with 11112 
gives us a high address of 29ABCDEF16 

13.4.6 Cache Write Policy 
The last characteristic of caches discussed here is the cache write 

policy, i.e., the method used to determine how memory is updated when 
the cache is written to by the processor. There are a number of issues 
surrounding this topic, most of which apply to multi-processor systems 
which are beyond the scope of this text. Basically, when the cache is 
written to, the corresponding location in memory becomes obsolete. 

One method for resolving this is to have the cache update memory 
every time the processor writes to the cache. This is called a write 
through policy. The problem with this is that it creates a great deal of 

16 bits 10 bits 4 bits 

Tag Bits identifying
the set in cache

Bits identifying word 
offset into block 



300   Computer Organization and Design Fundamentals 
 

memory bus traffic, some of which might be unnecessary if the same 
memory location is being updated often. This policy also slows the 
write process since both memories are being updated at the same time. 

A second method is to update main memory only when a line of the 
cache that has been modified to is about to be replaced with a new 
block from memory. This is called a write back policy. This method 
runs into problems when more than one processor such as an I/O 
processor is sharing memory. Solutions include making shared memory 
non-cacheable, adding an additional processor to watch all of the 
caches and make appropriate updates when a write occurs, or giving all 
of the processors the ability to check other caches for updates. 

13.5 Registers 
At the top of the memory hierarchy is a set of memory cells called 

registers. A register is a group of latches that have been combined in 
order to perform a special purpose. This group of latches may be used 
to store an integer, store an address pointing to memory, configure an 
I/O device, or indicate the status of a process. Whatever the purpose of 
the register is, all of the bits are treated as a unit. 

Registers are contained inside the processor and are integrated with 
the circuitry used to perform the processor's internal operations. This 
integration places registers within millionths of a meter of the action 
resulting in very quick access times. In addition, the typical processor 
contains fewer than a hundred registers making decoding very simple 
and very fast. These two features combine to make registers by far the 
fastest memory unit in the memory hierarchy. 

Because of the integral part they play in computer architecture, the 
details and applications of registers are presented in Chapter 15. 

13.6 What's Next? 
This chapter presented the system of memory components that serve 

the processor. This system will be revisited in Chapter 15 where a 
detailed examination of the organization of the components inside of 
the processor will be introduced.  

Chapter 14 presents another important component supporting the 
processor: serial communications. Up to this point, our discussion of 
the processor has used the parallel bus to transfer data. The parallel bus 
has some drawbacks though. These include higher expense, lack of 
adaptability, and lower reliability. Chapter 14 presents the basic 



 Chapter 13: Memory Hierarchy    301 
 

structure of a serial communications system followed by a presentation 
of two serial protocols. 

Problems 
1. Why is it important for hard drive substrates to be rigid? 

2. Why is it important for hard drive substrates to be lightweight? 

3. What is the advantage of a Winchester head, and how is it 
achieved? 

4. Sketch the pattern of magnetic polarity found using the RLL 
encoding of Figure 13-5 for the bit pattern 0110100110100110101. 

5. Calculate the amount of time it would take to read a 2 Mbyte file 
from a 15,000 RPM drive with a typical 4 ms seek time that has 
500 sectors per track each of which contains 512 bytes. Assume 
the file is stored sequentially and take into account the delays 
incurred each time the drive must switch tracks. 

6. Repeat the previous problem assuming the sectors of the file are 
scattered randomly across the tracks of the platters. 

7. How many blocks of 16 words are there in a 256 Gig memory 
space?  Draw the logical organization of the full address 
identifying the block ID portion and the word offset portion. 

8. Identify the line number, tag, and word position for each of the 30-
bit addresses shown below if they are stored in a cache using the 
direct mapping method. 

a.) Address: 23D94EA616 Lines in cache: 4K Block size: 2 
b.) Address: 1A54387F6 Lines in cache: 8K Block size: 4 
c.) Address: 3FE9704A16 Lines in cache: 16K Block size: 16 
d.) Address: 54381A516 Lines in cache: 1K Block size: 8 

 
9. True or False: A block from main memory could possibly be 

stored in any line of a cache using fully associative mapping. 

10. What problem is the fully or set-associative mapping methods for 
caches supposed to solve over the direct mapping method? 

11. What is the easiest replacement algorithm to use with a 2-way set 
associative cache? 



302   Computer Organization and Design Fundamentals 
 

12. The table below represents five lines from a cache that uses fully 
associative mapping with a block size of eight. Identify the address 
of the shaded data (3B16). 

 Word id bits (in binary) 
Tag 000 001 010 011 100 101 110 111 

100110110110001012 10 65 BA 0F C4 19 6E C3 
001110000110101012 21 76 CB 80 D5 2A 7F B5 
101111000101110012 32 87 DC 91 E6 3B F0 A6 
011101100011010112 43 98 ED A2 F7 4C E1 97 
001111001001110002 54 9A FE B3 08 5D D2 88 

 
13. Using the table from the previous problem, identify the data value 

represented by each of the following addresses. 

a.) 7635916 b.) 386AF16 c.) BC5CC16 
 

14. Identify the set number, tag, and word position for each of the 30-
bit addresses stored in an 8K line set associative cache. 

a.) Address: 23D94EA616 2-way cache Block size: 2 
b.) Address: 1A54387F6 2-way cache Block size: 4 
c.) Address: 3FE9704A16 8-way cache Block size: 16 
d.) Address: 54381A516 4-way cache Block size: 8 

 
15. Using the C declarations below of a simulated 256 line cache and a 

64K memory, create two functions. The first function, bool 
requestMemoryAddress(unsigned int address), takes as its 
parameter a 16-bit value and checks to see if it exists in the cache. 
If it does, simply return a value of TRUE. If it doesn't, load the 
appropriate line of the cache with the requested block from 
memory[] and return a FALSE. The second function, unsigned int 
getPercentageOfHits(void), should return an integer from 0 to 100 
representing the percentage of successful hits in the cache. 
typedef struct { 
 int tag; 
 char block[4]; 
}cache_line; 

cache_line cache[256]; 

char memory[65536]; 



 303 

CHAPTER FOURTEEN 

Serial Protocol Basics 

Whenever there is a need for information to be passed between two 
computer systems, a communication scheme must be developed to 
support it. This scheme must include clear definitions of the physical 
connection, e.g., the wires and voltage levels, the pattern of signals 
used to synchronize and define the data, methods of encryption and 
error checking, and so on. Entire books are written on the system of 
layers that define these communication schemes. This chapter focuses 
on a single aspect: the pattern of bits used to send data one bit at a time 
across a single wire.  

14.1 OSI Seven-Layer Network Model 
The Open Systems Interconnection (OSI) model of networks is a 

method for classifying the complex components of a communication 
scheme so that they are easier to describe and understand. There are 
seven layers to this model ranging from the physical implementation 
(the wires and such) to the more abstract layer of the applications 
where the details of the network are hidden. The following is a 
description of the seven layers: 

 
 Application Layer (layer 7) – At this layer, one application must 

format the data so that a second application can properly interpret 
it. Examples include formatting data so that an e-mail agent or a 
web browser can properly display data to the user. 

 Presentation Layer (layer 6) – This layer eliminates compatibility 
problems caused by serving different types of networks. It acts as a 
generic interface between the application and the details of the 
network. 

 Session Layer (layer 5) – This layer starts, maintains, and stops the 
logical connection between two applications. 

 Transport Layer (layer 4) – When a block of data is sent from one 
application to another, mechanisms are needed to provide error 
checking, the partitioning of large blocks of data into smaller 
packets, the reassembly of the data packets, and flow control. The 
transport layer is responsible for these functions. 



304   Computer Organization and Design Fundamentals 
 
 Network Layer (layer 3) – Once a packet from the transport layer is 

placed on the network, it needs to find its way from one physical 
host to another. This is the responsibility of the network layer. It 
provides routing, forwarding, sequencing, and logical addressing. 
Since the delivery of a packet may involve several types of 
networks, this layer must remain independent of the physical 
implementation of the network.  

 Datalink Layer (layer 2) – The datalink layer handles the bit-level 
specifications used to deliver a message within a specific type of 
network. Examples of datalink protocols include the IEEE 802.3 
protocol which defines how the bits are organized in an Ethernet 
frame and the Serial Line Internet Protocol (SLIP) which may be 
used on a dial-up network. While the network layer uses logical 
addresses to identify hosts, the datalink layer uses the physical 
addresses of the hardware. 

 Physical Layer (layer 1) – This layer defines how the bits are 
transmitted. For example, logic ones and zeros may be identified by 
different voltage levels, the presence or absence of light, or the 
frequency of a radio signal. This hardware level description of the 
network is considered the physical layer. 

 
Since most protocols are described with respect to the layer on 

which they function, it is important to have a basic understanding of the 
OSI layer definitions. This chapter discusses three different protocols, 
one from the datalink layer, one from the network layer, and one from 
the transport layer.  

14.2 Serial versus Parallel Data Transmission 
As discussed in Chapter 12, the processor communicates to devices 

on the motherboard across a group of parallel wires called the bus. A 
data element can be transferred in an instant by placing each individual 
bit on a different data line or wire. The data must be held on the lines 
for a moment so that the inputs of the receiving device stabilize enough 
for a successful read. This duration, however, is independent of the 
number of bits of the data element. 

There are a few problems with this method of communication. First, 
wires cost money. At the level of the motherboard, this makes the ICs 
more expensive due to the greater number of pins and it makes the 
circuit board larger and more expensive due to the extra room needed 



 Chapter 14: Serial Protocol Basics    305 
 
for the extra wires. At the system level, i.e., for signals going outside of 
the computer, each additional data line requires an additional wire in 
the connecting cable. This results in: 

 
 higher cost for the cable; 
 higher cost for the connectors; 
 physically larger connectors making miniaturization difficult; and 
 decreased reliability of the system. 

 
An increase in the number of connectors is the primary reason for 

the decrease in reliability of a parallel communication scheme. This is 
because most failures occur at the connectors. Reliability is also 
reduced because of a phenomenon known as crosstalk. All wires act 
like antennas capable of transmitting and receiving electronic signals. If 
two wires run close together for long distances, they have a tendency to 
blend their signals, each transmitting their own data and receiving their 
neighbor's transmitted data. 

Another problem with parallel communication schemes that specify 
the purpose of each wire in the connection is a lack of flexibility. 
System characteristics such as the number of bits in a data element or 
the number of devices that can be attached to the bus cannot be 
modified in a system that uses parallel communication. If, for example, 
a system has twenty address lines and sixteen data lines, it is restricted 
to a memory space of 1 Meg and can only transmit unsigned integer 
values from 0 to 65,535. 

The alternative to transmitting data over parallel wires is to send 
data serially, i.e., one bit at a time, across a single wire. This allows for 
smaller cables, smaller connectors, fewer pins on ICs, and a more 
flexible data format. It comes at the expense, however, of speed. If a 
single wire is used to transmit control, address, and data, then a period 
of time is used to specify a bit rather than an individual wire. For 
example, a parallel bus with twenty address lines and sixteen data lines 
could be converted to a serial connection that took 20 + 16 = 36 "bit 
periods" to send the same amount of data. Note that this calculation 
does not take into consideration the control information that would be 
needed. 

The next section presents the basic format of a serial data 
transmission. It shows how control, addressing, and data information 
can be sent using a single bit stream. 



306   Computer Organization and Design Fundamentals 
 
14.3 Anatomy of a Frame or Packet 

A computer system needs a number of pieces of information in order 
to transmit data from one device to another. This information includes: 

  
 Addressing information – If more than one device is present on a 

network, then addressing information for both the sender and 
receiver is required. 

 Control information – In order to maintain the serial connection, 
control signals are needed for things such as synchronization 
(timing), message type, data length, protocol control information 
such as sequence numbers, and error checking information. 

 Data – While the purpose of some messages can be summed up 
with the message type, the majority of transmissions are used to 
send blocks of data. 

 
Serial communication schemes use a single stream of data to send 

all of this information, each bit's purpose defined by its position with 
respect to the beginning of the stream. Since a bit's position in the 
stream of data defines its purpose, strict timing and signal definitions 
are needed. These definitions, called a protocol, describe a basic unit of 
communication between serial devices. At the datalink layer, this unit 
is called a frame. It is called a packet at higher levels. 

In general, a datalink frame is divided into three parts: the preamble, 
the packet, and the trailer. The preamble is a recognizable bit pattern 
that is used to represent the start of a frame and provide timing and 
synchronization for the receiver's circuitry. The timing is necessary 
because of slight variances in the clock signals of different devices. 

The packet of the frame is subsequently divided into two parts: the 
header and the data. The header may contain information such as: 

 
 addressing for both the sender and receiver; 
 packet numbering; 
 message length; and 
 message type. 

 
The data may be either the raw data sent from one device to another 

or it may be an encapsulation of another packet. The datalink layer is 
not concerned with the pattern of bits within the data portion of the 
packet. This is to be interpreted at a higher layer in the network model. 



 Chapter 14: Serial Protocol Basics    307 
 
The frame's only purpose is to get data successfully from one device to 
another within a network. 

By embedding packets from upper layers of the OSI network model 
within packets or frames from lower layers, the implementations of the 
different layers can be swapped as needed. As long as a packet from the 
network layer gets from one logical address to another, it doesn't matter 
whether it was carried on a datalink layer implemented with Ethernet, 
dial-up, or carrier pigeon for that matter. The practice of embedding 
packets and frames is called a protocol stack.  

There are a number of examples of a packet being encapsulated 
within the packet of another frame. Once again, this is the result of the 
implementation of the layers of the OSI network model. For example, a 
typical way to send a web page from a web server to a client is to begin 
by partitioning the file into smaller packets that are ordered, verified, 
and acknowledged using the transmission control protocol (TCP). 
These TCP packets are then encapsulated into network layer packets 
used to transport the message from one host to another. A common 
protocol for this is the internet protocol (IP). The network layer 
packets must then be encapsulated into packets used to transfer the data 
across a specific network such as Ethernet. This places the TCP/IP 
packets inside the packet of an Ethernet frame. Figure 14-1 shows how 
the TCP packet is embedded within the IP packet which is in turn 
embedded into the Ethernet frame. 

 
 
 
 
 
 
 
 

Figure 14-1   Sample Protocol Stack using TCP, IP, and Ethernet  

The final part of the frame, the trailer, usually serves two purposes. 
The first is to provide error detection to verify that a frame has not been 
corrupted during transmission. Typically, this is a CRC using a 
predefined polynomial. (See Chapter 9) A second purpose of the trailer 
may be to include a special bit sequence defining the end of the frame. 

Data TCP Header

IP Packet IP Header 

Ethernet Data Ethernet Header Ethernet Trailer Preamble 

Transport layer 

Network layer 

Datalink layer 



308   Computer Organization and Design Fundamentals 
 
14.4 Sample Protocol: IEEE 802.3 Ethernet  

One commonly used datalink layer protocol is IEEE 802.3 Ethernet. 
This protocol is typically sent over a physical layer consisting of 
special grades of copper wire twisted in pairs to reduce crosstalk. A 
device on an Ethernet network can see all traffic placed on the network. 
Therefore, special mechanisms are needed in order to uniquely identify 
devices (hosts) and to handle messages that are lost when multiple 
devices attempt to send frames at the same time. 

Theoretically, there is an upper limit of over 281 trillion devices on 
an Ethernet network. Of course this limit is not practical, but it is an 
indication of the level of addressing used by an Ethernet frame. A 
single Ethernet frame can transmit up to 1500 bytes, the integrity of 
which is verified using a 32-bit CRC checksum found in the frame's 
trailer.  

Figure 14-2 presents the basic layout of an Ethernet frame. (Source: 
IEEE Computer Society. IEEE Std 802.3™-2002. Available on-line at 
http://standards.ieee.org/getieee802/download/802.3-2002.pdf) 

 
 
 
 
 
 
 
 
 
 
 

Figure 14-2   Layout of an IEEE 802.3 Ethernet Frame 

The frame starts with the preamble, the start delimiter, the 
destination and source addresses, and the length. The preamble and 
start delimiter are used to tell the receiving devices when the message 
is going to start and to provide synchronization for the receive circuitry.  

The preamble is 7 bytes (56 bits) of alternating ones and zeros 
starting with a one. This bit pattern creates a "square wave" which acts 

8 bits (one byte) 

Preamble 

Start 
Delimiter 

Destination 
Address 

Source
Address

Length 

Data Field (46 to 
1500 bytes)

CRC



 Chapter 14: Serial Protocol Basics    309 
 
like a clock ensuring that all of the receiving devices are synchronized 
and will read the bits of the frame at the same point in each bit time. 

The preamble is immediately followed by a single byte equal to 
101010112 called the start delimiter. The first seven bits of the start 
delimiter continue the square wave pattern set up by the preamble. The 
last bit, which follows a one in the bit sequence, is also equal to a one. 
This pair of ones indicates to the receiving devices that the next portion 
of the frame, i.e., the destination address, will start at the next bit time. 

The source and destination addresses come next in the frame. These 
are each 6 bytes long and they identify the hardware involved in the 
message transaction. It is important not to confuse these addresses with 
IP addresses which are assigned to a computer by a network 
administrator. The Ethernet addresses are hardwired into the physical 
hardware of the network interface card (NIC) and are unique to each 
device. They are referred to as a Medium Access Control (MAC) 
addresses and are loaded into the NIC by the manufacturer. They can 
not be modified. The first three bytes of the MAC address identify the 
manufacturer. If the destination address is all ones, then the message is 
meant to be a broadcast and all devices are to receive it. 

The next field in the frame is the 2-byte length field. The value in 
this field represents the number of data bytes in the data field. With two 
bytes, it is possible to represent a value from 0 to 65,535. The 
definition of the IEEE 802.3 Ethernet, however, specifies that only 
values from 0 to 1500 are allowed in this field. Since 150010 = 
101110111002, a value which uses only 11 bits, 5 bits are left over for 
other purposes. Ethernet uses these bits for special features. 

The length field is followed by the data field which contains the 
transmitted data. Although the number of data bytes is identified by the 
two bytes in the length field, the definition of IEEE 802.3 Ethernet 
requires that the minimum length of the data field be 46 bytes. This 
ensures that the shortest Ethernet frame, not including the preamble and 
start delimiter, is 64 bytes long. If fewer than 46 bytes are being sent, 
additional bytes are used as padding to expand this field to 46 bytes. 
These filler bytes are added after the valid data bytes. The value in the 
length field represents only the valid data bytes, not the padding bytes. 

The trailer of the Ethernet frame contains only an error detection 
checksum. This checksum is a 4-byte CRC. The polynomial for this 
CRC has bits 32, 26, 23, 22, 16, 12, 11, 10, 8, 7, 5, 4, 2, 1, and 0 set 
resulting in the 33-bit value 1000001001100000100011101101101112. 



310   Computer Organization and Design Fundamentals 
 
Remember from Chapter 9 that the polynomial for a CRC is one bit 
longer than the final CRC checksum. 

Since any device can transmit data at any time, the Ethernet network 
must have a method for resolving when two devices attempt to send 
data at the same time. Simultaneous transmissions are called collisions, 
and each device, even the ones that are transmitting data, can detect 
when a collision occurs. It is assumed that no message survives a 
collision and both devices are required to retransmit. 

In the event of a collision, an algorithm is executed at each of the 
devices that attempted to transmit data. The outcome of this algorithm 
is a pseudo-random number specifying how long the device is to wait 
before attempting to retransmit. The random numbers should be 
different making it so that one of the devices will begin transmitting 
before the other forcing the second device to wait until the end of the 
first device's transmission before sending its own message.  

14.5 Sample Protocol: Internet Protocol  
IP is a common protocol of the network layer. Remember that the 

network layer is used to identify logical addresses across a large 
network regardless of the datalink implementation. IPv4 does this by 
assigning a unique logical address to every host consisting of four 8-bit 
numbers. Using these addresses, IP is able to route blocks of data from 
one host to another.  

The blocks of data, called datagrams, are sent either as single blocks 
or as partitioned fragments. Since error checking occurs at the datalink 
and transport layers, and since the transport layer provides mechanisms 
for reassembling packets, IP offers error checking only for its own 
header and has no mechanism for message-sequencing or flow-control. 

In order to be sent across an IP network, an IP header is added to the 
beginning of a transport layer packet. This header contains information 
allowing an IP network to route the packet from one host to another. 
Figure 14-3 presents the basic layout of an IP packet header. 

The first field of an IP header is four bits long, and it is used to 
identify the version of IP used to create the header. Immediately after 
these four bits is the four-bit length field. The value in this field, when 
multiplied by four, identifies the number of bytes in the header. This 
makes it possible to include variable length fields within the IP header. 

 



 Chapter 14: Serial Protocol Basics    311 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14-3   Layout of an IP Packet Header 

The 8-bit field following the length field identifies the type of 
service. In large networks, there are usually many paths that a packet 
can take between two hosts. Each of these paths may have different 
degrees of speed, reliability, security, and so forth. The type of service 
field is used to specify the type of link across which a message is to be 
sent. 

The next two bytes define the total length of the message. It is 
calculated by adding the number of bytes in the IP header to the 
number of bytes contained in the packet that follows it. This value does 
not count any bytes from the frame in which the IP packet may be 
contained. 

Sixteen bits would suggest that an Ethernet packet can be up to 
65,535 bytes in length. Note, however, that many networks will not 
allow packets of this size. For example, for an IP packet to be contained 
within an Ethernet frame, the packet can be at most 1500 bytes long. 

The two bytes following the total length field are referred to as the 
identification field. They are used by the destination host in order to 
group the fragments contained in multiple IP packets so that they can 
be reassembled into a single datagram. 

Version 

Internet Header Length 

Type of Service 

Total Length 

Identification 

8 bits (one byte) 

Flags 

Fragment Offset 

Time to Live 
Header Checksum 

Destination
Address

Padding

Protocol 
Source  
Address 

Options



312   Computer Organization and Design Fundamentals 
 

The next byte is divided into two parts. The first three bits represent 
the flag field while the last five bits are coupled with the following byte 
to create the fragment offset field. The first bit of the flag field is 
reserved. The second bit indicates whether the datagram may be 
partitioned into fragments. The last bit is used to identify the current 
packet as the last fragment. 

When a datagram has been partitioned into fragments, a mechanism 
must be in place to reorder the fragments. This is due to the nature of 
large networks in which different paths of varying duration can be 
taken by different packets. This makes it impossible for the receiving 
device to determine the order in which the packets were sent merely by 
relying on the order in which they were received. 

The fragment offset field contains thirteen bits which are used to 
identify the starting position of a fragment within the full datagram. 
Because the partitioning of datagrams must occur on 64-bit boundaries, 
the value in the fragment offset field is multiplied by eight to determine 
the fragment's offset in bytes. An offset of zero identifies the fragment 
as the first fragment within the datagram. 

It is possible for a packet to become lost or undeliverable within a 
large network. Therefore, each packet is sent with a field identifying 
how long the packet is allowed to remain on the network. This field is 
referred to as the time to live field. Every time the packet encounters a 
module on the network, the value in the time to live field is 
decremented. If the value in this field is decremented to zero before 
reaching its destination, the packet is discarded. 

The next eight bits of the IP header identify the protocol of the 
packet contained in the data field.  

In order to verify the integrity of the IP header, a sixteen bit header 
checksum is calculated and inserted as the next field. IP uses the one's 
complement of the one's complement datasum discussed in Chapter 9. 
Remember that a checksum was identified as being less reliable than a 
CRC. The one's complement checksum, however, has proven adequate 
for use with IP headers.  

Since the checksum is part of the IP header, this field must be filled 
with zeros during the checksum calculation to avoid a recursive 
condition. In addition, since the time to live field changes as the packet 
is routed across the network, the header checksum will need to be 
recalculated as it traverses the network. 



 Chapter 14: Serial Protocol Basics    313 
 

As was mentioned earlier, IP uses logical addresses to identify both 
the sending and receiving devices. The next two fields of the IP header 
contain these addresses. The first four byte field represents the source 
address while the next four bytes represent the destination address field. 

Some IP packets may have special requirements such as security 
restrictions and routing needs. These requirements are listed next in the 
IP header in a field referred to as the options field. Depending on the 
needs of a specific packet, a number of options can be represented. 
Therefore, this field is variable in length. 

Finally, the length of an IP header must be a multiple of 32 bits. To 
ensure this, a padding field filled with zeros is added to the end of the 
IP header. Any data contained in the packet immediately follows the 
padding. 

14.6 Sample Protocol: Transmission Control Protocol  
A network layer packet such as IP may in turn contain a packet from 

the transport layer. A common protocol used to define a transport layer 
packet is the transmission control protocol (TCP). The mechanisms 
provided by TCP allow large blocks of data to be partitioned, delivered, 
reassembled, and checked for errors.  

TCP uses no host addressing. Instead, TCP uses a set of logical (as 
opposed to physical) connections called ports to uniquely identify 
target and source applications. For example, a TCP port number may 
identify the data it carries as being part of a web page. Since a TCP 
packet contains no addressing, it depends on the network layer packet 
containing it to guarantee it reaches its destination. 

Port numbers are identified with 16 bits and therefore can take on 
values from 0 to 65535. The first 1,024 ports (0 through 1023) are 
reserved for well-established types of applications such as http (port 
80) and version 3 of the post office protocol (POP3) (port 110). Ports 
1024 through 49151 are called registered ports, and like the first 1,024 
ports, the purpose of these ports is well defined. Unlike the first 1,024 
ports, the registered ports typically represent a specific application. For 
example, port 1433 is reserved for Microsoft SQL Server applications 
while port 3689 is reserved for Apple iTunes music sharing. The 
remaining ports, from 49152 through 65535, are dynamically allocated 
to applications requiring ports not defined by 0 to 49151. 

One of the benefits of TCP is its ability to break large blocks of data 
into smaller packets. This makes it so that one message does not tie up 



314   Computer Organization and Design Fundamentals 
 
the network for a long period of time. In addition, when an error 
occurs, only a small portion of the data must be resent rather than the 
whole data block.  

To do this, each byte of the entire data block has a unique integer 
offset representing the byte's position with respect to the start of the 
block. This offset is used in each packet for things such as identifying 
the position of the current packet's data within the completed data block 
(sequence number) or telling the sending device the position of the data 
the receiver next expects to receive (acknowledgement number). 

Like IP, TCP uses a header inserted before a block of data in order 
to contain all of the information needed to manage the packet. The 
layout of this header is presented in Figure 14-4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14-4   Layout of a TCP Packet Header 

The first two of the ten fields of the TCP packet header identify the 
service that sent the message (source port) and the service that is to 
receive it (destination port) respectively. 

The next field is a 32 bit sequence number. The sequence number 
identifies position of each packet within a block of data using its offset 
with respect to the beginning of the block. The receiver uses sequence 
numbers to order the received packets. If packets are received out of 
order, the sequence number indicates how many bytes to reserve for the 
missing packet(s). Both the sender and the receiver keep track of the 
sequence numbers in order to maintain the integrity of the data block. 

Checksum

Data Offset Window Urgent Pointer 

Sequence 
Number 

Source  
Port 

Destination  
Port 

Acknowledgement
Number

Control Bits Options 
& Padding

8 bits (one byte)



 Chapter 14: Serial Protocol Basics    315 
 

The next field, the acknowledgement number, is also a 32 bit field. 
The receiver acknowledges a received message by placing the next 
expected sequence number in this field. 

The next field, the data offset field, is used to identify where the 
TCP header ends and the data of the packet begins. The value contained 
in these four bits must be multiplied by four (two left shifts) to 
calculate the true data offset. This means that a TCP header must have 
a length equal to an integer multiple of 32 bits (four bytes). 

The twelve bits following the data offset field are the control bits of 
the TCP header. The first six bits are reserved. The last six flag bits are 
used either to request service such as a connection reset or to identify 
characteristics of the packet. Figure 14-5 identifies the position and 
purpose of the flags in the control bits. 

 
 
 
 
 
 
 

Figure 14-5   Position and Purpose of TCP Control Flags 

The next field, the window field, is used by the device requesting 
data to indicate how much data it or its network has the capacity to 
receive. A number of things affect the value in this field including the 
amount of available buffer space the receiver has or the available 
network bandwidth. 

A sixteen bit checksum field is next. Like IP, it contains the one's 
complement of the one's complement datasum. The difference is that 
the sum is computed across three groups of bytes: 

 
 the TCP header without the checksum field; 
 the data or payload field (if this is an odd number of bytes, pad with 

a byte of zeros at the end); and 
 a pseudo header created using information from the IP header. 

 

reserved 
FIN – Identifies last packet 

SYN – Used to synchronize sequence numbers  
RST – Used to reset connection 

PSH – Request to sender to send all packets 
ACK – Indicates use of acknowledgement scheme 

URG – Indicates that urgent pointer field is valid  



316   Computer Organization and Design Fundamentals 
 

The pseudo header consists of the source and destination IP 
addresses, the protocol field of the IP header, and a count of the number 
of bytes in both the TCP header and the TCP data or payload field. 
Figure 14-6 presents the arrangement of the fields in the pseudo header. 

 
 
 
 
 
 
 
 
 
 
 

Figure 14-6   Layout of a TCP Pseudo Header 

One of the flags in the control block is the urgent flag (URG). By 
setting this flag to a 1, the sending device is indicating that the data 
block contains urgent data. When this happens, the sixteen bit field 
following the checksum is used to identify where that data is contained 
within the data block. This field is referred to as the urgent pointer 
field. The value contained in this field is added to the sequence number 
to identify the position of the urgent data within the packet. 

As with the IP protocol, some packets have special requirements. 
These requirements are identified in a variable length list of options. 
These options occur in the header immediately after the urgent pointer 
field. The options identify packet requirements such maximum receive 
segment size. 

Because the option field is variable in length, an additional field 
referred to as the padding field must be added to ensure the length of 
the header is a multiple of four bytes. (Remember that the data offset 
field identifies the length of the header using integer multiples of 32 
bits.) The padding field appends zeros to the header after the options 
field to do this. 

Source  
Address 

Destination 
Address

8 bits (one byte)

Zero
Fill

Protocol

TCP
Length



 Chapter 14: Serial Protocol Basics    317 
 
14.7 Dissecting a Frame 

Remember that the purpose of a protocol is to allow a device 
receiving a serial data stream to correctly interpret its contents. Figure 
14-7 represents one such data stream where a TCP header and data 
segment is contained within an IP packet which in turn is contained 
within an Ethernet frame. This section uses the data in this figure to 
identify the components and data of the frame and its packets. 

 
 offset data 
 
 0000:  00 04 76 48 35 AD 00 B0 D0 C1 6B 31 08 53 45 00 
 0010:  00 53 6D F4 40 00 80 06 CC 3C C5 A8 1A 8C C5 A8 
 0020:  1A 97 17 0C 0D BE DE B1 57 C5 79 59 3E D4 50 18 
 0030:  42 18 B6 3E 00 00 00 B4 00 30 00 22 00 0E 00 00 
 0040:  00 05 1A 99 D6 04 DA DE 00 07 FC FF 20 DD 00 00 
 0050:  08 00 DA DE 09 04 02 FC FF 0E 00 00 FC FF 01 00 
 0060:  0D 

Figure 14-7   Simulated Raw Data Capture of an Ethernet Frame 

Note that the captured data does not include the preamble, start 
delimiter, or CRC of the Ethernet frame. In general, this information is 
used by the network interface card for synchronization of the 
electronics and error checking, but is not made available to the user. 
Therefore, the frame shown above starts with the destination and source 
MAC addresses of the Ethernet frame and ends with its data field.  

From Figure 14-2, we see that the first six bytes after the start 
delimiter represent the destination address. Therefore, the MAC 
address of the destination card is 00:04:76:48:35:AD. Remember that 
the first three bytes represents the manufacturer. The three bytes 
00:04:76 represents 3Com  Corporation. 

The next six bytes represent the source address, i.e., the device 
sending the frame. In this case, the MAC address of the source is 
00:B0:D0:C1:6B:31. 00:B0:D0 identifies the card as a NIC from Dell  
Computer Corporation. 

The next two bytes, 08:53, identifies the both the frame type and the 
length of the frame. Converting this value to a sixteen-bit binary value 
gives us 085316 = 00001000010100112. The most significant 5 bits 
represent the type, and in this case (000012) it is an IP version 4 type. 
The least significant 11 bits represent the length of the data in the 



318   Computer Organization and Design Fundamentals 
 
frame. In this case, 000010100112 = 8310 indicating the data field of the 
Ethernet frame contains 83 bytes. 

Immediately after the length field of the Ethernet frame is the start 
of the IP header. By using Figure 14-3 as a reference, the details of the 
IP packet can also be revealed. 

The first four bits identifies the IP version being used. In this case, 
the first four bits of the byte 4516 equal 4, i.e., IP version 4. The next 
four bits in this byte equal 5. Multiplying this value by four gives us the 
length of the IP header: 20 bytes. 

Next comes one byte identifying the type of service, i.e., the special 
requirements of this packet. Zeros in this field indicate that this packet 
has no special needs. 

The next two bytes identify the total length of the IP packet, i.e., the 
number of bytes in the IP header plus the number of bytes of data. A 
5316 indicates that header and data together total 83 bytes. Subsequent 
fields are: 

 
 Identification field = 6DF416 = 2814810 
 Flags = first three bits of 4016 = 0102 (Do not fragment flag is set) 
 Fragment offset = last thirteen bits of 400016 = 00000000000002 
 Time to live = 8016 = 12810 
 Protocol contained in data field = 0616 (TCP) 
 Header checksum = CC3C16 
 Source address = C5.A8.1A.8C = 197.168.26.140 
 Destination address = C5.A8.1A.97 = 197.168.26.151 

 
To verify the checksum, divide the IP header into words (byte pairs), 

and add the words together. Doing this for our message give us: 
 
  4500 
  0053 
  6DF4 
  4000 
  8006 
  CC3C 
  C5A8 
  1A8C 
  C5A8 
 +1A97 
 3FFFC 



 Chapter 14: Serial Protocol Basics    319 
 

Remember that IP uses the one's complement datasum which means 
that the carries must be added to the datasum. This gives us a datasum 
of FFFC16 + 3 = FFFF16 which indicates that the checksum is correct. 

Immediately after the IP header is the TCP packet. Using Figure 14-
4, the components of the TCP header can be identified too. 

First two bytes represent the source port. In the sample data, the 
source port's value is 170C16 = 590010. This represents a port for a 
virtual computing network (VNC). Next two bytes represent the 
destination port, which in the sample data is 0DBE16 = 351810. This 
represents the Artifact Message Server port. 

The next four bytes, DEB157C516, identifies the sequence number. 
The four-byte acknowledgement number comes next, 79593ED416. 

The first four bits of the byte following the acknowledgement 
number is the data offset. This is 01012 =5. Multiplying this value by 
four gives us the length of the TCP header, i.e., twenty bytes. 

The last four bits of the same byte joined with the eight bits of the 
next byte represent the twelve control bits. In binary, this value is 
0000000110002. From Figure 14-5, we see that the first six bits of these 
twelve are reserved. After that, they come in order URG, ACK, PSH, 
RST, SYN, and FIN. From our data we see that the ACK and PSH 
flags are set. 

Following the control bits is the two byte value representing the 
window size. This is 421816 = 1692010 in our sample data. 

The next two bytes represent a sixteen bit checksum of B63E16. To 
verify the checksum, the one's complement datasum must be calculated 
from the TCP header (minus the checksum field), the data field 
(everything after the TCP header not including any Ethernet trailer), 
and the pseudo header. Note that since the data field contains 43 bytes 
which is an odd number, an additional byte of zeros must be added to 
the end to allow for the computation of a sixteen-bit checksum. 

To generate the pseudo header, combine the IP source address 
(C5A81A8C16), the IP destination address (C5A81A9716), a byte of 
zeros concatenated with the protocol from the IP header (000616), and 
the length of the TCP header and the payload or data field combined 
(20 bytes for the header plus 43 bytes of data equals 6310 = 003F16). 

Adding the pseudo header, the TCP header, and the data field for the 
sample data results in the following: 

 
 



320   Computer Organization and Design Fundamentals 
 

C5A8 
1A8C 
C5A8 
1A97 
0006 
+003F 
1C0B8 

 170C
0DBE
DEB1
57C5
7959
3ED4
5018
4218
B63E
+0000
35BDB

 00B4
1030
0222
000E
0000
0005
0A99
D404
BADE
2017
FCEF
20DD
0000
0800
DADE
0904
02FC
FF0E
0000
FCFF
0100
+0D00
5E362

 

 
Adding these three sums together produces the result 1C0B816 + 

35BDB16 + 5E36216 = AFFF516. By adding the carries to the lower 
sixteen bits, the checksum result is FFF516 + A16 = FFFF16. Therefore, 
the checksum is correct. 

Following the checksum is the sixteen bit urgent pointer. The 
sample data has this field set to 000016. This makes sense since the 
URG flag was not set which causes the receiver to ignore this field. 

The last field of the TCP header is the option and padding field. By 
using the length of the header calculated earlier, we can see that the 
option and padding field (which serve to fill the rest of the header) must 
have been left out. The header is 20 bytes without them. 

14.8 Additional Resources 
This chapter has provided an overview of serial protocols using 

examples from Ethernet, IP, and TCP. An entire book could be written 
on the details of any one of these protocols. This section presents a few 
additional references that might be helpful to gain further information 
on these topics. 

One of the basic references for Internet protocols can be found in a 
list of documents referred to as requests for comments (RFCs). This 
list of RFCs is maintained by the Internet Engineering Task Force. The 

Sum of bytes 
from pseudo 
header 

Sum of bytes 
from TCP 

header
Sum of 
bytes from 
data field 



 Chapter 14: Serial Protocol Basics    321 
 
two RFCs used for this chapter are RFC 791 (the standard for IP) and 
RFC 793 (the standard for TCP). These can be found on the web at the 
following locations: 

 
 Internet Protocol - DARPA Internet Program Protocol Specification 

(RFC 791) – http://www.faqs.org/rfcs/rfc791.html 
 Transmission Control Protocol - DARPA Internet Program Protocol 

Specification (RFC 793) – http://www.faqs.org/rfcs/rfc793.html 
 
The Institute of Electrical and Electronics Engineers (IEEE) 

maintains the standard for the Ethernet protocol. It too can be found on 
the web at:  

 
 IEEE Std 802.3™-2002 –

http://standards.ieee.org/getieee802/download/802.3-2002.pdf. 
 
In the discussion of the Ethernet frame, it was shown how the first 

three bytes of the MAC address identify the manufacturer. A list of 
these manufacturer codes, called the Organization Unique Identifiers 
(OUI), is also maintained by the Institute of Electrical and Electronics 
Engineers (IEEE). It can be found at: 

 
 IEEE OUI and Company_id Assignments – 

http://standards.ieee.org/regauth/oui/oui.txt 
 
It also might be of help to be able to identify the ports identified in a 

TCP packet. A list of registered port numbers is maintained by the 
Internet Corporation for Assigned Names and Numbers (ICANN). 
There are a number of resources on the web that allow users to search 
for a specific port using the number found in the TCP header. Once 
such service is the Internet Ports Database which can be found at: 

 
 The Internet Ports Database – http://www.portsdb.org/ 

 
Last of all, there are a number of programs that allow a user to 

capture and examine data captured by a NIC. These programs are 
called protocol analyzers or sniffers. Once such program, Packetyzer, is 
available for the Windows  operating systems under the GNU license 
agreement. It is available on the web from Network Chemistry at: 



322   Computer Organization and Design Fundamentals 
 

 
 Network Chemistry: Packetyzer Network Packet Analyzer –   

http://www.packetyzer.com 

14.9 What's Next? 
This chapter has shown how each bit position of a serial frame has a 

defined purpose allowing information to be transmitted from one 
device to another as long as the frame is well-defined. Although serial 
communication is favored as a long-distance computer system interface 
due to its reliability, flexibility, and cost effectiveness, there is a 
drawback. All of the information pertaining to the delivery of the 
message including addressing and control must be contained within a 
single stream of bits. This reduces the performance of the network. 

Chapter 15 brings us back to the hardware of the computer through 
an introduction to the architecture of a processor. This takes us from the 
detailed view of logic gates to the system level view of the computer 
and its major components. The study of computer architecture will 
allow us to better understand how the components work together and 
how they can be used to improve the computer's performance. 

Problems 
1. List the two primary causes for reduced reliability in a parallel 

communication scheme. 

2. In the IEEE 802.3 Ethernet frame format, what is the purpose of 
the 7 byte preamble of alternating ones and zeros sent at the 
beginning of the frame? 

3. What is the binary value of the start delimiter of the IEEE 802.3 
Ethernet frame? 

4. True or false:  The two-byte length field of the IEEE 802.3 
Ethernet frame contains the length of the entire message including 
preamble and start delimiter. 

5. What are the minimum and maximum values that can be contained 
in the length field of an IEEE 802.3 Ethernet frame? 

6. What are the minimum and maximum lengths of the data field of 
an IEEE 802.3 Ethernet frame? 



 Chapter 14: Serial Protocol Basics    323 
 
7. True or false:  If the amount of data being sent using an IEEE 

802.3 Ethernet frame is less than the minimum data field length, 
the data is padded to 46 bytes and the length field is set to 46. 

8. True or false:  All devices can see all of the messages that pass 
across their Ethernet network, even the ones not meant for them. 

9. True or false:  If two Ethernet devices try to transmit at the same 
time and a collision occurs, this means that only one message got 
through and one device will have to retransmit. 

10. List all of the components of the packet that are summed together 
to create the IP checksum? 

11. List all of the components of the packet that are summed together 
to create the TCP checksum? 

12. Describe the addressing used in an Ethernet frame. 

13. Describe the addressing used in an IP packet. 

14. Describe the addressing used in a TCP packet. 

15. Using the data shown below, identify each of the components of 
the Ethernet frame and the IP and TCP packets it contains. Be sure 
to verify the IP and TCP checksums. (Note that the Ethernet 
preamble and trailer are not shown.) 

 offset data 
 
 0000:  00 B0 D0 FE DF 9F 00 07 B3 18 F0 00 08 00 45 60 
 0010:  00 B4 00 7B 40 00 2F 06 0C 86 81 2A 3A 8C 97 8D 
 0020:  EA 9F 1F 40 0A 49 2F 1B 57 77 91 28 81 88 50 18 
 0030:  40 00 E2 14 00 00 CA B1 00 00 00 86 01 00 00 A2 
 0040:  4C CB 2D 36 0D 13 7A 00 00 00 00 00 00 00 08 00 
 0050:  00 00 0F 00 00 00 2F 00 00 00 0B 02 07 66 4F 02 
 0060:  00 04 00 00 00 00 00 04 00 00 00 00 19 24 54 4F 
 0070:  50 49 43 2F 77 69 6D 2F 74 65 6E 6E 69 73 2F 73 
 0080:  63 6F 72 65 2F 54 07 66 4F 02 00 00 2B 74 00 00 
 0090:  00 00 00 00 00 00 00 00 00 00 00 26 1F 8B 08 00 
 00A0:  00 00 00 00 00 03 33 35 30 36 AD 71 AE 71 AA 71 
 00B0:  76 AC 71 72 AC 31 AC 31 06 00 11 83 33 5B 12 00 
 00C0:  00 00  
 

 

 

 



324   Computer Organization and Design Fundamentals 
 
 

 

 

 

 

 

 

 

 

 



 325 

CHAPTER FIFTEEN 

Introduction to Processor Architecture 

15.1 Organization versus Architecture 
Up to this point, the discussion has focused on the components from 

which computers are built, i.e., computer organization. In contrast, 
computer architecture is the science of integrating those components to 
achieve a level of functionality and performance. It is as if computer 
organization examines the lumber, bricks, nails, and other building 
material while computer architecture looks at the design of the house. 

We've already discussed a number of the components of computer 
architecture. For example, when we discussed memory in Chapter 12, 
we introduced the interface that the processor uses to communicate 
with the memory and other peripherals of the system. Chapter 13 
showed how internal registers and the cache RAM improve the 
processor's performance.  

This chapter puts these components together and introduces a few 
new ones to complete the architecture of a general purpose processor. 
A few advanced architecture topics are also examined to see how the 
general architecture can modified to deliver improved performance. 

15.2 Components 
Before going into detail on how the processor operates, we need to 

discuss some of its sub-assemblies. The following sections discuss 
some of the general components upon which the processor is built. 

15.2.1 Bus 
As shown in Chapter 12, a bus is a bundle of wires grouped together 

to serve a single purpose. The main application of the bus is to transfer 
data from one device to another. The processor's interface to the bus 
includes connections used to pass data, connections to represent the 
address with which the processor interested, and control lines to 
manage and synchronize the transaction. These lines are "daisy-
chained" from one device to the next.  

The concept of a bus is repeated here because the memory bus is not 
the only bus used by the processor. There are internal buses that the 
processor uses to move data, instructions, configuration, and status 



326   Computer Organization and Design Fundamentals 
 
between its subsystems. They typically use the same number of data 
lines found in the memory bus, but the addressing is usually simpler. 
This is because there are only a handful of devices between which the 
data is passed. 

In this chapter we will introduce new control lines that go beyond 
the read control, write control, and timing signals discussed in Chapter 
12. These new lines are needed by the processor in order to service 
external devices and include interrupt and device status lines. 

15.2.2 Registers 
As stated when they were introduced in Chapter 13, a register stores 

a binary value using a group of latches. For example, if the processor 
wishes to add two integers, it may place one of the integers in a register 
labeled A and the second in a register labeled B. The contents of the 
latches can then be added by connecting their Q outputs to the addition 
circuitry described in Chapter 8. The output of the addition circuitry is 
then directed to another register in order to store the result. Typically, 
this third register is one of the original two registers, e.g., A = A + B. 

Although variables and pointers used in a program are all stored in 
memory, they are moved to registers during periods in which they are 
the focus of operation. This is so that they can be manipulated quickly. 
Once the processor shifts its focus, it stores the values it doesn't need 
any longer back in memory. 

The individual bit positions of the register are identified by the 
power of two that the position represents as an integer. In other words, 
the least significant bit is bit 0, the next position to the left is bit 1, the 
next is bit 2, and so on. 

For the purpose of our discussion, registers may be used for one of 
four types of operations. 

 
 Data registers – These registers hold the values on which to 

perform arithmetic or logical functions. 
 Address registers – Sometimes, the processor may need to store an 

address rather than a value. A common use of an address register is 
to hold a pointer to an array or string. Another application is to hold 
the address of the next instruction to execute. 

 Instruction registers – Remember that instructions are actually 
numeric values stored in memory. Each number represents a 
different command to be executed by the processor. Some registers 



 Chapter 15: Introduction to Processor Architecture    327 
 

are meant specifically to hold instructions so that they can be 
interpreted to see what operation is to be performed. 

 Flag registers – The processor can also use individual bits grouped 
together to represent the status of an operation or of the processor 
itself. The next section describes the use of flags in greater detail. 

15.2.3 Flags 
Picture the instrumentation on the dash board of a car. Beside the 

speedometer, tachometer, fuel gauge, and such are a number of lights 
unofficially referred to as "idiot lights". Each of these lights has a 
unique purpose. One comes on when the fuel is low; another indicates 
when the high beams are on; a third warns the driver of low coolant. 
There are many more lights, and depending on the type of car you 
drive, some lights may even replace a gauge such as oil pressure. 

How is this analogous to the processor's operation? There are a 
number of indicators that reveal the processor's status much like the 
car's idiot lights. Most of these indicators represent the results of the 
last operation. For example, the addition of two numbers might produce 
a negative sign, an erroneous overflow, a carry, or a value of zero. 
Well, that would be four idiot lights: sign, overflow, carry, and zero. 

These indicators, otherwise known as flags, are each represented 
with a single bit. Going back to our example, if the result of an addition 
is negative, the sign flag would equal 1. If the result was not a negative 
number, (zero or greater than zero) the sign flag would equal 0. 

For the sake of organization, these flags are grouped together into a 
single register called the flags register or the processor status register. 
Since the values contained in its bits are typically based on the outcome 
of an arithmetic or logical operation, the flags register is connected to 
the mathematical unit of the processor. 

One of the primary uses of the flags is to remember the results of the 
previous operation. It is the processor's short term memory. This 
function is necessary for conditional branching, a function that allows 
the processor to decide whether or not to execute a section of code 
based on the results of a condition statement such as "if". 

The piece of code shown in Figure 15-1 calls different functions 
based on the relative values of var1 and var2, i.e., the flow of the 
program changes depending on whether var1 equals var2, var1 is 
greater than var2, or var1 is less than var2. So how does the processor 
determine whether one variable is less than or greater than another? 



328   Computer Organization and Design Fundamentals 
 

if(var1 == var2) 
    equalFunction(); 
else if(var1 > var2)  
    greaterThanFunction(); 
else  
    lessThanFunction(); 

Figure 15-1   Sample Code Using Conditional Statements 

The processor does this using a "virtual subtract."  This is a 
subtraction that occurs in the mathematical unit of the processor where 
it affects the flags, but the result is discarded.  

Referring back to our example, the results of a subtraction of var2 
from var1 is used to select one of three paths through the code.  

 
 var1 is equal to var2 – When one value is subtracted from an equal 

value, the result is zero. Therefore, if the zero flag is set after the 
subtraction, the function equalFunction() should be executed.  

 var1 is greater than var2 – If var1 is larger, then no borrow is 
needed in the subtraction which results in a non-zero value. (A 
borrow will set the carry flag.)  Therefore, after a subtraction, if the 
carry flag and the zero flag are both cleared, var1 was greater than 
var2 and the function greaterThanFunction() is called. 

 var1 is less than var2 – If var1 is smaller, then a borrow is needed 
setting the carry flag. Therefore, after a subtraction, if the carry flag 
is set, var1 was less than var2 and lessThanFunction() is called. 

 
Later in this chapter, there is a more detailed examination of this 

process including a list of the many other program flow control options 
that are available, each of which tests the flags to determine which code 
to jump to after one of these virtual subtracts. 

15.2.4 Buffers 
Rarely does a processor operate in isolation. Typically there are 

multiple processors supporting the operation of the main processor. 
These include video processors, the keyboard and mouse interface 
processor, and the processors providing data from hard drives and 
CDROMs. There are also processors to control communication 



 Chapter 15: Introduction to Processor Architecture    329 
 
interfaces such as USB, Firewire, and Ethernet networks. These 
processors all operate independently, and therefore one may finish an 
operation before a second processor is ready to receive the results.  

If one processor is faster than another or if one processor is tied up 
with a process prohibiting if it from receiving data from a second 
process, then there needs to be a mechanism in place so that data is not 
lost. This mechanism takes the form of a block of memory that can 
hold data until it is ready to be picked up. This block of memory is 
called a buffer. Figure 15-2 presents the basic block diagram of a 
system that incorporates a buffer. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15-2   Block Diagram of a System Incorporating a Buffer 

The concept of buffers is presented here because the internal 
structure of a processor often relies on buffers to store data while 
waiting for an external device to become available. 

15.2.5 The Stack 
During the course of normal operation, there will be a number of 

times when the processor needs to use a temporary memory, a place 
where it can store a number for a while until it is ready to use it again. 
For example, every processor has a finite number of registers. If an 
application needs more registers than are available, the register values 
that are not needed immediately can be stored in this temporary 
memory. When a processor needs to jump to a subroutine or function, it 
needs to remember the instruction it jumped from so that it can pick 

Processor 
A 

Processor 
B 

Buffer 
"memory queue"

Effects of  
unbalanced throughput 
are eased with buffer 

Instead of passing 
data to processor B, 
processor A stores 

data in buffer 

 
Processor B reads 

data from the buffer 
as needed. 



330   Computer Organization and Design Fundamentals 
 
back up where it left off when the subroutine is completed. The return 
address is stored in this temporary memory. 

The stack is a block of memory locations reserved to function as 
temporary memory. It operates much like the stack of plates at the start 
of a restaurant buffet line. When a plate is put on top of an existing 
stack of plates, the plate that was on top is now hidden, one position 
lower in the stack. It is not accessible until the top plate is removed. 

The processor's stack works in the same way. When a processor puts 
a piece of data, a plate, on the top of the stack, the data below it is 
hidden and cannot be removed until the data above it is removed. This 
type of buffer is referred to as a "last-in-first-out" or LIFO buffer. 

There are two main operations that the processor can perform on the 
stack: it can either store the value of a register to the top of the stack or 
remove the top piece of data from the stack and place it in a register. 
Storing data to the stack is referred to as "pushing" while removing the 
top piece of data is called "pulling" or "popping". 

The LIFO nature of the stack makes it so that applications must 
remove data items in the opposite order from which they were placed 
on the stack. For example, assume that a processor needs to store 
values from registers A, B, and C onto the stack. If it pushes register A 
first, B second, and C last, then to restore the registers it must pull in 
order C, then B, then A. 

Example 
Assume registers A, B, and C of a processor contain 25, 83, and 74 

respectively. If the processor pushes them onto the stack in the order A, 
then B, then C then pulls them off the stack in the order B, then A, then 
C, what values do the registers contain afterwards? 

Solution 
First, let's see what the stack looks like after the values from 

registers A, B, and C have been pushed. The data from register A is 
pushed first placing it at the bottom of the stack of three data items. B 
is pushed next followed by C which sits at the top of the stack. In the 
stack, there is no reference identifying which register each piece of data 
came from. 



 Chapter 15: Introduction to Processor Architecture    331 
 

 
 
 
 
 
 
 
When the values are pulled from the stack, B is pulled first and it 

receives the value from the top of the stack, i.e., 74. Next, A is pulled. 
Since the 74 was removed and placed in B, A gets the next piece of 
data, 83. Last, 25 is placed in register C. 

 
 
 
 
 
 
 

15.2.6 I/O Ports 
Input/output ports or I/O ports refer to any connections that exist 

between the processor and its external devices. A USB printer or 
scanner, for example, is connected to the computer system through an 
I/O port. The computer can issue commands and send data to be printed 
through this port or receive the device's status or scanned images.  

As described in the section on memory mapping in Chapter 12, 
some I/O devices are connected directly to the memory bus and act just 
like memory devices. Sending data to the port is done by storing data to 
a memory address and retrieving data from the port is done by reading 
from a memory address. 

In some cases, however, the processor has special hardware just for 
I/O ports. This is done in one of two ways: either the device interface 
hardware is built into the processor or the processor has a second bus 
designed to communicate with the I/O devices. In Chapter 16 we will 
see that the Intel 80x86 family of processors uses the later method. 

If the device is incorporated into the processor, then communication 
with the port is done by reading and writing to registers. This is 
sometimes the case for simple serial and parallel interfaces such as a 
printer port or keyboard and mouse interface. 

25
83
74

Top of stack 
before pushes 

Top of stack 
after pushes 

25 

74 

83 

Register A: 

Register B: 

Register C: 

25
83
74

Top of stack 
after pulls 

Top of stack 
before pulls 

83 

25 

74 

Register A: 

Register B: 

Register C: 



332   Computer Organization and Design Fundamentals 
 
15.3 Processor Level 

Figure 15-3 presents the generic block diagram of a processor 
system. It represents the interface between the processor, memory, and 
I/O devices through the bus that we discussed in the section on memory 
interfacing in Chapter 12. 

 
 
 
 
 
 
 
 

Figure 15-3   Generic Block Diagram of a Processor System 

The internals of a processor are a microcosm of the processor 
system shown in Figure 15-3. Figure 15-4 shows a central processing 
unit (CPU) acting as the brains of the processor connected to memory 
and I/O devices through an internal bus within a single chip.  

The internal bus is much simpler than the bus the processor uses to 
connect its external devices. There are a number of reasons for this. 
First, there are fewer devices to interface with, so the addressing 
scheme does not need to be that complex. Second, the external bus 
needs to be able to adapt to many different configurations using 
components from many different manufacturers. The internal bus will 
never change for that particular model of processor. Third, the CPU 
accesses the internal components in a well-defined, synchronized 
manner allowing for more precise timing logic.  

The following is a description of the components of the processor 
shown in Figure 15-4. 

 
 Central processing unit (CPU) – This is the brain of the processor. 

The execution of all instructions occurs inside the CPU along with 
the computation required to determine addressing. 

 Internal memory – A small, but extremely quick memory. It is 
used for any internal computations that need to be done fast without 
the added overhead of writing to external memory. It is also used  

 
Processor 

Memory
Devices

I/O 
Ports

On-Board 
I/O

DATA 

ADDRESS 

CONTROL 



 Chapter 15: Introduction to Processor Architecture    333 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15-4   Generic Block Diagram of Processor Internals 

for storage by processes that are transparent to the applications, but 
necessary for the operation of the processor. 

 Data buffer – This buffer is a bidirectional device that holds 
outgoing data until the memory bus is ready for it or incoming data 
until the CPU is ready for it. This circuitry also provides signal 
conditioning ensuring the output signals are strong enough and the 
fragile internal components of the CPU are protected. 

 Address latch – This group of latches maintains the address that the 
processor wishes to exchange data with on the memory bus. It also 
provides signal conditioning and circuit protection for the CPU. 

 I/O ports – These ports represent the device interfaces that have 
been incorporated into the processor's hardware. 

 Configuration registers – A number of features of the processor are 
configurable. These registers contain the flags that represent the 
current configuration of the processor. These registers might also 
contain addressing information such as which portions of memory 
are protected and which are not.  

15.4 CPU Level 
If we look at the organization inside the CPU, we see that it in turn 

is a microcosm of the processor block diagram of Figure 15-4. Figure 
15-5 presents the organization inside a typical CPU. 

CPU 

To external 
data bus 

To external 
address bus 

Internal 
Memory

Data 
Buffer

Address 
Latch

I/O 
Ports

To external 
devices 

 

Configuration 
Registers 

Internal 
data bus 



334   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
 
 

Figure 15-5   Generic Block Diagram of a Typical CPU 

 Control unit – Ask anyone who has worked in a large business 
what middle management does and they might say something like, 
"Not a darn thing."  Ask them what expertise middle management 
has and you are likely to get a similar answer. This of course is not 
true. Middle management has a very important task: they know 
what needs to be done, who best can do it, and when it needs to be 
done. This is the purpose of the control unit. It knows the big 
picture of what needs to be done, it knows which of the CPU's 
components can do it, and it controls the timing to do it. 

 Arithmetic logic unit (ALU) – The ALU is a collection of logic 
circuits designed to perform arithmetic (addition, subtraction, 
multiplication, and division) and logical operations (not, and, or, 
and exclusive-or). It's basically the calculator of the CPU. When an 
arithmetic or logical operation is required, the values and command 
are sent to the ALU for processing. 

 Instruction decoder – All instructions are stored as binary values. 
The instruction decoder receives the instruction from memory, 
interprets the value to see what instruction is to be performed, and 
tells the ALU and the registers which circuits to energize in order to 
perform the function. 

 Registers – The registers are used to store the data, addresses, and 
flags that are in use by the CPU. 

15.5 Simple Example of CPU Operation 
Each component of the CPU has a well-defined allocation of duties. 

In addition, the interaction between the components is based on a lock-

Control 
Unit 

Arithmetic 
Logic Unit 

 
Registers 

Internal  
data bus 

Instruction 
Decoder 



 Chapter 15: Introduction to Processor Architecture    335 
 
step communication scheme that places data where it is needed when it 
is needed. The power of the modern processor is the combination of its 
ability to execute digital commands quickly and the compiler's ability 
to take a complex program written in a high-level language and convert 
it to an efficient sequence of digital commands to be used by the CPU. 

Let's examine a short piece of code to see how the CPU might 
execute it. The following for-loop is presented to show how a compiler 
might transform it to a sequence of processor commands. 

 
int sum = 0, max = 0; 
for (int i=0; i<100; i ++) 
{ 
 sum += array[i]; 
 if (max < array[i]) max = array[i]; 
} 
 
The first thing a compiler might do to create executable code for the 

processor is to determine how it is going to use its internal registers. It 
needs to decide which pieces of data require frequent and fast 
operations and which pieces can be kept in the slower main memory. 

First, the index i is accessed repeatedly throughout the block of 
code, so the compiler would assign one of the data registers inside the 
CPU to contain i. Depending on the size of the registers provided by 
the CPU, it would only need to be an 8-bit register. 

Second only to i in the frequency of their use are the values sum and 
max. They too would be assigned to registers assuming that enough 
registers existed in the CPU to support three variables. Since sum and 
max are defined as integers, they would need to be assigned to registers 
equivalent to the size of an integer as defined for this CPU. In the 
Pentium processor, this would be a 32-bit register. 

The data contained in array would not be loaded into a register, at 
least not all at once. First of all, each element of array is accessed only 
once, and it isn't even modified during that access. Second, and more 
important, only a few special application processors have enough 
registers to hold 100 data elements. 

There is one element of array that will be stored in a register, and 
that is the pointer or address that identifies where array is stored in 
memory. Each time the code needs to access an element of array, it 
multiplies the index i by the size of an integer, then adds it to the base 
address of array. This provides a pointer to the specific element of 
array in which the CPU is interested. 



336   Computer Organization and Design Fundamentals 
 

The sequence shown below is one possible way that a compiler 
might convert the sample for-loop into CPU commands. 

 
Step 1: Clear registers assigned for i, sum, and max 
Step 2: Initialize an address register to point to start of array  
Step 3: Use address generated by adding i multiplied by the size of 

an integer to the starting address of array to retrieve 
array[i] from memory 

Step 4: Add retrieved value to register assigned to sum 
Step 5: Compare retrieved value to register assigned to max 
Step 6: If the value in the register assigned to max was less than 

retrieved value, jump to Step 8 
Step 7: Copy retrieved value to register assigned to max 
Step 8: Increment register assigned to i 
Step 9: Compare register assigned to i to 100 
Step 10: If register assigned to i is less than 100, jump to Step 3 
Step 11: Store values in registers assigned to sum and max to the 

appropriate memory locations for later use. Since i is 
visible only within this loop, it does not need to be stored. 

 
There are two things to notice about these steps. First, the steps are 

very minimal. The instruction set that a CPU uses for its operation is 
made from short, simple commands. The typical instruction for a CPU 
involves either a single transaction of data (movement from a register 
to a register, from memory to a register, or from a register to memory), 
or a simple operation such as the addition of two registers. 

The second thing to notice is that this simple sequence uses a two-
step process to handle program flow control. In section 15.2.3, it was 
shown how a "virtual subtraction" is performed to compare two values. 
This operation sets or clears the zero flag, the sign flag, the carry flag, 
and the overflow flag depending on the relationship of the magnitude of 
the two values. For our example, this virtual subtraction occurs in Step 
5 where max is compared to the next value retrieved from array and in 
Step 9 where i is compared to the constant 100.  

Every compare is followed immediately by a conditional jump that 
checks the flags to see if the flow of the program needs to be shifted to 
a new address or if it can just continue to the next address in the 
sequence. There are many more options for conditional jumps than 
were presented in the processor flags section. For example, a 



 Chapter 15: Introduction to Processor Architecture    337 
 
conditional "jump if greater than" might work differently when using 
2's complement values rather than unsigned integer values. 

Table 15-1 presents some of the many options that can be used for 
conditional jumps after a compare. High-level language compilers use 
these conditional jumps to transform if-statements, for-loops, while-
loops, and switch-case blocks into code useable by the processor. Even 
though programmers are told to avoid using any type of "jump" 
commands in their code, compiled CPU instructions are full of them.  

Table 15-1   Conditional Jumps to be Placed After a Compare 

Jump to new address if… Flag conditions 
equal  zero flag = 1 
not equal  zero flag = 0 
greater than or equal (unsigned) carry flag = 0 
greater than (unsigned) carry flag = 0 & zero flag = 0 
less than or equal (unsigned) carry flag = 1 or zero flag = 1 
less than (unsigned) carry flag = 1 
greater than or equal (signed) sign flag = overflow flag 
greater than (signed) sign flag = overflow flag &  

zero flag = 0 
less than or equal (signed) sign flag != overflow flag or  

zero flag = 1 
less than (signed) sign flag != overflow flag 

 
The application of conditional jumps is not limited only to use with 

a compare command. Any operation that affects the flags can be used 
to change the flow of the code using conditional jumps. For example, a 
section of code may need to be executed if the result of a multiplication 
is negative while another section is to be executed if the result is 
positive. Table 15-2 presents some of the options that can be used for 
conditional jumps after an arithmetic instruction that affects the flags.  

Notice that the flag settings for a conditional jump checking for 
equality and the conditional jump checking for a zero are the same in 
both Table 15-1 and Table 15-2. The processor treats these instructions 
the same. In fact, the processor thinks they are exactly the same 
command and they are represented in memory using the same code. 



338   Computer Organization and Design Fundamentals 
 
The only reason there are two different commands is to assist the 
programmer by creating syntax that makes more sense linguistically. 

Table 15-2   Conditional Jumps to be Placed After an Operation 

Jump to new address if… Flag conditions
result is zero  zero flag = 1 
result is not zero  zero flag = 0 
result is positive sign flag = 0 
result is negative sign flag = 1 
operation generated a carry carry flag = 1 
operation generated no carry carry flag = 0 

15.6 Assembly and Machine Language 
Processor designers create a basic set of instructions for every 

processor they design. As we have already discussed, these instructions 
are very simplistic, mere baby steps as compared with high-level 
languages such as C, C++, or BASIC. In order for the instruction 
decoder to decipher what an instruction represents, the instruction itself 
must be a number. These numbers are referred to as machine code. 
Machine code is the instruction set that the processor uses. 

Humans, however, understand words, so each machine code is given 
a lexical equivalent. These instructions in text form are called assembly 
language. There is a one-to-one correlation between assembly 
language instructions and the machine code.  

These definitions do not do a good job of showing how processors 
execute code. For that, let's design the instruction set for a mock 
processor and use those instructions to create some short programs. 

To begin with, assume our mock processor has two registers, A and 
B. Next, let's assume that the processor is an 8-bit machine, i.e., both A 
and B are 8-bit registers and can hold unsigned values from 0 to 255 or 
signed values from –128 to 128. Lastly, let's assume that the processor 
has 16 address lines. This will give us a memory space of 216 = 64K. 

Now let's begin creating the instruction set by brainstorming a list of 
possible operations we could perform on these two registers and some 
of the conditional branches that we might need. Of course if you do this 
exercise on your own, you will come up with a completely different list 
of operations. Below is the instruction set we will use for our example. 



 Chapter 15: Introduction to Processor Architecture    339 
 
 Move data from A to memory  
 Move data from memory to A  
 Load A with a constant 
 Move data from B to memory  
 Move data from memory to B  
 Load B with a constant 
 Exchange values contained in A and B 
 Add A and B and put result in A  
 Take the 2's complement of A (make A negative) 
 Take the 2's complement of B (make B negative) 
 Compare A and B 
 Compare A to a constant 
 Compare B to a constant 
 Jump if equal 
 Jump if first value is greater than second value (signed) 
 Jump if first value is less than second value (signed) 
 Unconditional jump (jump always) 

 
This is a good start except that processors understand binary values, 

not English. By numbering the instructions, the instruction decoder can 
identify the requested operation by matching it with the corresponding 
integer (machine code). Table 15-3 presents one possible numbering. 

Unfortunately, human beings are not very adept at programming 
with numbers. Words are far more natural for us, so each machine code 
instruction is given a text abbreviation to describe its operation. The 
resulting collection of words is called assembly language. The one-to-
one correspondence between machine code and assembly language is 
used by a program called an assembler to create the machine code that 
will be executed by the CPU. Table 15-4 presents a suggested assembly 
language for the instruction set of our imaginary processor. 

We need to define one last item for our instruction set before we can 
begin programming. Some of the processor's instructions require 
additional information in order to be executed. This might be a constant 
to be loaded into a register, an address pointing to a memory location, 
or some other attribute that the CPU needs in order to properly execute 
the instruction. These additional pieces of data are called operands. 
Table 15-5 takes the list of instructions for our processor and shows the 
size and type of operand that would be needed with each. 



340   Computer Organization and Design Fundamentals 
 

Table 15-3   Numbered Instructions for Imaginary Processor 

Machine code Instruction 
01 Move data from A to memory  
02 Move data from memory to A  
03 Load A with a constant 
04 Move data from B to memory  
05 Move data from memory to B  
06 Load B with a constant 
07 Exchange values contained in A and B 
08 Add A and B and put result in A  
09 Take the 2's complement of A (negative) 
0A Take the 2's complement of B (negative) 
0B Compare A to B 
0C Compare A to a constant 
0D Compare B to a constant 
0E Jump if equal 
0F Jump if first value is greater than second value 
10 Jump if first value is less than second value 
11 Jump unconditionally (jump always) 

Table 15-4   Assembly Language for Imaginary Processor 

Machine code Assembly language Instruction 
01 STORA Move data from A to memory  
02 LOADA Move data from memory to A  
03 CNSTA Load A with a constant 
04 STORB Move data from B to memory  
05 LOADB Move data from memory to B  
06 CNSTB Load B with a constant 
07 EXCAB Exchange values in A and B 
08 ADDAB Add A and B and put result in A  
09 NEGA Take the 2's complement of A 
0A NEGB Take the 2's complement of B 
0B CMPAB Compare A to B 
0C CMPAC Compare A to a constant 
0D CMPBC Compare B to a constant 
0E JEQU Jump if equal 
0F JGT Jump if first value is greater 
10 JLT Jump if second value is greater 
11 JMP Jump always 



 Chapter 15: Introduction to Processor Architecture    341 
 

Table 15-5   Operand Requirements for Imaginary Processor 

Instruction Operands required 
Move data from A to memory (STORA) 16-bit memory address 
Move data from memory to A (LOADA) 16-bit memory address 
Load A with a constant (CNSTA) 8-bit constant 
Move data from B to memory (STORB) 16-bit memory address 
Move data from memory to B (LOADB) 16-bit memory address 
Load B with a constant (CNSTB) 8-bit constant 
Exchange values in A & B (EXCAB) None 
Add A and B and put result in A (ADDAB) None 
Take the 2's complement of A (NEGA) None 
Take the 2's complement of B (NEGB) None 
Compare A to B (CMPAB) None 
Compare A to a constant (CMPAC) 8-bit constant 
Compare B to a constant (CMPBC) 8-bit constant 
Jump if equal (JEQU) 16-bit destination address 
Jump if 1st val. Is greater than 2nd val. (JGT) 16-bit destination address 
Jump if 1st val. Is less than 2nd val. (JLT) 16-bit destination address 
Jump always (JMP) 16-bit destination address 
 
Now that we have a set of instructions, let's create a simple program. 

This first program adds two variables together and puts the result into a 
third variable. In a high-level language, this is a single line of code. 

 
RESULT = VAR1 + VAR2 

 
To do this in assembly language, however, takes a few more steps. 

First, our instruction set does not support the addition of variables in 
memory. Therefore, the data will need to be copied from memory into 
registers where the addition can be performed. Second, since the result 
of the addition will be in a register, we will need to store the data back 
to memory in order to free up the register. The code below is the 
assembly language equivalent of RESULT = VAR1 + VAR2. 

 
LOADA VAR1 
LOADB VAR2 
ADDAB 
STORA RESULT 

 



342   Computer Organization and Design Fundamentals 
 

The next step is to have an assembler convert this assembly 
language code to machine language so the processor can execute it. 

There is another thing that must be done before a processor can 
execute code: the variable names must be converted into addresses. For 
the purpose of our example, assume that VAR1 is stored at address 
5E0016, VAR2 is stored at 5E0116, and RESULT is stored at 5E0216. By 
using Table 15-4 to convert the assembly language to machine code 
and by substituting the addresses shown above, the assembly language 
program becomes the following sequence of numbers. (All of the 
values are shown in hexadecimal.) 

 
02 5E00 
05 5E01 
08 
01 5E02 

 
This is what the processor reads and executes. In memory, it appears 

as a sequence of binary values, but to the instruction decoder, each byte 
becomes executable code and data. The following sequence of values is 
how the data would appear in memory. 

 
02 5E 00 05 5E 01 08 01 5E 02 

 
Now that it has been shown how assembly language is converted 

into machine code, let's go the other way and see how the CPU might 
interpret a sequence of numbers stored as code in memory. Table 15-6 
presents a sample of some code stored in memory starting at address 
100016. Each location stores a byte which is the size of a single 
machine code instruction, an 8-bit constant, or one half of a 16-bit 
address. All of the values are shown in hexadecimal. 

Table 15-6   A Simple Program Stored at Memory Address 100016 

Address Data Address Data Address Data 
100016 0216 100516 0F16 100A16 0516 
100116 1216 100616 1016 100B16 0816 
100216 3E16 100716 0916 100C16 0116 
100316 0C16 100816 0916 100D16 1216 
100416 FF16 100916 0616 100E16 3E16 



 Chapter 15: Introduction to Processor Architecture    343 
 

Assuming that the instruction decoder is told to begin executing 
code starting at address 100016 and by using the machine code to 
assembly language translations found in Table 15-4, this string of 
values can be decoded into executable instructions. Starting at address 
100016, we see that the first instruction is 0216. Table 15-4 equates 0216 
to the LOADA instruction while Table 15-5 shows that LOADA uses a 
16-bit address. Therefore, the next two bytes in memory (addresses 
100116 and 100216) contain the address from which register A will be 
loaded. This gives us the first instruction: LOADA 123E. 

The next instruction comes after the operands of the LOADA 
instruction. This puts us at address 100316. Address 100316 contains 
0C16 which we see from Table 15-4 represents CMPAC, i.e., compare 
A with a constant. Table 15-5 shows that CMPAC uses a single 8-bit 
constant as its operand. Since 100416 contains FF16, the 2's complement 
representation of –1, the next instruction is CMPAC –1. 

The CMPAC –1 instruction is followed by the machine code 0F16 at 
address 100516. 0F16 represents the assembly language JGT, "Jump if 
first value is greater than second value."  When this instruction is 
executed, it will jump if the value loaded into accumulator A is greater 
than -1, i.e., if it is a positive number or zero. The next two bytes 
represent the address that will be jumped to, 100916. 

By continuing this process for the remainder of the code, the 
assembly language program that is represented by this machine code is 
revealed. Figure 15-6 presents the final code with the leftmost column 
presenting the address where the instruction begins and the rightmost 
column representing an in-line comment field. 

 
100016 LOADA 123E

16 ;Put data from address 123E16 in A 
100316 CMPAC –1 ;Compare A to –1 
100516 JGT 1009

16 ;If A>–1, jump to address 100916 
100816 NEGA  ;A = –A 
100916 CNSTB 5 ;Put a constant 5 in B 
100B16 ADDAB  ;A = A + B 
100C16 STORA 123E

16 ;Store A at address 123E16 

Figure 15-6   Decoded Assembly Language from Table 15-6 

Notice that if A is positive or zero, the compare and subsequent JGT 
at addresses 100316 and 100516 respectively will force the processor to 



344   Computer Organization and Design Fundamentals 
 
skip over the instruction at 100816 and execute the CNSTB 5 at address 
100916. In a high-level language, the code above might look like the 
following two instructions where the address of VAR is 123E16. 

 
if (VAR > –1) VAR = –VAR; 
VAR = VAR + 5; 

 
It is important to note that not only does machine language require 

variable names to be replaced with references to memory addresses, but 
jumps must also use addresses. Second, note that a comment field has 
been added to the code in Figure 15-6. All assembly languages have a 
provision commenting. Usually it is of the in-line variety where a 
character, in this case a semi-colon (;), is used to comment out all of the 
subsequent characters until the end of the line is reached. 

Every processor has an assembly language associated with it. Since 
the processors have different architectures, functions, and capabilities, 
the languages are usually quite different. There are, however, 
similarities. For example, there are three general categories of 
instructions for all processors: data transfer, data manipulation, and 
program control   Data transfer instructions are used to pass data 
between different parts of the processor and memory. These include: 

 
 Register-to-register transfers 
 Register-to-memory or port transfers 
 Memory or port-to-register transfers 
 Memory or port-to-memory or port transfers 

 
Data manipulation instructions make use of the ALU to operate on 

values contained in the registers or in memory. These include: 
 

 Math operations such as add, subtract, multiply, and divide  
 Logic operations such as and, or, xor, and not  
 Bit manipulation such as shifting 

 
Within the CPU is a register that contains an address pointing to the 

next instruction to be executed. There are a number of different names 
given to this register such as program counter or instruction pointer. 
Every time an instruction is executed, this pointer is modified so that it 
points to the next instruction to be executed. Program control 



 Chapter 15: Introduction to Processor Architecture    345 
 
instructions are used to assign new values to this register so that control 
can jump to a new position in the program. Some of the program 
control instructions use the CPU's flags to determine whether a jump in 
the code will be performed or not. These are the conditional jumps 
described earlier. The following is a short list of some of the major 
program control instructions: 

 
 Jump to a new address of the code 
 Jump to a subroutine or function 
 Return from a subroutine or function  
 Conditional jumps 

 
There are a number of reasons to program in assembly language just 

as there are a number of reasons to avoid it. The tiny, almost primitive 
processor dependent assembly language instructions cause many 
problems for programmers. The result is code that is: 

 
 complicated to learn and use;  
 hard to debug;  
 more time consuming to write; 
 unable to be directly transferred to a different processor; and  
 harder to decipher if the programmer is unfamiliar with it.  

 
The main benefits of programming in assembly language are due to 

the fact that the programmer is working much closer to the electronics 
of the processor. This makes it so that the details of the processor are 
not hidden by the operating system or compiler. Programming in 
assembly language gives the programmer: 

 
 full access to all processor resources;  
 the ability to make much faster code; and  
 the ability to make far more compact code.  

15.7 Big-Endian/Little-Endian 
In the previous section, some of the operands were 16-bits in length 

and had to be broken into 8-bit values in order to be stored in memory. 
It is not much of a problem to store numbers larger than the width of 
the data bus in memory. By partitioning the value to be stored into 



346   Computer Organization and Design Fundamentals 
 
chunks that are the size of the data bus, the processor simply uses 
sequential memory locations to store large values. For example, if a 
processor with an 8-bit data bus needs to store the 32-bit value 
3A2B48CA16, it uses four memory locations: one to store 3A16, one for 
2B16, one for 4816, and one for CA16. When it retrieves the data, it reads 
all four values and reconstructs the data in one of its registers. The 
processor designer must ensure that the order in which the smaller 
chunks are stored remains consistent for both reading and writing, or 
the value will become corrupted. This should not be a problem. 

It can become a problem, however, when data is being transferred 
between processors that use different orders. Big-endian and little-
endian are terms used to identify the order in which the smaller words 
or bytes are stored. Big-endian means that the first byte or word stored 
is the most significant byte or word. Little-endian means that the first 
byte or word stored is the least significant byte or word. The method 
selected does not affect the starting address, nor does it affect the 
ordering of items in a data structure. 

15.8 Pipelined Architectures 
Microprocessor designers, in an attempt to squeeze every last bit of 

performance from their designs, try to make sure that every circuit of 
the CPU is doing something productive at all times. Circuitry is added 
that tries to predict what each CPU component should be doing as soon 
as it finishes its current task. Even if the prediction was wrong, nothing 
is lost; the result is simply ignored. If, however, the outcome was 
useful, then time has been saved and code executed faster. 

The most common application of this practice applies to the 
execution of instructions. It is based on the fact that there are steps to 
the execution of an instruction, each of which uses entirely different 
components of the CPU.  

Let's begin our discussion by assuming that the execution of a 
machine code instruction can be broken into three stages: 

 
 Fetch – get the next instruction to execute from its location in 

memory 
 Decode – determine which circuits to energize in order to execute 

the fetched instruction 
 Execute – use the ALU and the processor to memory interface to 

execute the instruction 



 Chapter 15: Introduction to Processor Architecture    347 
 

By comparing the definitions of the different components of the 
CPU shown in Figure 15-5 with the needs of these three different 
stages or cycles, it can be seen that three different circuits are used for 
these three tasks. 

 
 The internal data bus and the instruction pointer perform the fetch. 
 The instruction decoder performs the decode cycle. 
 The ALU and CPU registers are responsible for the execute cycle. 

 
Once the logic that controls the internal data bus is done fetching the 

current instruction, what's to keep it from fetching the next instruction? 
It may have to guess what the next instruction is, but if it guesses right, 
then a new instruction will be available to the instruction decoder 
immediately after it finishes decoding the previous one. 

Once the instruction decoder has finished telling the ALU what to 
do to execute the current instruction, what's to keep it from decoding 
the next instruction while it's waiting for the ALU to finish? If the 
internal data bus logic guessed right about what the next instruction is, 
then the ALU won't have to wait for a fetch and subsequent decode in 
order to execute the next instruction. 

This process of creating a queue of fetched, decoded, and executed 
instructions is called pipelining, and it is a common method for 
improving the performance of a processor.  

Figure 15-7 shows the time-line sequence of the execution of five 
instructions on a non-pipelined processor. Notice how a full fetch-
decode-execute cycle must be performed on instruction 1 before 
instruction 2 can be fetched. This sequential execution of instructions 
allows for a very simple CPU hardware, but it leaves each portion of 
the CPU idle for 2 out of every 3 cycles. During the fetch cycle, the 
instruction decoder and ALU are idle; during the decode cycle, the bus 
interface and the ALU are idle; and during the execute cycle, the bus 
interface and the instruction decoder are idle. 

Figure 15-8 on the other hand shows the time-line sequence for the 
execution of five instructions using a pipelined processor. Once the bus 
interface has fetched instruction 1 and passed it to the instruction 
decoder for decoding, it can begin its fetch of instruction 2. Notice that 
the first cycle in the figure only has the fetch operation. The second 
cycle has both the fetch and the decode cycle happening at the same 
time. By the third cycle, all three operations are happening in parallel. 



348   Computer Organization and Design Fundamentals 
 

 
 

 
 
 
 
 
 
 
 

Figure 15-7   Non-Pipelined Execution of Five Instructions 

 
 
 
 
 
 
 
 
 
 
 

Figure 15-8   Pipelined Execution of Five Instructions 

Without pipelining, five instructions take 15 cycles to execute. In a 
pipelined architecture, those same five instructions take only 7 cycles to 
execute, a savings of over 50%. 

In general, the number of cycles it takes for a non-pipelined 
architecture using three cycles to execute an instruction is equal to three 
times the number of instructions. 

 
Num. of cycles (non-pipelined) = 3 × number of instructions (15.1) 
 
For the pipelined architecture, it takes two cycles to "fill the pipe" so 

that all three CPU components are fully occupied. Once this occurs, 

F D E F D E F D E F D E F D E 
15 cycles 

Instruction 
1 

Instruction
2

Instruction
3

Instruction
4

Instruction 
5

Time
F – fetch cycle  

D – decode cycle 

E – execute cycle 

F D E 
F D E 

F D E 
F D E 

F D E
7 cycles F – fetch cycle  

D – decode cycle 

E – execute cycle Time

Instruction 1 
Instruction 2 

Instruction 3 
Instruction 4 

Instruction 5 



 Chapter 15: Introduction to Processor Architecture    349 
 
then an instruction is executed once every cycle. Therefore, the formula 
used to determine the number of cycles used by a pipelined processor 
to execute a specific number of instructions is: 

 
Num. of cycles (pipelined) = 2 + number of instructions (15.2) 
 
As the number of instructions grows, the number of cycles required 

of a pipelined architecture approaches 1/3 that of the non-pipelined. 

Example 
Compare the number of cycles required to execute 50 instructions 

between a non-pipelined processor and a pipelined processor. 

Solution 
Using equations 15.1 and 15.2, we can determine the number of 

cycles necessary for both the non-pipelined and the pipelined CPUs. 
 
number of cycles (non-pipelined) = 3 * 50 = 150 cycles 
 
number of cycles (pipelined) = 2 + 50 = 52 cycles 
 
By taking the difference, we see that the pipelined architecture will 

execute 50 instructions in 98 fewer cycles. 
 
There is one more point that needs to be addressed when discussing 

pipelined architectures. In order for the bus interface logic to retrieve 
the next instruction, it needs to know where to find it. For most 
instructions, it is only a matter of knowing how many memory 
locations to move forward from the current position.  

For example, assume that the bus interface logic for our mock 
processor has retrieved the machine code 03. It doesn't need to know 
that this instruction is CNSTA, "Load A with a constant," it only needs 
to know how many memory locations the instruction uses. From Table 
15-5 we see that CNSTA uses an 8-bit operand. Therefore, including 
the instruction itself, this particular instruction uses 2 bytes in memory. 
This means that the bus interface logic needs to increment 2 positions 
in order to point to the next instruction. 

The address of the next instruction can be found even for the 
unconditional jump instruction, JMP. In this case, the bus interface 



350   Computer Organization and Design Fundamentals 
 
logic needs to load the instruction pointer with the two bytes following 
the JMP = 1116 machine code to point to the next instruction to fetch. 

There is one group of instructions for which there is no method to 
reliably predict where to find the next instruction in memory: 
conditional jumps. For our mock processor, this group of instructions 
includes "Jump if equal" (JEQU), "Jump if first value is greater than 
second value" (JGT), and "Jump if first value is less than second value" 
(JLT). Each of these instructions has two possible outcomes: either 
control is passed to the next instruction or the processor jumps to a new 
address. The decision, however, cannot be made until after the 
instruction is executed, the last cycle of the sequence. This is because 
the flags from the previous instruction must be evaluated before the 
processor knows which address to load into the instruction pointer. 

There are a number of methods used to predict what the next 
instruction will be, but if this prediction fails, the pipeline must be 
flushed of all instructions fetched after the conditional jump. The bus 
interface logic then starts with a new fetch from the address determined 
by the execution of the conditional jump. Each time the pipeline is 
flushed, two cycles are added to the execution time of the code.  

15.9 Passing Data To and From Peripherals 
Although the vast majority of data transactions within a computer 

occur between the processor and its memory, sometimes the processor 
must communicate with external devices. This means that the processor 
must be able to transfer data to and from devices such as a hard drive or 
a flash RAM, receive data from inputs such as the keyboard and mouse, 
and send data to outputs such as the video system. 

Every year brings technology that allows for higher and higher 
densities of digital circuitry. This makes it so that every new processor 
design contains greater functionality. One of these improvements is to 
incorporate greater levels of interface circuitry into the processor. This 
might include a built-in keyboard/mouse interface or a communication 
interface. When this is done, exchanging data with the interface is 
performed by reading from or writing to a set of special registers 
contained within the processor. 

Sometimes though, the processor will still need a special interface to 
an external device. In these cases, the external device can be connected 
through the same bus that the processor uses to communicate with the 
memory. 



 Chapter 15: Introduction to Processor Architecture    351 
 
15.9.1 Memory-Mapped I/O 

Recall the process that the processor uses to read and write from 
memory. It begins by placing the address of the memory location it 
wishes to exchange data with on its address lines. If it is writing data, it 
places the data to store in memory on the data lines and pulls the write 
line low while leaving the read line high. If it is reading data, it pulls 
the read line low while leaving the write line high, then retrieves the 
data from the data lines. 

Sending data to and receiving data from an external input/output 
(I/O) device can be done using the same process. The major difference 
is that a memory device will have a great deal more memory locations 
than an I/O device. Where a memory device may require an address 
space on the order of Megabytes, an I/O device may require only a few 
addresses. These addresses may be used for configuring the device, 
reading its status, receiving captured data, or sending data. 

The chip select design discussion in Chapter 12 showed that the 
address lines are divided into two groups, one that specifies the chip 
select bit pattern and one that is used to determine the address within 
the memory device. The number of bits used for the address within the 
memory device is determined by the size of the device itself. For 
example, a 256 Meg device uses 28 address lines (228 = 256 Meg).  

Assume that an interface needs to be designed for an I/O device that 
has two registers that are written to, one for writing a configuration and 
one for writing data, and two registers that are read from, one for 
reading the device's status and one for reading data. This means that the 
device requires only two addresses. This can be handled with a single 
address line, A0. Table 15-7 presents the signal settings for 
communicating with such a device. 

Table 15-7   Signal Values for Sample I/O Device 

A0 R W Function 
0 0 1 Reading from device's status register 
1 0 1 Reading from device's data register 
0 1 0 Writing to device's configuration register 
1 1 0 Writing to device's data register 
X 1 1 No data transaction 



352   Computer Organization and Design Fundamentals 
 

By using the remaining address lines for the chip select, this I/O 
device can be inserted into the memory map of the processor using the 
processor's memory bus. This method of interfacing an I/O device to a 
processor is called memory mapping. Figure 15-9 shows a basic 
memory mapped device circuit that uses four addresses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15-9   Sample Memory Mapped Device Circuit 

Some processors add a second read control line and a second write 
control line specifically for I/O devices. These new lines operate 
independently of the read and write control lines set up for memory. 
This does two things for the system. First, it allows the I/O devices to 
be added to the main processor bus without stealing memory addresses 
from the memory devices. Second, it makes it so that the I/O devices 
are not subject to the memory handling scheme of the operating system. 

Typically, there is a different set of assembly language instructions 
that goes along with these new control lines. This is done to distinguish 
a read or write with a memory device from a read or write with an I/O 
device. Table 15-8 summarizes how the processor uses the different 
read and write control lines to distinguish between an I/O device 
transaction and a memory transaction.  

 

A0 
A1 
 
DO 
D1 
 
D7 
 

chip select 
 

read control 
 

write control 

One or two
low-order 

address lines

Data lines
through which

to pass data
Majority of 

address lines 
define chip 

select 

R

W

Memory 
Mapped I/O 

Device 



 Chapter 15: Introduction to Processor Architecture    353 
 
Table 15-8   Control Signal Levels for I/O and Memory Transactions 

Rmemory Wmemory RI/O device WI/O device Operation 
0 1 1 1 Reading from memory 
1 0 1 1 Writing to memory 
1 1 0 1 Reading from I/O device 
1 1 1 0 Writing to I/O device 
1 1 1 1 Bus is idle 

 
The methods used to physically connect the processor with an I/O 

device are only half of the story. The next thing to understand is how 
the operating system or the software application accesses the device 
while maintaining responsibility for its other duties.  

15.9.2 Polling 
The method used by the operating system and its software 

applications to communicate with I/O devices directly affects the 
performance of the processor. This is due to the asynchronous nature of 
I/O. In other words, the I/O device is never ready exactly when the 
processor needs it to be. For example, the processor cannot predict 
when a user might press a key, a network connection is not as fast as 
the processor that's trying to send data down it, and the mechanical 
nature of a hard drive means that the processor will have to wait for the 
data it requested. If an I/O interface is not designed properly, the 
processor will be stalled as it waits for access to the I/O device. 

There are four basic methods used for communicating with an I/O 
device: polling, interrupts, direct memory access, and I/O channels. The 
first of these, polling, is by far the lowest performer, but it is presented 
here due to its simplicity. 

When an I/O device needs attention from the processor, it usually 
indicates this by changing a flag in one of its status registers. For 
example, a network interface may have a bit in one of its status 
registers that is set to a one when its receive buffer is full. If the 
processor does not attend to this situation immediately, new incoming 
data may overwrite the buffer causing the old data to be lost. 

In the polling method, the processor continually reads the status 
registers of the I/O device to see if it needs attention. There are two 
problems with this method. First, data might be missed if the register is 
not read often enough. Second, by forcing the processor to 



354   Computer Organization and Design Fundamentals 
 
continuously monitor the I/O inputs, considerable processing time is 
eaten up without having much to show for it. The majority of the reads 
are not going to show any change in the input values.  

15.9.3 Interrupts 
The problems caused by using the polling method of communication 

with an I/O device can be solved if a mechanism is added to the system 
whereby each I/O device could "call" the processor when it needed 
attention. This way the processor could tend to its more pressing duties 
and communicate with the I/O device only when it is asked to. If each 
call was handled with enough priority, the chance of losing data would 
be greatly reduced. 

This system of calling the processor is called interrupt driven I/O. 
Each device is given a software or hardware interface that allows it to 
request the processor's attention. This request might be to tell the 
processor that new data is available to be read, that the device is ready 
to receive data, or that a process has completed. The call to the 
processor requesting service is called an interrupt. 

It is as if someone was reading a book when the telephone rings. 
The reader, concerned about keeping her place in the book, places a 
book mark to indicate where she left off. She then answers the phone 
and carries on a conversation while the book "waits" for her attention to 
return. While chatting on the phone, the person notices the dog standing 
at the door waiting to be let out. She tells the person on the other end of 
the line, "Hold that thought, I'll be right back."  After she lets out the 
dog, she returns to the phone call, picks up where she left off. When 
she finishes talking on the phone, she hangs up and returns to her 
reading exactly where she left off. 

The processor handles devices that need service in a similar way. 
When the processor receives a device interrupt, it needs to remember 
exactly what it was doing when it was interrupted. This includes the 
current condition of its registers, the address of the line of code it was 
about to execute, and the settings of all of its flags. It does this by 
storing its registers and instruction pointer to the stack using pushes. 

Once its current status is stored, the processor executes a function to 
handle the device's request. This function is called an interrupt service 
routine (ISR). There could be a single ISR for a group of devices or a 
different ISR for each device. By using interrupts and ISRs, the 



 Chapter 15: Introduction to Processor Architecture    355 
 
processor is able to concentrate on running applications while it is the 
responsibility of the devices themselves to monitor their condition. 

It is important to note that unlike subroutines, ISRs are not called 
with function calls from the application or operating system code. The 
processor maintains a list of the ISRs that correspond to each device. 
When a device interrupts the processor, the processor halts the 
execution of the main code, looks up the address of the appropriate 
ISR, and jumps to it. Once the ISR is complete, the processor restores 
its previous condition by pulling the register values and instruction 
pointer from the stack so as to pick up the main code where it left off. 
Figure 15-10 presents a basic diagram of this operation. 

 
 
 
 
 
 
 
 
 
 
 

Figure 15-10   Basic Operation of an ISR 

Although interrupts greatly improve the performance of a system by 
requiring the processor's attention only when it is needed, there is still a 
large burden placed on the processor if the device requires the transfer 
of a large block of data.  

15.9.4 Direct Memory Access 
Assume that a communication device receives a large block of data 

that needs to be placed into memory. It interrupts the processor which 
in turn initiates the execution of an ISR. The function of the ISR is to 
make the processor read the data one piece at a time from the device, 
then store it to memory. This repetitive read-write process takes 
processing time away from the applications. In addition, each piece of 

Main program 
. 
. 
. 
. 
. 

Interrupt Service 
Routine 
. 
. 
Return at end 

Upon receiving an interrupt 
request, the CPU stops execution 

of code to execute ISR

Once ISR is finished, 
CPU returns to where it left off



356   Computer Organization and Design Fundamentals 
 
data goes through a two step process, a read from the device then a 
store to memory, in order to complete a transfer. 

It would be far more efficient for the data to be transferred directly 
from the I/O device to memory. A process such as this would not need 
to involve the processor at all. If the processor could remain off of the 
bus long enough for the device to perform the transfer, the processor 
would only need to be told when the transfer was completed. It could 
even continue to perform functions that did not require bus access. 

This type of data transfer is called direct memory access (DMA), 
and although it still requires an interrupt, it is far more efficient since 
the processor does not need to perform the data transfer. The typical 
system uses a device called a DMA controller that is used to take over 
the bus when the device needs to make a transfer to or from memory. 
The controller either waits for a time when the processor does not need 
the bus or it sends the processor a signal asking it to suspend its bus 
access for one cycle while the I/O device makes a transfer.  

A DMA transaction involves a three step process. In the first step, 
the processor sets up the transfer by telling the DMA controller the 
direction of the transfer (read or write), which I/O device is to perform 
the transfer, the address of the memory location where the data will be 
stored to or read from, and the amount of data to be transferred. 

Once the processor has set up the transfer, it relinquishes control to 
the DMA controller. As the I/O device receives or requires data, it 
communicates directly with memory under the supervision of the DMA 
controller. The last step comes when the transfer is complete. At this 
point, the DMA controller interrupts the processor to tell it that the 
transfer is complete. 

15.9.5 I/O Channels and Processors 
As I/O devices become more sophisticated, more and more of the 

processing responsibility can be taken off of the processor and placed 
on the I/O device itself. Some I/O devices can access and execute 
application software directly from main memory without any processor 
intervention. These are I/O channels. Other I/O devices, I/O 
processors, are computer systems in their own right taking the 
functionality of the processor and distributing it to the end devices.  



 Chapter 15: Introduction to Processor Architecture    357 
 
15.10 What's Next? 

At this point, the reader should have enough of a background in 
computer architecture to begin examining a specific processor. In 
Chapter 16, we will study the Intel 80x86 processor architecture from 
the point of view of the hardware. Following that, Chapter 17 presents 
a basic introduction to the Intel 80x86 assembly language.  

Problems 
1. List the types of registers utilized by the processor and describe 

their operation. 

2. Determine the settings of the zero flag, the carry flag, the overflow 
flag, and the sign flag for each of the following 8-bit operations. 

 

10110110  01011011  10011001

+ 01001010  + 01110010  – 00001000

 

3. If registers A, B, and C contain the values 12, 65, and 87 
respectively, and they are pushed to the stack in the order A, then 
B, then C, what values do A, B, and C have if they then are pulled 
from the stack in the order C, then A, then B? 

4. List and describe the purpose of each of the components of the 
processor. 

5. List and describe the purpose of each of the components of the 
CPU. 

6. Using Tables 15-4 and 15-5, convert the following assembly 
language to machine code. 

LOADA 100016 
LOADB 100116 
CMPAB  
JGT AGREATER
EXCAB  

AGREATER: STORA 100216 
 

7. What is the purpose of an instruction pointer? 



358   Computer Organization and Design Fundamentals 
 
8. List the four drawbacks presented in the text to programming in 

assembly language. 

9. List the three benefits presented in the text to programming with 
assembly language. 

10. Using Tables 15-4 and 15-5, convert the following machine code 
to assembly language starting at address 200016. 

Address Data
200016 02 
200116 13 
200216 4E 
200316 05 
200416 13 
200516 4F 
200616 08 
200716 05 
200816 13 
200916 50 
200A16 0A 
200B16 08 
200C16 01 
200D16 13 
200E16 51 

 

11. What type of instruction might force the processor to flush the 
pipeline? 

12. List the two benefits of using separate read/write control lines for 
I/O devices instead of using memory mapped I/O. 

13. What two problems does the polling method to monitor the I/O 
devices have that are solved by interrupt-driven I/O? 

14. What problem does non-DMA interrupt-driven I/O have that is 
solved by DMA? 

15. How would the 32-bit value 1A2B3C4D16 be stored in an 8-bit 
memory with a processor that used big-endian?  Little-endian? 

 



 359 

CHAPTER SIXTEEN 

Intel 80x86 Base Architecture 

16.1 Why Study the 80x86? 
Any introduction to processor architecture should be followed by an 

investigation of the architecture of a specific processor. The choice then 
becomes which processor to examine. There are so many. Some 
approaches use a virtual processor, i.e., one that exists only on paper or 
as a simulator. This method simplifies the learning process by 
concealing the complexities and idiosyncrasies of a real processor. 

At the other extreme, we could examine a modern processor such as 
the Intel® Pentium® 4 Processor Extreme Edition with its Hyper-
Threading Technology™, Hyper-Pipelined Technology™, enhanced 
branch prediction, three levels of 8-way cache including a split L1 
cache, and multiple ALUs. Or we could look at the Apple® PowerPC® 
G5 with its 64-bit architecture, two double-precision floating point 
units, and twelve functional units. If you are a student who has just 
been introduced to processor architecture, this can be like trying to 
swallow an elephant. Too many new concepts must be explained before 
even a minimal understanding of the processor can be had. 

A third method is to examine the simplest processor from a family 
of existing processors. This particular processor should provide the 
closest match to the processor architecture discussed in Chapter 15 
while providing a link to the most modern processor of the family. It 
eliminates the need for a discussion of advanced computer architecture 
concepts while giving the student a real processor that they can 
program. 

The processor we present here is the original 16-bit Intel processor, 
the 80186, the root of the Intel processor family that is commonly 
referred to as the 80x86 family. The 'x' in 80x86 represents the 
generation of the processor, 1, 2, 3, and so on. Table 16-1 presents a 
summary of the bus characteristics of some of the 80x86 processors. 

The 80186 has 16 data lines allowing it to perform operations on 
unsigned integers from 0 to 216 – 1 = 65,535 and signed integers from  
–32,768 to 32767. It has 20 address lines providing access to a memory 
space of 220 = 1 Meg. 



360   Computer Organization and Design Fundamentals 
 
Table 16-1   Summary of Intel 80x86 Bus Characteristics 

Processor 
Data  

bus width
Address 

bus width
Size of  

address space 
80186 16 20 220 = 1 Meg 
80286 16 24 224 = 16 Meg 
80386SX 16 24 224 = 16 Meg 
80386DX 32 32 232 = 4 Gig 
80486 32 32 232 = 4 Gig 
80586 "Pentium" 64 32 232 = 4 Gig 

16.2 Execution Unit 
The 80x86 processor is divided into two main components: the 

execution unit and the bus interface unit. The execution unit (EU) is 
the 80x86's CPU as discussed in Chapter 15. It is controlled by the EU 
control system which serves a dual purpose: it acts as the control unit 
and also as a portion of the instruction decoder. The EU also contains 
the ALU, the processor flags, and the general purpose and address 
registers. Figure 16-1 presents a block diagram of the EU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16-1   Block Diagram of 80x86 Execution Unit (EU) 

General Registers 
Flags 

ALU 

EU 
control system 

Connects to 
instruction 

queue in BIU 
(Figure 16-2)

Connects to data bus in 
BIU (Figure 16-2)

– internal data bus 
– internal control bus

– latches used to hold data 

– logic for processing
– logic for control 

AH AL 
BH BL 
CH CL 
DH DL 

SP 
BP 
DI 
SI 
IP 



 Chapter 16: Intel 80x86 Base Architecture   361 
 
16.2.1 General Purpose Registers 

The registers of the 80x86 are grouped into two categories: general 
purpose and address. The general purpose registers are for 
manipulating or transferring data; the address registers contain memory 
addresses and are used to point to the locations in memory where data 
will be retrieved or stored. 

Figure 16-1 shows that there are eight general purpose registers: 
AH, AL, BH, BL, CH, CL, DH, and DL. Each of these registers is eight 
bits. Earlier we said that the 80186 is a 16-bit processor. How can this 
be since we only have 8-bit registers? 

The 80186 processor creates a 16-bit register by combining two 8-
bit registers. AH and AL, for example, can function as a pair. This 
larger register is referred to as AX. The 8-bit registers are combined by 
linking them together so that the 8 bits of AH are the 8 most significant 
bits of AX and AL are the 8 least significant bits of AX. For example, 
if AH contains 101100002 = B016 and AL contains 010111112 = 5F16, 
then the virtual register AX contains 10110000010111112 = B05F16. 

Example 
If CX contains the binary value 01101101011010112, what value 

does CH have? 

Solution 
Since the register CH provides the most significant 8 bits of CX, 

then the upper eight bits of CX is CH, i.e., CH contains 011011012. 
 
Each of the general purpose registers is named according to their 

default purpose. For the most part, these purposes are not set in stone. 
The programmer still has some flexibility in how the registers are used. 
The following discussion presents their suggested use. 

AX is called the accumulator register, and it is used mostly for 
arithmetic, logic, and the general transfer of data. Many of the 
assembly language instructions for higher level mathematical 
operations such as multiply and divide don't even let the programmer 
specify a register other than AX to be used. 

BX is called the base register, and it is used as a base address or 
pointer to things like data arrays. We will find out later that there are a 
number of other registers that are used as pointers, but those are special 
purpose pointers. BX tends to be more of a general purpose pointer. 



362   Computer Organization and Design Fundamentals 
 

CX is called the counter register. When a programmer uses a for-
loop, the index for that loop is usually stored in CX. Intel designed a 
number of special purpose instructions that use CX in order to get 
better performance out of loops. 

DX is called the data register. This register is used with AX for 
special arithmetic functions allowing for things such as storing the 
upper half of a 32-bit result of a 16-bit multiply or holding the 
remainder after an integer division. 

16.2.2 Address Registers 
Below the general purpose registers in Figure 16-1 are the address 

registers: SP, BP, DI, SI, and IP. These are 16-bit registers meant to 
contain addresses with which to point to locations in memory. At this 
point, do not worry about how a 16-bit register can reference something 
in a memory space that uses a 20-bit address bus. The process involves 
using the segment registers of the BIU. We will address the mechanics 
behind the use of the segment registers later in this chapter. 

These address registers are classified into two groups: the pointer 
registers, SP, BP, and IP, and the index registers, DI and SI. Although 
they all operate in the same manner, i.e., pointing to addresses in 
memory, each address register has a specific purpose.  

SP is the stack pointer and it points to the address of the last piece 
of data stored to the stack. To store something to the stack, the stack 
pointer is decremented by the size of the value to be stored, i.e., SP is 
decremented by 2 for a word or 4 for a double word. The value is then 
stored at the new address pointed to by the stack pointer. To retrieve a 
value from the stack, the value is read from the address pointed to by 
the stack pointer, then the stack pointer is incremented accordingly. 

BP is the base pointer and its primary use is to point to the 
parameters that are passed to a function during a function call. For 
example, if the function myfunc(var1, var2) is called, the values for 
var1 and var2 are placed in the temporary memory of the stack. BP 
contains the address in the stack where the list of variables begins. 

IP is the instruction pointer. As we discussed in Chapter 15, the 
CPU goes step-by-step through memory loading, interpreting, and then 
executing machine code. It uses the memory address contained in IP as 
a marker pointing to where to retrieve the next instruction. Each time it 
retrieves an instruction, it increments IP so that it points to the next 
instruction to retrieve. In some cases, the instruction decoder needs to 



 Chapter 16: Intel 80x86 Base Architecture   363 
 
increment IP multiple times to account for data or operands that might 
follow an element of machine code. 

SI, the source index, and DI, the destination index, also contain 
addresses that point to memory. They are used for string operations 
where strings may be copied, searched, or otherwise manipulated. SI 
points to memory locations from which characters are to be retrieved 
while DI points to memory locations where characters will be stored. 

16.2.3 Flags 
The flags of the 80x86 processor are contained in a 16-bit register. 

Not all 16 bits are used, and it isn't important to remember the exact bit 
positions of each of the flags inside the register. The important thing is 
to understand the purpose of each of the flags. 

Remember from Chapter 15 that the flags indicate the current status 
of the processor. Of these, the majority report the results of the last 
executed instruction to affect the flags. (Not all instructions affect all 
the flags.) These flags are then used by a set of instructions that test 
their state and alter the flow of the software based on the result.  

The flags of the 80x86 processor are divided into two categories: 
control flags and status flags. The control flags are modified by the 
software to change how the processor operates. There are three of 
them: trap, direction, and interrupt. 

The trap flag (TF) is used for debugging purposes and allows code 
to be executed one instruction at a time. This allows the programmer to 
step through code address-by-address so that the results of each 
instruction can be inspected for proper operation. 

The direction flag (DF) is associated with string operations. In 
particular, DF dictates whether a string is to be examined by 
incrementing through the characters or decrementing. This flag is used 
by the 80x86 instructions that automate string operations. 

Chapter 15 introduced us to the concept of interrupts by showing 
how devices that need the processor's attention can send a signal 
interrupting the processor's operation in order to avoid missing critical 
data. The interrupt flag (IF) is used to enable or disable this function. 
When this flag contains a one, any interrupt that occurs is serviced by 
the processor. When this flag contains a zero, the maskable interrupts 
are ignored by the processor, their requests for service remaining in a 
queue waiting for the flag to return to a one.  



364   Computer Organization and Design Fundamentals 
 

The IF flag is cleared and set by software using two different 
assembly language commands: STI for setting and CLI for clearing. 
Some interrupts known as non-maskable interrupts cannot be disabled. 
Either their purpose is considered to be a priority over all other 
processor functions or the software itself calls the interrupt.  

The remaining flags are the status flags. These are set or cleared 
based on the result of the last executed instruction. There are six of 
them: overflow, sign, zero, auxiliary carry, parity, and carry. The 
following describes the operation of each of these bits. 

 
 Overflow flag (OF) – indicates when an overflow has occurred in a 

mathematical operation. 
 Sign flag (SF) – follows the sign bit of a mathematical or logical 

result, i.e., it is cleared to 0 when the result is positive and set to 1 
when the result is negative. 

 Zero flag (ZF) – is set to 1 when the result of a mathematical or 
logical function is zero. The flag is cleared to 0 otherwise. 

 Auxiliary carry flag (AF) – equals the carry from the bit 3 column 
of an addition into the bit 4 column. If you recall the section on 
BCD addition from Chapter 3, a carry out of a nibble is one 
indication that error correction must be taken. This flag represents 
the carry out of the least significant nibble.  

 Parity flag (PF) – is set to 1 if the result contains an even number 
of ones and cleared to 0 otherwise. 

 Carry flag (CF) – represents the carry out of the most significant 
bit position. Some shift operations also use the carry to hold the bit 
that was last shifted out of a register. 

Example 
How would the status flags be set after the processor performed the 

8-bit addition of 101101012 and 100101102? 

Solution 
This problem assumes that the addition affects all of the flags. This 

is not true for all assembly language instructions, i.e., a logical OR does 
not affect AF. 

Let's begin by adding the two numbers to see what the result is. 
 
 



 Chapter 16: Intel 80x86 Base Architecture   365 
 

1   1 1   1      
  1 0 1 1 0 1 0 1 
+ 1 0 0 1 0 1 1 0 
  0 1 0 0 1 0 1 1 

 
Now go through each of the flags to see how it is affected. 
 

 OF=1 – There was an overflow, i.e., adding two negative numbers 
   resulted in a positive number.  
 SF=0 – The result is positive.  
 ZF=0 – The result does not equal zero.  
 AF=0 – No carry occurred from the fourth column (bit 3) to the fifth 
   column (bit 4).  
 PF=1 – The result contains four ones which is an even number.  
 CF=1 – There was a carry. 

16.2.4 Internal Buses 
There are two internal buses in the EU that are used to pass 

information between the components. The first is used to exchange data 
and addressing information between the registers and the ALU. This 
same bus is also used to transfer data to and from memory by way of 
the bus interface unit. Each assembly language instruction that uses 
operands must move those operands from their source to a destination. 
These transfers occur along the data bus. 

The second bus has one purpose: to transfer instructions that have 
been obtained by the bus interface unit to the instruction decoder 
contained in the EU control system.  

The next section discusses how the bus interface unit performs data 
transactions with the memory space.  

16.3 Bus Interface Unit 
The bus interface unit (BIU) controls the transfer of information 

between the processor and the external devices such as memory, I/O 
ports, and storage devices. Basically, it acts as the bridge between the 
EU and the external bus. A portion of the instruction decoder as defined 
in Chapter 15 is located in the BIU. The instruction queue acts as a 
buffer allowing instructions to be queued up as they wait for their turn 
in the EU. Figure 16-2 presents the block diagram of the BIU.  

 

carry out 



366   Computer Organization and Design Fundamentals 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 16-2   Block Diagram of 80x86 Bus Interface Unit (BIU) 

The main purpose of the BIU is to take the 16-bit pointers of the EU 
and modify them so that they can point to data in the 20-bit address 
space. This is done using the four registers CS, DS, SS, and ES. These 
are the segment registers. 

16.3.1 Segment Addressing 
In the center of the BIU block diagram is a set of segment registers 

labeled CS, DS, SS, and ES. These four 16-bit registers are used in 
conjunction with the pointer and index registers to store and retrieve 
items from the memory space. 

So how does the processor combine a 16-bit address register with a 
16-bit segment register to create a 20-bit address? Well, it is all done in 
the address summing block located directly above the segment registers 
in the block diagram of the BIU in Figure 16-2. Every time the 
processor goes out to its memory space to read or write data, this 20-bit 
address must be calculated based on different combinations of address 
and segment registers.  

Connects to EU control system 
(Figure 16-1) 

Connects to EU data 
bus (Figure 16-1) 

To external 
data bus 

To external  
address bus 

Bus 
control
logic 

CS 
DS 
SS 
ES 

 
– internal data bus 

– latches used to hold data – logic for processing
– logic for control 

1 2 3 4 
Instruction queue 



 Chapter 16: Intel 80x86 Base Architecture   367 
 

Next time your Intel-based operating system throws up an execution 
error, look to see if it gives you the address where the error occurred. If 
it does, you should see some hexadecimal numbers in a format similar 
to the one shown below: 

3241:A34E 
 

This number is a special representation of the segment register (the 
number to the left of the colon) and the pointer or index register (the 
number to the right of the colon). Remember that a 4-digit hexadecimal 
number represents a 16-bit binary number. It is the combination of 
these two 16-bit registers that creates the 20-bit address. 

The process works like this. First take the value in the segment 
register and shift if left four places. This has the effect of adding a zero 
to the right side of the hexadecimal number or four zeros to the right 
side of the binary number. In our example above, the segment is 324116 
= 0011 0010 0100 00012. Adding a zero nibble to the right side of the 
segment gives us 3241016 = 0011 0010 0100 0001 00002.  

The pointer or index register is then added to this 20-bit segment 
address. Continuing our example gives us: 

 
 0011 0010 0100 0001 0000      3241016 
 +     1010 0011 0100 1110 or  + A34E16 
 0011 1100 0111 0101 1110      3C75E16 

 
For the rest of this book, we will use the following terminology to 

represent these three values. 
 

 The 20-bit value created by shifting the value in a segment register 
four places to the left will be referred to as the segment address. It 
points to the lowest address to which a segment:pointer 
combination can point. This address may also be referred to as the 
base address of the segment.  

 The 16-bit value stored in a pointer or index register will be 
referred to as the offset address. It represents an offset from the 
segment address to the address in memory that the processor needs 
to communicate with. 

 The resulting 20-bit value that comes out of the address summing 
block points to a specific address in the processor's memory space. 



368   Computer Organization and Design Fundamentals 
 

This address will be referred to as the physical address, and it is the 
address that is placed on the address lines of the memory bus. 

 
If we look at the function of the segment and pointer registers from 

the perspective of the memory space, the segment register adjusted with 
four binary zeros filled in from the right points to an address 
somewhere in the full memory space. Because the least significant four 
bits are always zero, this value can only point to memory in 16-byte 
increments. The 16-bit offset address from the pointer register is then 
added to the segment address pointing to an address within the 216 = 
65,535 (64K) locations above where the segment register is pointing. 
This is the physical address. Figure 16-3 shows how the segment and 
pointer addresses relate to each other when pointing to a specific 
address within the memory space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16-3   Segment/Pointer Relation in the 80x86 Memory Map 

There is a second purpose for this segment:pointer addressing 
method beyond allowing the 80x86 processor to control 20 address 
lines using 16-bit registers. This second reason is actually of greater 
importance as it allows for greater functionality of the operating 
system. 

Segment 
register points 
to the base of a 
64K block 

 64 K 

Pointer or index 
register adds an 
offset to the 
segment register's 
position 

Offset

1 Meg 

 
Physical 
address 



 Chapter 16: Intel 80x86 Base Architecture   369 
 

By assigning the responsibility of maintaining the segment registers 
to the operating system while allowing the application to control the 
address and pointer registers, applications can be placed anywhere in 
memory without affecting their operation. When the operating system 
loads an application to be executed, it selects a 64 K block of memory 
called a segment and uses the lowest address of that block as the base 
address for that particular application. During execution, the 
application modifies only the pointer registers keeping its scope within 
the 64K block of its segment. 

As long as the application modifies only the address registers, then 
the program remains in the 64 K segment it was assigned to. By using 
this process, the operating system is free to place an application 
wherever it wants to in memory. It also allows the operating system to 
maintain several concurrent applications in memory by keeping track of 
which application is assigned to which segment. 

Although the programmer may force a segment register to be used 
for a different purpose, each segment register has an assigned purpose. 
The following describes the uses of the four segment registers, CS, DS, 
SS, and ES.  

 
 Code Segment (CS) – This register contains the base address of the 

segment assigned to contain the code of an application. It is paired 
with the Instruction Pointer (IP) to point to the next instruction to 
load into the instruction decoder for execution. 

 Data Segment (DS) – This register contains the base address of the 
segment assigned to contain the data used by an application. It is 
typically associated with the SI register. 

 Stack Segment (SS) – This register contains the base address of the 
stack segment. Remember that there are two pointer registers that 
use the stack. The first is the stack pointer, and the combination of 
SS and SP points to the last value stored in this temporary memory. 
The other register is the base pointer which is used to point to the 
block of data elements passed to a function. 

 Extra Segment (ES) – Like DS, this register points to the data 
segment assigned to an application. Where DS is associated with 
the SI register, ES is associated with the DI register. 



370   Computer Organization and Design Fundamentals 
 
Example 

If CS contains A48716 and IP contains 143616, then what is the 
physical address of the next instruction in memory to be executed? 

Solution 
The physical address is found by shifting A48716 left four bits and 

adding 143616 to the result. 
 

A487016 1010 0100 1000 0111 0000 
+ 143616 or  +    0001 0100 0011 0110 
A5CA616 1010 0101 1100 1010 0110 

 
Therefore, the physical address pointed to by A487:1436 is A5CA616. 

16.3.2 Instruction Queue 
As discussed in Chapter 15, there are times during the execution of 

an instruction when different portions of the processor are idle. In the 
case of the 80x86 processor for example, while the BIU is retrieving 
the next instruction to be executed from memory, the EU control 
system and the ALU are standing by waiting for the instruction. 

The 80186 divides the process of executing an instruction into three 
cycles: fetch, decode, and execute. These cycles are described below: 

 
 Fetch – Retrieve the next instruction to execute from its location in 

memory. This is taken care of by the BIU. 
 Decode – Determine which circuits to energize in order to execute 

the fetched instruction. This function is performed by the 
instruction decoding circuitry in the EU control system. 

 Execute – Perform the operation dictated by the instruction using 
the ALU, registers, and data transfer mechanisms. 

  
The purpose of the instruction queue of the BIU is to maintain a 

sequence of fetched instructions for the EU to execute. In some cases, 
branches or returns from functions can disrupt the sequence of 
instructions and require a change in the anticipated order of execution.  
An advanced instruction queue can handle this by loading both paths of 
execution allowing the EU to determine which one it will need after 
executing the previous instructions. 



 Chapter 16: Intel 80x86 Base Architecture   371 
 
16.4 Memory versus I/O Ports 

In order to communicate with external hardware devices without 
taking up space in the 1 Meg memory space of the 80x86 processor, 
two additional control lines are added to the bus that effectively turn it 
into two buses, one for data and one for I/O. This second bus uses the 
same address and data lines that are used by the memory bus. The 
difference is that the I/O devices use different read and write control 
lines. 

To read data from memory, the 80x86 processor uses the active-low 
signal MRDC. When MRDC is low, the addressed memory device on 
the bus knows to pass the appropriate data back to the processor. 

To write data to memory, the 80x86 processor uses the active-low 
signal MWTC. When MWTC is low, the addressed memory device on 
the bus knows that the processor will be sending data to it. Once the 
memory device receives this data, it knows to store it in the appropriate 
memory location. 

If both MRDC and MWTC are high, then the memory devices 
remain inactive. By adding a second pair of read and write control 
lines, the processor can communicate with a new set of devices on the 
same set of address and data lines. These new devices are called I/O 
ports, and they connect the processor to the external environment. By 
placing an address on the address lines, an I/O port is selected in the 
same way that a memory chip is selected using chip select circuitry. 

The read control for the I/O ports is called IORC, and it too is an 
active low signal. When IORC equals zero, the selected I/O port places 
data on the data lines for the processor to read. This data might be the 
value of a key press, the digital value of an analog input, the status of a 
printer, or anything else that the processor needs to input from the 
external devices.  

The write control for the I/O ports is called IOWC. This active low 
signal goes low when the processor wants to send data to an external 
device. This data might be the characters of a document to be printed, a 
command to the video system, or any other value that the processor 
needs to send to the external devices. 

Table 16-2 summarizes the settings of these four read and write 
control signals based on their functions. 

 
 
 



372   Computer Organization and Design Fundamentals 
 
Table 16-2   Summary of the 80x86 Read and Write Control Signals 

Function MRDC MWTC IORC IOWC 
Reading from memory 0 1 1 1 
Writing to memory 1 0 1 1 
Reading from an I/O device 1 1 0 1 
Writing to an I/O device 1 1 1 0 
 
Even though they use the same address and data lines, there are 

slight differences between the use of memory and the use of I/O ports. 
First, regardless of the generation of the 80x86 processor, only the 
lowest 16 address lines are used for I/O ports. This means that even if 
the memory space of an 80x86 processor goes to 4 Gig, the I/O port 
address space will always be 216 = 65,536 = 64K. This is not a problem 
as the demand on the number of external devices that a processor needs 
to communicate with has not grown nearly at the rate of demand on 
memory space. 

The second difference between the memory space and the I/O port 
address space is the requirement placed on the programmer. Although 
we have not yet discussed the 80x86 assembly language instruction set, 
the assembly language commands for transferring data between the 
registers and memory are of the form MOV. This command cannot be 
used for input or output to the I/O ports because it uses MRDC and 
MWTC for bus commands. To send data to the I/O ports, the assembly 
language commands OUT and OUTS are used while the commands for 
reading data from the I/O ports are IN and INS. 

16.5 What's Next? 
Now that you have a general idea of the architecture of the 80x86, 

we can begin programming with it. In Chapter 17, we will present some 
of the instructions from the 80x86 assembly language along with the 
format of the typical assembly language program. In addition, the 
syntax used to differentiate between registers, memory, and constants 
in 80x86 assembly language code will be presented. This information 
will then be used to take you though some sample programs. 



 Chapter 16: Intel 80x86 Base Architecture   373 
 
Problems 

Answer problems 1 though 7 using the following settings of the 
80x86 processor registers. 

 
AX = 123416 BP = 121216 CS = A10116 
BX = 872116 SP = 343416 DS = B10116 
CX = 567816 DI = 565616 SS = C10116 
DX = 876516 IP = 787816 ES = D10116 

 
1. What is the value in the register AL? 

2. What is the value in the register CH? 

3. What is the physical address pointed to by ES:DI? 

4. What is the physical address of the next instruction to be executed 
in memory? 

5. What is the physical address of the last data item to be stored in the 
stack? 

6. Assuming a function has been called and the appropriate address 
and segment registers have been set, what is the physical address 
of the location of the function parameters in the stack? 

7. What would the settings of the flags OF, SF, ZF, AF, PF, and CF 
be after the addition of BH to AL? 

8. True or false: Every 80x86 assembly language instruction modifies 
the flags. 

9. What is the purpose of the internal bus that connects the instruction 
queue in the BIU with the EU control system? 

10. List the two benefits of segmented addressing. 

11. What are the values of MRDC, MWTC, IORC, and IOWC when 
the processor is storing data to memory? 

12. What are the values of MRDC, MWTC, IORC, and IOWC when 
the processor is reading data from a device on the I/O port bus? 

13. What 80x86 assembly language commands are used to write data 
to a memory device on the I/O port bus? 



374   Computer Organization and Design Fundamentals 
 
14. On an 80486 processor with its 32 address lines, what is the 

maximum number of I/O ports it can address? 

 

 

 

 

 

 

 

 

 

 

 

 



 375 

CHAPTER SEVENTEEN 

Intel 80x86 Assembly Language 

In Chapter 15, we developed a generic assembly language and its 
associated machine code. This language was presented to create a few 
simple programs and present how the CPU executed code. In this 
chapter, the assembly language of the Intel 80x86 processor family is 
introduced along with the typical syntax for writing 80x86 assembly 
language programs. This information is then used to write a sample 
program for the 80x86 processor. 

This chapter is meant to serve as an introduction to programming the 
Intel 80x86 using assembly language. For more detailed instruction, 
refer to one of the resources listed at the end of this chapter.  

17.1 Assemblers versus Compilers 
For a high-level programming language such as C, there is a two-

step process to produce an application from source code. To begin with, 
a program called a compiler takes the source code and converts it into 
machine language instructions. This is a complex task that requires a 
detailed understanding of the architecture of the processor. The 
compiler outputs the resulting sequence of machine code instructions to 
a file called an object file. The second step takes one or more object 
files and combines them by merging addressing information and 
generating necessary support code to make the final unit operate as an 
application. The program that does this is called a linker.  

In order for the linker to operate properly, the object files must 
follow certain rules for format and addressing to clearly show how one 
object file interrelates with the others. 

A similar two-step process is used to convert assembly language 
source code into an application. It begins with a program called an 
assembler. The assembler takes an assembly language program, and 
using a one-to-one conversion process, converts each line of assembly 
language to a single machine code instruction. Because of this one-to-
one relation between assembly language instructions and machine code 
instructions, the assembly language programmer must have a clear 
understanding of how the processor will execute the machine code. In 



376   Computer Organization and Design Fundamentals 
 
other words, the programmer must take the place of the compiler by 
converting abstract processes to the step-by-step processor instructions. 

As with the compiler, the output of the assembler is an object file. 
The format and addressing information of the assembler's object file 
should mimic that of the compiler making it possible for the same 
linker to be used to generate the final application. This means that as 
long as the assembly language programmer follows certain rules when 
identifying shared addressing, the object file from an assembler should 
be capable of being linked to the object files of a high-level language 
compiler.  

The format of an assembly language program depends on the 
assembler being used. There are, however, some general formatting 
patterns that are typically followed. This section presents some of those 
standards. 

Like most programming languages, assembly language source code 
must follow a well-defined syntax and structure. Unlike most 
programming languages, the lines of assembly language are not 
structurally interrelated. In a language such as C, for example, 
components such as functions, if-statements, loops, and switch/case 
blocks utilize syntax to indicate the beginning and end of a block of 
code that is to be treated as a unit. Blocks of code may be contained 
within larger blocks of code producing a hierarchy of execution. In 
assembly language, there is no syntax to define blocks of code; 
formatting only applies to a single line of code. It is the execution of 
the code itself that is used to logically define blocks within the 
program. 

17.2 Components of a Line of Assembly Language 
As shown in Figure 17-1, a line of assembly language code has four 

fields: a label, an opcode, a set of operands, and comments. Each of 
these fields must be separated by horizontal white space, i.e., spaces or 
tabs. No carriage returns are allowed as they identify the beginning of a 
new line of code. Depending on the function of a particular line, one or 
more of the fields may be omitted. 

The first field of a line is an optional label field. A label is used to 
identify a specific line of code or the memory location of a piece of 
data so that it may be referenced by other lines of assembly language. 
The assembler will translate the label into an address for use in the 
object file. As far as the programmer is concerned, however, the label 



 Chapter 17: Intel 80x86 Assembly Language   377 
 
may be used any time an address reference is needed to that particular 
line. It is not necessary to label all lines of assembly language code, 
only the ones that are referred to by other lines of code. 

 
 
 
 
 
 
 
 

Figure 17-1   Format of a Line of Assembly Language Code 

A label is a text string much like a variable name in a high-level 
language. There are some rules to be obeyed when defining a label. 

 
 Labels must begin in the first column with an alphabetic character. 

Subsequent characters may be numeric. 
 It must not be a reserved string, i.e., it cannot be an assembly 

language instruction nor can it be a command to the assembler. 
 Although a label may be referenced by other lines of assembly 

language, it cannot be reused to identify a second line of code 
within the same file. 

 In some cases, a special format for a label may be required if the 
label's function goes beyond identification of a line within a file. A 
special format may be needed, for example, if a high-level 
programming language will be referencing one of the assembly 
language program's functions. 

 
The next field is the instruction or opcode field. The instruction 

field contains the assembly language command that the processor is 
supposed to execute for this line of code. An instruction must be either 
an assembly language instruction (an opcode) or an instruction to the 
assembler (an assembler directive). 

The third field is the operand field. The operand field contains the 
data or operands that the assembly language instruction needs for its 
execution. This includes items such as memory addresses, constants, or 

label    <opcode>   <operand(s)>   ;comment field 

Label uniquely identifying 
line (optional) 

Assembly language 
command to be executed 

Text after semi-colon is 
ignored to end of line 

List of operands  
required by opcode 



378   Computer Organization and Design Fundamentals 
 
register names. Depending on the instruction, there may be zero, one, 
two, or three operands, the syntax and organization of which also 
depends on the instruction. 

The last field in a line of assembly language is the comment field. 
As was mentioned earlier, assembly language has no structure in the 
syntax to represent blocks of code. Although the specific operation of a 
line of assembly language should be clear to a programmer, its purpose 
within the program usually is not. It is therefore imperative to comment 
assembly language programs. In addition to the standard use of 
comments, comments in assembly language can be used to: 

 
 show where functions or blocks of code begin and end; 
 explain the order or selection of commands (e.g., where a shift left 

has replaced a multiplication by a power of two); or 
 identify obscure values (e.g., that address 037816 represents the data 

registers of the parallel port). 
 
A comment is identified with a preceding semi-colon, ';'. All text 

from the semi-colon to the end of the line is ignored. This is much like 
the double-slash, "//", used in C++ or the quote used in Visual Basic to 
comment out the remaining text of a line. A comment may be alone in a 
line or it may follow the last necessary field of a line of code. 

17.3 Assembly Language Directives 
There are exceptions in an assembly language program to the 

opcode/operand lines described in the previous section. One of the 
primary exceptions is the assembler directive. Assembler directives are 
instructions to the assembler or the linker indicating how the program 
should be created. Although they have the same format as an assembly 
language instruction, they do not translate to object code. This section 
will only address a few of the available directives. Please refer to one 
of the resources listed at the end of this chapter for more information on 
the assembler directives used with the Intel 80x86. 

17.3.1 SEGMENT Directive 
One of the most important directives with respect to the final 

addressing and organization of the application is SEGMENT. This 
directive is used to define the characteristics and or contents of a 



 Chapter 17: Intel 80x86 Assembly Language   379 
 
segment. (See Chapter 16 for a description of segments and their use 
with the 80x86 processor.) 

There are three main segments: the code segment, the data segment, 
and the stack segment. To define these segments, the assembly 
language file is divided into areas using the SEGMENT directive. The 
beginning of the segment is defined with the keyword SEGMENT 
while its end is defined using the keyword ENDS. Figure 17-2 presents 
the format and parameters used to define a segment. 

 
label SEGMENT alignment   combine   'class' 
                                        
                                        
                                        

label ENDS 

Figure 17-2   Format and Parameters Used to Define a Segment 

The label uniquely identifies the segment. The SEGMENT directive 
label must match the corresponding ENDS directive label.  

The alignment attribute indicates the "multiple" of the starting 
address for the segment. For a number of reasons, either the processor 
or the operating system may require that a segment begin on an address 
that is divisible by a certain power of two. The align attribute is used to 
tell the assembler what multiple of a power of two is required. The 
following is a list of the available settings for alignment. 

 
 BYTE – There is no restriction on the starting address. 
 WORD – The starting address must be even, i.e., the binary address 

must end in a zero. 
 DWORD – The starting address must be divisible by four, i.e., the 

binary address must end in two zeros. 
 PARA – The starting address must be divisible by 16, i.e., the 

binary address must end in four zeros. 
 PAGE – The starting address must be divisible by 256, i.e., the 

binary address must end in eight zeros. 
 
The combine attribute is used to tell the linker if segments can be 

combined with other segments. The following is a list of a few of the 
available settings for the combine attribute. 

 



380   Computer Organization and Design Fundamentals 
 
 NONE – The segment is to be located independently of the other 

segments and is logically considered separate. 
 PUBLIC or COMMON – The segment may be combined with 

other segments of the same name and class. 
 STACK – Works like PUBLIC for stack segments. 

 
The class attribute helps the assembler classify the information 

contained in the segment. This is important in order to organize the 
data, code, and other information that the linker will be partitioning into 
segments when it comes time to create the final application. Typical 
values are 'Data', 'Code', or 'Stack'. Note that the apostrophes are to be 
included as part of the attribute value. 

17.3.2 .MODEL, .STACK, .DATA, and .CODE Directives 
Instead of going to the trouble of defining the segments with the 

SEGMENT directive, a programmer may select a memory model. By 
defining the memory model for the program, a basic set of segment 
definitions is assumed. The directive .MODEL can do this. Figure 17-3 
presents the format of the .MODEL directive. 

 
 .MODEL memory_model 

Figure 17-3   Format of the .MODEL Directive 

Table 17-1 presents the different types of memory models that can 
be used with the directive. The memory models LARGE and HUGE 
are the same except that HUGE may contain single variables that use 
more than 64K of memory. 

There are three more directives that can be used to simplify the 
definition of the segments. They are .STACK, .DATA, and .CODE. 
When the assembler encounters one of these directives, it assumes that 
it is the beginning of a new segment, the type being defined by the 
specific directive used (stack, data, or code). It includes everything that 
follows the directive in the same segment until a different segment 
directive is encountered. 

The .STACK directive takes an integer as its operand allowing the 
programmer to define the size of the segment reserved for the stack. 



 Chapter 17: Intel 80x86 Assembly Language   381 
 
The .CODE segment takes a label as its operand indicating the 
segment's name.  

Table 17-1   Memory Models Available for use with .MODEL 

Memory Model Segment Definitions 
TINY Code, data, and, stack in one 64K segment 
SMALL One code segment less than or equal to 64K 

One data segment less than or equal to 64K 
MEDIUM Multiple code segments of any size 

One data segment less than or equal to 64K 
COMPACT One code segment less than or equal to 64K 

Multiple data segments of any size 
LARGE Multiple code segments of any size 

Multiple data segments of any size 
HUGE Multiple code segments of any size 

Multiple data segments of any size 
FLAT One 4 Gig memory space 

 

17.3.3 PROC Directive 
The next directive, PROC, is used to define the beginning of a 

block of code within a code segment. It is paired with the directive 
ENDP which defines the end of the block. The code defined between 
PROC and ENDP should be treated like a procedure or a function of a 
high-level language. This means that jumping from one block of code 
to another is done by calling it like a procedure. 

  
 
 
 
 
 

Figure 17-4   Format and Parameters Used to Define a Procedure 

As with the SEGMENT directive, the labels for the PROC directive 
and the ENDP directive must match. The attribute for PROC is either 

label    PROC   NEAR or FAR 
 
 
 
label    ENDP 



382   Computer Organization and Design Fundamentals 
 
NEAR or FAR. A procedure that has been defined as NEAR uses only 
an offset within the segment for addressing. Procedures defined as FAR 
need both the segment and offset for addressing. 

17.3.4 END Directive 
Another directive, END, is used to tell the assembler when it has 

reached the end of all of the code. Unlike the directive pairs 
SEGMENT and ENDS and PROC and ENDP, there is no 
corresponding directive to indicate the beginning of the code. 

17.3.5 Data Definition Directives 
The previous directives are used to tell the assembler how to 

organize the code and data. The next class of directives is used to 
define entities that the assembler will convert directly to components to 
be used by the code. They do not represent code; rather they are used to 
define data or constants on which the application will operate. 

Many of these directives use integers as their operands. As an aid to 
programmers, the assembler allows these integers to be defined in 
binary, decimal, or hexadecimal. Without some indication as to their 
base, however, some values could be interpreted as hex, decimal, or 
binary (e.g., 100). Hexadecimal values have an 'H' appended to the end 
of the number, binary values have a 'B' appended to the end, and 
decimal values are left without any suffix. 

Note also that the first digit of any number must be a numeric digit. 
Any value beginning with a letter will be interpreted by the assembler 
as a label instead of a number. This means that when using 
hexadecimal values, a leading zero must be placed in front of any 
number that begins with A, B, C, D, E, or F. 

The first of the defining directives is actually a set of directives used 
for reserving and initializing memory. These directives are used to 
reserve memory space to hold elements of data that will be used by the 
application. These memory spaces may either be initialized or left 
undefined, but their size will always be specified.  

The primary form of these directives is Dx where a character is 
substituted for the 'x' to indicate the incremental size of memory that is 
being reserved. For example, a single byte can be reserved using the 
directive DB. Figure 17-5 presents some of the define directives and 
their format. 

 



 Chapter 17: Intel 80x86 Assembly Language   383 
 
label   DB   expression    ;define a byte 
label   DW   expression    ;define a word (2 bytes) 
label   DD   expression    ;define a double word 
label   DQ   expression    ;define a quad word 

Figure 17-5   Format and Parameters of Some Define Directives 

The label, which is to follow the formatting guidelines of the label 
field defined earlier, is not required. When it is used, the assembler 
assigns it the address corresponding to the next element of memory 
being reserved. The programmer may then use it throughout their code 
to refer back to that address. 

The expression after the directive is required. The expression is used 
to tell the assembler how much memory is to be reserved and if it is to 
be initialized. There are four primary formats for the expression. 

 
 Constants – The expression can be a list of one or more constants. 

These constants will be converted to binary and stored in the order 
that they were defined. 

 String – The expression can be a string. The assembler will divide 
the string into its characters and store each character in the 
incremental space required by the selected define directive, i.e., DB 
reserves memory a byte at a time, DW reserves memory a word at a 
time, DD reserves memory a double word at a time, and DQ 
reserves memory a quad word at a time. 

 Undefined – A question mark (?) can be used to tell the assembler 
that the memory is to be reserved, but left undefined. 

 Duplicated elements – The keyword DUP may be used to replicate 
the same value in order to fill a block of memory.  

 
Figure 17-6 presents some examples of the define directives where 

the comment field is used to describe what will be stored in the 
reserved memory. 

17.3.6 EQU Directive 
The next directive, EQU, is in the same class as the define 

directives. It is like the #define directive used in C, and like #define, it 
is used to define strings or constants to be used during assembly. The 
format of the EQU directive is shown in Figure 17-7. 



384   Computer Organization and Design Fundamentals 
 
VAR01   DB  23H       ;Reserve byte/initialized to  
                      ;hexadecimal 23 
VAR01   DB  10010110B ;Reserve byte/initialized to  
                      ;binary 10010110 
VAR02   DB  ?         ;Reserve byte/undefined 
STR01   DB  'hello'   ;Store 'h', 'e', 'l', 'l',  
                      ;and 'o' in 5 sequential bytes 
ARR01   DB  3, 2, 6   'Store the numbers 3, 2, and 6 
                      ;in 3 sequential bytes 
ARR02   DB  4 DUP(?)  ;Reserve 4 bytes/undefined 
ARR03   DW  4 DUP(0)  ;Reserve 4 words (8 bytes) and  
                      ;initialize to 0 

Figure 17-6   Example Uses of Define Directives 

 
label    EQU    expression 

Figure 17-7   Format and Parameters of the EQU Directive 

Both the label and the expression are required fields with the EQU 
directive. The label, which also is to follow the formatting guidelines of 
the label field, is made equivalent to the expression. This means that 
whenever the assembler comes across the label later in the file, the 
expression is substituted for it. Figure 17-8 presents two sections of 
code that are equivalent because of the use of the EQU directive. 

 
 
ARRAY    DB     12 DUP(?) 
 
a.) Reserving 12 bytes of memory without EQU directive 
 
 
COUNT    EQU    12 
ARRAY    DB     COUNT DUP(?) 
 
b.) Reserving 12 bytes of memory using EQU directive 
 

Figure 17-8   Sample Code with and without the EQU Directive 



 Chapter 17: Intel 80x86 Assembly Language   385 
 

Note that EQU only assigns an expression to a name at the time of 
assembly. No data segment storage area is allocated with this directive. 

17.4 80x86 Opcodes 
Assembly language instructions can be categorized into four groups: 

data transfer, data manipulation, program control, and special 
operations. The next four sections introduce some of the Intel 80x86 
instructions by describing their function.  

17.4.1 Data Transfer 
There is one Intel 80x86 opcode that is used to move data: MOV. 

As shown in Figure 17-9, the MOV opcode takes two operands, dest 
and src. MOV copies the value specified by the src operand to the 
memory or register specified by dest.  

 
 

Figure 17-9   Format and Parameters of the MOV Opcode 

Both dest and src may refer to registers or memory locations. The 
operand src may also specify a constant. These operands may be of 
either byte or word length, but regardless of what they are specifying, 
the sizes of src and dest must match for a single MOV opcode. The 
assembler will generate an error if they do not. 

Section 16.4 showed how the Intel 80x86 uses separate control lines 
for transferring data to and from its I/O ports. To do this, it uses a pair 
of special data transfer opcodes: IN and OUT. The opcode IN reads 
data from an I/O port address placing the result in either AL or AX 
depending on whether a byte or a word is being read. The OUT opcode 
writes data from AL or AX to an I/O port address. Figure 17-10 shows 
the format of these two instructions using the operand accum to identify 
either AL or AX and port to identify the I/O port address of the device.  

 
 
 

Figure 17-10   Format and Parameters of the IN and OUT Opcodes 

         MOV    dest, src

         IN     accum, port 
         OUT    port, accum 



386   Computer Organization and Design Fundamentals 
 

None of the data transfer opcodes modifies the processor's flags. 

17.4.2 Data Manipulation 
Intel designed the 80x86 family of processors with plenty of 

instructions to manipulate data. Most of these instructions have two 
operands, dest and src, and just like the MOV instruction, they read 
from src and store in dest. The difference is that the src and dest values 
are combined somehow before being stored in dest. Another difference 
is that the data manipulation opcodes typically affect the flags. 

Take for example the ADD opcode shown in Figure 17-11. It reads 
the data identified by src, adds it to the data identified by dest, then 
replaces the original contents of dest with the result. 

 
ADD    dest, src 

Figure 17-11   Format and Parameters of the ADD Opcode 

The ADD opcode modifies the processor's flags including the carry 
flag (CF), the overflow flag (OF), the sign flag (SF), and the zero flag 
(ZF). This means that any of the Intel 80x86 conditional jumps can be 
used after an ADD opcode for program flow control. 

Many of the other data manipulation opcodes operate the same way. 
These include logic operations such as AND, OR, and XOR and 
mathematical operations such as SUB (subtraction) and ADC (add with 
carry). MUL (multiplication) and DIV (division) are different in that 
they each use a single operand, but since two pieces of data are needed 
to perform these operations, the AX or AL registers are implied. 

Some operations by nature only require a single piece of data. For 
example, NEG takes the 2's-complement of a value and stores it back 
in the same location. The same is true for NOT (bit-wise inverse), 
DEC (decrement), and INC (increment). These commands all use a 
single operand identified as dest. 

 
     NEG    dest    ;Take 2's complement of dest 
     NOT    dest    ;Invert each of the bits of dest 
     DEC    dest    ;Subtract 1 from dest 
     INC    dest    ;Add 1 to dest 

Figure 17-12   Format and Parameters of NEG, NOT, DEC, and INC 



 Chapter 17: Intel 80x86 Assembly Language   387 
 

As with most processors, the Intel 80x86 processor has a group of 
opcodes that are used to shift data. There are two ways to classify shift 
instructions: left versus right and arithmetic versus logical. The area 
where these classifications are of greatest concern is with a right shift.  

Remember from Chapter 3 that left and right shifts are equivalent to 
multiplication and division by powers of two. When using a right shift 
to perform a division, the most significant bit must be replicated or the 
sign of a two's complement value might change from negative to 
positive. Therefore, if it is important to maintain the sign of a right-
shifted value, an arithmetic shift right (SAR) should be used, not a 
logical shift right (SHR). Since a left shift doesn't have this constraint, 
an arithmetic shift left (SAL) and logical shift left (SHL) perform the 
same operation and are even identified with the same machine code. 

All four of the shift commands use two operands. The first operand, 
dest, contains the data to be shifted. It is also the location where the 
result will be stored. The second operand, count, indicates the number 
of bit positions the piece of data will be shifted. 

 
     SAR    dest, count   ;Arithmetic shift right 
     SHR    dest, count   ;Logical shift right 
     SAL    dest, count   ;Arithmetic shift left 
     SHL    dest, count   ;Logical shift left 

Figure 17-13   Format and Parameters of SAR, SHR, SAL, and SHL 

17.4.3 Program Control 
As with the generic processor described in Chapter 15, the 80x86 

uses both unconditional and conditional jumps to alter the sequence of 
instruction execution. When the processor encounters an unconditional 
jump or "jump always" instruction (JMP), it loads the instruction 
pointer with the address that serves as the JMP's operand. This makes it 
so that the next instruction to be executed is at the newly loaded 
address. Figure 17-14 presents an example of the JMP instruction. 

 
 JMP  LBL01 ;Always jump to LAB01  
                             .             . 
                             .             . 
                             .             . 

LBL01:  ;Destination for jump 

Figure 17-14   Example of a JMP Instruction 



388   Computer Organization and Design Fundamentals 
 

The 80x86 has a full set of conditional jumps to provide program 
control based on the results of execution. Each conditional jump 
examines the flags before determining whether to load the jump 
opcode's operand into the instruction pointer or simply move to the 
next sequential instruction. Table 17-2 presents a summary of most of 
the 80x86 conditional jumps along with the flag settings that force a 
jump. (Note that "!=" means "is not equal to") 

Table 17-2   Summary of 80x86 Conditional Jumps 

Mnemonic Meaning Jump Condition 
JA Jump if Above CF=0 and ZF=0 
JAE Jump if Above or Equal CF=0 
JB Jump if Below CF=1 
JBE Jump if Below or Equal CF=1 or ZF=1 
JC Jump if Carry CF=1 
JE Jump if Equal ZF=1 
JG Jump if Greater (signed) ZF=0 and SF=OF 
JGE Jump if Greater or Equal (signed) SF=OF 
JL Jump if Less (signed) SF != OF 
JLE Jump if Less or Equal (signed) ZF=1 or SF != OF 
JNA Jump if Not Above CF=1 or ZF=1 
JNAE Jump if Not Above or Equal CF=1 
JNB Jump if Not Below CF=0 
JNBE Jump if Not Below or Equal CF=0 and ZF=0 
JNC Jump if Not Carry CF=0 
JNE Jump if Not Equal ZF=0 
JNG Jump if Not Greater (signed) ZF=1 or SF != OF 
JNGE Jump if Not Greater or Equal (signed) SF != OF 
JNL Jump if Not Less (signed) SF=OF 
JNLE Jump if Not Less or Equal (signed) ZF=0 and SF=OF 
JNO Jump if No Overflow OF=0 
JNS Jump if Not Signed (signed) SF=0 
JNZ Jump if Not Zero ZF=0 
JO Jump if Overflow OF=1 
JPE Jump if Even Parity PF=1 
JPO Jump if Odd Parity PF=0 
JS Jump if Signed (signed) SF=1 
JZ Jump if Zero ZF=1 

 



 Chapter 17: Intel 80x86 Assembly Language   389 
 

Typically, these conditional jumps come immediately after a 
compare. In the Intel 80x86 instruction set, the compare function is 
CMP. It uses two operands, setting the flags by subtracting the second 
operand from the first. Note that the result is not stored. 

The 80x86 provides an additional instruction over that of the generic 
processor discussed in Chapter 15. The LOOP instruction was added to 
support the operation of a for- or a while-loop. It takes as its only 
operand the address of the first instruction of the loop.  

Before entering the loop, the CX register is loaded with a count of 
the number of times the loop is to be executed. Each time the LOOP 
opcode is executed, CX is decremented. As long as CX has not yet 
been decremented to zero, the instruction pointer is set back to the first 
instruction of the loop, i.e., the address given as the operand of the 
LOOP instruction. When CX has been decremented to zero, the LOOP 
instruction does not return to the beginning of the loop; instead, it goes 
to the instruction after LOOP. Figure 17-15 presents an example where 
the LOOP instruction executes a loop 25 times. 

 
 MOV  CX,25 ;Load CX with the integer 25 
LBL02:  ;Beginning of loop 
                             .             . 
                             .             . 
                             .             . 

 LOOP LBL02 ;Decrement CX and jump to 
                      ; LBL02 as long as CX!=0 

Figure 17-15   Example of a LOOP Instruction 

There is one last set of instructions used to control the flow of the 
program, and although they were not mentioned in Chapter 15, they are 
common to all processors. These instructions are used to call and return 
from a procedure or function. 

The CALL opcode is used to call a procedure. It uses the stack to 
store the address of the instruction immediately after the CALL opcode. 
This address is referred to as the return address. This is the address 
that the processor will jump back to after the procedure is complete. 

The CALL instruction takes as its operand the address of the 
procedure that it is calling. After the return address is stored to the 
stack, the address of the procedure is loaded into the instruction pointer. 

To return from a procedure, the instruction RET is executed. The 
only function of the RET instruction is to pull the return address from 
the stack and load it into the instruction pointer. This brings control 



390   Computer Organization and Design Fundamentals 
 
back to the original sequence. Figure 17-16 presents an example of the 
organization of a procedure call using the CALL and RET instructions.  

 
 CALL PROC01 ;Procedure call to PROC01 
 xxx ;Instruction that is returned  
  ; to after procedure is called 
                             .             . 
                             .             . 
                             .             . 

PROC01:  ;Beginning of procedure 
                             .             . 
                             .             . 
                             .             . 

 RET ;Return to instruction after 
  ; CALL 

Figure 17-16   Sample Organization of a Procedure Call 

17.4.4 Special Operations 
The special operations category is for opcodes that do not fit into 

any of the first three categories, but are necessary to fully utilize the 
processor's resources. They provide functionality ranging from 
controlling the processor flags to supporting the 80x86 interrupt 
system.  

To begin with, there are seven instructions that allow the user to 
manually alter the flags. These are presented in Table 17-3.  

Table 17-3   80x86 Instructions for Modifying Flags 

Mnemonic Meaning 
CLC Clear Carry Flag 
CLD Clear Direction Flag  
CLI Clear Interrupt Flag (disables maskable interrupts) 
CMC Complement Carry Flag 
STC Set Carry Flag 
STD Set Direction Flag  
STI Set Interrupt Flag (enables maskable interrupts) 

 
The next two special instructions are PUSH and PULL. These 

instructions operate just as they are described in chapters 15 and 16. 
The Intel 80x86 processor's stack is referred to as a post-increment/ 
pre-decrement stack. This means that the address in the stack pointer is 
decremented before data is stored to the stack and incremented after 
data is retrieved from the stack. 



 Chapter 17: Intel 80x86 Assembly Language   391 
 

There are also some special instructions that are used to support the 
operation of the Intel 80x86 interrupts. IRET, for example, is the 
instruction used to return from an interrupt service routine. It is used in 
the same manner as the RET instruction in a procedure. IRET, 
however, is required for interrupts because an interrupt on the 80x86 
pushes not only the return address onto the stack, but also the code 
segment and processor flags. IRET is needed to pull these two 
additional elements off of the stack before returning to the code being 
executed before the interrupt. 

Another special instruction is the software interrupt, INT. It is a 
non-maskable interrupt that calls an interrupt routine just like any 
hardware interrupt. In a standard PC BIOS, this interrupt has a full 
array of functions ranging from keyboard input and video output to file 
storage and retrieval. 

The last instruction presented here may not make sense to the novice 
assembly language programmer. The NOP instruction has no operation 
and it does not affect any flags. Typically, it is used to delete a machine 
code by replacing it and its operands with this non-executing opcode. 
In addition, a sequence of NOPs can be inserted to allow a programmer 
to write over them later with new machine code. This is only necessary 
under special circumstances. 

17.5 Addressing Modes 
The previous section described the 80x86 opcodes and their 

operands. This section shows the format that the programmer needs to 
use to properly identify the operands. Specifically, the assembler needs 
to know whether the programmer is referring to a register, a constant, 
or a memory address. Special syntax is used to do just that. 

17.5.1 Register Addressing 
To identify a register as an operand, simply use the name of the 

register for either src or dest. For the 80x86 architecture described in 
Chapter 16, these registers include both the 8- and 16-bit general 
purpose registers (AX, BX, CX, DX, AL, AH, BL, BH, CL, CH, DL, 
and DH), the address registers (SP, BP, DI, SI, and IP), and the 
segment registers (CS, DS, SS, and ES). Figure 17-17 presents some 
examples of instructions using register addressing. 

 



392   Computer Organization and Design Fundamentals 
 
 MOV  AL,BL ;Copy the contents of BL to AL 
 CMP  BX,CX ;Compare the contents of CX to  
  ; the contents of BX 
 INC  DX ;Increment the contents of DX 

Figure 17-17   Examples of Register Addressing 

17.5.2 Immediate Addressing 
The use of a constant as an operand is referred to as immediate 

addressing. In this case, a constant is used instead of a stored value 
such as that retrieved from a register or memory. As with the directives 
used to define constants in memory, hex, decimal, and binary values 
must be identified by appending an 'H' to the end of a hexadecimal 
number, appending a 'B' to the end of a binary number, and leaving the 
decimal values without any suffix. 

Because of the nature of constants, they can only be used as the src 
operand. They reserve no space in the data segment, and therefore 
cannot have data stored to them. Figure 17-18 presents some examples 
of instructions using immediate addressing. 

 
 MOV  AX,67D1H ;Place the hex value 67D1 in AX 
 CMP  BL,01101011B ;Compare the contents of BL to  
  ; the binary value 01101011 
 ADD  CX,9 ;Add decimal 9 to CX 

Figure 17-18   Examples of Immediate Addressing 

17.5.3 Pointer Addressing 
It might be misleading not to distinguish between the six different 

forms used to identify an address as an operand. This chapter, however, 
is only an introduction to assembly language. At this point it is 
sufficient to say that an operand is identified as an address by 
surrounding it with brackets []. For example, to make a reference to 
hexadecimal address 1000, the operand would be identified as [1000H]. 

Although the data segment identified by DS is the default segment 
when using an address as an operand, the segment may still be 
specified within this notation. By using a colon to separate the segment 
from the offset, any segment may be used. For example, to ensure that 



 Chapter 17: Intel 80x86 Assembly Language   393 
 
the address 1000 was coming from the data segment, the operand 
would be identified as [DS:1000H]. 

The processor can also use the contents of a register as a pointer to 
an address. In this case, the register name is enclosed in brackets to 
identify it as a pointer. For example, if the contents of BX are being 
used as an address pointing to memory, the operand should be entered 
as [BX] or [DS:BX].  

A constant offset can be added to the pointer if necessary by adding 
a constant within the brackets. For example, if the address of interest is 
4 memory locations past the address pointed to by the contents of BX, 
the operand should be entered as [BX+4] or [DS:BX+4]. 

While this is not a comprehensive list of the methods for using a 
memory address as an operand, it should be a sufficient introduction. 
Figure 17-19 presents some examples of using addresses for operands. 

 
MOV  AX,[6000H] ;Load AX w/data from address 6000H 
MOV  AX,[BX] ;Load AX w/data pointed to by the 
 ; address contained in BX 
MOV  AX,[BX+4] ;Load AX w/data 4 memory locations 
 ; past address pointed to by BX 

Figure 17-19   Examples of an Address being used as an Operand 

17.6 Sample 80x86 Assembly Language Programs 
Now we need to tie the concepts of assembly language presented in 

Chapter 15 to the specifics of the 80x86 assembly language. The best 
way to do this is to create a simple program. We begin with the general 
framework used to support the program. Figure 17-20 presents the 
basic skeleton code of an 80x86 assembly language program. 

 
 .MODEL SMALL 
 .STACK 100H 
 .DATA 
 .CODE 
MAIN PROC FAR 
 
MAIN ENDP 
 END MAIN 

Figure 17-20   Skeleton Code for a Simple Assembly Program 



394   Computer Organization and Design Fundamentals 
 

Let's examine this code line-by-line. 
 

 The first line contains the string ".MODEL SMALL". We see from 
Table 17-1 that this tells the compiler to use one code segment less 
than or equal to 64K and one data segment less than or equal to 
64K. The program we are writing here is quite small and will easily 
fit in this memory model. 

 The next line, ".STACK 100H", tells the instructor to reserve 256 
bytes (hexadecimal 100) for the stack. 

 The next line, ".DATA", denotes the beginning of the data segment. 
All of the data for the application will be defined between the 
.DATA and .CODE directives. 

 The next line, ".CODE", denotes the beginning of the code 
segment. All of the code will be defined after this directive. 

 "MAIN PROC FAR" identifies a block of code named main that 
will use both the segment and offset for addressing. 

 "MAIN ENDP" identifies the end of the block of code named 
MAIN. 

 "END MAIN" tells the assembler when it has reached the end of all 
of the code. 

 
The next step is to insert the data definitions and code that go after 

the .DATA and .CODE directives respectively.  
The first piece of code we need to write will handle some operating 

system house keeping. First, we need to start the program by retrieving 
the address that the operating system has assigned to the data segment. 
This value needs to be copied to the DS register. We do this with the 
two lines of code presented in Figure 17-21. These lines need to be 
placed immediately after the MAIN PROC FAR line. 

 
 MOV  AX,@DATA ;Get assigned data segment  
  ; address from O/S 
 MOV  DS,AX ;Copy it to the DS register 

Figure 17-21   Code to Assign Data Segment Address to DS Register 

When the program ends, we need to transfer control back to the 
operating system. This is done using a software interrupt. At this point 
it is not necessary to understand this process other than to say that when 



 Chapter 17: Intel 80x86 Assembly Language   395 
 
the O/S receives this interrupt, it knows that the application is finished 
and can be removed from memory. Placing the lines from Figure 17-22 
immediately before the line MAIN ENDP in the code will do this. 

 
 MOV  AX,4C00H ;Load code indicating normal 
  ; program termination 
 INT  21H ;Call interrupt to end program 

Figure 17-22   Code to Inform O/S that Program is Terminated 

At this point, our skeleton code should look like that shown in 
Figure 17-23. 

 
 .MODEL SMALL 
 .STACK 100H 
 .DATA 
 .CODE 
MAIN PROC FAR 
 MOV AX,@DATA ;Load DS with assigned 
 MOV DS,AX ; data segment address 
 
 
 MOV  AX,4C00H ;Use software interrupt 
 INT 21H ; to terminate program 
MAIN ENDP 
 END MAIN 

Figure 17-23   Skeleton Code with Code Added for O/S Support 

Now all we need is a program to write. The program presented here 
is a simple mathematical calculation using data from the data segment. 
Specifically, we will be calculating the following algebraic expression 
where A, B, C, and RESULT are defined to be 16-bit words in the data 
segment. 

 
RESULT = (A 8) + B – C 

 
Let's begin by defining what the data segment is going to look like. 

Each of the variables, A, B, C, and RESULT, need to have a word-
sized location reserved in memory for them. Since the first three will be 
used as inputs to the expression, they will also need to be initialized. 



396   Computer Organization and Design Fundamentals 
 
For the sake of this example, let's initialize them to 10410, 10010, and 
5210 respectively. Since RESULT is where the calculated result will be 
stored, we may leave that location undefined. Figure 17-24 presents the 
four lines of directives used to define this memory.  

 
A DW 104 
B DW 100 
C DW 52 
RESULT DW ? 

Figure 17-24   Data Defining Directives for Example Code 

This code will be inserted between the .DATA and .CODE directives of 
the code in Figure 17-23. 

The next step is to write the code to compute the expression. Begin 
by assuming the computation will occur in the accumulator register, 
AX. The process will go something like this. 

 
 Load AX with value stored at the memory location identified by A. 
 Divide AX by eight using the arithmetic right shift instruction. 
 After dividing AX, add the value stored at the memory location 

identified by B. 
 After adding B to AX, subtract the value stored at the memory 

location identified by C. 
 Lastly, store the result contained in AX to the memory location 

RESULT. 
 
Converting this step-by-step sequence into assembly language 

results in the code presented in Figure 17-25. 
 

 MOV  AX,A ;Load A from memory 
 SAR  AX,3 ;Divide A by 8 
 ADD  AX,B ;Add B to (A/8) 
 SUB  AX,C ;Subtract C from (A/8)+B 
 MOV  RESULT,AX ;Store (A/8)+B-C to RESULT 

Figure 17-25   Step-by-Step Example Operation Converted to Code 

The last step is to insert this code after the two lines of code that 
load the data segment register but before the two lines of code that 



 Chapter 17: Intel 80x86 Assembly Language   397 
 
perform the program termination in Figure 17-23. Figure 17-26 
presents the final program. 

 
 .MODEL SMALL 
 .STACK 100H 
 .DATA 
A DW 104 
B DW 100 
C DW 52 
RESULT DW ? 
 .CODE 
MAIN PROC FAR 
 MOV AX,@DATA ;Load DS with assigned 
 MOV DS,AX ; data segment address 
 MOV  AX,A ;Load A from memory 
 SAR  AX,3 ;Divide A by 8 
 ADD  AX,B ;Add B to (A/8) 
 SUB  AX,C ;Subtract C from (A/8)+B 
 MOV  RESULT,AX ;Store A/8+B-C to RESULT 
 MOV  AX,4C00H ;Use software interrupt 
 INT 21H ; to terminate program 
MAIN ENDP 
 END MAIN 

Figure 17-26   Final Code for Example Assembly Language Program 

17.7 Additional 80x86 Programming Resources 
This chapter falls short of teaching 80x86 assembly language. It is 

meant to serve only as an introduction. There are a number of resources 
available both in print and on the web to learn more about 
programming the 80x86 in assembly language including: 

 
 Abel, Peter, IBM PC Assembly Language and Programming, 5th 

ed., Prentice-Hall, 2001. 
 Hyde, Randall, The Art of Assembly Language, No Starch Press, 

2003. (Available on-line at http://webster.cs.ucr.edu/AoA/DOS/) 
 Intel(R) 186 Processor – Documentation, Intel Corp., on-line, 

http://developer.intel.com/design/intarch/intel186/docs_186.htm. 
 



398   Computer Organization and Design Fundamentals 
 
17.8 What's Next? 

Over the past seventeen chapters, I have tried to cover three main 
areas: representation and manipulation of numbers using digital logic, 
combinational logic and memory circuit design, and basic computer 
architecture. The intent of this book was never to make the reader a 
designer of hardware. Instead, the presentation of hardware was meant 
to provide the reader with well-established tools for logic design along 
with an understanding of the internals of the computer. The tools can be 
applied to software as well as hardware. The understanding of hardware 
can also be applied to software design allowing for improved 
performance of software applications. 

This, however, is merely a beginning. What's the next step for you 
the reader?  The answer to that question depends on what your interests 
are. At this point, you should have the foundation necessary to begin a 
deeper study of topics such as advanced computer architecture, 
embedded systems design, network design, compiler design, or 
microprocessor design. The possibilities are endless. 

Problems 
1. What character/symbol is used to indicate the start of a comment in 

assembly language for the assembler we used in class? 

2. Which of the following four strings would make valid assembly 
language labels?  Explain why the invalid ones are not allowed. 

ABC123 123ABC 
JUMP  HERE LOOP 

 
3. Assume that the register BX contains 568016 when the instruction 

SAR BL,3  is executed. What would the new value of BL be? 

4. Assuming that CX contains 005516 when the instruction DEC CH 
is executed, what will CX contain and how will the flags CF, PF, 
SF, and ZF be set afterwards? 

5. Below is a summary description of the 80x86 shift arithmetic left 
(SAL) instruction: 

Usage:  SAL dest,count 
Modifies flags: CF OF PF SF ZF (AF undefined) 
Operation: Shifts the destination left by "count" bits with zeroes 
shifted in on right. The Carry Flag contains the last bit shifted out. 



 Chapter 17: Intel 80x86 Assembly Language   399 
 

Assuming that AX contains 234516 when the instruction SAL AH,2 
is executed, what will AX contain and how will the flags CF, PF, 
SF, and ZF be set afterwards? 
 

6. For each of the assembly language commands below, what is the 
binary value for the active low signals ^MRDC, ^MWTC, ^IORC, 
and ^IOWC. 

 ^MRDC ^MWTC ^IORC ^IOWC 
mov   ah,[5674h]     
in    bh,1234h     
mov   [ax],bx     
out   4af5h,bh     

 
7. Assume the register BX contains the value 2000h and the table to 

the right represents the contents of a short portion of memory. 
Indicate what value AL contains after each of the following MOV 
instructions. 
mov al, ds:[bx] 
mov al, ds:[bx+1] 
mov ax, bx 
mov ax, 2003 

 
 
 
8. Of the following jump instructions, indicate which ones will jump 

to the address LOOP, which ones will simply execute the next 
address (i.e., not jump), and which ones you don't have enough 
information to tell. 
Instruction Current Flag Settings 

je   loop sf=0, zf=1, cf=0 
jl   loop sf=1, zf=0 
jng  loop sf=0, zf=1, of=0 
jne  loop sf=0, zf=1, of=1 
jnb  loop sf=1, zf=0, cf=0 
jmp  loop sf=0, zf=0, of=0 
jge  loop zf=0, sf=0, of=1 
 

9. Modify the code in Figure 17-26 to calculate the expression  
((4  A) + B – C)  32 where A = 4110, B = 14210, and C = 1810. 

 

Address Value 
DS:2000 17h 
DS:2001 28h 
DS:2002 39h 
DS:2003 4Ah 
DS:2004 5Bh 
DS:2005 6Ch 



400   Computer Organization and Design Fundamentals 
 
 

 

 



 401 

INDEX

A 
accumulator register, 361 
accuracy, 5 
active-low signals, 151, 247 
ADC. See analog-to-digital 

converter 
adders, 141 
 full, 144 
 half, 141 
address decoder, 243 
address decoding, 250 
address latch, 333 
address lines, 245 
addressing 
 immediate, 392 
 pointer, 392 
 register, 391 
addressing modes, 391 
AF. See auxiliary carry flag 
aliasing, 31 
ALU. See arithmetic logic unit 
analog, 3, 26 
analog-to-digital converter, 6, 

259 
AND gate, 72, 73, 74, 90, 109, 

114, 153 
AND rules, 97, 98 
application layer, 303 
arithmetic logic unit, 360 
arithmetic overflow, 67 
arrays, 383 
assembler, 375 
assembler directive, 378 
assembly language, 338, 339, 

344 
 comment field, 378 
 instruction field, 377 
 label field, 376 

 operand field, 377 
Associative Law, 95 
auxiliary carry flag, 364 
AX. See accumulator register 

B 
base address, 367 
base pointer, 362 
base register, 361 
Basic Input/Output System, 

245, 248, 261 
BCD. See Binary Coded 

Decimal 
BCD addition, 64 
BEDO. See Burst EDO 
binary addition, 43, 141 
Binary Coded Decimal, 36 
binary conversion, 23, 67 
binary pulse, 9 
binary signals, 8 
binary subtraction, 45 
binary system, 7 
BIOS. See Basic Input/Output 

System 
bit, 20, 17 
bitwise operations, 166 
 AND, 167 
 OR, 171 
 XOR, 171 
BIU. See bus interface unit 
boolean algebra, 89 
 laws of, 95 
 simplification, 101 
BP. See base pointer 
buffer, 329 
Burst EDO, 266 
bus, 244, 325 
bus contention, 246 



402   Computer Organization and Design Fundamentals 
 
bus interface unit, 365 
BX. See base register 
byte, 20 

C 
cache 
 block, 286, 290 
 direct mapping, 290, 295 
 fully associative mapping, 

290, 295 
 hit, 289 
 L1, 285 
 L2, 285 
 line, 286 
 mapping function, 290 
 miss, 289 
 set associative mapping, 

290, 297 
 size, 290 
 split, 286 
 tag, 286 
 write back policy, 300 
 write policy, 290, 299 
 write through policy, 299 
cache replacement algorithm, 

290, 295 
 First In First Out, 296 
 Least Frequently Used, 296 
 Least Recently Used, 296, 

298 
 Random, 296 
capacitor, 262 
carry flag, 364 
CAV. See constant angular 

velocity 
central processing unit, 332 
CF. See carry flag 
checksum, 175 
 1's complement, 177 

 2's complement, 177 
chip select, 242, 246, 256 
clock, 210, 220 
code segment, 369 
collisions, 310 
combinational logic, 80, 92 
Commutative Law, 95 
compiler, 375 
conditional branching, 327, 388 
configuration registers, 333 
constant angular velocity, 281 
constants, 383 
control lines, 245 
counter, 213 
counter register, 362 
CPU. See central processing 

unit 
CRC. See cyclic redundancy 

check 
crosstalk, 305, 308 
CS. See code segment 
CX. See counter register 
cyclic redundancy check, 179 
cylinder, 281 

D 
data buffer, 333 
data lines, 244 
data register, 362 
data segment, 369 
datagrams, 310 
datalink layer, 304, 306, 308 
datasum, 175 
DDR SDRAM. See Double 

Data Rate SDRAM 
decode cycle, 346, 370 
decoders, 154 
DeMorgan's Theorem, 104, 

110, 119 



 Index    403 
 
demultiplexers, 157 
destination index, 363 
DF. See direction flag 
DI. See destination index 
digital signal processing, 7 
direct memory access, 356 
direction flag, 363 
directive. See assembler 

directive 
Distributive Law, 96 
divide-by-two circuit, 212 
DMA. See direct memory 

access 
don't cares, 137 
Double Data Rate SDRAM, 

267 
double word, 20 
DRAM. See Dynamic RAM 
DS. See data segment 
DSP. See digital signal 

processing 
duty cycle, 13 
DX. See data register 
dynamic RAM, 262 

E 
EDO. See Extended Data-Out 
encoding, 39 
endian, big/little, 345 
ES. See extra segment 
Ethernet frame, 308 
 CRC, 309 
 data, 309 
 destination address, 309 
 filler bytes, 309 
 length, 309 
 preamble, 308 
 source address, 309 
 start delimiter, 309 

EU. See execution unit 
exclusive-OR gate, 74, 142 
execute cycle, 346, 370 
execution unit, 360 
Extended Data-Out, 266 
extra segment, 369 

F 
falling edge, 9, 203 
Fast Page Mode, 265 
fetch cycle, 346, 370 
flags, 327, 360 
floating-point, 58 
formatting, 283 
FPM. See Fast Page Mode 
frame, 306 
frequency, 12 
frequency modulation, 272 

G 
Gray code, 39 

H 
Hamming Code, 188 
header, 306 
hexadecimal, 35 
hexadecimal addition, 61 
http, 313 

I 
IC. See integrated circuits 
ICANN. See Internet 

Corporation for Assigned 
Names and Numbers 

IEEE Std-754, 58 
IEEE Std-802.3, 321, 304, 308 
IEEE. See Institute of Electrical 

and Electronics Engineers 
IF. See interrupt flag 



404   Computer Organization and Design Fundamentals 
 
Institute of Electrical and 

Electronics Engineers, 321 
instruction pointer, 344, 362 
instruction queue, 370 
integrated circuits, 159 
Intel assembly 
 ADC, 386 
 ADD, 386 
 AND, 386 
 CALL, 389 
 clearing bits, 390 
 CMP, 389 
 DEC, 386 
 DIV, 386 
 IN, 385 
 INC, 386 
 INT, 391 
 IRET, 391 
 JMP, 387 
 Jxx, 388 
 LOOP, 389 
 MOV, 385, 386 
 MUL, 386 
 NEG, 386 
 NOP, 391 
 NOT, 386 
 OR, 386 
 OUT, 385 
 PULL, 390 
 PUSH, 390 
 RET, 389 
 SAL, 387 
 SAR, 387 
 setting bits, 390 
 SHL/SHR, 387 
 SUB, 386 
 XOR, 386 
Intel directives 
 .CODE, 380, 394 

 .DATA, 380, 394 
 .MODEL, 380 
 .STACK, 380 
 DB, DW, DD, DQ, 382 
 DUP, 383 
 END, 382, 394 
 EQU, 383 
 PROC, 381, 394 
 SEGMENT, 378 
Internet Corporation for 

Assigned Names and 
Numbers, 321 

internet protocol, 307, 310 
interrupt driven I/O, 354 
interrupt flag, 363 
interrupt service routine, 354 
interrupts, 391, 394 
intersector gap, 280 
intertrack gap, 279 
inverter, 72, 91, 205 
I/O channels/processors, 356 
I/O ports, 333, 371 
IP. See instruction pointer or 

internet protocol 
IP address, 169, 254 
IP header 
 address fields, 313 
 fragment offset, 312 
 header checksum, 312 
 identification, 311 
 length, 310 
 options, 313 
 padding, 313 
 time to live, 312 
 total length, 311 
 type of service, 311 
 version, 310 
ISR. See interrupt service 

routine 



 Index    405 
 
K 
Karnaugh map, 126 
Karnaugh map rules, 131 

L 
latches 
 D latch, 209, 223, 242, 262 
 edge-triggered, 210 
 S-R latch, 209 
 transparent latches, 211 
leakage current, 263 
least significant bit, 20, 34, 165 
LED. See light emitting diode 
LIFO, 330 
light emitting diode, 13, 147, 

162 
linker, 375 
logic gates, 71 
low level formatting, 283 
LSB. See least significant bit 

M 
MAC address, 309, 321 
machine code, 338 
maximum, 55 
Mealy machine, 237 
memory 
 address, 242 
 asynchronous, 266 
 cell, 203 
 hierarchy, 269 
 magnetic core, 241 
 map, 248, 259, 352 
 model, 380 
 processor, 332 
 space, 249 
 synchronous, 267 
 volatile, 245 
minimum, 55 

modified frequency 
modulation, 273 

Moore machine, 237 
most significant bit, 20 
MP3, 7 
MSB. See most significant bit 
multiplexer, 156 

N 
NAND gate, 120, 160, 205, 256 
NAND-NAND Logic, 119 
negative-going pulse, 10 
network interface card, 309 
network layer, 304, 310, 313 
next state truth table, 231 
nibble, 20, 34 
NIC. See network interface card 
noise, 6 
non-periodic pulse trains, 10 
NOT gate. See inverter 
NOT rule, 96 
Nyquist Theorem, 33 

O 
object file, 375 
OF. See overflow flag 
offset address, 367 
one's complement, 46 
one's complement 

checksum/datasum, 176, 
312, 319 

Open Systems Interconnection 
Model, 303, 307 

OR gate, 73, 74, 90, 109, 114 
OR rules, 96 
O/S level formatting, 283 
OSI model. See Open Systems 

Interconnection Model 
output truth table, 231 



406   Computer Organization and Design Fundamentals 
 
overflow flag, 364  

P 
packet, 306 
Packetyzer, 321 
parallel port, 214 
parity, 174, 190, 193 
parity flag, 364 
partitioning, 283 
pattern detection, 234 
period, 11 
periodic pulse trains, 11 
PF. See parity flag 
physical address, 368 
physical layer, 304 
pipelining, 347 
platter, 270 
polling, 353 
POS. See product-of-sums 
positive-going pulse, 10 
powers of 2, multiplication and 

division by, 65 
preamble, 306 
precedence, 92 
prefix, 15 
presentation layer, 303 
principle of locality, 285 
processor status register, 327 
product-of-sums, 114 
program counter, 344 
protocol, 306 
protocol analyzer, 321 
protocol stack, 307 
pull-up resistors, 163 
pulses, 9, 11  

Q 
queuing time, 275 

 

R 
RAM. See Random Access 

Memory 
RAM cache, 285 
random access memory, 260 
read enable, 242 
read only memory, 261 
read-write head, 270 
refresh circuitry, 263 
register, 300, 326, 360 
registered ports, 313 
request for comments, 320 
return address, 389 
RFC. See request for comments 
rising edge, 9, 203 
ROM. See Read Only Memory 
rotational latency, 275, 276 
roundoff error, 31 
run length limited, 273 

S 
sampling, 5, 6, 31 
SDRAM. See Synchronous 

DRAM 
sectors, 279 
seek time, 275 
segment, 369 
 addressing, 366, 367 
 registers, 366 
Self-Monitoring Analysis and 

Reporting Technology, 278 
sequential access, 278 
session layer, 303 
seven-segment display, 147 
SF. See sign flag 
SI. See source index 
sign bit, 50 
sign flag, 364 
signed magnitude, 51, 56 



 Index    407 
 
SMART. See Self-Monitoring 

Analysis and Reporting 
Technology 

SOP. See sum-of-products 
source index, 363 
SP. See stack pointer 
SRAM. See static RAM 
SS. See stack segment 
stack, 330 
 pointer, 362 
 segment, 369 
state, 217 
state diagram, 218 
 errors, 222 
 reset condition, 221, 226 
 transitions, 218, 222, 226 
state machine, 217, 222 
static RAM, 262 
strings, 383 
substrate, 270 
sum-of-products, 109, 125, 129, 

153 
switch circuit, 163 
Synchronous DRAM, 267 

T 
TCP. See transmission control 

protocol 
TCP header 
 acknowledgement, 315 
 checksum field, 315 
 control bits, 315 
 data offset, 315 
 destination port, 314 
 option field, 316 
 sequence number, 314 
 source port, 314 
 urgent pointer field, 316 
 window field, 315 

TCP ports, 313 
TF. See trap flag 
thrashing, 295 
timing diagram, 79 
track, 279 
trailer, 306, 307 
transfer time, 275, 276 
transistors, 7 
transmission control protocol, 

307, 313 
transport layer, 303, 310, 313 
trap flag, 363 
tristate output, 247 
truth table, 75, 83, 110, 112, 

115, 118, 126 
two's complement, 47 

U 
undefined values, 204 
unsigned binary, 17, 55 

W 
Winchester head, 272, 279 
word, 20 
write enable, 242 

X 
XOR compare, 173 
XOR gate. See exclusive-OR 
XOR subtraction, 182 

Z 
ZBR. See zone bit recording 
zero flag, 364 
ZF. See zero flag 
zone bit recording, 282 



 408 

ABOUT THE AUTHOR 

David Tarnoff is an assistant professor in the Computer and 
Information Sciences Department at East Tennessee State University 
where he teaches computer hardware, embedded system design, and 
web technologies. He holds a bachelors and masters of science in 
electrical engineering from Virginia Tech. In 1999, David started 
Intermation, Inc., a business that develops software for remote data 
collection and automation. His research interests include embedded 
system design and the application of web technologies to teaching and 
research. David lives in Tennessee with his wife and their son. 

 
 

NOTE TO THE READER 

This textbook was developed after years of teaching computer 
organization to students of computer science. It incorporates the 
feedback from hundreds of students and dozens of faculty members and 
industry professionals. The success of this textbook is a direct result of 
its users. Therefore, it is important that there always be a direct link 
between the author and the readers. Please send any feedback you have 
regarding errors, updates to the material, or suggestions for new 
material to tarnoff@etsu.edu.  

In addition, one of the purposes of this book is to put the concepts of 
computer organization into the hands of anyone who wants to learn 
about the topic. As a result, electronic versions of this book should be 
freely downloadable from the Internet. If you cannot find a version for 
download, please e-mail the author at tarnoff@etsu.edu, and you will 
be directed to the proper resources. 

Thank you for supporting this work. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (GRACoL2006_Coated1v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /RelativeColorimetric
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (GRACoL2006_Coated1v2)
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


