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Preface

This lab manual provides an introduction to digital logic, starting with simple gates and building up to  state 

machines. Students should have a solid understanding of algebra as well as a rudimentary understanding of basic  

electricity  including voltage,  current,  resistance,  capacitance,  inductance and how they relate  to direct  current  

circuits. Labs will be built utilizing the following hardware:

• breadboards with associated items required such as wire, wire strippers and cutters

• some basic discrete components such as transistors, resistors and capacitors

• basic 7400 series logic chips

• 555 timer

Discrete components will be included only when necessary, with most of the labs using the standard 7400 series 

logic chips. These items are commonly available and can be obtained relatively inexpensively. Labs will include 

learning objectives, relevant theory, review problems, and suggested procedure. In addition to the labs, several  

appendices of background material are provided. 

Format for each chapter

Each chapter is a combination of theory followed by review exercises to be completed as traditional homework  

assignments. Full solutions to all of the review exercises are available in the last appendix. Procedures for labs then 

follow that allow the student to implement the concepts in a hands on manner. The materials required for the labs 

were selected due to their  ready availability at  modest  cost.  While students would gain from just  reading and 

completing  the review exercises,  it  is  recommended that  the procedures  be  completed  as  well.  In  addition to  

providing another means re-enforcing the material, it helps to develop real world debugging and design skills.  

This manual concentrates on the basic building blocks of digital electronics: logic gates and memory. It focuses 

on these items from the ground up. The reader will first see how logic gates can be constructed from transistors and 

then how digital  logic  functions are constructed using those gates.  The concept of  memory is  then introduced 

through the construction of an SR latch and then a D flip-flop.  A clock is created to be used in a basic state machine 

design that aims to combine logic circuits with memory.

Target audience

This text will be geared toward computer science students; however it would be appropriate for any students 

who have the necessary background in algebra and elementary DC electronics. Computer science students learn 

skills in analysis, design and debugging. These skills are also used in the virtual world of programming, where no 

physical devices are ever involved. By requiring the assembly and demonstration of actual circuits, students will not 

only learn about digital logic, but about the intricacies and difficulties that arise when physically implementing 

their designs as well. 

Global Text Project

Education is the most powerful weapon you can use to change the world - Nelson Mandela

The goal of this text is to allow more students to gain access to this material by publishing it in the Creative  

Commons as well as specifying inexpensive materials to be used in the labs. For this reason the author chose to  

work with the Global Text project to develop this text. The Global Text Project will create open content electronic  

textbooks that will be freely available from a website. Distribution will also be possible via paper, CD, or DVD. The  

Style Guidelines 6  A Global Text

http://creativecommons.org/licenses/by/3.0/


Preface

goal of the Global Text Project initially is to focus on content development and Web distribution, and work with 

relevant authorities to facilitate dissemination by other means when bandwidth is unavailable or inadequate. The 

goal is to make textbooks available to the many who cannot afford them.
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0. Introduction
It  is  nearly  impossible  to  find  a  part  of  society  that  has  not  been touched  by  digital  electronics.  Obvious  

applications such as computers, televisions, digital video reorders and countless other consumer electronics would 

not be possible without them. The Internet is run on a system of computers and routing equipment built with 

digital electronics. Yet even outside of some of these obvious applications we find that our cars and utilitarian home 

appliances such as microwaves, washers, dryers, coffee makers and even refrigerators are all increasingly being 

designed with digital electronic controls. You likely carry some sort of device designed with them with you nearly all 

your waking hours whether it is a watch, cell phone, MP3 player or PDA. Indeed, digital electronics provide the  

foundation upon which we build the infrastructure of modern society.

You no doubt have heard stories about some of the first computers. Machines built with mechanical relays and 

vacuum tubes that filled entire rooms. In the 1940s John Bardeen, Walter Brattain and William Shockley developed 

the first  transistor;  it  allowed computers  to be built  cheaper,  smaller  and more reliable  than ever  before.  The 

integrated circuit, a single package with several transistors along with other circuit components, was developed in  

the late 1950s by Jack Kilby at Texas Instruments. This helped to further advance the digital revolution. Advances 

then became so common that in the 1960s Gordon Moore, co-founder of Intel Corporation, proposed his famous  

law stating that the capacity of computers we use would double every two years. This observation has held up since  

then, even being amended to doubling every eighteen months.

The quad core microprocessors of today contain millions of components, but the basic building blocks are digital  

logic functions combined with memory. Despite the fact that many of these devices are tremendously complex and 

require vast amounts of engineering in their design, they all share the ubiquitous bit as their fundamental unit of 

data. In essence it all starts with TRUE and FALSE or 0 and 1. And so the next chapter starts with the simplest of  

logic devices, the inverter, built with a single transistor. You then continue your journey into the world of digital  

electronics  by  examining the  NAND and NOR gates.  Remember,  the  digital  revolution would  not  be  possible 

without these simple devices. 
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1. The transistor and 
inverter

Learning objectives:

• Use the digital trainer and breadboard.

• Assemble a circuit.

• Build a logic circuit with discrete components.

The transistor

A transistor is a three-terminal device that can be used as an amplifier or as a switch. When the transistor is 

used as an amplifier, it is working in analog mode. When it is being used as an electronic switch, it is functioning in 

digital mode. The transistor will only be used in digital mode in these labs, which means the transistor will either be 

on or off. The terms ground, low, zero, zero volts, open switch, and dark lamp are all equivalent to the boolean value  

false. Likewise five volts, high, one, closed switch, and 

lit lamp (light-emitting diode, LED), are equivalent to 

the boolean value true. We will use false (F or 0) and 

true (T or 1) when speaking of the logical states in this 

manual.  Modern  computers  contain  millions  of 

transistors combined together in digital mode to create 

advanced circuits. 

Transistors are three pin devices that are similar to 

valves for controlling electricity. The amount of current 

that  can flow between the collector  and emitter  is  a 

function of the current flowing through the base of the 

transistor. If no current is flowing through the base of 

the  transistor,  no  current  will  flow  through  the 

collector and emitter. With the transistor operating in 

digital  mode,  it  will  be  configured  to  carry  the 

maximum  (if  on)  or  minimum  (if  off)  amount  of 

current from the collector to the emitter that the circuit will allow.

The transistor used in this lab, the pn2222 or 2n2222, is an NPN, bipolar junction transistor which is sometimes 

referred to as a BJT. Other types of transistors exist, and while they differ in how they function, they are used in a 

similar manner in digital circuits. In this lab, a single transistor will be used to create an inverter. The principles 

used to build this inverter could be applied to other circuits with other types of transistors. Pinouts of the two types 

of transistors most likely to be used in these labs are shown in Exhibit 1.1.
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1. The transistor and inverter

The breadboard

In order to build the circuit, a digital design kit that contains a power supply, switches for input, light emitting  

diodes  (LEDs),  and a  breadboard will  be used.  Make sure to follow your instructor's  safety instructions when 

assembling, debugging, and observing your circuit. You may also need other items for your lab such as: logic chips,  

wire, wire cutters, a transistor, etc. Exhibit 1.2 shows a common breadboard, while Exhibit 1.3 shows how each set 

of pins are tied together electronically. Exhibit 1.4 shows a fairly complex circuit built on a breadboard. For these 

labs, the highest voltage used in your designs will be five volts or +5V and the lowest will be 0V or ground. 

A few words of caution regarding the use of the breadboard:

• Keep the power off when wiring the circuit.

• Make sure to keep things neat, as you can tell from Exhibit 1.4, it is easy for designs to get complex and as a 

result become difficult to debug.

• Do not strip more insulation off of the wires used than is necessary. This can cause wires that are logically  

at different levels to accidentally touch each other. This creates a short circuit.

• Do not push the wires too far into each hole in the breadboard as this can cause two different problems.

• The wire can be pushed so far that only the insulation of the wire comes into contact with the 

breadboard, causing an open circuit.

• Too much wire is pushed into the hole; it curls under and ends up touching another component at a 

different logical level. This causes a short circuit.

• Use the longer outer rows for +5V on one side and ground on the other side.

• Wire power to the circuit first using a common color (say red) for +5V and another (black) for ground.

• Always make sure to have a clearly documented circuit diagram before you start wiring the circuit.

10
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The inverter

The inverter, sometimes referred to as a NOT gate, is a simple digital circuit requiring one transistor and two 

resistors. The circuit should be connected as in  Exhibit 1.5. Make sure to start with a neat diagram in your lab 

notebook before you start constructing your circuit! The input is connected to a switch and the output connected to  

an LED. The two resistors are current limiting resistors and are sized to insure that the circuit operates in digital 

mode. If the  inverter circuit  is altered slightly with the addition of another  transistor placed in series with the 

current one, it results in one more input and the creation of a NAND gate. Likewise, if another transistor is added in 

parallel with the transistor in the inverter circuit a NOR gate can be built. These two gates are discussed at greater 

length in the next chapter.

Review exercises

1. Sketch your breadboard. Make sure to indicate which portions of the board are electrically connected in 

common.

2. Construct a truth table for an inverter with x being the input and !x being the output.

3. Using the color codes,  determine the value of  each of  the resistors.  Hint:  You may need to review  

Appendix B if you are unfamiliar with using resistors.

(a) red, orange, red

(b) brown, black, orange

(c) orange, orange, orange

(d) brown, black, green

4. What is the symbol used for electrical ground or zero volts?

5. Construct a truth table for a NAND gate.

6. Construct a truth table for a NOR gate.
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1. The transistor and inverter

Procedure

1. Write the prelab in your lab notebook for all the circuits required in the steps that follow.

2. Obtain instructor approval for your prelab.

3. Draw a diagram of the inverter circuit.

4. With the power off on your digital trainer, construct your inverter. Upon completion of the circuit, you 

may wish to have your instructor examine it before turning the power on.

5. Turn power on for your circuit and verify the proper operation of the inverter.

6. Demonstrate the proper operation of the inverter for your instructor.

7. Using a 7404 series logic chip, connect one of the  inverters to demonstrate its operation. Note that 

Appendix A contains descriptions of the  7400 series chips used in the labs, including the 7404  inverter 

chip.

Optional exercises

1. Draw a diagram of a NAND inverter circuit using two NPN transistors.

2. Construct the NAND circuit.

3. Verify proper operation of the NAND gate.

4. Demonstrate the proper operation of the NAND for your instructor.

12
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2. Logic gates
Learning objectives:

• Use 7400 series chips in designing digital logic functions.

• Draw complete circuit diagrams.

• Construct and debug digital logic circuits using 7400 series chips.

History of logic chips

Logic gates could be constructed from transistors and resistors just as the inverter was constructed in the last 

lab.  However,  using discrete  transistors to build logic  gates  can be time consuming and prone to problems as 

increasing  the  number  of  connections  also  increases  the  possible  points  of  failure.  Before  the  advent  of  the 

transistor, and today in certain industrial applications, logic gates are created using mechanical relays. Mechanical 

devices suffer  from similar problems along with the added complication that such devices generally cannot be  

switched from one state to another quickly enough for modern computer applications. The introduction of the 

integrated circuit in the late 1950s aimed at placing many individual circuit components in a single package that  

had all of the connections self-contained in silicon. This revolutionized the computing industry and has led to CPUs 

today that contain millions of components in a single chip. 

You will use  7400 series logic chips in this manual.  This series of 

chips has been manufactured since the 1960s. These chips were used to 

design and build computers during that time; however, they are rarely 

used in computers built today. Despite this, they still have many uses (in 

addition to just teaching students digital logic). They are still produced, 

easy  to obtain  and are  fairly  inexpensive.  The chips  come in various 

packages, but the package used in these labs is a dual in-line package, 

otherwise know as a DIP as shown in Exhibit 2.1. In order to determine 

the polarity of the chip, a notch is put on one side of the chip. From a top 

view,  pin  one  is  on  the  left  of  the  notch  with  other  pins  numbered 

sequentially in a counter clockwise manner. Chips may also have a dot 

placed near pin one. Pinouts of the chips that will be used in the labs can  

be found in Appendix A. 

Chips in the 7400 family are constructed using a variety of different 

circuit configurations that all have different properties. Some utilize BJT and others, field effect transistors (FETs). 

The different series (C, HC, L, S, LS, etc. within the 7400 family) are designed with such considerations as the need  

for low power consumption, switching speed, or reliability under stressful environments that might be incurred in 

military applications. Consult Appendix E for families that are appropriate for these labs.
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2. Logic gates

Logic symbols

As mentioned in the previous lab, NAND and NOR gates can be constructed with fewer components than AND 

and OR gates. For this reason, the inverter, NAND and NOR make up four of the seven chips used in all of the labs. 

Symbols used to represent the NAND, NOR, AND, OR and inverter or NOT are provided along with the truth tables 

for the NAND and NOR. The truth tables have “0” representing false and ”1” representing true. A circuit that can be 

used to create a NAND gate using two transistors is shown in Exhibit 2.7. Circuit configurations for  NAND gates 

provided by the 7400 series chips, while logically equivalent, vary from this design.

Exhibit 2.2: NAND Exhibit 2.3: NOR
Exhibit 2.4: Inverter

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

Table 1: NAND table

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Table 2: NOR table

Exhibit 2.5: AND

      

Exhibit 2.6: OR

Exhibit 2.8: A' AND B

Notice  that  only  the small  circle  is  used  to  indicate  the 

inversion of the AND to produce the NAND instead of using 

the full inverter symbol in Exhibit 2.2. This shorthand is often 

used at  the input  of  a  gate,  shown in  Exhibit  2.8 which is 

equivalent to (A' AND B).

Since the  NAND gate is  used more often,  how do you obtain a simple  AND or OR gate? One way would 

obviously be to simply combine a NAND gate along with an inverter as in Exhibit 2.9. While this works, as each 

chip contains more than one gate, if an extra NAND is available, it may be more advantageous to use a spare gate 

rather than to use an entirely new chip as in Exhibit 2.10.

14
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Exhibit 2.9: NAND inverter yields AND Exhibit 2.10: NAND NAND to yield AND

Logical functions

Exhibit 2.11 demonstrates how to implement a simple logical expression using the gates provided. Make sure to 

use  only those gates  that  are  provided in your  kit  when designing  your circuit.  This  diagram implements  the 

function f(A,B,C) = AB + BC. Since there are three inputs to this function, there are eight possible logical input  

conditions as shown in the truth table.

When building a logical circuit, it is important to document the circuit diagram as shown above. However, even 

this diagram could be made clearer for those attempting to build and debug the circuit. Exhibit 2.12 yields a much 

more detailed description of how the circuit should be built. 

You should include a diagram for every circuit that you build in your lab notebook and you should follow the  

format in Exhibit 2.12. Let us examine the type of information contained here. First, chips are labeled as IC1, IC2 

and IC3. Then a legend is included that specifies the type of chip for each of the IC or integrated circuits. The IC 

numbers should appear in the order that they will appear in your breadboard from left to right or top to bottom, 

depending  upon  how  the  breadboard is 

configured in  your digital  trainer.  Second, 

the  pins  used  for  each  connection  on  the 

chip are also given, which makes connecting 

the  circuit  possible  without  having  to 

continually  consult  the  datasheet  for  that 

logic chip. Third, the switches and LEDs are 

labeled in the order that they are used for 

the respective inputs and outputs. All of this 
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A B C f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Table 3: AB + BC

Exhibit 2.11: AB + BC

Exhibit 2.12: Detailed wiring diagram for AB+BC
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2. Logic gates

makes it much easier to construct and demonstrate the circuit. But above all, the greatest benefit comes if the 

circuit does not work and needs to be debugged! In this case, with all of the pins clearly labeled on your diagram, it  

is much easier for someone to examine your circuit, compare it to your diagram, trace the various connections and 

hopefully find and correct any problems in the circuit.

LAB NOTEBOOK TIP: In addition to the  circuit  diagram, always put a  truth table in your lab 

notebook to make it easier to debug and test the operation of your circuit.

This circuit would require three different 7400 series logic chips and ten different connections, yet if designed 

with individual transistors using the inverter from the last lab, as well as the NAND circuit shown in Exhibit 2.7, 

this would take nine different transistors, fifteen resistors, and many more connections than if just the chips were 

used. It is no wonder that the decrease in complexity of digital circuits that followed the introduction of the 7400 

series chips led to a revolution in the computing industry!

Let  us  examine  one  more  simple  circuit.  This  one  is  used  to  implement  an  exclusive  or  (XOR),  which  is 

represented by the symbol ⨁ in logical expressions. The truth table for A XOR B follows along with the gate used to 

represent it in circuit diagrams. As no XOR chip is provided in the kit, in order to implement this circuit, the XOR 

must be built by examining the truth table to find the resulting logical function, A'B + AB'. The circuit diagram for 

the XOR is shown in Exhibit 2.14. Remember, a diagram such as this should be included in your lab manual to ease 

construction and debugging of the circuit.

A B ⨁

0 0 0

0 1 1

1 0 1

1 1 0

Table 4: XOR table

Exhibit 2.13: XOR

Exhibit 2.14: Circuit diagram for XOR

We will discuss how to build more complicated circuits in the next chapter, as well as how to logically simplify  

the functions with Boolean algebra. Both circuits designed in this chapter can be simplified significantly with the 

use of De Morgan's law, also discussed in the next chapter.
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Review exercises

1. If a logic function has three inputs, how many rows must the truth table have to contain all possible 

states? Justify your answer.

2. Repeat the last problem for five inputs.

3. For the following functions, construct a truth table and draw a circuit diagram.

(a) y(A,B) = (AB)' + B'

(b) y(A,B,C) = (A + B)' C

(c) y(A,B,C) = (AC)' + BC

(d) y(A,B,C) = (A ⨁ B)C'

(e) y(A,B) = A' + B

(f) y(A,B,C) = ((A+B)'(B+C)')'

4. For 3(e) of the previous exercise, design the circuit using 7400 series chips listed in Appendix A. Label the 

pinouts on the circuit diagram. Make sure to label all of the pinouts, just as in Exhibit 2.14.

5. Repeat exercise 4 using 3(f).

Procedure

1. Write the prelab in your lab notebook for all circuits required in the steps that follow.

2. Obtain instructor approval for your prelab.

3. Assemble one single NAND gate from a 7400 chip and verify its operation.

4. Assemble one single NOR gate from a 7402 chip and verify its operation.

5. Build the circuit required for Exercise 4 from the review exercises. Make sure to have your instructor  

verify that your circuit works correctly before moving on.

6. Build the circuit required for Exercise 5 from the review exercises.

Optional procedure

1. Design, construct, and verify the operation of the circuit from Exercise 5 using only NAND gates.

Style Guidelines 17  A Global Text

http://creativecommons.org/licenses/by/3.0/


This book is licensed under a Creative Commons Attribution 3.0 License

3. Logic simplification
Learning objectives:

• Use reduction techniques to obtain minimal functional representations.

• Design minimal three and four input logical functions.

• Build and debug three and four input logical functions.

De Morgan's laws

As you observed in the previous lab, managing the number of connections (or wires) in your circuit can become 

a challenge. This challenge seems to increase exponentially as the number of components in the circuit increases. In  

order to keep your breadboard as neat as possible and your design as simplified as possible, it is often advantageous 

to spend time examining the logical function for ways to reduce the complexity of the final design. Reducing the 

number of gates in a circuit will generally lead to a reduction in the number of connections, resulting in a simpler 

circuit. Designs with fewer connections and parts have fewer possible points of failure. Less complex circuits are  

generally easier and cheaper to build and debug. In this chapter, techniques will be introduced that can help to  

implement complex circuits in the least complex manner possible. 

It is often possible to implement logical functions correctly in many different ways. The first step in obtaining a  

logically minimal expression should be a clear understanding of the rules of Boolean algebra listed in Appendix D. 

De Morgan's laws in particular can be very helpful when attempting to simplify circuit design. De Morgan's laws are  

listed below.

(AB)' = A' + B' (A+B)' = A'B'

Given these two equations, it is easy to see the alternate symbols that are sometimes used for the AND and OR 

gates listed in  and . Applying De Morgan's laws to the functions listed yields the following.

(A' + B')' = (AB')' = AB (A'B')' = ((A + B)')' = A + B

Exhibit 3.1: Alternate AND symbol Exhibit 3.2: Alternate OR symbol

An example of using De Morgan's laws for simplification can be found by examining the logical function: AB + 

BC from the previous chapter. This function can actually be implemented with just three NAND gates and one 7400 

chip. Examining the equation AB + BC below and applying De Morgan's law demonstrates that the expression can  

be implemented with only NAND gates.

AB + BC = ( (AB + BC)' ) ' Double Negative

= ( (AB)' (BC)' )' De Morgan's law

Notice that  the first  expression exactly matches  the function that  was built  in the previous chapter using two  

NANDs, one NOR and three inverters. The new circuit shown in Exhibit 3.3 implements the same expression with 

just three  NAND gates. This results in a design using only one  7400 series chip and fewer connections that still 
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3. Logic simplification

yields  the same result.  Designs with  fewer chips  and wires  generally  take  less  time to build,  resulting in  less  

expensive, more robust circuits. Similarly, the circuit that 

implements the XOR from the last chapter could be built 

with  just  NAND gates,  however  as  five  gates  would  be 

required,  it  still  would  use  two  chips,  one  7400  and  a 

7404.

Karnaugh maps

Karnaugh maps or  K-maps for short, provide another 

means of simplifying and optimizing logical expressions. 

This is a graphical technique that utilizes a sum of product 

(SOP)  form.  SOP forms  combine  terms  that  have  been 

ANDed together that then get ORed together. This format lends itself to the use of De Morgan's law which allows  

the final result to be built with only NAND gates. The K-map is best used with logical functions with four or less 

input  variables.  As  the  technique  generally  becomes  unwieldy  with  more  than  four  inputs,  other  means  of 

optimization are generally used for expressions of this complexity. While it can be more instructive for students to 

use Boolean algebra reduction techniques, when minimizing gate circuit; it is less obvious for students to recognize 

when they have reached the simplest circuit configuration. One of the advantages of using K-maps for reduction is 

that it is easier to see when a circuit has been fully simplified. Another advantage is that using K-maps leads to a 

more structured process for minimization. 

In order to use a K-map, the truth table for a logical expression is transferred to a K-map grid. The grid for two, 

three, and four input expressions are provided in the tables below. Each cell corresponds to one row in a truth table 

or one given state in the logical expression. The order of the items in the grid is not random at all; they are set so  

that any adjacent cell differs in value by the change in only one variable. Because of this, items can be grouped  

together easily in rectangular blocks of two, four, and eight to find the minimal number of groupings that can cover  

the entire expression. Note that diagonal cells require that the value of more than two inputs change, and that they  

also do not form rectangles.

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

C'D
01

CD
11

CD'
10

Table 5: 4 input K-map

Examine the expression f(A,B,C) = ABC + ABC' + A'BC + A'BC'. As listed, it requires four three-input AND gates, 

one four-input OR gate and several inverters. The truth table is copied over to the eight cell K-map below. Notice 

the square of ones in the center of the K-map. These cells all share the fact that they are true when B is true. And 

indeed, the expressions shown below are equivalent.
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Exhibit 3.3: AB + BC (NANDS only)

A'
0

A
1

B'
0

B
1

Table 6: 2 input K-map

A'B'
00

A'B
01

AB
11

AB'
10

C'
0

C
1

Table 7: 3 input K-map
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 ABC + ABC' + A'BC + A'BC' = AB(C + C') + A'B(C + C') Distributive Property

= AB + A'B C + C' is always true

= (A + A')B Distributive Property

= B A + A' is always true

Of course, implementing the logical expression B is much simpler than the previous expression! Although rules  

of logic applied above yield the same result, it is often much easier to note the groupings that result in minimal  

expressions using the graphical representation of the K-map.

Let us examine the equation g(A,B,C,D) given in the  truth table in  Table 7 with the associated  K-map. The 

expression contains three different terms: A'B', AC, and ABC'D circled in  Exhibit  3.5. However, this is not the 

minimal expression because not all of the largest possible groupings are included. In order to obtain the largest 

groupings, it is often necessary to overlap some of the terms. This just causes certain terms to be included in more  

than one grouping as shown in Exhibit 3.6. Notice term ABCD which is actually included in two different groupings,  

ABD and AC,  which is  perfectly  acceptable.  Using the new groupings,  we obtain  the minimal  SOP expression 

g(A,B,C,D) = A'B' + AC + ABD. This expression contains the same number of groupings or products, but one less  

term in one of the products. In this case ABC'D from  Exhibit 3.5 is replaced with ABD in  Exhibit 3.6 yielding a 

simpler expression. While other techniques exist for finding minimal expressions, with some practice, the K-map 

can be used effectively for expressions with four or less inputs.

Not selecting the largest grouping is a very common error to those just beginning to use K-maps. 

Remember,  always  select  the largest  grouping possible,  even if  it  results  in  some terms being 

double covered. Larger groupings result in simpler expressions.
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A B C f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Table 8: f(A,B,C)
Exhibit 3.4: K-map of f(A,B,C)
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3. Logic simplification

In summary, the procedure for using K-maps to find 

minimal logical expressions is given below.

1. Construct  the  K-map corresponding to the 

truth table.

2. Circle any 1 that is NOT adjacent (isolated) 

to any other 1. 

3. Find any 1 that is adjacent to only one other. 

Then circle these pairs, even if one in the pair 

has already been circled.

4. Circle any group of eight (octet), even if a 1 

in the group has already been circled.

5. Circle any group of four (quad) that contains 

one or more one 1 that is not already circled.

6. Make sure that every 1 is circled.

7. Form the OR sum of the terms generated by 

each grouping.

The following example goes through all the steps in order to find the minimal expression for h(A,B,C,D). First,  

the truth table given in Table 8 is transcribed to fit into the K-map given in Table 5.
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A B C D g

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Table 9: g(A,B,C,D)

Exhibit 3.5: K-map of g(A,B,C,D)

Exhibit 3.6: K-map of g(A,B,C,D)
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In  step  2,  above,  the  1  in  the 

bottom right is shaded. 

In step 3, to the left, the pair of 

two  1s  in  the  second  column  is 

shaded.  Note  that  the bottom item 

A'BCD  dictates  that  this  group  is 

circled.  The  top  item,  A'BC'D  has 

many  different  adjacent  elements, 

but the first 1 only has one adjacent 

element.  For  step  4,  no  groups  of 

eight exist, so there is no table. For 

step 5, two groups of four exist, C'D 

and BC'. 

Note that both of these groupings cover elements already covered from step 2 and that both share the group of 

two,  BC'D.  This  overlap is  shaded in  green.  This  is  not  only perfectly acceptable,  but required to obtain the 

minimal expression. Now, all of the 1s are covered, yielding the minimal solution.

h(A,B,C,D) = AB'CD' + A'BD + BC' + C'D
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A B C D g

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

Table 10: h(A,B,C,D)

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 1 1 0

C'D
01

1 1 1 1

CD
11

0 1 0 0

CD'
10

0 0 0 1

Table 11: h(w,x,y,z)

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 1 1 0

C'D
01

1 1 1 1

CD
11

0 1 0 0

CD'
10

0 0 0 1

Table 12: Step 3

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 1 1 0

C'D
01

1 1 1 1

CD
11

0 1 0 0

CD'
10

0 0 0 1

Table 13: Step 2

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 1 1 0

C'D
01

1 1 1 1

CD
11

0 1 0 0

CD'
10

0 0 0 1

Table 14: Step 5
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3. Logic simplification

Circuit design, construction and debugging

While these techniques are useful in minimizing the logical expression, ultimately the circuits still need to be  

constructed. As the complexity of the circuits increases, it is important to note some of the techniques that can be 

useful in building a complete working circuit.

DESIGN TIP: The time spent in the design stage can pay huge dividends later! Mistakes made at 

the beginning of the design phase carry through the entire process and can consume countless 

hours trying to debug the final product.

• Start by making sure that the circuit minimization was correct and copied in your lab notebook. The truth 

table is helpful when testing the final circuit. Building the wrong circuit serves no purpose at all.

• Verify that the pinouts selected are proper for each gate and chip; these are helpful when debugging as well 

as when building the circuit. Again, time spent here helps cut down on the construction and debugging 

later.

• Remember the tips given in the chapter “The transistor and the inverter” regarding the use of the 

breadboard.

• Keep connecting wires neatly and avoid unnecessarily long loops of wire, yet do not spend excessive time  

cutting wires that are exactly the proper length between spans. It may feel like a work of art, but in the end 

you want a neat circuit that works properly. 

If your circuit does not work properly:

• Attempt to reason out the problem. Does the circuit act reliably? 

• Does it always produce the same wrong result? If so, then the error is likely in the logic.

• If it yields different results at different times, a loose connection is very likely. If two output lines are 

connected together (which should never be done), it can also result in unpredictable outputs.

• Test each component of the circuit independently. For example, if you have the expression AB' + ABCD +  

ABC' built with NAND gates and inverters, first test that the input and output of (AB')' is working correctly. 

Then move onto each succeeding term.

• Verify the circuit has power and ground to all of the appropriate pins for each chip.

• Verify that all of the pins are connected properly. 

• Make sure that they follow what is specified in your circuit diagrams.

• Make sure that none of the output pins are tied together. If each of the output pins were to obtain a 

different value, this could result in a logic high being tied directly to a logic low level. At best, this can 

result in an indeterminate value. This will result in further problems if this output is then used as an 

input for another gate. 

• Remember that often things do not work the first time when you build them. 

DEBUGGING TIP: Do not allow yourself to get frustrated! This is easier said than done, but 

getting upset does not serve any purpose in effective troubleshooting. 

If you have done all of the above and the circuit still does not work:

• Return to the design phase and verify that your minimization and pinouts are correct.
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• Sometimes errors come from the components or equipment themselves. Errors such as those listed below 

can occur, but are very rare. These should be considered as a last resort and other causes of error should be 

investigated before looking for the following errors:

• A pin on a DIP can become bent and curl under the chip so that it does not get inserted into the 

breadboard. This is difficult to see without taking the chip out and examining its legs.

• In general, solid state devices are very reliable when operated under proper temperature ranges, but  

very occasionally a chip may be faulty. 

• Connecting wires can be split inside of the insulation. When this occurs, the insulation will cause the 

wire to look as though it is intact, but if the copper is in two pieces inside the insulation, current will 

not flow and the wire will actually be open.

• Faulty test equipment can adversely effect the circuit being tested and lead one to believe a circuit is  

malfunctioning when it is not, or give you other false information that leads you down the wrong 

path in your reasoning.

• Ask for help from fellow classmates and your instructor.

• Take a break and come back to the problem. No one works at their best when they are totally aggravated.

Review exercises

1. Design a 4-input NAND gate using two 2-input NAND gates and one 2-input NOR gate. Hint: Use 

DeMorgan's law.

2. What are the possible groupings in a 4-input K-map? Sketch their shapes.

3. Construct a truth table for the following functions:

(a)  f(A,B,C) = AB + A'BC' + AB'C

(b)  g(A,B,C) = A'C + ABC + AB'

(c)  h(A,B,C,D) = A'BC' + (A ⨁ B)C + A'B'C'D + ABCD

(d)  j(A,B,C,D) = A'C'D' + C'D + CD

4. Construct  the  K-map for  each  of  the  functions  from  the  previous  problem  and  determine  the 

minimal expression for each.

5. For 3(b), design the circuit for the minimal SOP expression found in problem 4 using just  NAND 

gates and inverters. Label the pinouts on the circuit diagram.

6. For 3(c), design the circuit for the minimal SOP expression found in problem 4 using just  NAND 

gates and inverters. Label the pinouts on the circuit diagram.

7. Given each of the K-maps, determine the minimal expression associated with it.

(a) (b)
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A'
0

A
1

B'
0

1 1

B
1

1 0

A'B'
00

A'B
01

AB
11

AB'
10

C'
0

1 1 1 1

C
1

0 1 0 0
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3. Logic simplification

(c) (d)

Procedure

1. Write the prelab in your lab notebook for all the circuits required in the steps that follow.

2. Obtain instructor approval for your prelab.

3. Build the circuit required for Exercise 5 from the review exercises. 

(a) Make sure to test each of the portions of the expression independently. Meaning, test the output of  

each of the first level NAND gates to verify that each works before testing the final output. 

(b) Demonstrate the working circuit for your instructor.

4. Repeat the steps from the last procedure for Exercise 6 of the review exercises.
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A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

1 1 1 1

C'D
01

1 1 1 0

CD
11

0 0 1 1

CD'
10

0 0 1 1

 

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 0 0 0

C'D
01

1 1 0 1

CD
11

0 1 0 1

CD'
10

1 1 0 0
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4. More logic simplification
Learning 0bjectives:

• Review all possible K-map groupings.

• Use “don't care” conditions in minimization.

Additional K-map groupings

Some of the rectangular groupings allowed for Karnaugh maps, such as the one in Exhibit 4.1, are not obvious. 

Cells on borders actually are adjacent to cells on the opposite border, which produce groupings that may not appear 

continuous. This grouping of two cells actually forms a rectangle represented by B'C', even though this rectangle is  

split. 

The possibilities for non-obvious groups increase for K-maps with four-input functions. Exhibit 4.2 shows B'D, a 

four cell square grouping that is split on the two side borders. In Exhibit 4.3, the eight cell rectangular grouping D' 

is shown. One of the most non-obvious four cell groupings that contains all four corners is shown in  Exhibit 4.4. 

The interested reader can verify that the minimal expressions for Exhibit 4.2, 4.3 and 4.4 are B'D+A'D+A'B'C, 

D'+AB'+A'C' and B'D'+A'BD+A'CD respectfully.

Style Guidelines 26  A Global Text

Exhibit 4.1: K-map grouping

Exhibit 4.3: 8-element group Exhibit 4.4: Four corner group
Exhibit 4.2: 4-element group
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4. More logic simplification

Input placement on K-map

All of the K-maps shown so far have had the input variables A and B set 

along the top with the input variables C and D along the side. This does not 

need to be the case, but it is the convention used here. In addition, the 

inputs have used the gray code 00 -> 01 -> 11 -> 10, which does not need 

to be the case either. For example, the input sequence could have been 00-

>10->11->01  while  still  only  changing  one  input  at  a  time.  Although 

altering  these  conventions  will  still  lead  to  the  exact  same  minimal 

expressions, it is discouraged because when verifying results, it can often 

lead to confusion. By altering the convention, you could cause those trying 

to assist you to spend extra time when examining your work. The following 

example illustrates how the same representation will be obtained despite 

the ordering of the input variables. In Exhibit 4.5 the same function is represented as in Exhibit 4.3. In this case, 

the region highlighted for D' does not span two boundaries, while the grouping for A'C' does in this format. Again, it 

can be shown that the same minimal expression is obtained: D' + A'B + A'C'.

Don't care conditions

While all input cases for a logical function must be considered, in an actual design it often occurs that certain  

cases never exist. For instance, a particular counter that cycles through the states zero through five would never  

reach states six (110) and seven (111).  In such cases,  it can be advantageous to fill  the spots with a  don't care 

condition  (d).  The  don't  care can  then  be  included  with  a  grouping if  it  helps  to  minimize  the  final  logical 

representation,  otherwise  it  can be treated as  false.  Consider the example in  Exhibit  4.6.  If  only  the ones are 

grouped, the minimal expression is C'D' + A'BC' + BD'. However, if the  don't care conditions are allowed to be 

grouped with ones, the resulting minimal expression is B + C'D'. 

Remember that the presence of a  don't care condition does not require that this cell be covered in the final 

output.  Exhibit  4.7 demonstrates  this  case.  Note,  two  of  the  don't  cares  are  included  to  yield  a  minimal 

representation of C'. The don't care along the bottom is not included at all.

Exhibit 4.6: Don't care conditions

Exhibit 4.7: Don't care not covered
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Review exercises

1. Given each of the K-maps, determine the minimal SOP expression. d represents a don't care condition.

(a) 

A'B'
00

A'B
01

AB
11

AB'
10

C'
0

d 0 1 1

C
1

1 0 0 d

(b)

A'B'
00

A'B
01

AB
11

AB'
10

C'
0

0 0 1 1

C
1

1 d d 1

(c)

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 0 0 1

C'D
01

0 0 1 1

CD
11

1 0 1 1

CD'
10

1 0 0 1

 

(d)

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

1 1 0 1

C'D
01

0 1 0 0

CD
11

0 1 0 0

CD'
10

1 1 0 1

 

(e)

A'B'
00

A'B
01

AB
11

AB'
10

C'
0

1 1 0 1

C
1

0 1 1 0

(f)

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

1 1 0 0

C'D
01

1 1 1 1

CD
11

0 0 0 0

CD'
10

1 1 0 0

 

 

2. For the functions listed below, construct a K-map and determine the minimal SOP expression.

(a) f(a,b,c) = a'b'c' + a'bc' + abc' + abc

(b)g(a,b,c) = ab'c' + abc' + abc + don't cares(a'bc + ab'c)

(c) k(a,b,c,d) = abc'd + ab'c'd + a'bc'd + a'b'cd' + don't cares(a'b'cd+ a'bcd + ab'cd + abcd)

(d)m(a,b,c,d) = a'b'cd' + a'bcd' + abc'd' + abcd' + ab'c'd' + ab'cd' + don't cares(a'bc'd + abc'd)

Procedure

1. Write the prelab in your lab notebook for all the circuits required in the steps that follow.

2. Obtain instructor approval for your prelab.
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4. More logic simplification

3. Build the circuit required for Exercise 2(b) from the review exercises. 

4. Demonstrate the working circuit for your instructor.

5. Repeat the steps from the last procedure for Exercise 2(c) from the review exercises.
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5. Multiplexer
Learning objective:

• Use the multiplexer to implement complex logical functions.

Background on the “mux”

A multiplexer, often just called a mux, is a device that can select its output from a number of inputs. This device  

is useful in computer systems that use a bus architecture, where several devices share the same communication 

path. A 2-to-1 multiplexer is shown in Exhibit 5.1. In this case the two inputs are D0 and D1. If the select line is low, 

then the output will reflect the state of D0. Likewise, if the select line is high, the output is the state of D1. Hence,  

the output is switched between two different devices connected to D0 and D1 using the select line. In this way, only 

one device will be active or connected to the bus at any given time.

Exhibit 5.1: 2-to-1 multiplexer

With an increase in the number of select lines, multiplexers allow for more than just two input lines. If two select 

lines are used, then the output can be selected from four different inputs forming a 4-to-1 mux. The 74151 provided 

in your kit is an 8-to-1 mux that uses three select lines to chose from 8 different input lines. A diagram of the 74151  

chip is given in Appendix A. The 8-to-1 multiplexer can be used to take a byte of parallel data on the input lines and 

determine which of the input lines to display at the output. This is useful with bus architectures in order to convert  

the parallel data that most often comes in bytes into a serial stream of bits. 

Using a multiplexer to implement logical functions

Another use for the mux is to implement fairly complicated logic functions without the aid of other logic gates.  

As an example, examine the following function along with its K-map, and the resulting minimal SOP expression.

g(a,b,c) = a'b'c' + a'bc + ab'c' + ab'c + abc'

= a'bc + b'c' + ac' + ab'

In order to implement the circuit of this function for even the minimal SOP representation, five NAND gates are 

required.  However,  a single mux can be used to implement the same expression.  The key is  to use the input 

variables  for  the function as  the input  for  each select  line  and set  the data  lines  to the value for  each of  the 

corresponding outputs. Note that the value of data lines D0, D3, D4, D5, and D6, which also are found on pins 4, 1,  

15, 14, and 13 are set to high with the remaining data lines set low. In this manner, any three input logical functions  
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5. Multiplexer

can be built with a single mux. Note that as mentioned previously, the strobe pin is tied low and the order of the  

inputs from the function differ from the order of the input lines for the 74151 chip.

A'B'
00

A'B
01

AB
11

AB'
10

C'
0

1 0 1 1

C
1

0 1 0 1

Table 15: g(a,b,c)

A B C f

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 16: g(a,b,c)

Exhibit 5.2: Circuit for g(a,b,c)

When used in this manner, the 74151 is often referred to as a boolean function generator. This circuit could be  

even more flexible if the data input lines, D0 through D7, could be changed.  The function that the  multiplexer 

implemented could be changed while the circuit  is  running with the use of  memory chips.  This  change stores  

temporary values for the input lines to create a truly programmable boolean function generator.

When using the 74151 multiplexer: 

  (1) Make sure to properly select the strobe line.

  (2) Note that values chosen for A, B, and C may differ from those given in the truth table 

      in Appendix A. Appendix A assumes that C is the most significant input line, which may not

      be the case in your design.

Just as this method of using an 8-to-1 mux can be used to implement any 3-input function with just one chip, 

any 4-input function can be built with a 16-to-1 mux. However, the kit provided with this lab only contains the 8-to-

1 mux. This can present a problem when a complex four input function would require several different 7400 series 

chips to implement, such as the function h(a,b,c,d) found in the K-map and truth table that follow. Two different 

minimal SOP expressions exist for this function. See below.

h(a,b,c,d) = a'bc' + a'b'c + acd' + ab'c'd + a'c'd'

h(a,b,c,d) = a'bc' + a'b'c + acd' + ab'c'd + a'bd'
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Either of the terms at the end of each expression could be used to obtain a minimal expression. Yet, either would  

require four 3-input NAND gates, one 4-input NAND gate and one 5-input NAND gate, assuming that your kit even 

provided NAND gates with four or five inputs. 

It may not be obvious how to use the multiplexer in cases such as this to implement the function. One approach 

would be to use two mux chips along with some additional gates. One trick is to use two 8-to-1 multiplexers along 

with one 2-to-1 mux as shown in Exhibit 5.1. Each half of the function is implemented with an 8-to-1 mux and the 

output of each is selected using the remaining input as the select line for the 2-to-1 mux. Luckily, a simple trick can 

be used with an 8-to-1 mux. First take the function given in the K-map for h(a,b,c,d) produce the truth table, but 

add one column for the multiplexer input of each data element.

a'b'
00

a'b
01

ab
11

ab'
10

c'd'
00

1 1 0 0

c'd
01

0 1 0 1

cd
11

1 0 0 0

cd'
10

1 0 1 1

Table 17: h(a,b,c,d)

Each of the two rows in the sixth column now represent one of 

the input lines. Instead of the input lines taking just true or false 

to implement the truth table directly, the input lines will take the 

value  of  true,  false,  d,  or  d'.  In  this  way,  only  one  multiplexer 

needs to be used along with possibly one inverter gate. As a, b, and 

c are used to select the data line, each set of two rows that share 

the same input values for a, b, and c are grouped together in the 

table. Then by comparing the output value of h for these two rows, 

it  can be determined what  value the data  line  should take.  For 

example, since h matches input d for the first two rows, the input 

value for D0 should be tied to input d. The circuit that implements 

h(a,b,c,d) is given in Exhibit 5.3. It is assumed that the inverse of 

the input d is available somewhere in the circuit, if not, an inverter 

would need to be added to this circuit.

a b c d h(a,b,c,d) Input

0 0 0 0 0 D0=d

0 0 0 1 1 D0=d

0 0 1 0 0 D1=0

0 0 1 1 0 D1=0

0 1 0 0 1 D2=1

0 1 0 1 1 D2=1

0 1 1 0 0 D3=d

0 1 1 1 1 D3=d

1 0 0 0 0 D4=d

1 0 0 1 1 D4=d

1 0 1 0 1 D5=d'

1 0 1 1 0 D5=d'

1 1 0 0 1 D6=1

1 1 0 1 1 D6=1

1 1 1 0 0 D7=0

1 1 1 1 0 D7=0

Table 18: h(a,b,c,d)
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Exhibit 5.3: h(a,b,c,d) implemented with 8-to-1 mux

As  the  mux  can  implement  logical  functions  directly  from  the  truth  table without  the  need  for  any  logic 

minimization, it is often tempting to use the mux to implement every function and simply skip the minimization 

techniques described earlier. Resist this temptation! Often the minimal SOP implementation will require few gates  

resulting in a simple design without a mux. In addition, when different functions are required for a given circuit, if  

only  multiplexers were used, a mux would be needed for each and every function. However, the minimal SOP 

expressions for the different functions will sometimes share common logical terms. Examine the two functions  

below that are required for a given circuit. 

f(x,y,z) = x'yz

g(x,y,z) = z' + x'yz

They share the term x'yz, and this part would only need to be built once and could be used for both functions, 

saving gates. Sharing of terms in this manner is not possible when using the mux to implement functions. So in  

order to insure that the simplest circuit is designed to implement the function, the logic minimization techniques 

described earlier should be examined first before resorting to the mux to implement a function.

Review exercises

 1. Construct the truth table and K-map for each of the following functions and determine the minimal SOP 

expression.
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(a) f1(a,b,c) = a'b'c' + a'bc' + a'bc + ab'c'

(b) f2(a,b,c) = a'b'c + a'bc + abc' + ab'c

(c) f3(a,b,c,d) = a'b'c'd' + a'bcd + abcd + ab'c'd' + ab'c'd

(d) f4(a,b,c,d) =a'b'c'd' + a'bc'd + abcd + a'b'cd' + a'b'cd + a'bcd' + ab'c'd

2. Design the implementation of expression 1(b) using an 8-to-1 mux.

3. Design the circuit that will implement 1(d) using an 8-to-1 mux chip along with any necessary circuitry.

4. Examine the following four-input functions and design a circuit that will implement each.

(a) g1(a,b,c,d) = a'b'c'd + abcd + a'bcd + a'bc'd + ab'c'd + a'b'cd + abc'd + ab'cd

(b) g2(a,b,c,d) = a'bc'd + a'b'cd' + ab'cd

(c)  g3(a,b,c,d) = abc'd' + abc'd + abcd + abcd' + a'bc'd + a'bcd

(d) g4(a,b,c,d) = a'bc'd' + abc'd' + abcd' + ab'cd' + a'bc'd + abc'd + abcd + ab'cd

Procedure

1. Write the prelab in your lab notebook for all the circuits required in the steps that follow.

2. Obtain instructor approval for your prelab.

3. Build the circuit required for Exercise 2 from the review exercises. Demonstrate the working circuit for  

your instructor.

4. Repeat the steps from the last procedure for Exercise 3 from the review exercises.
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6. Timers and clocks
Learning objectives:

• Review relation between time and frequency.

• Construct timer and clock circuits.

• Produce a timing digram for a circuit.

Timing in digital circuits

Timing circuits are often required for various applications. One may need to measure the length of time that a 

given switch has been on or off. As will be seen in future labs, for  more complicated circuits,  a clock is  often 

necessary to synchronize the various components. While many different ways exist to build timing circuits, the 555 

timer chip has proven to be an industry standard for this purpose. 

555 timer

The 555 timer chip was first manufactured in the early 1970s and continues to be used in electronic devices. The 

detailed circuit diagram seen in Appendix A for this integrated circuit contains two diodes, many resistors and over 

twenty transistors. All of this is contained in one small dual inline package that can be used in timing and clocking 

circuits. It is important to note that propagation delays caused by the time it takes for signals to travel through the  

circuit  components  prevent  it  from being  used  in  circuits  requiring  fast  switching  times.  In  this  case,  fast  is 

considered a few µseconds. The propagation delay varies slightly depending upon the version of the 555 being used. 

This limitation prevents the  555 from reaching speeds necessary for modern computer systems. However, many 

applications have less rigorous requirements for which the 555 timer has proven to be the component of choice. 

Due to mass production, this chip is widely available at a modest price.

Timers

A timing circuit  using the  555 timer is found in  Exhibit  6.1. 

This circuit is also called a one-shot because it will work once for 

every time it is triggered properly. After being triggered, it turns 

on for the specified time and then returns to its stable off state. It  

is also often said to be operating in monostable mode because it 

only has one stable state, when its output is low, ground or off. 

The circuit is triggered with a voltage below (1/3)Vcc (Vcc is 

the  supply  voltage  for  the  circuit),  at  which time the  capacitor 

labeled C begins charging through the  resistor labeled R. At the 

time  when  the  voltage  on  the  capacitor reaches  (2/3)Vcc,  the 

output  will  turn  low.  The  voltage  across  the  capacitor  is  given 

below. See Appendix B for more information regarding  resistors 

and capacitors.

V(t) = Vcc( 1 – e-(t/rc)) 
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Setting V(t) equal to (2/3)Vcc and solving for t yields the time when the output will go low (assume three digits of  

accuracy).

t = 1.10(RC)

Note that the values for  resistors and capacitors often vary with a tolerance of  ±5 per cent and ±10 per cent 

respectively. Hence, the time of the  timer may not exactly match the calculated value. When it is critical for the 

application to have a very specific time, either the components used must be measured to insure that they match  

the time needed or a variable resistor can be used so that it can be adjusted once the circuit is built. 

Clocks

Just as the drummer in a band helps to keep the rest of the members synchronized, so does the clock in a circuit. 

A clock is used to synchronize a circuit that contains different components that have different propagation delays. 

Synchronization is required because signal changes take time to travel through a circuit. Internal inductance and 

capacitance found in the wires of the circuit and the components themselves cause delays. In order to insure that 

each transition or change has fully propagated through the circuit, the clock can only switch as fast as it takes the 

slowest part of the circuit to fully register each change. Modern processors have clocks that operate in the gigahertz 

range and are built with the use of crystals. The  555 timer chip cannot be  clocked that fast due to the internal 

propagation delay within the transistors in the chip, but it can provide a reliable clock pulse for applications that do 

not require that speed.

Exhibit 6.2: Clock waveform

Clock speeds are given in terms of frequency which uses the unit hertz; this stands for cycles per second. So if a 

clock is said to have a frequency of 200 megahertz, it transitions from logic high to logic low 200,000,000 times in 

one second! Another measure often associated with a clock is its period, which is the time it takes for the full clock 

cycle. The period of the 200 megahertz clock is 5 nanoseconds.

T = 1/f

Mathematically,  period (T) and  frequency (f) are related inversely.  The  clock waveform given in  Exhibit  6.2 

illustrates an idealized waveform. In reality the transitions from low to high or high to low take some time and are  

not  instantaneous as  those  shown.  As  another  example,  a  5  gigahertz  clock has  a  period of  1/5,000,000,000 

seconds, which is 0.0000000002 seconds or 0.2 nanoseconds. The clocks built for these labs will be much slower 

than this. The fastest clock will have a period of one second.
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Exhibit 6.3 shows a clock circuit using the 555 timer. When configured 

in this manner, it is said that the timer is operating in astable mode. This 

means that  there  is  no stable  state  for  the circuit;  it  just  continues  to 

oscillate, going from low to high and back again. In this case, the trigger is  

tied to the voltage across the capacitor, so that the circuit is triggered by 

itself. The capacitor is charged through the series combination of R1 and 

R2 and discharged through R2. The capacitor charges to 2/3*Vcc and then 

discharges  to 1/3*Vcc  repeatedly. Using the same method given in  the 

previous section, the times to charge and discharge the capacitor along 

with the equations for the period and frequency are listed below.

t1 = 0.693(R1 + R2)C charge time

t2 = 0.693(R2)C discharge time

T = t1 + t2 = 0.693(R1 + 2*R2)C period

f = 1/T = 1.44/((R1 + 2*R2)C) frequency

Note that the accuracy of the values of the resistors and capacitors will affect the actual values for the frequency of 

the clock. Also, this clock will not have a symmetric waveform as it will be charging (on) for a longer time than it  

will be discharging (off).

When measuring the frequency of the clock, count the time for ten full clock pulses and then divide 

this number by ten to determine the period. This will reduce the effect of timing errors introduced 

by those taking the measurements. 

Timing diagrams

The graph of the logical transition for a circuit is given in a timing diagram. Timing diagrams provide a visual 

trace of the circuit functionality. They can also be helpful in determining the maximum possible delay for a given  

circuit which can then be used to determine the fastest frequency in which the circuit can be clocked. The diagrams 

display each value in one of three different states: logic high, logic low, and indeterminate. The indeterminate state 

would occur when a given state cannot be guaranteed to be either high or low. Indeterminate states are usually  

shown as gray areas that span the entire region from low to high for the duration of the indeterminate period. The 

transition edges are often not shown to be totally vertical, as they are in Exhibit 6.2. This is to illustrate the point 

that changes in output are not instantaneous due to delays caused by transition times as well as internal inductance  

and capacitance in the circuits.

The timing diagram shown in  Exhibit 6.5 is for the circuit found in  Exhibit 6.4. This circuit has three extra 

points listed: A, B, and C to determine the intermediate states of each of the gates for a given transition. In this case,  

values for D0 is assumed to be logic high and D1 is assumed to be logic low with the SELECT line making a  

transition from logic low to logic high. A is the output of the inverter, B the output of the top AND gate, and C the 

output of the lower AND gate. The circuit is assumed to be in a stable state with the inputs SELECT, D0, and D1 at  

logic low, high, and low prior to time zero. Assume that the manufacturer specifies  that each gate will have a 

maximum delay of 10.0 nanoseconds. This may vary depending upon the logic family used, so the data sheet should 

be consulted for verification when determining the maximum delay for a given circuit. Notice that once the SELECT  
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line is brought low, A, B, and the Output all assume 

an intermediate value as there is no guarantee of 

how  fast  the  transition  will  occur.  Once  at  10.0 

nanoseconds,  the  output  of  the  inverter can  be 

verified  to  have  gone  low and  the  state  for  A  is 

listed  as  low.  This  transition  value  then  ripples 

through the other gates as the top AND gate now 

takes another 10.0 nanoseconds to insure that its 

output  has  changed  from  high  to  low.  Output 

changes may occur faster than the times listed, however as that cannot be guaranteed, the slowest time must be 

used to determine the fastest frequency in which a circuit can be clocked. 

If this circuit were to be clocked, since the maximum delay for the entire circuit is 30.0 nanoseconds, this would 

also be the smallest allowable value for the period of the clock, which would yield a maximum frequency of 33.3 

Mhertz. In these labs, the circuits will be clocked at a slow enough rate that delays on the order of nanoseconds will 

not impact the circuits. However, for circuits where speed is essential, detailed analysis such as this is critical to  

insure that the circuit is clocked as fast as possible while still allowing enough time for the circuit to stabilize.

Exhibit 6.5: Timing diagram

Accuracy of answers

As this chapter involves answers that go beyond the simple binary, true or false format, a brief discussion of the  

accuracy of the numbers follows. When answers are provided, it is beneficial to know how accurate those answers  

are. The precision of any measurement is dependent upon the accuracy of the device that is used to perform the 

measurement. For example, one would not expect to obtain measurements within thousandths of a second using an 

ordinary  wristwatch  or  within  thousandths  of  a  millimeter  using  a  standard  ruler.  Once  the  accuracy  of  the  

measurements used is understood, it is important to remember the rules that apply to the number of significant 

digits for any calculation.
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• Trailing zeros are significant to the number.

• Use all digits when performing calculations and round only for the final answer.

• When numbers are multiplied or divided, the final answer has the same number of significant digits as the  

number with the smallest amount orf significant digits in the calculation.

• In this book, the formulas are provided using three digits of accuracy. It may be the case that fewer digits 

can be obtained for a given measurement or that the components used may only be known within one digit  

of accuracy. In these cases, the final answers should be rounded accordingly.

As  mentioned,  the  tolerances  of  the  components  will  cause  deviation  of  the  measured  answer  from  the 

theoretical answer. The tolerance of the  resistors used in these labs is  ±5 per cent while the capacitors have a 

tolerance of ±10 per cent. This means that for a 1000 ohm resistor, that resistor is guaranteed to be between 950 

and 1050 ohms.

1000 – 0.05(1000) < actual value < 1000 + 0.05(1000)

Likewise, a 1 mircofarad capacitor is guaranteed to be between 0.9 μF and 1.1 μF

1 - .1(1) < actual value < 1 + .1(1)

This  may  cause  the measured answer  to  differ  quite  a  bit  from the answer  calculated  using the formulas.  In 

addition, when the values of the resistors and capacitors are multiplied together, as is the case with the formulas 

above for the timer and clock, these tolerances are compounded. For example, assume that a 100,000 ohm resistor 

is combined with a 100μF capacitor to produce a time of 10.1 seconds.

t = 1.10(RC) = 1.10*100,000*0.0001 = 11.0 seconds.

However, if we take the worst case for each value, we can see that the answer will actually be within ±15 per cent.

1.10(95,000)(0.00009) < actual value < 1.10(105,000)(0.00011)

9.41 < actual value < 12.7

For this reason, it should not be assumed that the final values for the clock and timer will match exactly the values 

calculated theoretically. The tolerances of the components used will often mean that the theoretical value of the 

clock or timer may only have one significant digit of accuracy. When the accuracy of the timer or clock is important, 

either  components  must  be  measured  before  being  used  to  insure  their  values,  or  components  with  smaller  

tolerances should be used (which is more costly), or resistors with adjustable values (potentiometers) can be used 

and adjusted after the circuits are built. Of course adjusting the potentiometers is time consuming and thus costly.

Review exercises

1. What is the period in seconds of the clock with the given frequencies?

a.  6.00 Ghertz

b.  10 Mhertz

c.  6000 RPM (NOTE: 60 seconds are in each minute)

2. For the given period, determine the frequency of the clock in Hertz

a.  10.o μsec

b.  0.0500 nanoseconds

c.  1.00 milliseconds
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3. Assume delay for each logic gate is 10.0 nanoseconds for the circuit in Exhibit 3.3 and that input values of 

A is low and B and C are all at logic high. Draw a timing diagram for a transition at time zero that takes input 

for C from logic high to logic low. List input A, B, C, and Output as well as values for pins 3, 6, and 10.

4. If the delay for each logic gate is 10.0 nanoseconds, what is the maximum frequency that the circuit from 

Exhibit 2.14 can be reliably clocked in order to insure proper operation?

5. A 100 μF capacitor is used to build timers. Three timers are to be built with times of 1, 5 and 10 seconds.

a.  What resistors should be chosen to obtain the times provided?

b. Assuming that you are limited to choosing the values provided in the lab, which  resistors should be 

chosen to come as close to the desired values as possible? Recall that when resistors are added in series, 

the total resistance is the sum of the resistors.

c.  Draw a schematic of the 5-second timer.

d.  Given that capacitors have a tolerance of + -10 per cent and resistors have a tolerance of + -5 per cent,  

what range of values could you expect for your timer?

6. A 100 μF capacitor is used to build clocks. Two clocks are to be built with periods of 1 and 5 seconds.

a.  Using values of resistors provided in your lab, pick two resistors that yield periods as close to those 

desired as possible.

b.  What is the time on and time off for each of the clocks during one period?

c.  Draw a schematic of the 5-second clock.

Procedure

1. Write the prelab in your lab notebook for all the circuits required in the steps that follow. Include all  

necessary equations and calculations.

2. Obtain instructor approval for your prelab.

3. Build and test the 5-second timer from Exercise 5 above . 

a. How different is the measured value from the calculated value?

b. Demonstrate the timer for your instructor.

4. Repeat Procedure 3 for the 10-second timer from Exercise 5 above. 

5. Build and test the 1 second clock from Exercise 6.

a. How different is the measured value from the calculated value?

b. Demonstrate the clock for your instructor.

6. Repeat Procedure 5 for the 5 second clock from Exercise 6 above.
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7. Memory 
Learning objectives:

• Review differences between logic circuits and persistent memory.

• Review properties for the S-R latch and D flip-flop.

• Construct a circuit using a flip-flop.

Memory

You have often heard the phrase: “In order to know where you are going, you need to know where you have  

been.” While all the circuits discussed in previous chapters are very useful, many applications quite simply cannot 

be implemented without  the use of  memory to “remember where they have been”.  Modern computer  systems 

employ a wide array of different memory storage methods that have different properties. Non-volatile memory used 

for secondary storage such as hard drives, CD-ROM drives, or solid state memory (i.e. an Secure Digital or SD card) 

retains its value after power is shut off. Volatile, dynamic random access memory (RAM) loses its value when power 

is shut off and also must have its values continually refreshed with external circuitry. Static, volatile random access 

memory such as that found in cache memory and CPU registers cannot retain its value when power is not provided, 

yet it does not need to be refreshed. This chapter will focus upon the static, volatile, electronic memory listed last. 

All of the logic circuits built in the previous sections are known as combinatorial logic circuits. They depend 

only upon the state of their inputs at any given time and do not take into account anything that has happened in the  

past. Often it is necessary for the output of a circuit to take past values into account. Logical circuits that take past 

output values along with present inputs into account to compute the output values are known as sequential logic 

circuits. In order to determine the next state of an output, the previous state must be known. Memory is used to  

store the history of the state(s) of a digital circuit for use in sequential circuits. An example of a  sequential logic 

circuit would be a counter. A computer is nothing more than an advanced sequential logic circuit with memory to 

store data, programs, and references to the state of programs currently being run.

SR latch

Two  NOR gates can be configured using feedback to produce one bit of memory. The configuration given in  

Exhibit 7.1 is known as an SR latch. The S, SET and R, RESET are the inputs and the Q output is provided along  

with its inverse. The S input is used to set or turn on the  latch by setting the output Q high and inverse low. 

Similarly, the R input is used to reset or turn off the latch by resetting the output to low and the inverse to high. 

Once the latch is set, Q remains at a logic high while both input lines are off. Similarly, once the latch is reset, the Q 

output will be set to logic low and will remain that way while both input lines are off. In this way, the latch can store 

one bit of information indefinitely, or at least as long as it has power supplied to it. The NOR SR latch has active 

high inputs, meaning that if either input is brought high, it will force a corresponding output condition. Note that  

setting both input values high must be avoided in order to retain the output values as opposite to each other.  

Latches can also be built using NAND gates, but the set and reset lines operate in a slightly different manner under 

this configuration. The transitions for these latches are examined in more detail in the exercises.
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Exhibit 7.1: SR latch

The NAND based SR latch is an active low device with a default state of logic high for both S and R inputs. The  

S and R input values are brought low to change the state. Just as the NOR based SR latch should not have both 

input values turned high simultaneously, the S and R for a NAND based SR latch should not be brought low at the 

same time.

S R Q

0 0 state not used

0 1 1

1 0 0

1 1 Q (does not change)

Table 20: NAND SR latch Exhibit 7.2: SR latch

Flip-flops

A flip-flop is a latch that has been modified to work with the use of a clock. Clocks are used to synchronize the 

timing for different components in a circuit. The output of the flip-flop will only change when the clock signal is in a 

given state, such as high. Exhibit 7.3 is a D flip-flop that will only change when the clock, C in the figure, is high. 

Some  flip-flops are designed to examine the inputs 

when the edge of the  clock makes a transition from 

low to high, called rising or positive  edge triggered 

flip-flops. Similarly, negative edge triggered flip-flops 

can be designed that only examine inputs when the 

clock makes  a  high  to  low  transition.  The  time  in 

which the inputs can affect a change on the output is 

reduced with a rising or falling edge triggered device. 

The  speed with which a  flip-flop can be  clocked is 

determined  by  the  maximum  delay  from  the  gates 

that are used to construct the device. For this reason, the input to the gate should be stable prior to the  clock 

transition  and the time before  the  next  clock pulse  should  last  long enough  for  the  output  state  to stabilize. 

Manufacture specifications for the device being used should be consulted to determine the maximum clock speed. 
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S R Q

0 0 Q (does not change)

0 1 0

1 0 1

1 1 state not used

Table 19: NOR SR latch

Exhibit 7.3: D flip-flop
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Since these labs only use clocks with periods no faster than 1 second, the circuits designed never approach the limits  

of the maximum clock speed.  Exhibit 7.4 uses two D flip-flops. The output of the first is used as the input of the 

second creating a master-slave arrangement. This results in a positive edge triggered flip-flop.

Exhibit 7.4: Positive edge triggered D flip-flop

Circuitry can be added to produce JK, T, or D  flip-flops. The JK  flip-flop, like the SR  latch has two inputs, 

however all four states are valid for the JK flip-flop. The T is known as a toggle flip-flop because if the input is high, 

the state of the output toggles. This means that when clocked with an input of one and a current state of high, the 

output goes low and if it was low, it goes high. The D flip-flop output follows the value of the input while enabled or 

when clocked, otherwise it remains in the memory state. Both the T and D have only one data input. The tables 

below list the input of the flip-flop along with the present state, Q, and then the next state, QN. The circuit for a 

rising edge triggered D flip-flop is provided below. JK flip-flops are very common in many designs. For the sake of 

simplicity, only the D flip-flop will be used for the designs in this text.

Exhibit 7.5 shows the symbolic representation of the D flip-flop used for circuit diagrams. The rectangle shown 

is commonly used for  latches and flip-flops. Also note the bubble in front of the CLEAR line to indicate that the 

device can be set to low or “cleared” when this line is set low; for normal operation the CLEAR should be left high. 
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J K Q QN

0 0 0 0 - unchanged

0 0 1 1 - unchanged

0 1 0 0 - reset

0 1 1 0 - reset

1 0 0 1 - set

1 0 1 1 - set

1 1 0 1 - toggle

1 1 1 0 - toggle

Table 21: JK flip-flop

T Q QN

0 0 0 - unchanged

0 1 1 - unchanged

1 0 1 - toggle

1 1 0 - toggle

Table 22: T flip-flop

D Q QN

0 0 0 - off

0 1 0 - off

1 0 1 - on

1 1 1 - on

Table 23: D flip-flop
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Some devices also come with a PRESET line that can be used to set or turn on the output in much the same 

manner.  These  lines  can  be  used  to  load  the  flip-flops  with  specific  values, 

especially when the unit is first powered on. The clock line has a small triangle 

that denotes that the device is triggered with a rising edge. Falling edge-triggered 

devices will have a small bubble preceding the triangle. For these labs, the 74175, 

which  provides  four  rising  edge  triggered D  flip-flops  on  a  single  chip,  is 

recommended. Schematics of the 74175 can be found in Appendix A.

Review exercises

1.  Use  the  SR  latch from  Exhibit  7.1.  Assuming  the  values  in  the  table 

represent values that have just occurred, determine the stable values for the outputs QN and QN'. Recall that the 

NOR gate is an active high gate, meaning any time either of the input values is high the output is low. The first,  

fourth, and sixth rows of the table are done for you. The truth table for the NOR is provided.

2. As an example, output for the first row is traced:

a.  S is 0 and Q' is 1, therefore QN stays 0.

b.  R is 0 and QN is 0, therefore QN ' stays 1

c.  Stable because Q and Q' retain values.

3. For the fourth row, the outputs toggle:

a.  R is 1, so QN' must be 0.

b.  S is 0 and QN is 0, so QN ' is 1.

c.  Stable. R is 1, Q is 0 and not affected by Q'. 

With S and Q 0, Q' stays 

4 Tracing the sixth row yields the following:

a.  S is 1, so QN' must be 0.

b.  R is 0 and QN' is 0, so QN is 1. 

c.  Stable as S is 1, QN' stays 0. With R and QN' 0, QN stays 1.To start  

tracing, recall that if any of the input values to a NOR are 1, the output must be 0.

5. Repeat exercise 1 with the latch from Exhibit 7.2 by determining the stable states of all 8 rows of the truth 

table from the previous problem. While values for QN and QN ' are provided in rows 1, 4 and 6 for the last problem,  

you must work all 8 rows for this problem. Remember that the NAND gate has an output of 1 if either of the input  

values of the gate is 0. 

6. Using the D flip-flop below, determine the stable output of each of the NAND gates labeled 1 through 4 when 

the values for D, C, and Q first occur. The following trace for the first row serves as an example. 

a.  Remember the NAND is an active low device, meaning the output will be 1 if either input is 0 (low).

b.  D and C are 0, so NAND1 and NAND2 will be 1. 

c.  NAND3 is 0 and NAND2 is 1, making NAND4 1.

d.  NAND1 is 1 and NAND4 is 1, so NAND3 will stay 0.

e.  Stable as neither NAND3 or NAND4 change state. 

44

Exhibit 7.5: D flip-flop symbol

S R Q Q' QN QN'

0 0 0 1 0 1

0 0 1 0 ? ?

0 1 0 1 ? ?

0 1 1 0 0 1

1 0 0 1 ? ?

1 0 1 0 1 0

1 1 0 1 ? ?

1 1 1 0 ? ?

A B NOR

0 0 1

0 1 0

1 0 0

1 1 0
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D C Q Q' 1 2 3/QN 4/QN'

0 0 0 1 1 1 0 1

0 0 1 0 ? ? ? ?

0 1 0 1 ? ? ? ?

0 1 1 0 ? ? ? ?

1 0 0 1 ? ? ? ?

1 0 1 0 ? ? ? ?

1 1 0 1 ? ? ? ?

1 1 1 0 ? ? ? ?

7. Use the data given for the 74175 in Appendix A to determine the value of the output Q after a rising clock 

edge has been received by the clock pin.

Procedure

1. Write  the  prelab  in  your  lab  notebook for  all  the  circuits  required  in  the  steps  that  follow.  Include  all  

necessary equations and calculations.

2. Obtain instructor approval for your prelab.

3. Construct an SR latch using NOR gates. Verify its operation and demonstrate the circuit for your instructor.

4. Construct one bit of memory using one D flip-flop from a 74175 chip. Verify its operation and demonstrate 

the circuit for your instructor.
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8. State machines
Learning objectives:

• Construct state transition diagrams.

• Relate the number of memory bits required for a given state machine.

• Build four-state state machines.

What is a state machine?

A state machine, often referred to as a finite state machine is a sequential logic circuit that has a finite number of 

defined states  that  can  be represented.  A  state  machine requires  the use of  memory to store the state  of  the 

machine. Combinatorial logic is used to combine the values of the present state along with inputs to the system to  

determine the next state of the system.

An example of a simple state machine could be a counter that counts from from 0 to 1 to 2 to 3 and back to 0. In  

this case, the state machine does not have any input at all, it uses the past state and increments the value of every 

clock cycle. An example of a complex state machine would be a computer. In this case, the computer can have many 

different inputs and has many different states. Input data can come from the keyboard, network, mouse, memory,  

etc., while the state would normally be associated with the address in memory of the program being run. In this  

text, the state machines will be like the counter just described but certainly nothing as complex as a computer.

State machines are used in more than just computers. Any process that can be defined with a given predictable  

algorithm can often be represented by an electronic state machine. For example, a coffee vending machine could be 

automated with a state machine. The states would be: waiting for correct change, select options such as cream or 

sugar,  drop  cup,  dispense coffee,  and dispense options.  Inputs  could include the cream button,  sugar  button,  

correct change indicator, and a timer to determine how long to fill the cup with coffee.

State transition diagrams

A state  transition  diagram is  a  graphical  representation  of  the  state 

machine. Exhibit 8.1 shows the state transition diagram for a counter that 

starts at 0 and goes up through 3 and then back again to 0. This machine 

has no input, transitioning from one state to the next at every clock pulse. 

Each state is marked with a circle that contains the value of the state. The 

arrows  represent  the  transitions  from  one  state  to  the  next.  The  state 

machine shown in Exhibit 8.2.a is also a four state counter, but it uses one 

input. The input, labeled x, determines whether the counter continues to 

increment the count.  When x  equals  0,  the counter  counts  and when x 

equals 1, it remains in the current state. The convention followed here is as 

follows: state values are listed inside of each state bubble and input values 

that determine the transition are listed next to each arrow. If the state
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Exhibit 8.1: Four state counter
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will transition regardless of any input, then no input will be 

listed next to that arrow. A timing diagram for this four state 

counter is given in Exhibit 8.2.b. This assumes that the final 

circuit  is  clocked at 1.00 seconds and that the rising  edge 

triggered flip-flops are used. Note that the values of each bit, 

D1, the most significant bit, and D0, the least significant bit, 

only change on the rising edge of the clock, while the input is 

free to change at  any time.  This diagram serves a slightly 

different  purpose  than  the  timing  diagram  shown  in  a 

previous chapter.  While the previous diagram was used to 

determine maximum possible delays for a circuit, this one is 

used to illustrate the traversal of the machine through the 

various states.  The timing diagram, like the state diagram 

can be helpful when attempting to verify the operation of a 

constructed circuit.

Exhibit 8.2.a: Four state counter with input

Exhibit 8.2.b: Timing diagram for four state counter

State machine design

In order to design a state machine one would need to recognize the inputs of the system, the states, and how it  

transitions from one state to the next. This is graphically represented with a  state transition diagram. Then, the 

transition diagram should be used to create a truth table that has the inputs to the system and current state values 

as inputs in that table. The output of the truth table is the next state of the system. Combinatorial logic is used to 

implement the functions required to obtain the next state values for the  state machine. All of the Boolean logic 

minimization techniques used in earlier chapters are used at this stage. As memory is used to store the states, the  

output or next state that results from the truth table is used as the input to the flip-flop storing the state values. 
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Finally, the flip-flops will need to be clocked. In these labs we want to observe the states, so the clock used has a 

slow period, such as 2 seconds, and a frequency of ½ hertz. 

Example 1: Four state counter

The  following  steps  outline  the  design  of  a  four  state 

counter with no input. The four state counter is re-labeled in 

Exhibit 8.3 to show the values taken for the required two bits 

of memory labeled Q1 and Q0. The values of Q1 and Q0 are 

given as well, which happen to follow the binary equivalent 

of the value of the counter. The table below shows how the 

present  state,  given  by  Q1  and Q0,  transition at  the  next 

clock signal to the next state, given by Q1N and Q0N. 

Exhibit 8.3: Four state counter with states

The next  step is  to determine  the functions  that  represent  values of  the next  state,  Q1N and Q0N.  As  these 

functions only have two variables, they are fairly easy to determine without the use of complex boolean algebra or  

K-maps. Q0N is just the inverse of Q0. Q1N is the Exclusive OR of the two inputs. As the logic kit does not contain an 

Exclusive OR gate, the equivalent logic using AND and OR gates is given along with the equivalent logic using  

NAND gates only. The resulting circuit is shown in Exhibit 8.4.
Q0N(Q1,Q0)= Q0'

Q1N(Q1,Q0) = Q1 ⊕ Q0 

= Q1Q0' + Q1'Q0 

= ((Q1Q0')'(Q1'Q0)')'

Now, in order to create a fully functional circuit,  memory 

needs to be included. In this case, two D  flip-flops from a 

74175 chip will be used. Because the 74175 chip provides the 

output Q as well as its inverse, the design can be simplified 

by eliminating the inverters from the diagram in Exhibit 8.4. 

The  full  schematic  of  the  circuit  is  shown  in  Exhibit  8.5 

along with pinouts for each chip. A switch can be used to 

clock the  circuit  for  test  purposes.  A  clock,  such  as  one 

designed with a 555 timer from the previous chapter, should 

be used in any final design.

Exhibit 8.4: Counter Logic
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Q1 Q0 Q1N Q0N

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

Table 24: Truth table
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Exhibit 8.5: Counter Circuit

Example 2: Four state counter with input

The four state counter given in Exhibit 8.2.a introduces a complexity by adding an external input. The state 

transition diagram is redrawn in Exhibit 8.6 with the states labeled in binary, Q1 being the most significant bit. The 

truth table using the three items as input: x, Q1 and Q0 , and the output given by the next state values Q1N and Q0N is 

given in Table 25.

Exhibit 8.6: Four state counter with input

 

x Q1 Q0 Q1N Q0N

0 0 0 0 1

0 0 1 1 0

0 1 0 1 1

0 1 1 0 0

1 0 0 0 0

1 0 1 0 1

1 1 0 1 0

1 1 1 1 1

Table 25: Counter truth table

The values of the outputs for Q1N and Q0N are then listed in  K-maps to determine the minimal SOP expressions. 

Equivalent expressions using only NAND gates are given.
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Q1N = x'Q1'Q0 + xQ1 + Q1Q0'

= ((x'Q1'Q0)' (xQ1)' (Q1Q0')' )'

Q0N = xQ0 + x'Q0'

= ((xQ0)' (x'Q0')')'

Exhibit 8.7: Circuit diagram for four state counter with input

The logic is then implemented using the 7400 series chips, as shown in Exhibit 8.7. The output of the logic is used 

to feed the input of each D flip-flop and the output of each  flip-flop is used as input for the logic. Note that the 

CLEAR line for the 74175 must be tied to Vcc. The CLEAR line can be used on power up to clear or set the flip-flop 

value to logic zero. However, if the line is kept low, the value of the flip-flop will always remain at logic low. The 

CLEAR can be left to float, however this makes the flip-flop susceptible to fluctuations in electrical noise. The use of 

the CLEAR line will be discussed in more detail in the next chapter. For now the CLEAR will just be tied to logic  
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Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

0 1 0 1

x
1

0 0 1 1

Table 26: Q1N(x,Q1,Q0)

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

1 0 0 1

x
1

0 1 1 0

Table 27: Q0N(x,Q1,Q0)
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high.  For testing  purposes,  a  switch can be used for  the  clock.  However,  make sure to read the next  section 

regarding debounced switches before using a switch for this purpose. 

Debounced switches

One word of caution is in order when using switches as the clock source. As a switch is a mechanical device, they 

can suffer from bounce. Bounce occurs when the metal contacts strike each other and “bounce” before they come to 

rest. When this occurs, it can look like the switch changes state multiple times even though it has only gone from  

open to closed. Switches come in a variety of configurations. Two common versions are the single pole double  

throw, SPDT or the single pole single throw, SPST shown below. 

Different  approaches  exist  for  “debouncing”  switches.  Software 

can be used to test the output of the switch and insure that only 

one change is registered, instead of the multiple changes that can 

occur  with  bouncing.  Two  common  hardware  approaches  are 

provided for both types  of  switch.  The values for  resistors  and 

capacitors shown should be chosen so that the time is as long as 

the system bounce is expected to last. Values of 100KΩ for the 

resistors and 0.1μF for the capacitor would provide a pulse of 1.1 

msec, which should be sufficient to debounce the switch in Exhibit

8.11. Of course other circuits can be used to debounce switches 

and  adjustments  may  need  to  be  made  to  the  values  of  the 

components to suit the application. The logic kit provided should 

have at least two debounced switches.

Exhibit 8.11: Debounced SPST switch
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Exhibit 8.8: SPDT switch

Exhibit 8.9: SPST switch

Exhibit 8.10: Debounced SPDT switch
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Review exercises

1. How could using a regular switch as the clock source affect the operation of the counter?

2. Draw a  timing diagram for  the machine  that  uses  the  state  transition diagram found in  Exhibit  8.3. 

Assume that the machine will use a clock with a period of 1.00 seconds, that the flip-flops used for the design 

are rising  edge triggered and that the machine is in state 01 prior to time zero and that the machine goes  

through 4 clock pulses.

3. Draw the state diagram for a four state counter with one input where the counter counts up in binary 

when the input is low and counts in reverse when the input is high.

4. How many D flip-flops are required for the counter from Exercise 3?

5. Determine the logic required for the input of the four state counter from problem 3 and draw a  circuit 

diagram with pinouts.

6. Draw the state diagram for a three-state state machine that counts from 00 → 01 → 10 → 00 etc. as long 

as the input is low. When the input is high, the counter does not count and stays at its current state.

7. How many D flip-flops are necessary for the counter from the previous problem? Are all of the possible 

states for the flip-flops used? If not which ones are not?

Procedure

1. Write the prelab in your lab notebook for all the circuits required in the steps that follow. Include all  

necessary equations and calculations.

2. Obtain instructor approval for your prelab. 

3. Build and demonstrate the successful operation of the four state counter found in Exhibit 8.5. Attempt to 

clock the circuit with both a regular switch and debounced switch. Note the difference in performance.

4. Build and demonstrate the successful operation of the four state counter from Exercise 5 of the review 

exercises.

Optional

1. Build and demonstrate the successful operation of the four state counter from Exercise 6 .
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9. More state machines
Learning objectives:

• Relate number of states to required amount of memory.

• Insure state machines do not enter illegal states.

How many bits of memory does a state machine need?

The amount of memory or number of flip-flops required for a state machine is directly related to the number of 

states in the state transition diagram. The number of possible states that can be represented increases by a power of 

two for each new bit of memory added. One bit of memory can represent 21 or two states, two bits can represent up 

to 22 or four different states, and three bits up to 23 or eight different states. To reduce the complexity of the design, 

use  the fewest  number of  flip-flops  that  would still  accomplish the task successfully.  If  the design  required a 

number of states that is not a power of two, then the smallest number of bits raised to the power of two that is  

greater than the number of states required should be used. As an example, if three states were required, two bits  

would be needed, or if six states were required, three bits would be needed. 

Number of states ≤ 2number of bits

What are unused states?

A machine that visits the following states in the order listed, 000 → 001 → 011 → 111 → 110 → 100 → 000, will 

require three bits of memory. What becomes of the unused states, 010 and 101? Several approaches are common 

when dealing with the unused states.  Note that any legal state moves to another legal state,  never visiting the  

unused states. Because the unused states are never visited, these could be considered as don't care conditions in the 

K-maps for the input to the  flip-flops. This can reduce the complexity of the design. In addition, PRESET and 

CLEAR lines for flip-flops can be used to insure not only that the state machine enters a legal state when powering 

on, but it also insures that it powers up in a specific initial state. 

Using PRESET and CLEAR pins

As the system powers up, logic levels cannot always be guaranteed. What if 

during  this  time,  the  system  happened  to  enter  one  of  the  unused  states? 

Depending upon the logic that was used, the system may then transition into one 

of the legal states, or it may get stuck indefinitely in one of the illegal states. In 

order to guarantee that the system does not enter an illegal state as the system 

powers  up,  the  CLEAR  lines  can  be  held  low  temporarily  to  insure  that  the 

memory bits are set to zero or logic low on power up. Exhibit 9.1 has an RC circuit 

that can be used to power on to keep the CLEAR line low long enough to insure 

that the bits are set to zero. When power is first turned on, the capacitor will be 

uncharged and must charge through the resistor. If the time constant, RC, is set at 

several clock cycles, then the state machine will be guaranteed to start with all of 
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Exhibit 9.1: RC for Power On
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the memory bits at zero. The 74175 quad D flip-flop in the logic kit does not offer a PRESET pin. However the same 

type of RC circuit can be used for other flip-flops that do.

Assigning unused states to the system

Powering up is not the only time the machine can enter an unused state. At times large transient spikes can 

occur  during  storms  or  when  powering  on  or  off  other  equipment  that  can  cause  logic  levels  to  change 

unpredictably. In cases such as this, the machine can still enter a state that was not planned. Even the RC circuit 

connected to CLEAR or PRESET pins cannot rescue the state machine in this case. To address this, the designer 

should add the additional states to the state transition diagram and simply have them transition to a legal state. In 

this way, even if for some reason a circuit enters an illegal state, it will quickly shift to one that is allowed.

Adding the extra states as well as the RC circuit does indeed complicate the circuit, however for a final design 

that  will  be  used  in  production,  it  provides  assurance  that  the  circuit  will  perform  reliably  even  when  the  

unexpected occurs.

Example 1: Three state counter

The three state  counter  in  Exhibit  9.2 counts  up when the 

input is high and counts down when the input is low. Two flip-

flops will be needed to implement this machine which means that 

four states can be represented by those two bits. The state 11 is 

not used in this design. What would happen if for some reason, 

the machine would enter the state 11? The effect of entering this 

unused  or  illegal  state  cannot  be  known  until  the  circuit 

implementation  is  finalized.  Instead  of  waiting  to  see  what 

happens after the design is completed, it is best to incorporate 

this state early on in the design phase. Two approaches will be 

investigated. The first will shift the state 11 to the legal 00 state 

on the next clock cycle. The next approach will be to place don't 

care conditions for the state 11 and then examine the next state 

that  would  follow  depending  upon  the  simplest  design  that 

results from using the don't care conditions.

Approach 1: 11 → 00

The resulting  state transition diagram assuming that state 11 

transitions to 00 on the next clock cycle is given in Exhibit 9.3. In 

all of the cases that follow, unused states will be shown as dotted 

circles in the state transition diagram. Since state 11 will move to 

state 00 regardless of  the input value, it  is  not  written on the 

diagram. From the K-maps given below, the next state values for 

Q1 and Q0 are listed as Q1N and Q0N. It is left as an exercise for the 

reader to determine the circuitry required to implement this state 

machine.
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Exhibit 9.2: 3 state counter
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Approach 2: Using don't care conditions

The next approach instead places don't care conditions for the state 11 as seen in the K-maps below. By selecting 

the minimal expressions, the next states for Q1 and Q0 can be found. The resulting expressions can be found to be 

less complex than those from the first approach.

The resulting state transition diagram is given in Exhibit 9.4.a. 

Using the don't care conditions does simplify the logic. Notice that 

the unused state now goes to two different states depending upon 

the  value  of  the  input.  The  don't  care condition  labeled  as  d*, 

which is  xQ1Q0 is grouped with the term xQ1'Q0. This results in a 

simpler  grouping,  xQ0,  but  it  does  now  cause  the  machine  to 

transition from 11 to 10 when the input x is a logic high. Similarly, 

the  term  d**  now  causes  the  state  11  to  transition  to  01.  The 

remaining don't cares are not contained in a group, so the they will  

transition  to  0  at  the  next  state.  It  is  left  to  the  designer  to 

carefully  examine  the  requirements  of  the  final  circuit  to 

determine if indeed these are don't care conditions. If so, then the 

transition diagram should be updated to reflect their use in the 

logic simplification.

A sample timing diagram that starts on the unused state 11 and 

cycles through this new diagram in Exhibit 9.4.a is given in Exhibit 9.4.b. Notice that the first transition at time 0 is 

to the state 01. From there the counter counts in reverse as the input is low, transitioning at time 1 to state 00, at  

time 2 to state 10, and then back to state 01 at time 3. Somewhere between time 3 and 4 input x goes high, but the  

state does not change until the next rising clock edge at time 4. From that point on, with the input high, the counter  

counts up. This assumes that the circuit will use rising edge triggered flip-flops.
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Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

1 0 0 0

x
1

0 1 0 0

Table 28: Q1N(x,Q1,Q0) = Q1N = x' Q1'Q0' + xQ1'Q0

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

0 0 0 1

x
1

1 0 0 0

Table 29: Q0N(x,Q1,Q0) = xQ1'Q0' + x'Q1Q0'

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

0 0 d** 1

x
1

1 0 d 0

Table 31: Q0N(x,Q1,Q0) = xQ1'Q0' + x'Q1

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

1 0 d 0

x
1

0 1 d* 0

Table 30: Q1N(x,Q1,Q0) = xQ1'Q0' + x'Q0

Exhibit 9.4.a: 3 state counter with don't cares

http://creativecommons.org/licenses/by/3.0/


9. More state machines

Example 2: Five state machine

The five state machine shown in Exhibit 9.5 has two different loops. One of the loops transitions between 000 

and 111 while the other goes from 001 to 010 to 100. This leaves three possible states that are unused. The truth 

table that follows uses don't care conditions for unused states 011, 101, and 110 given as d1, d2, and d3 respectively.  

The resulting K-maps that follow can be used to determine the minimal expressions. If the unused states were to 

immediately go to next state 000, then the minimal expressions can be shown as those listed below. It is left as an 

exercise to draw the new state transition diagram for this design.
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Exhibit 9.5: Five state counter
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Q2N = x'Q2'Q0' + Q2'Q1Q0' 

Q1N = x'Q2'Q1'Q0' + xQ2'Q1'Q0

Q0N = Q1'Q0'

Now, if  the  don't  care conditions are used in the design for the 

minimal expressions, the complexity of the results is reduced.

Q2N = x'Q2'Q0' + Q2'Q1 or  x'Q2'Q0' + Q1Q0'

Q1N = x'Q2'Q1'Q0' + xQ2'Q0 or  x'Q2'Q1'Q0' + xQ1'Q0

Q0N = Q1'Q0'

The results for Q1N Q2N  have two equally minimal forms. The state 

transition diagram that uses the first minimal form is given in the 

Exhibit 9.6. Notice that the unused state 011 goes to the legal state 

100 if the input is logic high and another unused state, 110 when 

the input is a logic low. To trace where the external states will go, 

examine d1 which corresponds to unused state 011. For Q2N, d1 is 

part of group Q2'Q1.  Q2N will be 1 regardless of the input at the next 

state. d1 is only grouped if x is 1 for Q1N and not at all in Q0N. 

It is left to the designer of the machine to determine if these transitions are acceptable given the specifications for 

the product.

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'Q2'
00

1 0 d1 1

x'Q2
01

0 d2 0 d3

xQ2
11

0 d2 0 d3

xQ2'
10

0 0 d1 1

Table 33: Q2N

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'Q2'
00

1 0 d1 0

x'Q2
01

0 d2 0 d3

xQ2
11

0 d2 0 d3

xQ2'
10

0 1 d1 0

Table 34: Q1N

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'Q2'
00

1 0 d1 0

x'Q2
01

1 d2 0 d3

xQ2
11

1 d2 0 d3

xQ2'
10

1 0 d1 0

Table 35: Q0N
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x Q2 Q1 Q0 Q2N Q1N Q0N

0 0 0 0 1 1 1

0 0 0 1 0 0 0

0 0 1 0 1 0 0

0 0 1 1 d1 d1 d1

0 1 0 0 0 0 1

0 1 0 1 d2 d2 d2

0 1 1 0 d3 d3 d3

0 1 1 1 0 0 0

1 0 0 0 0 0 1

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 0 1 1 d1 d1 d1

1 1 0 0 0 0 1

1 1 0 1 d2 d2 d2

1 1 1 0 d3 d3 d3

1 1 1 1 0 0 0

Table 32: Truth table for 5 state machine
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9. More state machines

It should be noted that all of the designs shown in this text have used only the D flip-flop. However, it can often 

be the case that another type can result in a simpler design. JK flip-flops can be used to produce ripple counters 

with minimal extra circuitry. The JK flip-flop does have two inputs, so the resulting logic minimization must be 

done for both the J and the K input, doubling the number of  K-maps required. In order to reduce the required 

number of parts for the logic kit, only the D flip-flop was used. Designers should become familiar using all of the 

different types of flip-flops so that they can be assured that they have chosen the one that truly results in a minimal  

design.

Exhibit 9.6: Five state counter with unused states

Review exercises

1. A state machine requires 7 different states. How many flip-flops are required for this machine?

(a) If a machine has no external inputs, what size is the K-map for one of the required inputs?

(b) If the machine has one external output, how large is the K-map for one of the flip-flop inputs?

(c) If the design were to use JK instead of D flip-flops, how many next state inputs must be determined?

2. Repeat Exercise 1 for a state machine with 14 states.

3. Draw six clock pulses of the timing diagram for the machine that uses the state transition diagram found 

in  Exhibit 9.6. Assume that the clock for the machine has a  period of 1.00 seconds, that the machine is in 

state 011 prior to time zero and that input x is kept at logic high the entire time. 

4. A state machine traverses the states listed in this order 000 → 001 → 011 → 111 → 110 → 100 → 000. 

There is no external input. 

(a) Draw the state transition diagram for this machine.

(b) What are the unused states?

(c) Modify the diagram if the unused states transition to 000.
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(d) Assuming a state machine were to be built using D flip-flops, determine the value of the next state for 

each of the flip-flops.

5. The two bit sequence 00 → 01 → 11 → 10 → 00 is a Gray code. Gray codes only have one bit change for 

each transition. 

(a) Sketch the state transition diagram for the 3 bit Gray code: 000 → 001 → 011 → 010 → 110 → 111 → 

101 → 100 → 000 ... . 

(b) Assuming a state machine were to be built using D flip-flops, determine the value of the next state for 

each of the flip-flops.

6. A two bit counter is to be built that will count forward, 00 → 01 → 10 → 11 → 00, when a logical input is  

set high and counts in reverse order when it is low.

a. Draw the state transition diagram for this state machine.

b. Assuming a state machine was to be built using D flip-flops, determine the value of the next state for 

each of the flip-flops.

7. A two bit counter is to be built that will count forward, 00 → 01 → 10 → 11 → 00, when a logical input is 

set high and as a Gray code when it is low (00 → 01 → 11 → 10 → 00).

(a) Draw the state transition diagram for this state machine.

(b) Assuming a state machine was to be built using D flip-flops, determine the value of the next state for 

each of the flip-flops.

Procedure

1. Write the prelab in your lab notebook for all the circuits required and the steps that follow. Include all 

necessary equations and calculations.

2. Obtain instructor approval for your prelab. 

3. Your instructor will pick one or more state machines from the various examples from the review exercises 

for you to build and demonstrate.
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10. What's next?
Hopefully, this introduction has whetted your appetite for this fascinating subject. Modern technology simply 

would not be possible without the advances and applications of this subject in the world in which we live.  All of the  

sequential circuits shown in the chapters “State machines” and “More state machines” are synchronous, meaning 

they use a  clock. However, sequential circuits designed without clocks, known as asynchronous circuits, can be 

designed. As the clock can often insert added delay for the faster components in the circuit, asynchronous circuits 

can usually be designed that will respond even faster than synchronous circuits. Timing issues become critical in 

this case, and the resulting timing analysis can become so complicated that asynchronous circuits are often not  

chosen over their synchronous counterparts. However, for circuits that require the fastest speed possible, often 

asynchronous circuits are considered.

In addition, while the circuits designed in these labs all used discrete components, for circuits that are used in 

applications today, nearly all of the components are fabricated on a single chip. Either Programmable Logic Devices  

(PLDs) can be used to fit entire state machines on a single chip or custom chips can be fabricated for a specific task.  

Very large-scale integration (VLSI) techniques are used to design entire systems on a single chip; a CPU with cache  

memory and a graphics processing unit would be an example. Complexities that require additional analysis are 

when  the  size  of  the  transistors  is  decreased,  speeds  of  the  circuits  are  increased,  and  the  desired  power  

consumption is lowered. Hardware description languages such as Verilog can even be used to synthesize and test  

circuit performance virtually in software before constructing a single device. 

Any one of these areas can provide a wealth of challenging problems to tackle. It is the hope of this author that  

the foundation gained from this text will prove useful as you use technology and design applications that require 

digital logic.
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Appendix A:  Chip pinouts

Exhibit A.1: 7400

Exhibit A.2: 7402

Exhibit A.3: 7404

Style Guidelines 61  A Global Text

http://creativecommons.org/licenses/by/3.0/


Appendix A:  Chip pinouts

Exhibit A.4: 7410

Exhibit A.5: 74151
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Exhibit A.6: 74175
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Appendix A:  Chip pinouts

555 Timer

Exhibit A.7: 555 timer
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Appendix B: Resistors and 
capacitors

Resistors

Resistors are  electronic  components  that obey Ohm's law: Voltage  across a  resistor is  equal  to the current 

through the resistor times the resistance of the device. 

V = I * R

Resistance is measured in ohms (� ) .  Current and voltage are related by the resistance of the object, if voltage is 

kept  constant  and  resistance  rises,  current  will  fall. Likewise  if  resistance  decreases,  more  current  will  flow, 

meaning the measure of the current will rise. While many devices have resistance, including the wire used in these  

labs,  the  only  resistance  that  we will  be  concerned  with  in  this  manual  is  the resistance  attributed  to  actual 

resistors.  Manufactured  resistors  come  in  various  forms,  however 

those  used  here  will  be  standard  ¼ watt  resistors  that  follow  the 

conventional color code that describes their value.

Exhibit B.1: Sample Resistor

Each resistor has four colored stripes as shown in the figure above. 

Each  stripe  corresponds  to  a  number  as  shown  in  Table  36.  The 

formula for the value of each resistor is listed below.

Generic Formula:   A B    x 10C 

Which for this case yields:  2 0     x 103 or 20,000 Ω.

The first two stripes indicate the numerical value of the resistance, 

the third the exponent of ten which will be multiplied by the numbers from the first two stripes, and the fourth a 

tolerance of the resistor. The diagram above illustrates how the first three stripes are used to calculate the value of  

the resistor as well as the diagram below. The mnemonic is often suggested as a means of remembering the color  
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COLOR VALUE MNEMONIC

Black 0 Better

Brown 1 Be 

Red 2 Right

Orange 3 Or

Yellow 4 Your

Green 5 Great

Blue 6 Big

Violet 7 Venture

Gray 8 Goes

White 9 West

Table 36: Color Codes
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Appendix B: Resistors and capacitors

code. The tolerances will not be utilized in this lab manual. Another example is provided in Exhibit B.2. Applying 

the formula to obtain the value for this resistor is left as an exercise for the reader.

Exhibit B.2: 100,000 Ohm Resistor

Capacitors

In direct current circuits, capacitors can be thought 

of as charge storage devices. Electrolytic capacitors will 

be used in these labs. Electrolytic capacitors appear to 

look  like  a  tiny  aluminum  can  with  two  wires.  Be 

cautious when connecting the electrolytic capacitors as 

they have a polarity. Insure that the negative terminal 

of the capacitor is connected properly or the capacitor 

can malfunction and in some cases explode! The unit of 

measurement  for  capacitors  is  the  Farad.  Capacitors 

with higher Farad measurements can store more charge 

at a given voltage.
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Appendix C: Lab notebook
The lab notebook should be a bound notebook, much like a standard composition notebook. The lab notebook is 

used to document the experiment or lab procedure. Notebooks can serve many purposes: for the author to review 

the material, for someone else to replicate the procedure, or even as a legal document for use in patent or court 

proceedings. The notebook for these experiments will be informal, in that the student will hand write all of the 

content  in the notebook. Do not misinterpret  the meaning of informal,  because the work should still  be neat,  

legible, well organized, and complete. What follows are some guidelines that should be used to document the labs 

from this text. Of course your instructor may add or delete from this list.

The lab notebook should:

• be bound

• have two to three pages at the front dedicated to a table of contents

• have numbered pages to use in the table of contents (you may number them yourself)

Each lab should contain:

• name of lab

• your name

• partner(s) name(s)

• date

• brief objective of lab (no more than two sentences)

• equipment list required

• pre-lab including:

• any necessary diagrams

• any necessary equations and calculations

• approval of instructor before you begin the lab exercise

• results and observations

• conclusion

Make sure that you:

• Do not erase any items. Cross them out and redo the work.

• Write only on the right side of each page. This leaves you room to include any corrections.

While following these guidelines certainly makes it easier for your instructor to review your work, that is not its 

main purpose. Keep in mind, someone should be able to understand what you did and even replicate your work  

given your lab notebook. Your lab notebook can be a helpful document for you. In industry, it can also be a helpful 

document for others. 
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Appendix D: Boolean 
algebra

Commutative law: 

x + y = y + x

xy = yx

Associative law:

x + (y + z) = (x + y) + z

x(yz) = (xy)z

Distributive law:

x(y + z) = xy + xz

x + (yz) = (x + y)(x + z)

Absorption:

x + (xy) = x

x(x + y) = x

De Morgan's law:

(x + y)' = x'y'

(xy)' = x' + y'

Other laws and properties:

(x')' = x

x + 1 = 1

(x)0 = 0

x + 0 = x

(x)1 = x

x + x' = 1

(x)x' = 0

(x)x = x

x + x = x
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Appendix E: Equipment list
Quantity Item Description

1 Digital Trainer See detailed description below.

2 pn2222 transistors Other general purpose npn transistors may be substituted.

2 1KΩ 1/4 watt resistors

2 33KΩ  1/4  watt resistors

2 4.7KΩ  1/4 watt resistors

2 100KΩ  1/4 watt resistors

4 7400 Quad 2 input NAND, see note regarding 7400 series chips

4 7402 Quad 2 input NOR

2 7404 6 inverters

3 7410 3, 3 input NAND

3 74151 8 input multiplexer

2 74175 Quad D flip-flop with CLEAR

2 555 timer

1 100 µFarad capacitor

1 0.01 µFarad capacitor

Digital trainer

A digital trainer is a single purpose unit that contains several features that facilitate the construction and testing 

of digital circuits. Digital trainers can be constructed, but can be found as a unit for a reasonable price. A digital  

trainer should include:

• A breadboard

• A 5V power supply which regulates within ±0.25V of 5V

• 8 LEDs that are wired to turn on with logic 1 and off with logic 0

• 6 SPDT switches that are wired to logic high (5V) or logic low (0V)

• 2 SPDT debounced switches (consult Exhibit 8.10 if constructing a digital trainer)

7400 series families

Several of the 7400 series families are acceptable for use with these labs. The LS (Low Powered Schottky), ALS 

(Advanced Low Powered Schottky) or HC (High speed CMOS) are all widely available, relatively inexpensive and 

will all perform acceptably.
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Appendix F: Solutions 
Chapter 1 review exercises

2.  Exhibit 1.3 contains the diagram illustrating the commonly connected pins on the breadboard.

3.  

x x!

0 1

1 0

4.  Resistor color codes are explained in detail in Appendix B.

a. 

b. 

c. 

d.  
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Appendix F: Solutions 

5.  The ground symbol is given here. 

6.  The NAND is the opposite of the AND gate. The function has two different variables, each with two 

distinct answers (T-1 or F-0), so there should be four (22) different possibilities for the function.

A B (AB)'

0 0 1

0 1 1

1 0 1

1 1 0

7. 

A B (A+B)'

0 0 1

0 1 0

1 0 0

1 1 0

Chapter 2 review exercises

1.  A logic function with three inputs has eight rows because each of the three inputs has two possibilities.

(number of possible outcomes for each input)(number of inputs) = 23

2.  A function with five inputs will have 25 or 32 different rows.

3.  Truth tables follow. It is often easier to obtain the final result if some of the intermediate values that 

might be necessary are obtained first. For example, in 3.a. the third column is AB, the fourth (AB)' and the 

fifth is B'.  These are then used to obtain the final result.

a.  y(A,B) = (AB)' + B'

A B AB (AB)' B' y

0 0 0 1 1 1

0 1 0 1 0 1

1 0 0 1 1 1

1 1 1 0 0 0
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b.  y(A,B,C) = (A+B)'C 

A B C A+B (A+B)' y

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 0

c.   y(A,B,C) = (AC)' + (BC)

A B C A+B (A+B)' y

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 0

It may not always be necessary to write every intermediate step. In this case, (AC)' is written directly instead of 

first writing (AC) and then the inverse. If you find this confusing, make sure not to skip steps like this. Note that  

many different functions can yield the same result.  For example, (AB'C)' is equivalent to the function above.

d.  y(A,B,C) = (A⨁B)C' 

A B C A⨁B C' y

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 1 1 1

0 1 1 1 0 0

1 0 0 1 1 1

1 0 1 1 0 0

1 1 0 0 1 0

1 1 1 0 0 0
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e.  y(A,B) = A' + B 

A B A' y

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 1

f.  y(A,B,C) = ((A+B)'(B+C)')'

A B C A+B B+C (A+B)' (B+C)' (A+B)'(B+C)' y

0 0 0 0 0 1 1 1 0

0 0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 0 1

0 1 1 1 1 0 0 0 1

1 0 0 1 0 0 1 0 1

1 0 1 1 1 0 0 0 1

1 1 0 1 1 0 0 0 1

1 1 1 1 1 0 0 0 1

Another example of a logic function with a different equivalent, (A + B + C).

4.  Solution with pinout below.  

5.  Solution with pinout below. It is optional to label Vcc and Gnd on the diagram. Most often for a chip, the 

Vcc is the upper most right pin and the Gnd is the bottom left, however the chip pinout should always be 

consulted.

6.  
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Chapter 3 review exercises

1.      

(AB)' + (CD)' 

)'(AB)'' (CD)''

(AB)(CD)

ABCD

Original Circuit

De Morgan's law

Double negatives cancel

Parenthesis not necessary

2.  Singletons have only one element. Doubles are 2x1 rectangles. Groups of four take two forms, a 4x1 

rectangle or a 2x2 square. Finally groups of eight take the form of 4x2 rectangles. Rectangles and squares 

can be split across borders; further illustrations of this can be found in the next chapter.  Example 

groupings are shown below.

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 0 0 0

C'D
01

0 0 0 1

CD
11

0 1 0 0

CD'
10

1 0 0 0

Three single groups

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

0 0 0 0

C'D
01

0 0 1 1

CD
11

1 0 0 0

CD'
10

1 0 0 0

Two 2x1 double groupings

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

1 0 1 1

C'D
01

1 0 1 1

CD
11

1 0 0 0

CD'
10

1 0 0 0

Two groupings of four
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A'B
'
00

A'B
01

AB
11

AB'
10

C'D
'
00

1 0 0 1

C'D
01

1 0 0 1

CD
11

0 0 0 0

CD'
10

0 0 0 0

Group spanning boundary

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

1 0 0 1

C'D
01

0 0 0 0

CD
11

0 0 0 0

CD'
10

1 0 0 1

Four corner group

A'B'
00

A'B
01

AB
11

AB'
10

C'D'
00

1 1 1 1

C'D
01

1 1 1 1

CD
11

0 0 0 0

CD'
10

0 0 0 0

Group of eight

3.  Truth tables follow.

a.  f(A,B,C) = AB + A'BC' + AB'C 

A B C AB A'BC' AB'C f

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 1 0 1

0 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 1

1 1 0 1 0 0 1

1 1 1 1 0 0 1

b.  g(A,B,C) = A'C + ABC + AB' 

A B C A'C ABC AB' g

0 0 0 0 0 0 0

0 0 1 1 0 0 1

0 1 0 0 0 0 0

0 1 1 1 0 0 1

1 0 0 0 0 1 1

1 0 1 0 0 1 1

1 1 0 0 0 0 0

1 1 1 0 1 0 1
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c.  h(A,B,C,D) = A'BC' + (A ⨁ B)C + A'B'C'D + ABCD 

A B C D A'BC' (A⨁B) (A⨁B)C A'B'C'D ABCD h

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 1

0 1 0 1 1 1 0 0 0 1

0 1 1 0 0 1 1 0 0 1

0 1 1 1 0 1 1 0 0 1

1 0 0 0 0 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0

1 0 1 0 0 1 1 0 0 1

1 0 1 1 0 1 1 0 0 1

1 1 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1

d.  (A,B,C,D) = A'C'D' + C'D + CD 

A B C D A'C'D' C'D CD j

0 0 0 0 1 0 0 1

0 0 0 1 0 1 0 1

0 0 1 0 0 0 0 0

0 0 1 1 0 0 1 1

0 1 0 0 1 0 0 1

0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 1

1 0 1 0 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 1 0 0 0 0 0

1 1 1 1 0 0 1 1
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4.  Minimal expressions given for each map. Notice that quite often, the terms in the original are not found 

at all in the minimal SOP (Sum Of Products) expression.

a.  Original expression:  f(A,B,C) = AB + A'BC' + AB'C 

Minimal expression:  f(A,B,C) = BC' + AC

b.  Original expression: g(A,B,C) = A'C + ABC + AB'

Minimal expression: g(A,B,C) = AB' + C

c.  Original expression: h(A,B,C,D) = A'BC' + (A ⨁ B)C + A'B'C'D + ABCD

Minimal expression: h(A,B,C,D) = A'B + A'C'D + BCD + AB'C

Minimal expression: h(A,B,C,D) = A'B + A'C'D + ACD + AB'C

More than one minimal expression exists. In these cases, more than one correct answer exists.

    

d.  Original expression: j(A,B,C,D) = A'C'D' + C'D + CD

Minimal expression: j(A,B,C,D) = D + A'C'
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5.  g(A,B,C) = AB' + C

This circuit was designed using only NAND gates. This allows the circuit to be implemented with just one 

chip. DeMorgan's law was used to avoid needing a NOR gate. In addition, an inverter was avoided by  

using the remaining NAND gate left on the chip to invert input A.

6.  h(A,B,C,D) = A'B + A'C'D + BCD + AB'C

7. As the logic kit does not contain a four input NAND gate, combinations of three and two input NANDs are 

used. The following justification shows that this is indeed a correct implementation.

a.  Minimal expression: A' + B'

[ (A'B)' (A'C'D)' ]'  '  [ (BCD)' (AB'C)' ]'  ' )'

[ (A'B)' (A'C'D)' ]'  ''  + [ (BCD)' (AB'C)' ]'  ''

[ (A'B)' (A'C'D)' ]'   + [ (BCD)' (AB'C)' ]' 

[ (A'B)'' +(A'C'D)'']   + [ (BCD)'' + (AB'C)'' ]

A'B + A'C'D + BCD + AB'C'
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b.  Minimal expression: C' + A'B

Direct implementation from circuit

De Morgan's law

Double negatives cancel

De Morgan's law

Double negatives

c.  Two different Minimal expressions exist for this problem.

i.  Minimal expression: C'D' + A'C' + BC' + AC 

ii.  Minimal expression: C'D' + A'C' + AB + AC 
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d.  Three different Minimal expressions exist for this problem. See below.

i.  Minimal expression: A'C'D + A'BD + A'CD' + AB'D 

ii.  Minimal expression: B'C'D + A'BD + A'CD' + AB'D 

iii.  Minimal expression: A'C'D + A'BC + A'CD' + AB'D 

Chapter 4 review exercises

1.  Minimal SOP expressions

a.  Minimal expression: B' + AC' 
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b.  Minimal expression: A + C 

c.  Notice that this solution has one of the groupings that spans the boundaries (B'C).

Minimal expression: AB'+ AD + B'C  

d.  This expression includes the four corner grouping (B'D').

Minimal expression: B'D' + A'B 

e.  Two different Minimal expressions exist for this problem.

Minimal expression: B'C' + A'C' + BC. 
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Minimal expression: B'C' + A'B + BC 

f.  Minimal expression: C'D + A'D' 

2.  K-maps with minimal SOP expressions

a.  Minimal expression: AB + A'C' 

b.  Notice that not all don't care conditions need to be covered.

Minimal expression: A  
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c.  Minimal expression: BD + AD + A'B'C 

d.  Minimal expression: CD' + AD' 

Chapter 5 review exercises

1. K- map and minimal SOP expressions

a.  f1(a,b,c) = a'b'c' + a'bc' + a'bc + ab'c'  

Minimal expression: f1(a,b,c) = a'b + b'c' 

 

a b c f1

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0
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b.  f2(a,b,c) = a'b'c + a'bc + abc' + ab'c

Minimal expression: f2(a,b,c) = a'c + b'c +abc'

 

a b c f1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

c.  f3(a,b,c,d) = a'b'c'd' + a'bcd + abcd  + ab'c'd' + ab'c'd

Minimal expression: f3(a,b,c,d) = b'c'd' + ab'c' + bcd 

  

a b c d f3

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1
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d.  f4(a,b,c,d) = a'b'c'd' + a'bc'd + abcd + a'b'cd' + a'b'cd + a'bcd' + ab'c'd

Minimal expression: f4(a,b,c,d) = a'b'c + a'cd' + a'b'd' + abcd + a'bc'd + ab'c'd 

 

a b c d f4 Mux In

0 0 0 0 1 d'

0 0 0 1 0 d'

0 0 1 0 1 1

0 0 1 1 1 1

0 1 0 0 0 d

0 1 0 1 1 d

0 1 1 0 1 d'

0 1 1 1 0 d'

1 0 0 0 0 d

1 0 0 1 1 d

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 d

1 1 1 1 1 d

The truth table also shows the inputs required for the multiplexer which will be used later when 

implementing the function with a mux.
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2.  f2(a,b,c) =  a'b'c + a'bc + abc' + ab'c

3. f4(a,b,c,d) = a'b'c'd' + a'bc'd + abcd + a'b'cd' + a'b'cd + a'bcd'  + ab'c' 

Examine the truth table from previous problem to understand why input values are chosen.
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4.  Circuit design 

a.  g1(a,b,c,d) = a'b'c'd + abcd + a'bcd + a'bc'd + ab'c'd + a'b'cd + abc'd + ab'cd

Minimal expression: g1(a,b,c,d) = d

When the K-map is filled out, it can be seen that the minimal solution is simply d. No logic is needed at  

all! Hopefully, you did not try to write the truth table and implement it with a multiplexer. This illustrates 

why even though a multiplexer can implement any circuit, the logic should be analyzed first.

b.  g2(a,b,c,d) = a'bc'd + a'b'cd' + ab'cd

For this problem, first the K-map shows that this is the minimal expression. Then the truth table is 

constructed to determine the input values for an 8-to-1 mux implementation. 

a'b'
00

a'b
01

ab
11

ab'
10

c'd'
00

0 0 0 0

c'd
01

0 1 0 0

cd
11

0 0 0 1

cd'
10

1 0 0 0

a b c d g2 Mux Input

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 d'

0 0 1 1 0 d'

0 1 0 0 0 d

0 1 0 1 1 d

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 d

1 0 1 1 1 d

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 0 0
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a'b'
00

a'b
01

ab
11

ab'
10

c'd'
00

0 0 0 0

c'd
01

1 1 1 1

cd
11

1 1 1 1

cd'
10

0 0 0 0
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c.  g3(a,b,c,d) = abc'd' + abc'd + abcd + abcd' + a'bc'd + a'bcd

Minimal expression: ab + bd

The Minimal expression is the column ab and the middle square bd. This can be implemented with a  

single 7400 chip with one NAND gate left over.
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d.  g4(a,b,c,d) = a'bc'd' + abc'd' + abcd' + ab'cd' + a'bc'd + abc'd + abcd + ab'cd

Minimal expression: bc' + ac 

  

Chapter 6 review exercises

1.  Periods in seconds of the clock with given frequencies

a.  T = 1/f

 T = 1/(6,000,000) = 0.000000167 sec or 167 nsec

b.  T = 1/(10,000,000) = 0.0000001 sec or 100 nsec

c.  f = 6000 cycles/min * 1min/60sec = 100 Hz

T = 1/100 = 0.01 sec or 10.0 msec

2.  Frequency of clock in Hertz

a.  f = 1/T

f = 1/(.00001) = 100 Khz

b.  f = 1/(0.00000000005) = 20.0 GHz

c.   f = 1/(.001) = 1000 Hz
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3.  Notice that Pin 3 never changes, although the state for Pin 6 and Pin 10 (the output) are indeterminate 

until it can be verified that the logic has successfully traveled through the required logic gates.

4.  The logic circuit from Exhibit 2.14 has eight logic gates. Many of these gates are in parallel, such as the  

first two inverters or the two NAND chips from IC1. The longest path for the logic to travel is what 

determines the maximum frequency that the clock can be traveled. 

So the longest delay is: (10nsec  * 5) = 50 nsec 

f = 1/T = 1/(0.00000005) =  20.0 MHz

5.  Timers with times of 1, 5, and 10 seconds

a.  Recall that the timer has a delay of: t = 1.10(RC) Solving for R yields: R = t/(1.10C)

The required values for R are found in the table, along with those that are easiest to obtain using the 

resistors from the lab kit. 

t – desired R desired R for lab t - actual

1.0 sec 9100 Ω 9400 Ω 1.0 sec 

5.0 sec 45000 Ω 42400 Ω 4.7 sec 

10. sec 91000 Ω 100000 Ω 11 sec 

b.  The first R is obtained by putting two of the 4.7 K resistors in series. The second is by putting two 4.7K 

resistors in series with a 33K resistor. 
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c.  The schematic should look identical to Exhibit 6.1 with the appropriate values for R and C.

d.  Last, for the values chosen, the span for the times is calculated below.

i.  1 second timer: 1.10(0.95 * 9400)(0.9 * 100u) < actual  < 1.10(1.05 * 9400)(1.1 * 100u)

.89 < actual value < 1.2

ii.  5 second timer: 1.10(0.95 * 42400)(0.9 * 100u) < actual  < 1.10(1.05 * 42400)(1.1 * 100u)

4.0 < actual value < 5.4

iii.  10 second timer: 1.10(0.95 * 100000)(0.9 * 100u) < actual  < 1.10(1.05 * 100000)(1.1 * 100u)

9.4 < actual value < 13

6. Recall that the period of the clock is given by:

T  = t1 + t2 

= time on + time off 

= 0.693(R1 + R2)C + 0.693(R2)C 

=  0.693(R1 + 2*R2)C 

a.  If R1 and R2 are both 4.7K resistors for the first clock and R1 is 4.7K and R2 is 33K for the second, the  

resulting times are:

T(1sec) = 0.693(4700 + 4700)0.0001 + .693(4700)0.0001

= 0.651 + 0.326

= .98 seconds

T(5sec) = 0.693(33000 + 4700)0.0001 + .693(33000)0.0001

= 2.61 + 2.29

= 4.9 seconds

b.   Time on for the 1 second clock is 0.65 seconds and off is 0.33, while time on for the 5 second clock is  

2.6 seconds and off is 2.3 seconds.

c.  The schematic will look exactly like Exhibit 6.3 with the appropriate R and C values inserted.
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Chapter 7 review exercises

1.  Recall, if either of the input values are 1, the output of the gate is 0. While the output values of Q and Q' 

may change, the input values of S and R will not for this table. So, for any row that has S set to 1, the 

corresponding value for QN' must be 0 and likewise if R is 1, QN must be 0. Using this, some values can 

immediately be determined with this information. As the output values may change, the remaining next  

state values require more examination. 

S R Q Q' QN QN'

0 0 0 1 ? ?

0 0 1 0 ? ?

0 1 0 1 0 ?

0 1 1 0 0 ?

1 0 0 1 ? 0

1 0 1 0 ? 0

1 1 0 1 0 0

1 1 1 0 0 0

Row 1: Q' is 1, causing Q to be 0 leaving Q' 1.

Row 2: Q is 1, causing Q' to be 0 leaving Q 1For rows 1 and 2, the state of Q and Q' does not change.

Row 3 & 4: QN  and S are 0, causing QN  ' to be 1. QN ' at 1 means QN is 0.For rows 3 and 4, the latch is 

reset.

Row 5 & 6: QN ' and R are 0, causing QN   to be 1. QN  at 1 means QN' is 0. For rows 5 and 6, the latch is set.

Row 7 & 8: QN and QN' are not inverse values of each other, which explains why these states are not used 

for the latch. Final stable values are provided in the second truth table. 

S R Q Q' QN QN'

0 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 1 0 0

1 1 1 0 0 0
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2.  For the SR latch constructed with NAND gates, recall that the NAND gate will have an output of 1 if either 

of the input values is 0. In this manner, some of the next state values may be determined immediately.

Now, the remaining undetermined rows are examined. 

S R Q Q' QN QN'

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 ?

0 1 1 0 1 ?

1 0 0 1 ? 1

1 0 1 0 ? 1

1 1 0 1 ? ?

1 1 1 0 ? ?

Rows 1 & 2: Both QN   and QN ' are 1, not inverses of one another.These states are not used.

Rows 3 & 4: QN  is 1 and R is 1, so QN ' will be 0. These are the set states.

Rows 5 & 6: QN ' is 1 and S is 1, so QN  will be 0. These are the reset states.

Row 7: S and Q' are 1, so QN  will stay 0. QN  is 0 and R is 1, so QN ' stays 1

Row 8: R and Q are 1, so QN ' will stay 0. QN ' is 0 and S is 1, so QN  stays 1.Rows 7 and 8 are t stable states 

where the output values do not change. 

Final values are provided in the second truth table.

S R Q Q' QN QN'

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 0

0 1 1 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 1 0 1 ? ?

1 1 1 0 ? ?

3.  As the NAND gate is an active low gate, meaning if either input is 0, the output will go high, some of the 

values of the table can be determined immediately (these are bolded). 

NAND1 can be determined by D and C (italic).

Where the values of NAND1 and C are known, the value of NAND2 can be determined (highlighted in 

yellow).

Where NAND1 or NAND2 are known to be 0, the corresponding gates NAND3 and NAND4 must be 1 

(shown in light blue).
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D C Q Q' 1 2 3/QN 4/QN'

0 0 0 1 1 1 ? ?

0 0 1 0 1 1 ? ?

0 1 0 1 1 0 ? 1

0 1 1 0 1 0 ? 1

1 0 0 1 1 1 ? ?

1 0 1 0 1 1 ? ?

1 1 0 1 0 1 1 ?

1 1 1 0 0 1 1 ?

Now treat NAND1 as the S input and NAND2 as the R input to the NAND SR latch (NAND3 and NAND4) 

and use the work from the previous problem. 

Rows 1 & 5: Similar to row 7 from problem 2.

Rows 2 & 6: Similar to row 8 from problem 2.

The states for Rows 1, 2, 5 and 6 do not change.

Row 3: Similar to row 5 from problem 2.

Row4: Similar to row 6 from problem 2.

Rows 3 and 4 correspond to the reset state.

Row 7: Similar to row 3 from problem 2.

Row 8: Similar to row 4 from problem 2.

Rows 7 and 8 correspond to the set state.

D C Q Q' 1 2 3/QN 4/QN'

0 0 0 1 1 1 0 1

0 0 1 0 1 1 1 0

0 1 0 1 1 0 0 1

0 1 1 0 1 0 0 1

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 0

1 1 0 1 0 1 1 0

1 1 1 0 0 1 1 0

Note than when C is low, the state of the flip-flop can never change. Also, due to the addition of NAND1 

and NAND2, there is never a time when the inputs reach a state that should not be used, as with the SR 

latches that   must avoid certain states. So when C is low, the state remains constant and when C is high,  

the state tracks the D input.  The final values are given in the second truth table.

4.  When the clear line is low, the value of Q will be low regardless of the state of D.  When the value of Clear 

is high, the value of Q will be equal to the value of D at the time of  the rising clock edge.
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D CLEAR Q

0 0 0

0 1 0

1 0 0

1 1 1

Chapter 8 review exercises

1. Because switches suffer from bounce, the circuit could interpret the bounces as clock pulses as well. This 

would mean that the circuit might be clocked more than once for a given flip of the switch.

2.  

3.  
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4.  Two flip-flops are needed to represent all four possible states.

5.  

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

0 1 0 1

x
1

1 0 1 0

Q1N(x,Q1,Q0)

   

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

x'
0

1 0 0 1

x
1

1 0 0 1

Q0N(x,Q1,Q0) = Q0'

The minimal expression for Q1N is xQ1'Q0' + x'Q1'Q0 + xQ1Q0 + x'Q1Q0 which is not very minimal. For  

this reason, the design that follows uses a multiplexer to implement the input for the second flip-flop. The 

first flip-flop requires a value that can be taken directly off of the flip-flop itself Q0'.

Remember to be careful when using the mux, and insure that the Select C line is the most significant bit  

for the logical expression.

6.  
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7.  The state machine has 3 states so it requires 2 flip-flops. 21 < 3 <= 22

The state 11 is not used. The next chapter will discuss the design of systems with unused states.

Chapter 9 review exercises

1.  A state machine that has 7  states will require 3 flip-flops. 22 < 7 <= 23

a.  With no external inputs, only the existing states provide input to determine the next state, so the K-

maps will be a 4x2 rectangle.

b.  With one external input, there will be 4 total inputs, so the K-maps will be 4x4 squares.

c.  With JK flip-flops, as both the J and K are inputs to the flip-flop, there would now be 6 next

state input values to determine.

2.  A state machine that has 14  states will require 4 flip-flops. 23 < 14 <= 24

a. With no external inputs, only the existing states provide input to determine the next state, so the K-

maps will be a 4x4 rectangle.

b.  With one external input, there will be 5 total inputs. The K-maps will be 8x4 rectangles, which are 

often unwieldy. In this case, alternate minimization techniques should be explored.

c.  Using a JK flip-flop with 14 states that requires 4 flip-flops, there would be a total of 8 state inputs. 

One J input and one K input for each of the flip-flops.

3.  

4.  A state machine traverses the states listed in this order 000 → 001 → 011 → 111 → 110 → 100 → 000.  

There is no external input.
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a.   

b.  Of the 8 possible states, 101 and 100 are not represented.

c.   

d.  

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

Q2'
0

0 0 1 0

Q2 

1
0 0 1 1

Q2N(Q2,Q1,Q0) = Q1Q0 + Q2Q1

 

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

Q2'
0

0 1 1 0

Q2 

1
0 0 1 0

Q1N(Q2,Q1,Q0) = Q1Q0 + Q2'Q0

 

Q1'Q0'
00

Q1'Q0
01

Q1Q0
11

Q1Q0'
10

Q2'
0

1 1 1 0

Q2

1
0 0 0 0

Q0N(Q2,Q1,Q0) = Q2'Q1' + Q2'Q0

5.  The two bit sequence 00 → 01 → 11 → 10 → 00 is a Gray code. Gray codes only have one bit change for  

each transition.
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a.  

b.  

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

Q2'
0

0 0 0 1

Q2 

1
0 1 1 1

Q2N(Q2,Q1,Q0) = Q1Q0' + Q2Q0

 

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

Q2'
0

0 1 1 1

Q2 

1
0 0 0 1

Q1N(Q2,Q1,Q0) = Q1Q0' +  Q2'Q0

 

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

Q2'
0

1 1 0 0

Q2 

1
0 0 1 1

Q0N(Q2,Q1,Q0) = Q2'Q1' + Q2Q1

6.  A two bit counter is to be built that will count forward, 00 → 01 → 10 → 11 → 00, when a logical input is

set high and counts in reverse order when it is low.

a.  
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b.  

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

x'
0

1 0 1 0

x
1

0 1 0 1

Q1N(x,Q1,Q0) =  x'Q0'Q1'+xQ1'Q0 +x'Q1Q0+x'Q1Q0' 

  

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

x'
0

1 0 0 1

x
1

1 0 0 1

Q0N(x,Q1,Q0) =  Q0'

7.  A two bit counter is to be built that will count forward, 00 → 01 → 10 → 11 → 00, when a logical input is

set high and as a Gray code when it is low (00 → 01 → 11 → 10 → 00).

a. 

b.  

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

x'
0

0 1 1 0

x
1

0 1 0 1

Q1N(x,Q1,Q0) = x'Q0 + Q1'Q0 + xQ1Q0 

   

Q1'Q0'
00

Q1'Q0

01
Q1Q0

11
Q1Q0'
10

x'
0

1 1 0 0

x
1

1 0 0 1

Q0N(x,Q1,Q0) =  x'Q1' + xQ0'
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