
Measuring and
Optimizing Database
Security Operations: An
Open Model

Findings from the Database Security Quant Research Project

Version 1.0

Released: April, 2011

Securosis, L.L.C. 20930 North Tatum Blvd Suite #110-116 Phoenix, AZ 85050 T 602-412-3051 info@securosis.com www.securosis.com

mailto:info@securosis.com?subject=
mailto:info@securosis.com?subject=
http://www.securosis.com
http://www.securosis.com

Author’s Note
The content in this report was developed independently of any sponsors. It is based on material originally posted on the

Securosis blog <http://securosis.com/blog>, but has been enhanced, reviewed, and professionally edited.

Special thanks to Chris Pepper for editing and content support.

Licensed by Application Security Inc.

About AppSec:

Founded in 2001, Application Security, Inc. (AppSec) has pioneered

database security, risk, and compliance solutions for the enterprise.

AppSec empowers organizations to assess, monitor and protect their

most critical database assets in real time, while simplifying audits, monitoring risk, and automating compliance

requirements.

As the leading provider of cross platform solutions for the enterprise, AppSec's products – AppDetectivePro for auditors

and IT advisors, and DbProtect for the enterprise – deliver the industry's most comprehensive database security solution.

With over 2,000 customers in 42 countries, AppSec is headquartered in New York City and has offices throughout North

America and the United Kingdom.

For more information, please visit www.appsecinc.com.

Contributors
The following individuals contributed significantly to this report through comments on the Securosis blog and follow-on

review and conversations:

‘ds’

Russell Thomas

Copyright
This report is licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Securosis: Database Security Quant — Executive Summary
 2

http://securosis.com/blog
http://securosis.com/blog
http://www.appsecinc.com
http://www.appsecinc.com
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Executive Summary

Developing an Open Database Security Metrics Model
The Database Security Operations Quant research project, Database Quant for short, was initiated to develop an

unbiased metrics model to describe the costs of securing database platforms. Our hope is to provide organizations with

a tool to better understand the security costs of configuring, monitoring and managing databases. By capturing

quantifiable and precise metrics that describe the daily activities

database administrators, auditors and security professionals, we

can better understand the costs associated with security and

compliance efforts. Database Quant was developed through

independent research and community involvement, to accurately

reflect all substantive efforts that comprise a database security

program.

Key Findings
1. At the time this project started, there were no standardized

processes for database security in the industry. Assessment,

auditing, monitoring and related activities are, historically, ad-

hoc. To frame the metrics discussion we needed to

understand the daily activities of DBA’s, auditors and IT

managers and settle on the activities common amongst these

groups. We collected process guidelines from several large

enterprises in the financial and retail sectors, as well as

feedback from dozens of small firms and practitioners to form

a set of security processes for every common database

security task. We believe that this is the first comprehensive

set of database security processes ever openly published.

2. Staff time represents the majority of costs. While several tasks,

such as monitoring, involve up front investment into monitoring

tools, employee time for setup tasks and policy management

tend to be more substantive. Continued management of

systems, collection of information on threats, and verification of

reports quickly outstrip sunk costs for automation software.

3. We found during our research that auditors and operations management personnel - responsible for regulatory

mandates and industry compliance - followed the same set of security processes as described in the Discover &

Securosis: Database Security Quant — Executive Summary
 3

The DB Quant Challenge

What does it cost to secure a database?

Database security encompasses a large number

of processes managed by different teams- from

DBAs, to security operations, to IT operations.

Also, these processes aren’t ever applied to all

databases equally in the real world, and are

tuned to deal with specific application and

database needs.

We have built specific processes for all common

database security tasks, and placed them in a

superset process following a logical order

appropriate for most database security

operations. These steps are by no means

gospel, but the metrics within the steps are likely

to be where you spend a majority of time and

money. The key to deriving value out of this

project is to use the provided framework as a

reference to improve your own processes, while

picking the metrics that make the most sense for

you

Assess phases of this report. Compliance and security operations processes, and consequently the metrics that

describe the costs associated with both efforts, are essentially the same.

4. Our results also show a great divide in the depth and complexity of the processes use by mid-market companies

(those with less that $1B revenue) and large enterprises. Further, the number of participants in the process grows

considerably with the size of the company. For example, database security efforts for mid-sized firms was almost the

sole responsibility of the database administrator, with some assistance from general IT management teams. In large

enterprise, internal auditing and security groups managed the process and requirements, with implementation being

performed by database administrators (DBAs), IT and security administrators. Similarly, the depth of the processes

used by larger enterprises to govern inter-departmental tasks, and tracking software to manage and automate the

process was in stark contrast with mid-market forms. As a result, every process described has specific

recommendations to reflect the differences between the two audiences.

5. While the processes vary by company size, key metrics that embody the majority of costs tend to be the same. And

while there are many activities, there are really only a couple key metrics for every process that consume a majority

of time or investment. That means even when you don’t follow a formal process, the basic work to accomplish a

task - more often than not- is the most resource intensive. For those looking to maintain ‘ballpark‘ cost estimates

with minimal amount of tracking overhead, it’s fairly easy to identify and capture the handful of quantifiable metrics

appropriate to your operations.

Key Processes and Metrics
The following represent the key tasks and associated metrics from the DB Quant Metrics project. We feel these tasks

within the overarching process offer both

1. Plan:

Process Step Key Metric

Configuration standards Time to determine configuration standards requirements

AAA Time to map business functions to logical roles

Time to determine necessary administrative roles

Classification Time to adjust or develop classification scheme

Monitoring Time to identify which events/activities to monitor

2.Discover & Assess:

Process Step Key Metric

Enumerate Time to run active scan or manually discover databases

Identify Applications Time to define patterns, expressions, and signatures

Time to identify applications using the database

Vulnerabilities Time to scan databases for vulnerabilities and configurations

AAA Time to enumerate groups, roles, and accounts

Securosis: Database Security Quant — Executive Summary
 4

3.Secure:

Process Step Key Metric

Patch Costs for maintenance, support, or additional patch management tools

Time to test and install patch

Configure Time to identify policy/standards violations and incorrect settings

Restrict Access Time to implement new groups and roles, and to adjust memberships

Time to reconfigure service accounts

4.Monitor:

Process Step Key Metric

Audit Time to review logs for policy violations and security anomalies

Monitor Cost of DAM tool

Time to monitor for alerts

Time to generate compliance reports

5.Protect:

Process Step Key Metric

DAM/Blocking Time to manage incidents

Encrypt Time to deploy, encrypt data, and set authorization rights

Mask Cost to acquire masking products

Time to create masking/transformation plan and configuration

6.Manage:

Process Step Key Metric

Configuration Management Time to determine required changes, includes understanding side effects

Patch Management Time to test and deploy patches

Change Management Validate: Time to validate change control occurred properly

Securosis: Database Security Quant — Executive Summary
 5

How to use DB Quant

The value of any research is in how you use it to improve your operations and day to day activities. In this paper you will

find a very detailed set of process steps, each of which may or may not be relevant to database security within your

organization. Use what makes sense and forget the rest. In terms of the metrics, we had an excellent comment on one of

blog posts from our Network Security Operations Quant project which puts this initiative into the proper context.

Who is the intended audience for these metrics? [Metrics] are part of the job, but I’m not sure what the value is.
To me the metrics that are critical around process [focus on whether] the number of changes align with the

number of authorized requests. Do the configurations adhere to current policy requirements, etc...

Just thinking about [my last] presentation to the CIO, I spent 3 hours getting consensus and 2 hours on
prioritizing. [How do these metrics] get me much traction?

One of the pillars of our philosophy on metrics is that there are really three types of metrics that security teams need to

worry about. This comment is about the first type: the stuff you need to substantiate what you are doing for audit

purposes. Those are key issues and things that you must be able to prove.

The second bucket is numbers that are important to senior management. These tend to focus around incidents and

spending. Basically how many incidents happen, how that is trending, and how long it takes to deal with each one. On

the spending side, senior folks want to know about percentage of expenditure relative to total IT spending, relative to

total revenues, and how that compares to peers.

Then there is the third bucket, which are the operational metrics that we use to improve and streamline our

processes. It’s the old saw about how you can’t manage what you don’t measure — well, the metrics defined within DB

Quant represent much of what we can measure. That doesn’t mean you should measure everything, but the idea of this

project is to decompose the processes as much as possible to provide a basis for useful measurement. Again, not all

companies do all the process steps. Actually most companies don’t do much from a process standpoint — besides fight

fires all day.

Gathering this kind of data requires a significant amount of effort and will not be for everyone. But if you are trying to

understand operationally how much time you spend on things, and then use that data to analyze and improve your

operations, you can get payback. Or if you want to use the metrics to determine whether it even makes sense for you to

be performing these functions (as opposed to outsourcing), then you need to gather the data.

Clearly the CIO and other C-level folks aren’t going to be overly interested in the amount of time it takes you to develop

database authentication, authorization, and access control policies. They care about outcomes, and most of the time you

spend with these executives needs to be focused on getting buy-in and updating status on commitments you’ve already

made. Which is the way it should be.

But if you don’t measure and tune your internal processes, odds are you’ll be less efficient — eating up budget and

being forced to rely on FUD (fear, uncertainty, and doubt) to justify future spending. Which is most definitely how it

shouldn’t be. These metrics provide the fundamental tools for you to optimize your processes, even if you only use a

fraction of them.

Securosis: Database Security Quant — Executive Summary
 6

Table of Contents

Introduction
 9

Background of the Project
 9

Project Assumptions
 10

The Database Security Process
 11

DB Quant Metrics
 14

Plan Phase
 16

Configuration Standards
 18

Authentication, Authorization, and Access Control Policies
 20

Classification Policies
 23

Monitoring Policies
 25

Discover and Assess Phase
 28

Enumerate Databases
 30

Identify Applications, Owners, and Data
 33

Assess Configurations and Vulnerabilities
 37

Assess Authentication, Authorization, and Access Controls
 40

Secure Phase
 43

Patch
 44

Configure
 47

Restrict Access
 49

Shield
 52

Monitor Phase
 54

Securosis: Database Security Quant
 7

Audit
 55

Monitor Activity
 57

Protect Phase
 59

Block (DAM)
 60

Encrypt
 62

Deploy WAF
 65

Mask Data
 67

Manage Phase
 69

Manage Configurations
 70

Manage Patches
 72

Manage Changes
 75

Conclusion
 77

About the Analysts
 79

About Securosis
 80

Securosis: Database Security Quant
 8

Introduction

Background of the Project
Few areas of IT tend to fall through the gaps as consistently as database security. Databases hold massive amounts of

critical data and drive our most important applications and business processes, but responsibility for security is split

among multiple constituencies that don’t always speak the same language, never mind get along. Database

administrators are the ultimate authorities for their systems, yet their primary responsibility is keeping systems running.

Security is, at best, a secondary priority for them. Security practitioners are charged with the overall security of an

organization, yet few have a solid understanding of how database management systems work.

The result is that those most responsible for security have limited domain knowledge, and rely on a hodgepodge of

external tools (if they’re lucky) and insufficient privileges to verify database security. Database administrators, while

responsible for managing the databases, suffer from of lack security knowledge both with the database and supporting

systems.

As a result, both groups approach problems from extremely different angles, often with divergent goals, and with only

limited cooperation. The situation is so bad that we don’t even have consistent database security models to show how to

blend and balance these responsibilities. DBA-focused models are limited to basic configuration settings, while security

tends to be limited to collecting audit logs and checking user permissions and patch levels - which are rarely up to date

due to the problems of patching most database platforms.

To be fair, this isn’t the fault of DBAs, security professionals, or anyone else. It’s merely the logical outcome of the

‘economics’ of the situation, and splitting up responsibilities between teams with limited contact. For most enterprises,

these practitioners don’t even work in the same organizations. But in recent years, in response to compliance

requirements and database-focused attacks, we have finally started to see these walls erode and the practice of

database security improve.

Despite these improvements, we still lack a comprehensive framework and the metrics to measure our efforts. There are

so many ways to approach database security, with so many technical and process options, that it’s hard to pull these

together into a consistent process-oriented framework. And until we have the framework it’s nearly impossible to

determine the kinds of metrics we need to measure the cost and effort (and thus efficiency) of our database security

program.

This problem isn’t limited to database security- operational efficiency metrics are generally lacking in the security industry,

where we tend to focus more on risk/threat metrics models — which seem to rarely be accurate. That’s where Project

Quant comes in. Beginning in 2008, Securosis initiated a series of projects to create operational metrics models for major

Securosis: Database Security Quant
 9

areas of security. They are designed to help you better understand your security processes in terms of their costs,

efficiency, and effectiveness so you can both drive specific improvements and better communicate your value to non-

security management.

The formal objective and scope of this project are:

The objective of Database Security Quant is to develop a cost model for implementing and managing database

security that accurately reflects the associated financial and resource costs.

By providing a detailed performance metrics model we hope to help organizations improve their internal processes, as

well as overall efficiency and effectiveness. The model should help identify specific areas of inefficiency and guide users

towards specific improvements. Project Quant is also a quantified cost model, and provides a way to measure patch

management costs in different areas across their entire programs. We have used surveys and interviews to inform and

support our findings, and (as with the model) all data is being made completely public. We hope this helps organizations

better understand the state of patching in the industry, and their own maturity.

It’s time to remove the guesswork, begin understanding the real costs of patch management decisions, and provide the

open frameworks, models, metrics, and data to optimize our processes.

Our design goals for this project were to:

• Build the model in a manner that supports usage as an operational efficiency model to help organizations optimize

their network security monitoring and management processes, and compare costs of different options.

• Produce an open model, using the Totally Transparent Research process.

• Advance the state of IT metrics, particularly operational security metrics.

As you read through this report, it’s useful to keep the philosophy of Quant in mind: the high level process framework is

intended to cover all the tasks involved. That doesn’t mean you need to do everything, but does mean this is a fairly

exhaustive list. Individual organizations then pick and choose those steps which are appropriate for them. As such, this

model is really an exhaustive framework that can kickstart your efforts to optimize database security processes.

Project Assumptions
To achieve our DB Quant goals, we made certain assumptions:

• This should be a quantified metrics model, focused on costs: All the metrics or variables in the model should be

measurable with accuracy and precision. “Qualified” metrics, such as risk and threat ratings, are not included. This

model is designed only to measure the costs of database security processes, and to identify operational efficiencies or

deficiencies in specific process areas. It relies on measurable, quantifiable inputs, rather than assessments or other

unquantifiable values based on human judgement.

• The model should apply to all relevant activities in scope: The scope includes planning your database security,

implementing security controls, monitoring database security operations, collecting needed activities and audit logs,

and the ongoing management of database security. Due to the wide scope, the metrics don’t necessarily include every

Securosis: Database Security Quant
 10

http://securosis.com/about/totally-transparent-research
http://securosis.com/about/totally-transparent-research

possible cost; we have focused on those that encompass the majority of database security spending in most

situations.

• The model should apply to organizations of any size or vertical: This is not designed only for large organizations in

particular vertical markets. Although smaller organizations work with fewer resources and different processes, the

model still provides a functional framework.

• The model represents a superset of database security activities: To achieve the dual goals of covering every activity in

scope, and applying to organizations of differing sizes and verticals, the model was designed as a superset of any one

organization’s activities. We do not expect users to utilize the entire model, and you are encouraged to adapt it for your

own particular needs. We understand collecting all this data could actually cost more than managing the databases.

Over time we hope that more and more of these metrics will be available through automation, included in support

tools , and from service providers.

• The model should break out costs by process to support optimization: One reason for the extensive detail in each

process is to support identification of specific operational efficiencies and problems. Our goal is to help organizations

identify and correct problem areas; so this project defines all aspects of each process in gory detail to enable data

collection, analyses on process efficiency, and trending.

• The model cannot measure the costs of not securing your databases: Clearly, the easiest way to reduce your network

security operational costs to zero is to do nothing. While there are many ways to ‘measure’ the business impact of not

protecting your networks, they are not part of this model. In this project we are concerned only with measuring the

costs when you do protect your networks. This is primarily due to our strict focus on quantified metrics: addressing the

impact of not monitoring or managing network security devices would require us to include predictive and more

subjective elements.

• Not all databases require the same security: All organizations use databases of different value, and not all of them need

to be secured the same. Just as this is a superset of processes for your entire database security program which you

can pick and choose from, even within your organization you can select controls to best meet the needs of individual

databases.

The Database Security Process
With that preamble to provide context, let’s go over how we have broken up a very large set of operational processes.

We divided the macro process into six subprocesses which are typically performed in sequence. These should work for

both new and existing database programs, and new and existing databases.

1. Plan

2. Discover and Assess

3. Secure

4. Monitor

5. Protect

6. Manage

Securosis: Database Security Quant
 11

Plan

Discover
and Assess

Secure

Monitor

Protect

Manage

Configuration
Standards

Classification
PoliciesAAA Policies Monitoring

Policies

Enumerate
Databases

Assess
Configurations

and
Vulnerabilities

Identify Apps,
Owners, and

Data
Assess AAA

Patch Configure Restrict
Access Shield

Audit Monitor
Activity

Block (DAM) Encrypt Deploy WAF Mask Data

Manage
Configurations

Manage
Patches

Manage
Changes

Before we discuss each phase, we need to acknowledge that this is a lot of information. As we mentioned before, our

philosophy is to build out a large framework with many options, so individual organizations can then pick and choose just

what they need. We know not everyone performs all these steps, but this is the best way to build something that works

for organizations of different sizes and verticals. Most of you will apply a subset of the model to a couple critical tasks to

assess effectiveness.

Plan
In this phase we establish our standards and policies to guide the rest of the program. This isn't a one-time event,

because technology and business needs change over time. Standards and policies should be considered for multiple

audiences and external requirements,

1. Configuration standards: Identify sources for configuration standards (DB vendor, NIST, CERT, etc). Develop internal

security and configuration standards for all supported database platforms.

2. Authentication, authorization, and access control policies: Policies around user management and use of accounts --

including connection mechanisms, DBA account policies, DB vs. domain vs. local system accounts, and so on.

Securosis: Database Security Quant
 12

3. Classification policies: Set policies for how data will be classified. Note that we aren't saying you need complex data

classification, but you do need to establish general policies about the importance of different kinds of data (e.g., PCI

related, PII, health information) to properly define security and monitoring requirements.

4. Monitoring policies: Develop security auditing and monitoring policies, which are often closely tied to compliance

requirements.

Discover and Assess
Here we find our databases, determine which applications use them, what data they contain, and who owns the system

and data; then assess the databases for vulnerabilities and secure configurations. One of the more difficult problems in

database security is finding and assessing all the databases in the first place.

1. Enumerate databases: Find all the databases in your environment. Determine which are relevant to your task.

2. Identify applications, owners, and data: Determine who is responsible for the databases, which applications rely on

them, and what data they store. A primary goal here is to use the applications and data to classify the database by

importance and sensitivity of information. You will also need access for future tasks.

3. Assess vulnerabilities and configurations: Perform a configuration and vulnerability assessment on the databases.

4. Assess authentication, authorization, and access controls: Collect and evaluate the allowed authentication methods,

entitlements for user accounts, and user/role authorizations.

Secure
Based on the results of the configuration and vulnerability assessments, next update and secure the databases. Also

lock down access channels and look for any entitlement (user access) issues. All these requirements vary based on the

policies and standards defined in the Plan phase.

1. Patch: Update the database and host platform to the latest security patch level.

2. Configure: Securely configure the database in accordance with your configuration standards. This might also include

ensuring the host platform meets security configuration requirements.

3. Restrict access: Lock down access channels (e.g., review ODBC connections and ensure communications are

encrypted), and check user entitlements for any problems, such as default administrative accounts, orphan

accounts, or users with excessive privileges.

4. Shield: Many databases have their own network security requirements, such as firewalls or VPNs. Although directly

managing firewalls is outside the domain of a database security program, you should still engage with network

security to make sure systems are properly protected.

Monitor
This phase consists of Database Activity Monitoring (DAM) and database auditing. Monitoring tends to be focused on

granular user activity and real time policy enforcement, while auditing is more concerned with traditional auditing and

forensic analysis. Both technologies enforce policies defined in the Plan phase.

Securosis: Database Security Quant
 13

1. Audit: Collection, management, and evaluation of database, system, and network audit logs (as relevant to the

database).

2. Monitor Activity: Granular monitoring of database user activity with Database Activity Monitoring.

Protect
In this phase we apply preventative controls to protect the data as users and systems interact with it. This includes using

Database Activity Monitoring for active alerting, encryption, data masking for data moved to development, and Web

Application Firewalls to limit database attacks via web applications.

1. Block with Database Activity Monitoring: In the Monitor phase we use DAM to track activity; in this phase we create

active policies to generate alerts on violations or even block activity.

2. Encrypt: Activities to support and maintain encryption/decryption of database data.

3. Deploy Web Application Firewalls: Many database breaches result from web application attacks — typically SQL

injection — so we have included WAFs to block those attacks. WAFs are one of the only post-application-

deployment tools available to directly address database attacks at the application level. We considered additional

application security options, but aside from secure development practices, which are well beyond the scope of this

project, WAFs are pretty much the only tool designed to actively protect the database.

4. Mask data: Conversion of production data into less sensitive test data for use in development environments, and a

method to obfuscate data as it is read from a database.

Manage
The triumvirate of ongoing systems and application management: configuration management, patch management, and

change management.

1. Manage configurations: Keeping systems up to date with configuration standards, including standards that change

over time due to new requirements and threats.

2. Manage patches: Keeping systems up to date with the latest patches.

3. Manage changes: Databases updates on a regular basis; including structural/schema changes, data cleansing, and

so on.

DB Quant Metrics
For each database security process we have laid out a set of metrics to quantify the cost of performing the activity. We

designed the metrics to be as intuitive as possible while still capturing the necessary level of detail. The model collects an

inclusive set of potential security operations metrics, and as with each specific process we strongly encourage you to use

what makes sense for your own environment.

Securosis: Database Security Quant
 14

Because this model includes so many metrics, we have color coded the metrics to help you prioritize:

Key The most important metrics in a given category. Using only key metrics will provide a rough but

reasonably accurate overview of costs. These are the most useful metrics for determining costs

and operational efficiency, and can be reasonably collected by most organizations.

Valuable Metrics that are valuable but not critical for determining costs and efficiency. They provide greater

accuracy than key metrics alone, but require more effort to collect.

Standard Detailed metrics to help with deep quantification of a process, but these are either less important

or more difficult to quantify. They may be more difficult to collect, or might involve complex

interdependencies with other metrics.

Using Key metrics alone will provide a reasonable picture of database security operations costs and a basis for improving

operational efficiency and program effectiveness. Including Valuable metrics, or Valuable and Standard metrics, provides

greater detail.

How to Use the Metrics
We recommend most organizations start at the process level. That involves matching each process in use within your

organization against the processes described in this research, before delving into individual metrics. This serves two

purposes:

• First, it helps document your existing process or lack thereof. Since all the metrics in the model correlate with steps in

the DB Quant processes, you’ll need this to begin quantifying your costs.

• Second, you may find that this identifies clear deficiencies in your current process, even before evaluating any metrics.

This provides an opportunity for a quick win early in the process to build momentum.

We include the applicable metrics for each specific process and subprocess, which can be built up to quantify your entire

database security program. Thus you make detailed measurements for all the individual processes and then combine

them, subtracting out overlapping efforts. Most of the metrics in this model are in terms of staff hours or ongoing full-time

equivalents; others are hard costs (e.g., licensing fees, test equipment, etc.).

It’s important to keep the purpose of these metrics (and the entire Quant research program) in context. The precision of

the measurement is less important than the consistency and completeness of your efforts. If you do have the

ability to fully quantify costs for each step in the process you’ll get a more accurate result, but this isn’t realistic for most

organizations. That said, with the right tools and automation you may be able to come extremely close for certain

processes, so think in terms of the average cost (or time) for any given step. As long as your method of estimation is

consistent, you’ll get useful metrics.

Securosis: Database Security Quant
 15

Plan Phase

As with any development project, your motivation and goals should be documented up front and later used to gauge the

success of your effort. For security efforts, like most IT projects, gathering requirements is a large part of the work. We

initially thought a single process applied to each effort (configuration management, auditing & monitoring, access control,

and data protection) would work, as there is considerable overlap between them, but when we dug into specific projects

we started seeing important differences. The result is four planning subprocesses.

Plan

• Identify requirements
• Develop standard
• Choose implementation
• Document

Configuration Standards

• Determine classifications
• Map to labels
• Map to access groups
• Document

Classification Policies

• Define activities
• Define violations
• Identify event collection
• Define event responses
• Document

Monitoring Policies

• Define requirements
• Define policies for roles,

groups, and ownership
• Choose implementation

strategy
• Document

AAA Policies

Many of you are probably saying "Holy @&!^@! Just planning is a huge effort! Where do I begin?" Identifying requirements

for database security, or PCI, or anything else can be lengthy and complex; and it's not always clear where to find this

information. While our focus in this project is identifying and quantifying costs to secure databases, we can't totally ignore

what it takes to do the work, and we need to provide a some pragmatic advice along the way. We’ll help steer you in the

right directions as much as possible through this document.

For now, consider that every other database administrator has the same set of security challenges. Ask peers what they

are doing to meet security requirements. Database vendors are also a good place to start, as they provide recommend

setup and configuration, and list recent security notifications. Leverage security and operations personnel within your

company to highlight security issues. Look to local DBA groups for advice on how they set up databases securely. As far

Securosis: Database Security Quant
 16

as compliance, you can wade through the law doing your best to understand it, but if you have co-workers who

specialize in audit and compliance, ask for assistance. If you have acquired 3rd party security tools, ask the vendor for

recommendations (all of them provide some sort of guidance for using their tools for major compliance initiatives, which

help sell their products). If your company has security guidelines in place you are lucky, so use them to help scope your

tasks.

These high-level policies are designed to guide the rest of your program and will save time and costs later, because

instead of having to start from scratch for every database, you have a base to either directly comply with, or to adjust as

necessary for specific systems. Just make sure you document any deviations from the baseline, especially if the

database is within a compliance scope.

Securosis: Database Security Quant
 17

Configuration Standards
There are four major subprocesses in developing configuration

standards:

1. Identify Requirements: Requirements include

everything from adopting database security best

practices to PCI compliance. They may originate from

external or internal sources. Vendor security configuration

guides, NIST, CERT, and CIS benchmarks are common

sources; as are compliance regulations such as PCI-DSS.

Requirements — especially for industry and regulatory

compliance — are generic and require some

interpretation. Requirements such as "implement

separation of duties" and "secure the database from SQL

injection" are common, but there are many ways to meet

them. The objective in this phase is to identify what needs

to be done — we’ll deal with how later.

2. Develop Standard: Starting from security or compliance

requirements, which portions are relevant to you? This is

where you specify your standards as a subset of the

requirements which apply to your organization. Select

settings, controls, and standards as necessary, pulling from the sources and matching against your requirements.

3. Choose Implementation Strategy: Most database security functions can be accomplished in more than one way.

For example, "capture failed logins" can be satisfied with external monitoring or internal auditing. Satisfying a

requirement on Oracle may be accomplished differently than on SQL Server. Don't get bogged down in specifics,

but select a strategy that meets you standard and fits your operational model.

4. Document Standard: Record your findings and your decisions. If you are going through this process, odds are

there are other people involved who will need to understand and adhere to the standard. A written outline is

necessary to share policies.

Large vs. Small Company Considerations
One of the difficulties of building generic process maps is trying to factor in every potential scenario, then reflect them all

in the process. But in the real world many of the steps in a given process are built to support scaling for large enterprise

environments. So for each process we will try and highlight the major differences for organizations of different sizes.

Smaller organizations typically manage fewer databases, and generally run on less formal policies. Those of you in

medium and small organizations need to rely more on off the shelf standards, of which many are available for the different

database platforms. The Center for Internet Security and NIST are good resources, as are database platform vendors.

Building off one of these standards, and adapting it for your own needs, is usually fairly straightforward.

Configuration Standards

Identify
Requirements

Develop Standard

Choose
Implementation

Document

Securosis: Database Security Quant
 18

A large organization may have many thousands of databases scattered across different business units. Requirements

building in this environment is tougher, but the goal is to start with a baseline approved by security and then go through

the tedious task of negotiating exceptions with all the various scattered teams. Rather than making the initial policy

generation a negotiation exercise, focus on working with a few DBAs managing major systems of different types, then

deal with exceptions and general policy changes once you start measuring compliance and verifying configurations.

Configuration Standards Metrics

Process Step Variable Notes

Identify Requirements

Time to identify and collect

configuration sources

e.g., CIS benchmarks, NIST

guidelines, vendor configuration

guides

Identify Requirements

Time to locate any existing internal

standards

Identify Requirements Time to identify/gather internal

security requirements
Identify Requirements

Time to identify/gather compliance

requirements

Identify Requirements

Time to research practices to meet

requirements

Develop Standard
Time to determine standards

requirements

Define generic requirements and
specifics for major platforms

Choose Implementation

Strategy

Time to determine settings, controls,

and configurations to meet standard

Will vary by platform

Choose Implementation

Strategy
Time to determine controls priorities

Choose Implementation

Strategy
Time to determine responsible party Who implements/verifies?

Choose Implementation

Strategy

Time to determine verification method

Document Standard
Time to document standards

Document Standard
Time to obtain management approval

Securosis: Database Security Quant
 19

Authentication, Authorization, and Access

Control Policies
Crafting access strategies is time-consuming, and it is difficult to provide data security without imposing overly

burdensome setup and management tasks. Compliance requirements and segregation of duties to prevent fraud make

the process even more demanding. Given the fluidity of users and rules the one most likely to create security issues by

varying from the specification. Databases have three classes of users: administrators, database programmers, and

application users — each with very different needs. It is important to plan for additional users and roles, as database use

cases change. It is very important to have a plan for revoking permissions quickly without impairing general usage. We

hate to say "expect the unexpected", but with database access control planning, it's particularly important to plan for a

flexible, easy to manage authorization model.

The plain truth is that you can drive yourself insane by delving too deep into these policies. Understand the needs of your

organization and only go as deep as you must. It’s impossible to define every possible permutation for every possible

database — in this phase we are focused on the broad strokes to guide more detailed implementation and analysis on

individual systems.

1. Define Requirements: What are the access control

guidelines? Determine which business functions are being

supported, which systems support those functions, who needs

access to the systems, and which facilities they are allowed to

use. For administrative roles, determine what tasks are

performed. Identify additional security and compliance

requirements (e.g., separation of duties).

2. Define Policies for Roles, Groups, & Ownership: Based on

the requirements, develop roles and groups to support

business functions and enforce security constraints. Determine

object and data ownership and formulate a permissions model

for the database, schemas, and tables. Plan how users will

obtain and lose permissions, and make some provision for use

cases not included in the model. Identify service account

usage.

3. Choose Implementation Strategy: Database permissions are established both within the database and externally.

Define which facilities are responsible for policy enforcement. Define the method for verification of policy. Remember,

this is a strategic planning exercise — don't get bogged down in the details.

4. Document: Document requirements. Clarify database use models from administration. Train administrative staff on

policy.

AAA Policies

Define
Requirements

Define Policies
(Role/Group)

Choose Strategy

Document

Securosis: Database Security Quant
 20

Large vs. Small Company Considerations
As we mentioned, defining in-depth AAA policies can be time consuming for organizations of any size. All organizations

should first focus on administrative access and approved authentication methods (including the account type —

database vs. system vs. domain).

This might be as far as a smaller organization goes, but the next step is typically to document the users and roles for

major systems — particularly accounting/finance, HR, and a few other major business systems.

A large organization with complex compliance requirements should perform this entire exercise within the scope of a

larger identity management initiatives — which most have thanks to satisfy our friend, compliance. Smaller organizations

may stick to a few high-level policies, then mostly focus on specific schemes for a few critical systems.

Securosis: Database Security Quant
 21

Authentication, Authorization, and Access Control Policies Metrics

Process Step Variable Notes

Define Requirements

Time to identify business groups and

functions

Define Requirements
Time to locate internal business

requirements for Access/

Authentication/Authorization
Define Requirements

Time to identify/gather external

security and compliance requirements

Define Policies for Roles,
Groups, and Ownership

Time to specify business functions Only major business functions, e.g.,

accounting for General Ledger

access vs. AR

Define Policies for Roles,
Groups, and Ownership

Time to map business functions to

logical rolesDefine Policies for Roles,
Groups, and Ownership

Time to determine object and data

ownership

Again, only for major applications.

Typically this is ERP, CRM, and HR

Define Policies for Roles,
Groups, and Ownership

Time to determine necessary

administrative roles

The different DBA accounts needed

to support segregation of duties

Choose Implementation
Strategy

Time to identify which organizations

will be supported

Both internal and external

Choose Implementation
Strategy

Time to define approved

authentication mechanisms

Choose Implementation
Strategy

Time to define allowed access control

mechanisms
Choose Implementation
Strategy

Time to identify legitimate and

undesirable access methods

The different methods of connecting

to the DB — e.g., ODBC over SSL

with approved port numbers

Choose Implementation
Strategy

Time to define database administrator

roles

Document

Time to document standard

Document Time to obtain approval, distribute

standard, and educate team

members

Securosis: Database Security Quant
 22

Classification Policies
Data classification for databases is a necessary step for many compliance and data privacy regulations. In practical terms

this often devolves into a giant data labeling or classification project that wastes time and effort. You will need to

investigate requirements and best practices, but we recommend you avoid using an overly detailed model that nobody

will actually use. Figure out what needs to be secure, but be general and pragmatic in your data security approach.

Keep in mind that this is all strategic planning. At this stage of analysis you will not be examining specific statements or

policies. During this planning, there is a tendency to begin delving into implementation specifics that are simply not

helpful at this stage. Focus on the big picture: how data moves and is used within the organization.

Here are the four steps in the process to create data classification

policies:

1. Determine Classifications: What is your high level scheme?

What is considered sensitive, and how will you define it?

2. Map to Labels: Labeling is the process of applying a

classification label to data within your database. It can be

performed at many levels, such as rows or columns, using

different techniques. For now determine what labels will be

standard in your environment and which techniques are

approved.

3. Map to Access Groups: What is your classification model?

Siloed, hierarchical, and labeling are all common options. How

will your access control system implement the data security

model?These models are implemented on top of access

controls, but in some cases underlying data features such as

labeling support more granular control.

4. Document: Document your classification scheme and the various label and access policies.

Large vs. Small Company Considerations
Smaller organizations tend to use fewer classifications — often limited to strict compliance requirements like PCI or

HIPAA. A larger organization may have a more complex and generic scheme, with nonspecific labels such as ‘sensitive’.

Note that we are not saying this is better good practice, but it is common.

In terms of applying labels, few organizations of any size get down to the row level. At minimum, consider classifying the

entire database, and in larger organizations it is often useful to apply column or row-level labels on the most critical

enterprise systems with the most sensitive data as you can use these to later help enforce access controls.

Classification Policy Metrics

Classification Policies

Determine
Classifications

Map to Labels

Map to Access
Groups

Document

Securosis: Database Security Quant
 23

Process Step Variable Notes

Determine
Classifications

Time to identify existing classification schemeDetermine
Classifications Time to adjust or develop scheme

Map to Labels

Time to determine label techniques for DBMS

platforms

Labeling is implemented differently in

the various database platforms. In

some cases, implementation may

need to be manual
Map to Labels

Time to map labels to classification levels

Map to Access
Groups

Time to map groups to data labels Which groups from the AAA planning

should be allowed access to data, by

label

Document

Time to document standard This is a key step due to its role in
compliance. Although still important in
organizations without compliance
mandates, it can be reduced to
Valuable in such cases.Document

Time to distribute standard and educate team

members

Consensus now avoids disagreement
later.

Securosis: Database Security Quant
 24

Monitoring Policies
This phase includes both Database Activity Monitoring, and database auditing. DAM (Database Activity Monitoring)

verifies database usage — it can provide near-real-time analytics to track user behavior and anomaly detection.

Monitoring is different from auditing in that it analyzes all activity in near-real-time, and is based more on individual queries

than on transactions. Database auditing is also useful — and common — but provides fewer details and misses some

major categories of usage (e.g., SELECT queries). For monitoring systems to work, we need to define what we consider

suspect behavior or abnormal use. Think of it as black and white lists for database transactions. But to build those lists

you need an idea of what to accomplish, and what activities should never occur. As every database is used differently,

you must define what is appropriate and what isn't. Identify events you are interested in, then define acceptable

behaviors and outcomes. For auditing, you need to determine what information to collect and where to store it, both of

which are influenced by compliance requirements.

The subprocesses are:

1. Define Activities: Investigate business processes. Define

critical operations and functions. What activities does the

system support, and what subset are you interested in

monitoring. Identify security and compliance in relation to

data privacy, fraud detection, and system misuse.

2. Define Violations: Determine which events indicate

problems. Consider users, time of day, function, data

volume, and other available attributes that can help identify

suspicious transactions. Identify criticality of events and

specify desired responses. Consider periodic review of

general database usage in order to refine policy.

3. Identify Event Collection: How will you capture events?

Determine what event collections are available. Map

policies to event collection for misuse detection.

4. Define Event Responses: When a policy violation is

discovered, how will you react? Specify how event

notification will occur and who will be responsible.

5. Document: Ensure all concerned parties are aware of their

responsibilities and coordination points with other groups.

Large vs. Small Company Considerations
A smaller organization with more limited resources may not even develop much of a formal monitoring policy- they’ll

simply define a few requirements for how to configure auditing within their database platforms. But for compliance it is

important that they at least map any of these compliance requirements to what they are actually collecting. Even a small

retailer has some database monitoring and auditing requirements if they accept payments.

Monitoring Policies

Define Activities

Define Violations

Identify Event
Collection

Document

Define Event
Responses

Securosis: Database Security Quant
 25

Clearly this is a more time consuming task for larger organizations, and although it’s one we see skipped a lot and

handled on a per-database level, we strongly recommend defining at least some high-level policies to guide individual

instances. Especially (again) to meet compliance requirements.

It’s also important, particularly in larger organizations, to define collection and retention requirements for monitoring and

auditing. Pay attention to separation of duties and where the files are stored, and who has access to them, as these are

common areas for audit deficiencies and problems in real breaches — making it easy for the bad guys to cover their

tracks.

Securosis: Database Security Quant
 26

Monitoring Policy Metrics

Process Step Variable Notes

Define Activities

Time to identify covered business processes

Define Activities Time to gather security and compliance

requirements

Define Violations

Time to define suspect behavior What should not happen

Define Violations

Time to define abnormal use cases Map which behaviors indicate

security failure or a compliance event
Define Violations

Time to update existing standards and policies
Define Violations

Time to determine appropriate response and

criticality

Per rule violation

Identify Event
Collection

Time to identify major applications (Optional) The major data sources to be used;

often ERP, financial systems, and

payment processing

Identify Event
Collection

Time to identify which events/activities to collect Map which events to collect, analyze,

and report
Identify Event
Collection Time to establish priority (Optional) Define order of event processing or

filtering if necessary

Identify Event
Collection

Time to determine ownership Who owns the policy?

Identify Event
Collection

Time to specify notification How suspect events and information

are recorded and distributed

Define Event
Responses

Time to define event response per rule Who gets notified?

Define Event
Responses

Time to determine ownership Who responds to the event?

Define Event
Responses

Time to specify criticality per rule How important the event is, in terms

of IT priorities

Define Event
Responses

Time to define verification method/workflow Must provide clear evidence of

completion

Document

Time to document standard

Document Time to distribute standard and educate team

members

Securosis: Database Security Quant
 27

Discover and Assess
Phase

One of the most common failures in database security is treating it as a series of one-off projects, rather than evaluating

and managing overall risk. Most organizations, especially large ones, tend to have a reasonable handle on their primary

databases such as the ones handling corporate financials and customer transactions, but little to no visibility into all the

other systems scattered throughout the organization — enterprise databases you did not know about, small ‘personal’

databases embedded within applications, and production data sets on test servers. And of course organizations rarely

have itemized lists of configuration errors such as administrative functions open to the public and external stored

procedures. In this phase we identify databases; determine what applications and business units they support; assess

them for vulnerabilities; and evaluate authentication, authorization, and access controls.

Discover and Assess

• Plan
• Setup
• Enumerate
• Document

Enumerate Databases

• Define scans
• Setup
• Scan
• Distribute results

Assess Configurations and
Vulnerabilities

• Determine scope
• Setup
• Analyze
• Analyze and report

Assess AAA

• Plan
• Setup
• Identify dependent

applications
• Identify database owners
• Discover data
• Document

Identify Applications,
Owners, and Data

If you know you have a few critical databases you need to start with, as is common when dealing with an audit

deficiency, you might skip the enumeration step of this phase to focus on those systems. The other steps are generally

necessary for any database security project.

Securosis: Database Security Quant
 28

Enumeration is really the linchpin step which differentiates a series of one-off projects from a database security program.

It’s what allows you to prioritize and manage deficiencies based on data, rather than assumptions.

The rest of the steps are fairly standard for even individual database security projects, although the level of depth you go

into varies with the importance of the systems.

Securosis: Database Security Quant
 29

Enumerate Databases
Database discovery can be performed manually or automated. Segmented networks, regional offices, virtual servers,

multi-homed hosts, remapping of standard ports, and embedded databases are all examples of common impediments

you need to consider. If you choose to automate, most likely you will use a tool that examines network addresses and

interrogate network ports, which may not identify all database instances but should capture most database installations.

If you are using network monitoring to discover databases you will miss some, at least in the first sweep, so consider

scanning more than once. For a manual process you will need to work with business units to identify databases, and

perform some manual testing to identify unreported databases. Understand what data you need to produce in this part

of the process, as your results from database discovery will be used to feed data discovery and assessment.

There are four main subprocesses:

1. Plan: How will you scan the environment? Determine what

parts of the process are automated vs. manual and make sure

you have clear guidelines. You may refine the scope to

portions of your environment or database types of interest.

Also ascertain what you need to collect (database name, IP

address, port number, database type, subnet, etc.) with your

scans so that you can identify the owner or function. Finally

note that the person who creates the plan may not be the

person who runs the scan, so document what is expected.

2. Setup: Acquire and install tools to automate the process, or

map out your manual process. Then configure tools (if

necessary) for your environment, specifying acceptable

network address and port ranges. Don’t forget to account for

network segregation and multiple database connection

options.

3. Enumerate: Run your scan, manually find databases, and/or schedule repeat scanning. Capture the results and

filter out unwanted information to keep the data in scope for the project based on your planning requirements.

Record as you baseline for future trend reports, keeping in mind that in practice you will run this step more than

once. As you discover databases you did not know existed, you’ll also need to determine whether you have

sufficient credentials for further analysis. If you are using a manual process, this consists of contacting business

units to identify assets and manually assessing each system.

4. Document: Format data, generate reports, and distribute. Use results to seed the next data discovery and

assessment tasks.

Large vs. Small Company Considerations
The key difference is the sheer complexity of navigating the network. This is one of those processes that is likely easier

the smaller you are, since the amount of effort generally corresponds to the size of your environment. Note that ‘size’ in

Enumerate Databases

Plan

Setup

Enumerate

Document

Securosis: Database Security Quant
 30

this context has more to do with number of databases than headcount; and is of course also heavily affected by security

sensitivity, number of sites, and complexity of the data and database environment.

In a large company, this task is effectively impossible to initiate and maintain with any level of accuracy without

automated tools. While you can keep a handle on your known critical systems, without some level of automation you

won’t be able to find unknown databases — including copies or versions of the known systems.

Securosis: Database Security Quant
 31

Enumerate Databases Metrics

Process Step Variable Notes

Plan

Time to define scope and requirements What databases/networks are in

scope; what information to collect

Plan
Time to identify supporting tools to automate

discoveryPlan

Time to identify business units & network staff Who owns the resources and
provides information

Plan

Time to map domains and schedule scans

Setup

Capital and time costs to acquire tools for

discovery automation

Optional

Setup
Time to contact business units & network staff

Setup
Time to configure discovery tool Optional

Setup

Time to contact database owners and obtain

credentials and access

As needed, depending on the tool
and process selected

Enumerate

Time to run active scan If using a tool

Enumerate

Time to manually discover databases Optional, if automated tool not used.
May be a technical process, or
contact with business units

Enumerate
Time to run scan/passive scan Automated port scan; network flow

analysisEnumerate
Time to contact business units Identify databases discovered

Enumerate

Time to manually login, confirm scan, and filter

results

Optional

Enumerate

Time to repeat steps As needed

Document

Time to save scan results

Document
Time to generate report(s)

Document
Time to generate baseline of databases for future

comparisons

Cataloged by type, version, location,

and ownership

Securosis: Database Security Quant
 32

Identify Applications, Owners, and Data
The primary role of most enterprise databases is to support other applications. To achieve this databases may provide

access controls, secure network communications, parameter filtering, label security, masking, and encryption services.

Data and database security is therefore a function of the application & database relationship. Since database security

changes are materially affected by — and in turn influence —

applications and business units, it is absolutely essential to

determine dependencies, ownership, and where critical/sensitive

data is used and (potentially) exposed.

1. Plan: Develop a plan to identify the application dependencies,

data owners, and data types/classifications for the databases

enumerated in the previous stage. Determine manual vs.

automated tasks. If you have particular requirements, specify

and itemize required data and assign tasks to qualified

personnel. Define data types that require protection.

Determine data collection methods (monitoring, assessment,

log files, content analysis, etc.) to locate sensitive information.

2. Setup: Databases, data objects, data, and applications have

ownership permissions that govern their access and use. For

data discovery create regular expression templates, locations,

or naming conventions for discovery scans. Test tools on

known data types to verify operation.

3. Identify Dependent Applications: For applications, catalog

connection methods and service accounts where appropriate.

4. Identify Database Owner(s): List database owners.

Database owners provide credentials and accounts for

dedicated scans, so determine who owns database

installations and obtain credentials.

5. Discover Data: For data discovery return location, schema, data type, and other metadata.

6. Document: Generate reports.

In essence, this is three separate discovery processes: discovering the applications that attach to a database, who

manages them (and which business units own them), and what is stored within that database. All can potentially be

performed with a credentialed investigation of the platform and system, or by observing network traffic, plus a little

manual effort to tie back to the business unit owner. Credentialed scans complete provide results at the expense of

requiring logins to access the database systems, while passive network scanning is easier but incomplete.

Identification of applications, owners, and data provides information necessary to determine overall security and

regulatory controls — as well as the potential business impact of any changes. Woe be unto the security manager who

Identify Applications,
Owners and Data

Plan

Setup

Identify Dependent
Applications

Document

Identify Database
Owners

Discover Data

Securosis: Database Security Quant
 33

locks down a database before determining application and business unit dependencies. This sub-phase defines not only

the scope of the scanning in the next task, but also monitoring and reporting efforts in subsequent phases.

Large vs. Small Company Considerations
As with database enumeration, this is another phase where the workload is usually more manageable for a small

company, assuming the environment isn’t overly large or complex, but keep in mind that small companies often have

similar data proliferation problems; especially with data extracts placed into small databases such as Microsoft Access. If

you handle highly sensitive or regulated information you might need some sort of automated scanning tool just like a

large enterprise.

In large enterprises this step can be extremely difficult. Many teams focus on critical systems they know need security

changes, and the primary goal is to discover application dependencies and owners. It can actually be harder to

determine these dependencies than enumerate databases in the first place — there are entire specialized tools designed

purely to map out complex applications. Mapping out the first level direct connections is usually fairly straightforward, but

determining the entire application architecture and full dependencies can be difficult and time consuming if it has never

been done before.

Securosis: Database Security Quant
 34

Identify Applications, Owners, and Data

Process Step Variable Notes

Plan

Time to assemble list of databases Feeds from the Enumerate Databases
step

Plan
Time to define data types of interest The sensitive data you want to

discover, such as credit card numbersPlan
Time to map locations and schedule

scans/analysis

Databases will reside on different
domains, subnets, etc. This is the
time to develop a scanning plan
based on location

Setup

Capital and time to acquire tools for

discovery automation

Optional — DB discovery tools from

previous phase may provide this

Setup

Time to define patterns, expressions,

and signatures

What sensitive data looks like

Setup
Time to contact business units &

network staff

Setup

Time to configure discovery tool Optional

Identify Dependent
Applications

Time to schedule and perform review/

run scan

Identify Dependent
Applications

Time to identify applications using the

database

Based on connections and/or service

account credentialsIdentify Dependent
Applications

Time to catalog application

dependencies and connection types

Most items can be discovered

without DB credentials

Identify Dependent
Applications

Time to repeat steps As needed

Identify Database Owners

Time to identify database owners The real-world owner, not just the

DBA account name
Identify Database Owners

Time to obtain access and credentials Usually a dedicated account is
established for this analysis

Discover Data

Time to schedule and run scan For automated scans

Discover Data

Time to compile table/schema

locations

For manual discovery

Discover Data
Time to examine schema and data For manual discovery

Discover Data

Time to adjust rules and repeat scans For automated scans

Securosis: Database Security Quant
 35

Process Step Variable Notes

Document

Time to filter results and compile

report

Gather data names, types, and
locations

Document
Time to generate report(s)

Securosis: Database Security Quant
 36

Assess Configurations and Vulnerabilities
Assessing databases is more difficult than non-database configuration and vulnerability assessment due to key

differences in how database management systems store configuration settings. Rather than storing information in a

configuration file, most database settings are stored within the structures of the database itself, requiring tools or

processes capable of accessing these settings via SQL. Database assessment includes the analysis of database

configuration, patch status, and security settings within the database as well as the host platform. It is accomplished by

examining the database system both internally and externally — in relation to known threats, industry best practices, and

IT operations guidelines. And while scans themselves aren’t overly time consuming, the process of setting up the rules/

policies to scan can be demanding.

The four steps are:

1. Define Scans: This is where you define what you want to

accomplish. Compile a list of databases that need to be

scanned and determine requirements for different

database types. Investigate best practices, and review

security and compliance against both internal and external

requirements.

2. Setup: Determine how to accomplish your assessment

goals. Which functions will be automated and which will be

manual? Are these credentialed scans or passive?

Download updated policies from tools and database

vendors, and create custom policies where needed.

Create scripts, if needed, to collect the information,

determine priority, and suggest remediation steps for

policy violations.

3. Scan: Scans are an ongoing effort, and most scanning

tools provide scheduling capabilities. Collect results and

store.

4. Distribute Results: Scan results will spotlight critical issues, variations from policy, and general recommendations.

Filter unwanted data by audience, then generate reports. Reporting includes feeding automated trouble ticket and

workflow systems.

Database discovery, data discovery, and database security analysis are conceptually simple. Find the databases,

determine what they are used for, and figure out whether they are secure. In practice they are much harder. If you run a

small IT organization you probably know where your one or two database servers are located, and should have the

resources to find sensitive data.

When it comes to security policies, databases are so ,complex and the threats evolve so rapidly, that definition and setup

tasks comprise the bulk of work for this entire phase. Good documentation, and a method for tracking threats in relation

to policies and remediation information, are critical for managing assessment.

Assess Configurations
and Vulnerabilities

Define Scans

Setup

Scan

Distribute Results

Securosis: Database Security Quant
 37

Large vs. Small Company Considerations
A large organization will definitely need some sort of automation to assess configurations and vulnerabilities. There’s no

way to do this manually. Many large organizations already have some form of vulnerability scanning, but unless these

tools include database-specific features (especially credentialed in-DB scans) they won’t provide all the necessary

information. Most large organizations with mature database security processes mix up a portfolio of baseline

assessments for every database in the environment, with more in-depth assessments for key systems.

Small organizations may manage much of this process manually if they have the right knowledge internally and only a

small number of databases to assess. However, manual analysis can be very time consuming — there are free tools that

can help with at least basic scans. And it’s important to keep in mind that knowing about a CVE listed threat, and

knowing how to create a security policy to address that threat, are outside the core skill set of most DBAs. Following

published security hardening guidelines from your DBMS vendor and organizations like NIST and the Center for Internet

Security is the best place to start and provides something you can assess against, but you really need to figure out

whether the cost of this manual process is greater than using a tool.

Keep in mind that few of you assess system and server configurations and vulnerabilities manually, so it’s hard to justify

avoiding investment in database-specific assessment technologies.

Assess Configurations and Vulnerabilities Metrics

Process Step Variable Notes

Define Scans

Time to list databases This may be a subset of databases,
preferably prioritized, from the
Enumerate phase.

Define Scans

Time to gather internal requirements Security, operations, and internal audit
groups. These should feed directly
from the standards established in the
Plan phase

Define Scans

Time to identify tasks/workflow Should be a one-time effort

Define Scans Time to collect updated vulnerability lists CERT or other threat alertsDefine Scans

Time to collect configuration requirements You should have this from the Plan
phase, but may need to update or
refine. Additionally, these need to be
updated regularly to account for
software patches. This includes patch
levels, security checklists from
database vendors, and checklists
from third parties such as NIST and
the Center for Internet Security.

Setup

Capital and time costs to acquire and install tools

for automated assessments

Optional

Setup

Time to contact database owners to obtain

access

Securosis: Database Security Quant
 38

Process Step Variable Notes

Setup

Time to update externally supplied policies and

rules

Policy is the high-level requirement;

rule is the technical query for

inspection. These come with the tools

but may requiring tuning for your

internal requirements and

environment.

Setup

Time to create custom rules from internal and

external policies

Additional policies and rules not

provided by an outside party

Scan

Time to run active scan

Scan

Time to scan host configuration This is the host system for the

database

Scan

Time to scan database patches

Scan
Time to scan database configuration Internal scan of database settings

Scan
Time to scan database for vulnerabilities (Internal) Access settings, admin roles, use of

encryption, etc.

Scan

Time to scan database for vulnerabilities (External) Network settings, external stored

procedures, etc.

Scan

Variable: Time to rerun scans

Distribute
Results

Time to save scan results

Distribute
Results

Time to filter and prioritize scan results by

requirements

Divide data by stakeholder (security,
ops, audit)

Distribute
Results

Time to generate report(s) and distribute

Securosis: Database Security Quant
 39

Assess Authentication, Authorization, and

Access Controls
Database authentication, authorization, and access controls are the front line of defense for data privacy and integrity, as

well as providing control over database functions. Reviewing these controls is the most demanding of these tasks in

terms of time, as the process is multifaceted -- needing to account not only for the settings inside the database, but how

those functions are supported by external host and domain level identity management services. This exercise is typically

split between users of the database and administrators, as each has very different security considerations. Password

testing can be time-consuming, and, depending upon the methods employed, may require additional database

resources to avoid impact on production servers.

The steps are:

1. Determine scope: Determine the list of databases you need to

assess AAA controls for, then discover how they are

implemented; which functions are available at the host and

domain levels, and how they are linked to database permissions.

Determine what password checks should be employed.

2. Setup: For automated scans: the cost to acquire, install and

configure the tools. Then the time to obtain host/database

permissions needed for manual or automated scans. You will

need to collect documented roles, groups, or service

requirements for users of the databases in later analysis. You will

also need to generate report templates for stakeholders who will

act upon scan results — these are often used for compliance

auditing.

3. Analyze: Run scans for database users showing group and role

memberships, and then scan groups, roles, and service account membership for each database. Collect domain

and host user account information and settings if these are used in the AAA scheme.

4. Analyze & Report: Administrative roles must be reviewed for separation of duties, both between administrative

functions and between DBAs and IT administrators. Service accounts used by applications must be reviewed. User

accounts must be reviewed for group memberships and roles. Groups and roles must be reviewed to verify

permissions are appropriate for business functions. And compliance reports must be generated for all concerned

parties.

Assess AAA

Determine Scope

Setup

Analyze

Analyze and
Report

Securosis: Database Security Quant
 40

Assess AAA Metrics

Process Step Variable Notes

Determine Scope

Time to list databases This may be a subset of databases,

preferably prioritized, from the

Enumerate phaseDetermine Scope
Time to determine authentication methods Database, domain, local, and mixed

mode are common options

Setup

Capital and time costs to acquire and install tools

for automated assessments

Optional

Setup

Time to contact database owners to obtain

access

Setup

Time to establish baselines for group and role

configurations

Policy is the high-level requirement;

rule is the technical query for

inspection. Provided with the tools (if

you use them), but they may require

tuning for your internal requirements

and environment.

Setup

Time to create custom rules from internal and

external policies

Data privacy, operational control, and

security require different views of

settings to verify authorization

settings

Assess

Time to enumerate groups, roles, and accounts

Assess

Time to assess entitlements by user/role

Assess

Time to scan database and domain access

configuration

Assess Time to scan password configuration Review aging and reuse policies,

failed login limits, and inactivity

lockouts

Assess

Time to scan passwords for compliance Optional

Assess

Time to record results

Analyze and

Report

Time to map admin roles Verify DBA permissions are divided

across separate roles
Analyze and

Report

Time to review service account and application

access rights

Time to verify DB system mapping to

domain access

Securosis: Database Security Quant
 41

Process Step Variable Notes

Analyze and

Report Time to evaluate user accounts and privileges Verify users are assigned the correct

groups and roles, and groups and

roles have reasonable access

Securosis: Database Security Quant
 42

Secure Phase

In the Secure phase we fix whatever problems we found in the Discover and Assess phase: missing database patches,

configuration changes, access control settings, and shielding the database from known attacks. For each of these

preventative security tasks we’ve included a simplified process and only the critical relevant metrics. Due to the potential

scope of some of these processes we restricted ourselves to just the most pertinent metrics for sake of simplicity and

practicality.

Secure

• Evaluate
• Acquire
• Test and Approve
• Deploy and Confirm
• Document

Patch

• Evaluate
• Plan Account Changes
• Implement
• Document

Restrict Access

• Identify Threats
• Specify

Countermeasures
• Deploy
• Document

Shield

• Evaluate
• Plan Changes
• Test and Approve
• Change and Confrim
• Document

Configure

As with many of the other phases, you need to prioritize based on the values of different databases. But database

patching and configuration failures are a very common point of entry for attackers, especially for systems backing web

applications. So you need to prioritize based not only on the value of the system, but also on its accessibility to the

outside world.

For example, in the Heartland Payment Systems breach, it wasn’t the transaction database/application that was initially

compromised, but a lower-value web application on a different network segment. The compromise of that low value

system gave the attackers access to the internal network, which they then used to compromise additional systems,

eventually finding one with a part-time VPN connection to the credit card transaction network.

Securosis: Database Security Quant
 43

Patch
Security patches are a little different than general product updates to fix other bugs. If you are experiencing a functional

problem with an application, you know for certain that you need a certain patch and already possess some

understanding of how critical that issue is to your firm. With security, most DBAs may not be fully cognizant of the risks

known exploits pose, or what will happen if they fail to patch. If you don't have a security group helping with the analysis

the evaluation process is often based on matching critical weaknesses to database features used within the environment,

which isn’t always effective or efficient. Security patches also must be balanced between immediate deployment for

critical vulnerabilities on high-value systems where workarounds or shielding aren’t available, vs. those patches you can

delay until the next scheduled cycle.

Database vendors make it easy to locate and obtain patches. Security patches are well publicized and alert notices are

commonly emailed to DBAs when they become available. Keep in mind that some database patches require updates to

the underlying operating system kernel, libraries, or modules; and the evaluation process needs to cover those updates

as well.

There are five steps in database patching:

1. Evaluate: Monitor sources for security advisories, which may be

as simple as subscribing to an email list. When an advisory is

released, determine if it is relevant to your environment and

systems. Evaluate the criticality of the patch and determine your

risk exposure, potential shielding or workarounds, and the priority

of the patch.

2. Acquire: Locate and acquire the patches. This often involves

costs for a maintenance contract and patches may be

surprisingly difficult to obtain, depending on your vendors.

3. Test and Approve: Build deployment packages or scripts,

develop test cases and criteria, establish a test environment, and

then test the patch and any system/application/functional

dependencies. Analyze the results, determine which systems

and/or configurations to deploy it on, and approve for

deployment.

4. Deploy and Confirm: Schedule the patch for deployment. Prep

the target systems for maintenance (e.g., backup and put application into maintenance mode), install the patch, and

verify successful deployment. This may involve specific functional testing because it isn’t uncommon for patching

tools/scripts to report success without applying the actual patch.

5. Document: Document successful deployments and update configuration documentation with the updated patch

levels.

Patch

Plan

Setup

Enumerate

Document

Patch

Evaluate

Acquire

Test and Approve

Deploy and Confirm

Document

Securosis: Database Security Quant
 44

Additional Considerations
There are typically two factors that affect database patching: the organization size, and the database platforms involved.

Some platforms are much more difficult to patch than others and require complex scripts and series of manual steps.

Some databases aren’t supported by any patch management tools, exacerbating the problem by requiring a laborious

manual process for every patch to be installed. Some database vendors supply unreliable automated patch deployment

tools, which require manual validation.

So although a larger organization is more likely to have automated tools available, these may or may not be applicable

depending on the database platform and other factors.

Smaller organizations may be more likely to use database platforms with better patch deployment options, such as SQL

Server vs. DB2 on an IBM mainframe. On the other hand, they are less likely to have a proper test environment available.

Large organizations should categorize their database platforms based on patch difficulty, and leverage automation

wherever possible, even if only one database at a time will be updated. We can’t express how much time manually

installing a patch can take on some platforms. You should also schedule quarterly maintenance windows for critical

security updates, even if you end up not needing the time.

Securosis: Database Security Quant
 45

Patch Metrics

Process Step Variable Notes

Evaluate

Time to monitor for advisories per database type Vendor alerts and industry advisories

announce patch availability

Evaluate

Time to identify appropriate patches

Evaluate
Time to identify workarounds Identify workarounds if available, and

determine whether they are
appropriateEvaluate

Time to determine priority Is this a critical vulnerability? If so,

when should you apply the patch?

Are there other factors which affect

importance?

Acquire

Time to acquire patches

Acquire Costs for maintenance, support, or additional

patch management tools

Optional: Updates to vendor

maintenance contracts, if required

Test and

Approve

Time to create regression test cases and

acceptance criteria

How will you verify the patch does

not break your applications, etc.?

Test and

Approve

Time to set up test environment Obtain servers, tools, and software for
verification; then set up for testing

Test and

Approve
Time to run test Variable: may require multiple cycles,

depending upon test cases

Test and

Approve
Time to analyze results

Test and

Approve

Time to create deployment packages Optional — if not using stock patches.
Approve, label, and archive the tested
patch.

Deploy and

Confirm

Time to schedule and notify Schedule personnel & communicate

downtime to users

Deploy and

Confirm

Time to install Take DB offline, back up, patch
database, and restart

Deploy and

Confirm
Time to verify Verify patch installed correctly and

database services are available

Deploy and

Confirm

Time to clean up Remove temp files

Document
Time to document updated systems

Document
Time to update configuration documentation

Securosis: Database Security Quant
 46

Configure
The next task in the Secure phase is to configure the databases. In the Plan phase we gathered industry standards and

best practices, developed internal policies, and defined settings to standardize on. We also established the relative

importance of policy violations, so we can distinguish critical alerts which require action from from purely informational

notifications. Then, in the Discovery phase we gathered a list of databases, gained access to those systems, and

implemented our rules (generally in the form of SQL queries), which instantiate policies from the Plan phase. Now we

take the resulting information and update our database

configurations to satisfy our requirements.

1. Evaluate: Map the results from the configuration

assessment to the configuration requirements. Identify non-

compliant databases and settings for remediation.

2. Plan Changes: Prioritize issues and determine what

configuration changes are required. Develop a plan for

deploying the changes and assign/schedule.

3. Test and Approve: Build deployment packages or scripts,

or document manual changes. Develop test cases and

criteria, establish a test environment, and then test the

change and any system/application/functional dependencies.

Analyze the results, determine what systems and/or

configurations to deploy it on, and approve for deployment.

4. Change and Confirm: Schedule the change for

deployment. Prep the target systems for maintenance (e.g.,

back up and put applications in maintenance mode),

implement the change, and verify successful deployment.

5. Document: Document the changes and, if needed, update

configuration policies.

Additional Considerations
Managing configuration changes for databases is very similar to managing patches, with the same issues around

automation vs. manual management.

While there are few patch management tools for databases, there are even fewer which address anything but the

highest-level configuration changes. Managing database configurations is almost always a manual process, but use of

configuration/vulnerability scanning tools can at least help determine when systems fall out of compliance or if changes

are implemented outside approved processes.

Patch

Plan

Setup

Enumerate

Document

Configure

Evaluate

Plan Changes

Test and Approve

Change and
Confirm

Document

Securosis: Database Security Quant
 47

Configure Metrics

Process Step Variable Notes

Evaluate

Time to review assessment reports

per database

Assessment scans from Discover and
Assess phase, etc.

Evaluate
Time to identify policy/standards

violations and incorrect settings

Plan Changes

Time to prioritize

Plan Changes

Time to itemize issues For tracking/change management

Plan Changes Time to select remediation option What changes to make and howPlan Changes
Time to allocate resources, create

work order, and create change script

as needed

Test and Approve

Time to create regression test cases

and acceptance criteria

How will you verify the change does

not break your applications?

Test and Approve

Time to set up test environment Obtain servers, tools, and software

for verification; then set up for testing

Test and Approve Time to run test Variable: may require multiple cycles,

depending upon test cases
Test and Approve

Time to analyze results

Test and Approve

Time to create deployment packages/

change script

Change and Confirm

Time to schedule and notify Schedule personnel & communicate

downtime to users

Change and Confirm
Time to install Taking DB offline, back up, patch

database, and restartChange and Confirm
Time to verify Verify patch installed correctly and

database services are available

Change and Confirm

Time to clean up Remove temp files

Document

Time to document updated systems

Document Time to update configuration

documentation

If needed, should include any

approved variances from standards

Securosis: Database Security Quant
 48

Restrict Access
In this phase we adjust access controls and authorizations to meet our security requirements. Setting -- or resetting as

the case may be -- database access control and account authorization is a major task. Most of the steps within this

phase are self explanatory, but for databases with hundreds to thousands of users, the amount of time spent on review

can be significant. We need to see what is in place, compare that against documented polices, and return users and

groups to their intended settings. Many users have elevated permissions granted 'temporarily' to get a specific task done

with data or database functions outside their normal scope, or due to job function changes, but such permissions are

often left in their 'temporary' state rather than being reset when no longer needed or appropriate. This "permissions

creep" is a common problem. For permissions put in place to avoid breaking application functionality or still required for

certain users to perform temporary tasks, document the variance.

The four steps are:

1. Review: Review the database entitlement and authentication

requirements. Then determine if the current authentication

methods align with those requirements and what changes, if any,

need to be made.

2. Plan Account Changes: Using the data collected in the Discover

and Assess phase, identify any discrepancies in account

entitlements and other access control and authorization settings.

Then identify any required user/role/group entitlement and

permission changes. Also determine whether you need any

password changes, especially for service accounts. This will be

the most time consuming step, especially if you manage it

manually tools are now on the market to help identify entitlement

issues within databases.

3. Implement: Notify users, then adjust authentication methods,

permissions, and other user account settings (including removing

or disabling orphan accounts). Pay particular attention to service accounts.

4. Document: Document any changes and generate compliance reports (often required when dealing with user

accounts).

Additional and Large vs. Small Company Considerations
Digging into database user accounts to identify entitlement issues is one of the most dreaded database security tasks,

perhaps second only to installing security updates on legacy systems. It is also increasingly required to support

compliance efforts.

This tends to be much more complex in larger organizations due to the number of users and roles involved — especially

for ERP and other major internal applications. External-facing systems are often easier to manage, even if there are more

users, due to the more limited set of roles.

Restrict Access

Review

Plan Account
Changes

Implement

Document

Securosis: Database Security Quant
 49

In a large internal application the key area of focus is user roles, as that is where we tend to see the most problems.

Mapping these to users and required entitlements may require use of a tool and/or extensive resources if you have never

gone through the process before.

After “permissions creep”, the next most common issue we see is poorly managed service accounts — this problem

spans organizations of all sizes. With service accounts we frequently see weak passwords and, especially, static

passwords stored in plain text configuration files. This is a common source of audit deficiencies; one way to help manage

this problem is to move to multi-factor authentication for these accounts, typically adding in a digital certificate tied to the

application server IP address.

But the reality is that this is a tough and time consuming step, which is also one of the most important in the entire

database security program.

Securosis: Database Security Quant
 50

Restrict Access Metrics

Process Step Variable Notes

Review

Time to review users and access control settings Should have been completed in
Review phase

Review Time to identify authentication methodReview
Time to compare authentication method against

policy

Method might be domain, database,
mixed mode, etc.

Plan Account
Changes

Time to identify user permission changes

Plan Account
Changes

Time to identify group and role membership

adjustmentsPlan Account
Changes

Time to identify changes to password policy

Plan Account
Changes

Time to identify dormant or obsolete accounts

Implement

Time to alter authentication settings/methods Global settings

Implement

Time to reconfigure and remove user accounts

Implement Time to implement new groups and roles, and to

adjust memberships
Implement

Time to reconfigure service accounts Such as generic application and DBA

accounts

Document

Time to document changes

Document
Time to document accepted configuration

variances
Document

Time to generate compliance reports

Securosis: Database Security Quant
 51

Shield
Threats against databases and the information stored therein are not always conventional -- SQL injection, for example,

is often more a factor of how you’ve coded your database and application than any particular vendor vulnerability. There

will be instances where patches for specific threats are unavailable or security risks are simply inherent to the database

features in use. Other exploits leverage weaknesses in database trust relationships, such as Oracle database links, DB2

remote command service, Sybase remote server access, and SQL Server trusted servers. Still others exploit flaws in

underlying network security, such as insecure communication or improperly implemented SSL connections. This task

within the Secure phase is intended to account for cases where the database is incapable of protecting itself without

functional modification or "work arounds", or to deal with new vulnerabilities you can’t immediately patch. Or ever patch,

as some applications are only certified for a legacy database version for which patches aren’t available, or patching will

break the application or support contract.

We advocate a "Patch and Shield" model to protect the database when patching comes up short. The approach might

entail disabling database features, or further refinement to the database configuration. Virtual patching can also be

accomplished through firewall, application firewall, or activity monitoring capabilities that block malicious requests. This

process is not typically discussed in database vendor recommendations or "best practices", as it directly addresses

platform deficiencies and remediation through third party vendors, but is an important step for 0-day protection..

The steps are:

1. Identify Threats: Determine the threat (e.g., a new

vulnerability or SQL injection in general) and at-risk

databases. This entails evaluating the network connections

and routes to the database, as well as exploitable trust

relationships deeper in the environment.

2. Specify Countermeasures: Determine the method to

shield the database from the threat — such as a

workaround, network filter/segmentation change, or

database-specific tool.

3. Deploy: Deploy the tool, workaround, or rule/policy change

within an existing external security control.

4. Document: Document the shielding action and schedule

for removal after you update the database to remove the

fundamental flaw/vulnerability.

Shield

Identify Threats

Specify
Countermeasures

Deploy

Document

Securosis: Database Security Quant
 52

Shield

Process Step Variable Notes

Identify Threats

Time to identify threat and at-risk databases

Identify Threats
Time to review ingress/egress points and network

protocols

Such as external stored procedures

and multiple network connectionsIdentify Threats

Time to identify exploitable trust relationships Such as mixed mode authentication

Specify Counter-
measures

Time to identify shielding method Workaround, security tool, security

rule/signature, or other external

change

Specify Counter-
measures

Time to develop specific change The actual change to support the

shielding method — such as network

configuration change, security tool

rule/policy, or database configuration

change.

Specify Counter-
measures

Time to test countermeasure

Specify Counter-
measures

Cost of countermeasures Capital costs (e.g., cost of security

tool)

Deploy
Time to deploy countermeasure

Deploy
Time to confirm deployment

Document

Time to document Verify DBA permissions are divided

across separate roles
Document

Time to schedule removal of countermeasure Optional: only if a later patch/fix will

eliminate the problem

Securosis: Database Security Quant
 53

Monitor Phase

The Monitor phase serves two purposes: to satisfy compliance requirements, and to improve security. While we have

always audited our databases to some degree, the Sarbanes-Oxley Act and other regulations dramatically altered both

what we need to monitor, and how we perform monitoring. Over the same time period we have also seen massive

growth of database security issues such as SQL injection, that can be extremely difficult to manage entirely with

preventative controls.

As a result, we have seen improvements in native auditing and increased adoption of Database Activity Monitoring.

Native auditing (the auditing functions built into databases) has shown very significant performance improvement. Even

1-2 versions back, enabling anything but the most basic auditing on some database platforms would cripple

performance; but most vendors have largely resolved these issues.

Database Activity Monitoring not only provides much more granular auditing, but low-impact monitoring of legacy

systems and real-time security alerts based on centralized policies.

Monitor

• Define
• Implement
• Collect Logs
• Review

Audit

• Define
• Develop Policies
• Deploy
• Monitor

Monitor Activity

Securosis: Database Security Quant
 54

Audit
Database auditing is the examination of audit or transaction logs to track changes to data or database structure.

Database auditing is not specifically listed as a requirement of most compliance initiatives, but in practice it fills an

essential role by providing an accurate and concise history of business processes, data usage, changes, and

administrative tasks -- all necessary for policy enforcement. As such, most audit requirements center on tracking a

specific set of users, objects, or data elements within the database. Auditing capabilities are built into all relational

database platforms, and most major platforms offer more than one way to collect transaction information. You may

choose to supplement native database auditing with external audit data sources, but for the scope of this project we will

stick with the more common built-in auditing.

Gathering metrics for database auditing requires first scoping the project to understand which databases need which

controls, determining how to configure auditing capabilities to satisfy your requirements, and then periodically collecting

the audit trails generated. Day to day management of the audit trails

is often an issue, depending upon how many transaction types you

track. On high-volume transaction severs the data files grow quickly,

requiring archival of the audit files so data is not lost, and configuring

the database to truncate logs if necessary to avoid filling disk drives

to capacity.

Auditing includes four steps:

1. Define: Define which databases require auditing, and which

activities on those databases to audit. Determine additional

requirements, such as how audit logs will be stored and

secured, and who has access.

2. Implement: Enable auditing on the databases. Integrate with

any log management, SIEM, or external storage tools.

3. Collect Logs: Collect the logs, which may be a manual or

automated process. Clean up log files after collection.

4. Review: Review the log files for security issues. Generate any

required compliance reports.

Large vs. Small Company Considerations
It is very common to manage auditing manually in organizations of all sizes — particularly at mid-sized and smaller

companies — despite the availability of inexpensive and free log collection tools. Logs should never be stored on the

same system as the database, and tools help with collection, the analysis, and reporting.

Successful large companies tend to use a mix of Database Activity Monitoring (which we will discuss in the next section)

and log management tools. This is definitely an area where tools result in cost savings compared to manual processes,

and when compliance is involved, a tool becomes pretty much mandatory.

Audit

Define

Implement

Collect Logs

Review

Securosis: Database Security Quant
 55

Audit Metrics

Process Step Variable Notes

Define

Time to identify databases

Define

Time to determine auditing requirements Partially completed in Plan phase

Define

Time to identify users, objects, and transactions to

auditDefine
Time to specify filtering

Define

Time to determine collection/review requirements

Define

Cost of storage and/or log management tool

Implement
Time to set up and configure auditing

Implement
Time to integrate with existing systems e.g., SIEM, log management

Collect Logs
Time to collect and/or migrate logs

Collect Logs
Remove from primary storage

Review

Time to review logs for policy violations and

security anomaliesReview
Time to clean up logs

Securosis: Database Security Quant
 56

Monitor Activity
Database monitoring is distinctly different from auditing: it provides near-real-time detection, heterogeneous database

support, aggregation and correlation, and secure event storage; it also offers more forms of event collection than audit

and transaction log files. Securosis has our own definition of Database Activity Monitoring. Databases do not have

monitoring built in, so this function is provided through other products — typically from third parties.

The two primary use cases are security and compliance. The policies to support each will be different; each option

suggests different methods of data collection, and require integration with different applications used by different

stakeholders in the security process. The first step is to identify your goals and outline how the product is to be used.

Later you will move on to the selection of a product, development of policies to enforce, and final deployment and

integration. In this phase we are only covering the monitoring of systems and alert generation.

Monitoring consists of four steps:

1. Define: Determine which databases require monitoring,

security requirements, and which activities to monitor. If a

tool is not currently in use, select one.

2. Develop Policies: Determine the rule set for the monitored

database, including which activities to monitor and which

security policies will generate alerts.

3. Deploy: Deploy the monitoring tool and any required

collection agents. Configure monitoring according to the

requirements and policies developed in steps 1 and 2.

4. Monitor: Monitor the database, collect activity, and manage

policy violations and incidents. Generate any required

compliance and security reports.

Additional Considerations
Database Activity Monitoring is, by definition, something provide

by party tools outside the database, generally from third parties, although some database vendors offer DAM products

for their databases.

Most organizations tend to focus their DAM deployments on high-value and regulated databases, then slowly expand

coverage.

Monitor Activities

Define

Develop Policies

Deploy

Monitor

Securosis: Database Security Quant
 57

http://securosis.com/blog/comments/understanding-and-selecting-a-database-activity-monitoring-solution-part-1-/
http://securosis.com/blog/comments/understanding-and-selecting-a-database-activity-monitoring-solution-part-1-/

Monitor Activity Metrics

Process Step Variable Notes

Define

Cost of DAM tool

Define Time to identify and profile monitored

database

Identify the database to monitor and

its configuration (e.g., DBMS,

platform, connection methods)

Develop Policies
Time to define security rules

Develop Policies
Time to define monitoring policies

Deploy

Time to deploy DAM tool Optional- may not be required after

the initial deployment

Deploy

Time to deploy and configure

collection agent

Deploy Time to test deploymentDeploy

Time to record configuration changes Some collection agents require

system configuration changes within

the database

Deploy

Time to deploy/enable policies

Monitor

Time to monitor for alerts

Monitor Time to review activity If manual review is usedMonitor

Time to generate compliance reports

Securosis: Database Security Quant
 58

Protect Phase

The purpose of the Protect phase is to implement active security controls to block attacks, protect stored data, and

scrub/obfuscate production data for use in testing environments. Until now we have focused on finding and configuring

databases to reduce security exposure, managing users, and monitoring (for unusual activity/abuse and to support

compliance). Those processes create a secure baseline for our systems, and help find and fix problems.

In this phase we start implementing active security controls that change the functioning of the database and can interfere

with business process if not implemented properly. These controls are more active in nature than merely securely

configuring a system and managing users, and are designed to directly stop attacks.

Protect

• Evaluate
• Define
• Test and Approve
• Deploy and Manage
• Document

Block (DAM)

• Evaluate
• Define and Acquire
• Test and Approve
• Deploy and Manage
• Document

Deploy WAF

• Evaluate and Acquire
• Setup and Test
• Mask/Transform
• Document

Mask Data

• Evaluate
• Acquire
• Test and Approve
• Deploy and Manage
• Document

Encrypt

Of these controls, we most commonly see encryption, then masking, then Web Application Firewalls. Very few users are

deploying DAM in active blocking mode, although many of the products support it and we’re seeing growing interest —

largely to deal with patching issues.

Securosis: Database Security Quant
 59

Block (DAM)
By now some of you have deployed DAM to help with the Monitor phase of the program. In monitoring mode, Database

Activity Monitoring platforms are deployed "out of band", collecting activity and generating alerts as a third party

observer. But DAM can also be used, like a firewall, to block dubious queries in real time and enforce proper database

use. The various tools function differently, but in general they bridge or proxy SQL traffic and drop or block queries that

violate policy. Some tools are unidirectional (inbound requests only) while others are bidirectional or fully integrated within

the database via an agent and can even detect problems such as ‘bad’ stored procedures.

The capabilities of the various products vary greatly, and like other security tools generally offer options to deploy in a

white list (only allow approved queries) or black list (block bad

queries based on signatures) mode.

The steps in DAM blocking are:

1. Evaluate: Determine which activities to block for which

databases, and whether any architectural or platform

modifications are required.

2. Define: Create rules and policies for blocking. Determine the

deployment mode, perform analysis to generate the rules, and

select the blocking technique.

3. Test and Approve: Test policies in monitoring mode and

approve them for deployment.

4. Deploy and Manage: Deploy the DAM tool if necessary and

configure the database for it (e.g., install an agent or set up a

proxy). Enable policies/rules in blocking mode and monitor

results. Manage ongoing incidents and database changes,

and tune policies as needed over time.

5. Document: Document the policies and any changes to the

database and DAM tool. Generate ongoing reports on

activities and incidents to evaluate effectiveness.

Additional Considerations
Logically it might make sense to include blocking under the Monitor phase because the same tool is used, but we do it

this way because blocked events are critical items with a different review process. It's much easier to account for the

time and resources by splitting blocking into a separate task from passive activity monitoring. The sequence of events is

pretty straightforward: you will have something specific to address, such as ad hoc database connections or SQL

injection. Identify the databases, create the policy that describes the goal, and then specify the DAM rule or rules that

perform the work. DAM tools often provide a level of abstraction so you can set the pre-defined policy, and the rules to

form that policy are implemented on your behalf.

Patch

Plan

Setup

Enumerate

Document

Block (DAM)

Evaluate

Define

Test and Approve

Deploy and Manage

Document

Securosis: Database Security Quant
 60

• Blocking is a more advanced DAM feature that can have serious side effects, and is typically employed only after

monitoring policies are successfully in place.

• Policies are typically based on information discovered through monitoring.

• Blocking rules are commonly predicated on comparison to a known behavioral profile, with the profile built over time

from monitoring activity.

• Blocking warrants more carefully crafted rules to enforce business policies; and on a more practical level additional

routine maintenance; as application queries, database structures, and use cases evolve.

Block (DAM) Metrics

Process Step Variable Notes

Evaluate

Time to identify databases

Evaluate

Time to identify activity to block Partially addressed in the Plan phase

Evaluate Cost of DAM tool for blocking May already be accounted forEvaluate

Time to determine database changes needed to

support DAM integration

Define

Time to select blocking method

Define Time to create rules and policiesDefine

Time to specify incident handling and review

Test and

Approve

Time to configure and test rules Rules are typically deployed in

monitoring mode and the results

evaluated.

Deploy and

Manage

Time to deploy DAM and/or integrate database

Deploy and

Manage

Time to deploy rules
Deploy and

Manage
Time to manage incidents

Deploy and

Manage
Time to tune policies Based on effectiveness/issues as well

as changes to the database that
could affect enforcement

Document
Time to document rules/policies

Document
Time to generate ongoing reports

Securosis: Database Security Quant
 61

Encrypt
Several forms of encryption are available for databases. Each is different in its level of security, ease of deployment, cost,

and performance impact on transaction processing -- all of which make the selection process difficult. Furthermore,

security and compliance requirements pertaining to encryption are often murky. They key to this process is

understanding the requirements and mapping them to available technologies.

Pay close attention to operations and integration efforts to ensure no hidden obstacles are discovered after deployment.

Examples include finding that tape archiving no longer works, or that user account recovery fails to recover encrypted

data. This type of thing is common, so we've included it in the

process.

1. Evaluate: Determine encryption requirements and identify

preferred option. This means determining which information

needs to be encrypted by which general method (e.g.,

transparent vs. column-level vs. application), external

requirements (such as backups and batch jobs), supported

encryption options for the platform, and key management

and reporting requirements.

2. Acquire: Evaluate the encryption tools or native features for

deployment, select, and acquire.

3. Test and Approve: Establish a test environment and test

the implementation plan, as well as performance and

dependencies.

4. Deploy and Manage: Implement encryption on the

production systems. Manage access, keys (including

rotation, if needed), and requirements changes.

5. Document: Document and generate ongoing reports (often

needed for compliance).

Additional Considerations
Database encryption can be as simple as changing a few configuration settings, or as complex as completely

redesigning the database and all connected applications. Once in place, encryption doesn’t tend to be overly time

consuming, but depending on the design and age of your database the initial implementation can be incredibly intensive.

In terms of cost, the design of the existing database to encrypt is the primary factor — more than the size of the data or

the platforms involved. We recommend transparent encryption in most cases, as it is easy to deploy and secures stored

data.

Patch

Plan

Setup

Enumerate

Document

Encrypt

Evaluate

Acquire

Test and Approve

Deploy and Manage

Document

Securosis: Database Security Quant
 62

Encrypt Metrics

Process Step Variable Notes

Evaluate

Time to confirm data security

requirements

Evaluate
Time to identify encryption method

and tools

e.g., native database, OS

Evaluate

Time to identify integration

requirements and dependencies

e.g., external key management, key

rotation, disaster recovery

considerations

Acquire

Time to evaluate encryption tools

Acquire

Cost to acquire encryption products

Acquire
Optional: Cost to acquire key

management systemAcquire

Variable: Cost of maintenance and

support licenses

Native transparent encryption cost is

likely to be additional to base

database license

Test and Approve

Time to establish test environment

Test and Approve

Time to install and configure

encryption tool

Test environment configuration

Test and Approve

Time to test Verify data is encrypted, backup

procedures still work, etc.
Test and Approve

Time to establish disaster recovery

process and procedures

Keys and supporting services need to

be accounted for, etc.

Test and Approve

Time to collect sign-offs and approval Verify efficacy of encryption, and that

systems pass test cases

Test and Approve

Time to create database archive Archive & verify production backup

Deploy and Manage

Time to install encryption in

production environment

Deploy and Manage

Time to install key management

server (if used) and generate keys

Keys must to be generated regardless

Deploy and Manage
Time to deploy, encrypt data, and set

authorization rights

Securosis: Database Security Quant
 63

Process Step Variable NotesDeploy and Manage

Time to integrate with applications,

backup, and authentication systems

Deploy and Manage

Ongoing time to manage keys

(rotation, generation) and access

changes

Document

Time to document updated systems

Document Time to generate ongoing security

and compliance reports

Securosis: Database Security Quant
 64

Deploy WAF
Deploying a WAF does not fall on the shoulders of database administrators. And it's not really something one normally

thinks of when itemizing database security tasks, but that is beginning to change. With database support for web and

mobile applications, and PCI requirements overshadowing most commerce sites, WAF is an important consideration for

guarding the symbiotic amalgamation of web and database applications.

At this phase of the program we are not fully fleshing out a process for WAF deployment, but picking those tasks where

database administrative experience is relevant. For some of you this step will be entirely optional. Others will be working

with security and application developers to refine rule sets based on query and parameter profiles, and verifying

transactional consistency where blocking is employed.

The steps are:

1. Evaluate: Identify the database to protect, the applications

above it, and the security requirements.

2. Define and Acquire: Define protection requirements, including

specific rules to deploy. Acquire a WAF or access to an existing

WAF to implement the rules with.

3. Test and Approve: Test the rules in monitoring mode and

approve for deployment. Not that testing will be performed by

whoever manages the WAF, rather than the database security

manager, with approval required for both teams.

4. Deploy and Manage: While the WAF team/manager is

responsible for deploying the rules, the database team will

monitor the database for any performance, functional, or

security issues that require WAF configuration or rule changes.

5. Document: Document the rules.

Additional and Large vs. Small Company

Considerations
Companies of all sizes deploy WAFs, but who manages the WAF varies a great deal depending on industry, company

size, and internal organizational structure. In a smaller company all web application and database security might be

managed by a single person, while this is often distributed across teams in larger companies. For of database security

metrics you might limit time and cost estimates to only those handled on the database side, because much of the cost of

a WAF is borne by other teams.

But there’s nothing wrong with lumping everything together if the primary driver for the WAF is the database. How deeply

you measure these metrics depends on your project goals, but don’t feel obliged to include all WAF costs in your

database program.

Patch

Plan

Setup

Enumerate

Document

Deploy WAF

Evaluate

Define and Acquire

Test and Approve

Deploy and Manage

Document

Securosis: Database Security Quant
 65

Deploy WAF Metrics

Process Step Variable Notes

Evaluate

Identify database to be protected by

WAF and the involved applications
Evaluate

Determine database-level security

requirements

Only those where the WAF can help,

such as SQL injection

Define and Acquire

Time to gather application query and

parameter profiles

For example, what does the web

application send to the database?

Provide to the WAF team to generate

rules/policies.

Define and Acquire
Time to define WAF rules for

database protection.Define and Acquire

Time for WAF team to create and

approve rules

Define and Acquire

Optional: Time to acquire and deploy

WAF

Test and Approve

Time to establish test environment or

deploy rules in monitoring mode

Test and Approve Time to evaluate resultsTest and Approve

Time to approve for deployment Will involve both WAF and database

teams

Deploy and Manage

Deploy rules to WAF In blocking mode

Deploy and Manage
Time to manage incidents and alerts

Deploy and Manage Time to adjust rules for database/

application changes or performance

issues

Document

Time to document policies and

deployment
Document

Time to generate ongoing security

and compliance reports

Securosis: Database Security Quant
 66

Mask Data
The last step in the Protect phase is to transform production data for use in test environments to limit risk exposure. In a

nutshell, masking is applying a function to data in order to obfuscate sensitive information, while retaining its usefulness

for reporting or testing. Common forms of masking include randomly re-assigning first and last names, and creating fake

credit card and Social Security numbers. The new values retain the format expected by applications, but are not sensitive

in case the database is compromised.

Masking has evolved into two different models: the traditional Extraction, Transformation, Load (ETL) model, which alters

copies of the data; and the dynamic model, which masks data in place. The conventional ETL functions are used to

extract real data and provide an obfuscated derivative to be loaded into test and analytics systems. Dynamic masking is

newer, and available in two variants. The first overwrites the sensitive values in place, and the second variant provides a

new database 'View'. With views, authorized users may access either the original or obfuscated data, while regular users

always see the masked version. Which masking model to use is generally determined by security and compliance

requirements.

The steps are:

1. Evaluate and Acquire: Determine masking requirements,

evaluate tools and manual processes, and acquire a tool or

the resources for manual masking.

2. Setup and Test: Create the masking environment, define

masking rules, and test with samples of production data.

3. Mask/Transform: Convert the data and provide to the

requestor. Repeat as needed to maintain consistency

between the two environments.

4. Document: Document the masking rules and details to

support future transformations.

Additional Considerations
Masking is typically an ongoing process used to support

developers. Whether or not you use tools, you should prepare

the process to be repeated as updated snapshots of the

production environment are needed by developers. Masking is sometimes seen as a one-off project, but if handled that

way the two environments end up diverging so much that the masked data is no longer representative of production.

One trick to help track down logic issues is to create fictional test cases that are not masked/transformed between

production and development. That allows developers to test the application logic in both environments and directly

compare results, which is otherwise not possible using fully masked data.

Mask Data

Evaluate and Acquire

Setup and Test

Mask/Transform

Document

Securosis: Database Security Quant
 67

Mask

Process Step Variable Notes

Evaluate and
Acquire

Time to confirm data security and compliance

requirements

Evaluate and
Acquire

Time to identify preservation requirements e.g., last 4 digits of credit card,

format, data type

Evaluate and
Acquire

Time to specify masking model e.g., ETL, in place, etc.

Evaluate and
Acquire

Time to generate baseline e.g., gather sample data and formats

for testing

Evaluate and
Acquire

Time to evaluate masking products

Evaluate and
Acquire

Cost to acquire masking products/packages

Evaluate and
Acquire

Time to acquire access and authorization to data

systems

Credentials to implement masking on

sensitive data

Setup and Test

Time to identify integration requirements e.g., authorization, ETL, disaster

recovery considerations, etc.

Setup and Test

Time to install masking tool

Setup and Test Time to create masking/transformation plan and

configuration

Specific process for masking, which

is often created in the masking tool
Setup and Test

Time to test masking and adjust plan Mask the production data, then

review for issues and adjust the plan

or configuration accordingly

Mask/Transform

Time to mask i.e. ETL.

Mask/Transform Time to confirm masking and distribute resulting

database to requestors

Document Time to document masking plan

Securosis: Database Security Quant
 68

Manage Phase

Many of the databases you’re dealing with throughout this process probably started in a reasonably manageable, or even

secure, state. But time is the great killer of security: configurations drift; entitlements expand; and all the little tweaks to

keep a system running slowly degrade security, and often performance.

The Manage phase is an ongoing process used to keep systems compliant with policy. These three sub-phases help us

keep our systems configured securely and up to date, and allow us to track changes ranging from settings to user

accounts.

Manage

• Plan
• Assess
• Manage
• Document

Manage Configurations
• Monitor
• Schedule and Prepare
• Implement
• Validate and Approve
• Document

Manage Changes

• Monitor and Acquire
• Test and Approve
• Deploy and Validate
• Document

Manage Patches

In some ways this phase is the most important in the entire program. It’s the only way to keep control over databases

and minimize the inevitable drift over time — we’re not naive enough to think any process is perfect.

The good news is that we have seen plenty of organizations successfully implement these management tasks on at least

some of their databases — typically the most important ones — and that unlike some other security tasks, these come

with clear performance and stability benefits and are well understood by database administrators.

Securosis: Database Security Quant
 69

Manage Configurations
In the Plan phase we determined our configuration standards, in the Discover and Assess phase we determined which

systems were in and out of compliance, and in the Secure phase we fixed non-compliant systems.

All those were essentially one-time processes to realign our resources. Now it’s time to convert them into an ongoing,

repeatable process. All these steps overlap with previous phases, but the focus is on managing configurations over time

and keeping them compliant, as opposed to bringing them into

compliance.

The steps are:

1. Plan: Determine which systems are part of the configuration

management program and map them to configuration

standards. As configuration standards change, determine which

systems are affected. If a system needs a change that violates

the existing standard, evaluate and approve (or deny) the

request.

2. Assess: Evaluate systems to see which are still in compliance.

This should be done on a rolling, scheduled basis to detect

configuration drift.

3. Manage: Create a remediation plan and implement changes.

Verify that changes were implemented successfully.

4. Document: Document any database updates, as well as

changes to configuration standards.

Large vs. Small Company Considerations
If you are part of a small IT organization, this is a pretty straightforward process. If your work as part of a larger enterprise

team, you'll have stakeholders in database administration, audit, IT operations, and security; which makes information

collection, distribution, and record-keeping far more complicated.

The most important consideration in configuration management is also the most obvious; get systems compliant and

keep them there. This involves a cultural change in many organizations, but current configuration management tools do a

much better job of monitoring databases than even a few years ago.

Manage Configurations

Plan

Assess

Manage

Document

Securosis: Database Security Quant
 70

Manage Configurations Metrics

Process Step Variable Notes

Plan

Time to identify databases Should come from Discover and

Assess phase

Plan
Time to determine appropriate configuration

standard

Should come from Secure phase
Plan

Time to assess changes to standards, identify

affected systems

Ongoing process when standards

change

Assess

Time to assess/scan configurations Manual or automated, on a

scheduled basis
Assess

Time to determine required changes What settings, review potential side-

effects

Manage
Time to update configuration

Manage
Time to verify configuration change succeeded

Document

Time to document configuration change What changed, and variations to

standard

Document
Time to update configuration standards If needed

Document

Time to generate required compliance reports

Securosis: Database Security Quant
 71

Manage Patches
Database Patch Management is still shockingly difficult. Due to all the application dependencies common in enterprise

databases, even simple patches can break core functions. Not all database platforms offer reliable installers for patches,

resulting in complex processes prone to failure. Even finding a maintenance window to install a patch can be a political

battle. Despite all that, keeping systems up to date is still one of the most important tasks for ensuring database security.

At times you may have workarounds, or be able to mask flaws with third party security products, but the vendor is the

only way to really 'fix' fundamental database security issues. That means you will be patching on a regular basis to

address 0-day attacks, just as you do with 'Priority 1' functional issues. Database vendors have security teams dedicated

to analyzing attacks against their databases, and small firms must leverage their expertise. But you still need to manage

the updates in a predictable fashion that does not disrupt

business functions.

1. Monitor and Acquire: Monitor vendor feeds/sources

for patch releases. When a patch is released,

determine which systems in your environment are

affected and acquire the patch. This will likely include

capital costs for maintenance contracts, as some

database vendors (such as Oracle) only release

security updates to clients with current contracts.

2. Test and Approve: Create a test environment and test

the patch and installation process. Determine whether

the patch will result in issues for dependent systems.

Once ready, approve the patch for distribution and

installation.

3. Deploy and Validate: Install the patch on required

systems. verify that the patch installed correctly and

dependent systems are functioning properly.

4. Document: Document and generate ongoing reports

(often required for compliance).

Additional Considerations
Database security patching is often a political battle between the conflicting interests of DBAs (keep it running if “nothing

is broken”) and security (update vulnerable systems). Many users we talk with patch on an annual basis, and even the

best often patch only quarterly. The complexity is compounded by the poor patch installers offered by some vendors. We

have heard many reports of installers reporting success even though the patch didn’t actually apply properly.

Some vendors follow regular release schedules and provide pre-notification for impending patches. We suggest you use

these to plan maintenance windows, or at least evaluate the patches to determine your risk exposure and any shielding

or workarounds.

Manage Patches

Monitor and Acquire

Test and Approve

Deploy and Validate

Document

Securosis: Database Security Quant
 72

Configuration and vulnerability management tools can be very helpful in evaluating successful patch installation as the

better ones don’t rely on self reporting (such as version numbers), but look deeper at the system and individual

components.

Securosis: Database Security Quant
 73

Manage Patches Metrics

Process Step Variable Notes

Monitor and Acquire

Time to monitor for advisories

Monitor and Acquire

Time to determine systems affected

by patch release
Monitor and Acquire

Time to acquire patch
Monitor and Acquire

Capital costs of maintenance/support

license

Test and Approve

Time to create test environment

Test and Approve

Cost of test environment

Test and Approve Time to test and evaluateTest and Approve

Time to generate installation script

and approve

Deploy and Validate

Time to install patch

Deploy and Validate

Time to validate installation

Deploy and Validate Time to clean up patch installation Remove residual components and

reset system to functional state —

e.g., remove installer and release

from maintenance mode

Document

Time to document updated systems

Document Time to generate ongoing security

and compliance reports

Securosis: Database Security Quant
 74

Manage Changes
Change management is the lynchpin of keeping control over our systems. With databases a change could be something

as simple as a one-line SQL query, where other systems or applications would require code changes and installers.

Knowing how your systems change over time, and allowing only approved changes, is absolutely critical.

The good news is this is one area where security, database, and application teams tend to agree. Most organizations

experience the pain of downtime due to unapproved or untracked changes, so it isn’t very hard to get a change

management program started.

The steps are:

1. Monitor: Gather change requests and map to affected

databases.

2. Schedule and Prepare: Schedule the change, prepare

documentation and change scripts, and assign in your

change management system. If necessary, test.

3. Implement: Apply the change.

4. Validate and Approve: Confirm that the change

implemented correctly and approve that it is complete.

5. Document: Close the ticket in your change management

system and document the change.

Additional Considerations
One of the toughest problems in database change management

is monitoring for unapproved changes. One option is to combine

DAM (or auditing) with your configuration management system.

Monitor all changes by administrators and require them to set a

session variable matching the change management ticket

number. You can then scan for these to find unapproved activity

and to track changes back to approved tickets.

Patch

Plan

Setup

Enumerate

Document

Manage Changes

Monitor

Schedule and
Prepare

Implement

Validate and
Approve

Document

Securosis: Database Security Quant
 75

Manage Changes Metrics

Process Step Variable Notes

Monitor
Time to monitor for change requests

Monitor
Time to determine affected databases

Schedule and Prepare

Time to schedule the change i.e., What does the web application

send to the database? Provide to the

WAF team to generate rules/policies.

Schedule and Prepare
Time to prepare Including creation of change &

validation scripts Schedule and Prepare

Time to test

Schedule and Prepare

Time to approve change for

implementation

Implement
Time to implement change

Implement
Time to clean up

Validate and Approve

Time to validate change occurred

properly
Validate and Approve

Time to approve that change is

complete

Document

Time to close in change management

system

Document Time to generate documentationDocument

Time to generate ongoing security

and compliance reports

Securosis: Database Security Quant
 76

Conclusion

Old Divisions, New Metrics
Throughout our research for Database Quant we consistently struggled with the historical disconnect between security

and database management. The authors of this report have both worked across the aisle in their careers; serving as both

database administrators and security professionals and experienced this disconnect first-hand. In most organizations

DBAs manage everything involved with databases, and security is rarely involved. Also, few security professionals posses

enough database experience to handle anything other than the highest-level issues. While ongoing compliance needs are

eroding these walls, they are far from crumbled.

While it wasn’t out initial goal when we started this project, we realized that this document may be more valuable for

laying out a clear set of database security processes than for the specific metrics. We feel it bridges the divide between

the two professions by focusing on key areas and using terminology familiar to both. Since the primary Securosis

audience is security professionals, we hope they can use this as a tool to open a dialog with DBAs and to help define

their program requirements.

And while the metrics are not as detailed as some of our other Quant projects, they still provide a solid baseline to

measure the efficiency of your program.

The one potential weakness in this report is that we had to rely extensively on our own experiences. While we did receive

public feedback and test our content with various security and database professionals, the number of people that

understand both worlds is still fairly small and significantly limited our potential sources for feedback. Thus we plan to

continue to update this document as we receive ongoing feedback and processes and tools change.

Where to Start?
There are many operational steps and associated metrics in this project. We recommend organizations start small, and

likely focus on areas involved in compliance. Database discovery, assessment (especially configuration and vulnerability),

auditing/monitoring, and encryption tend to be the top compliance concerns and are likely activities you are already

involved with. Another common area is assessing and managing user entitlements. All of these also happen to be areas

where security and database teams tend to have to work together.

The steps to introduce this approach to your organization are pretty straightforward and very replicable.

1. Pick a place to start.

2. Map the process.

3. Choose the metrics.

4. Collect the data.

Securosis: Database Security Quant
 77

5. Analyze the data.

6. Adapt the process.

Then go back to Step 1, with another subset of your database security operational processes. We don’t mean to

oversimplify things, but it’s not hard. Your organization just needs the commitment to systematically collect data and

adapt the processes based on what the data tells you.

Finally, the authors of this report would like to encourage additional open, independent, community research and analysis

projects in IT and security metrics. Utilizing a transparent research process enables new kinds of collaboration capable of

producing unbiased results. We are investigating other opportunities to promote open research and analysis, particularly

in the areas of metrics, frameworks, and benchmarks. If you have any suggestions as to additional research

opportunities, feel free to drop us a line at info@securosis.com.

Securosis: Database Security Quant
 78

mailto:info@securosis.com
mailto:info@securosis.com

About the Analysts

Rich Mogull, Analyst/CEO

Rich has twenty years of experience in information security, physical security, and risk management. He specializes in

data security, application security, emerging security technologies, and security management. Prior to founding

Securosis, Rich was a Research Vice President at Gartner on the security team. Prior to his seven years at Gartner, Rich

worked as an independent consultant, web application developer, software development manager at the University of

Colorado, and systems and network administrator. Rich is the Security Editor of TidBITS, a monthly columnist for Dark

Reading, and a frequent contributor to publications ranging from Information Security Magazine to Macworld. He is a

frequent industry speaker at events including the RSA Security Conference and DefCon, and has spoken on every

continent except Antarctica (where he’s happy to speak for free — assuming travel is covered).

Prior to his technology career, Rich also worked as a security director for major events such as football games and

concerts. He was a bouncer at the age of 19, weighing about 135 lbs (wet). Rich has worked or volunteered as a

paramedic, firefighter, and ski patroller at a major resort (on a snowboard); and spent over a decade with Rocky Mountain

Rescue. He currently serves as a responder on a federal disaster medicine and terrorism response team, where he

mostly drives a truck and lifts heavy objects. He has a black belt, but does not play golf. Rich can be reached at rmogull

(at) securosis (dot) com.

Adrian Lane, Analyst and CTO

Adrian Lane is a Senior Security Strategist with 22 years of industry experience, bringing over a decade of C-level

executive expertise to the Securosis team. Mr. Lane specializes in database architecture and data security. With

extensive experience as a member of the vendor community (including positions at Ingres and Oracle), in addition to time

as an IT customer in the CIO role, Adrian brings a business-oriented perspective to security implementations. Prior to

joining Securosis, Adrian was CTO at database security firm IPLocks, Vice President of Engineering at Touchpoint, and

CTO of the security and digital rights management firm Transactor/Brodia. Adrian also blogs for Dark Reading and is a

regular contributor to Information Security Magazine. Mr. Lane is a Computer Science graduate of the University of

California at Berkeley with post-graduate work in operating systems at Stanford University. Adrian can be reached at

alane (at) securosis (dot) com.

Securosis: Database Security Quant
 79

About Securosis

Securosis, L.L.C. is an independent research and analysis firm dedicated to thought leadership, objectivity, and transpar-

ency. Our analysts have all held executive level positions and are dedicated to providing high-value, pragmatic advisory

services.

Our services include:

• Primary research publishing: We currently release the vast majority of our research for free through our blog, and ar-

chive it in our Research Library. Most of these research documents can be sponsored for distribution on an annual

basis. All published materials and presentations meet our strict objectivity requirements, and follow our Totally Trans-

parent Research policy.

• Research products and strategic advisory services for end users: Securosis will be introducing a line of research prod-

ucts and inquiry-based subscription services designed to assist end user organizations in accelerating project and

program success. Additional advisory projects are also available, including product selection assistance, technology

and architecture strategy, education, security management evaluations, and risk assessment.

• Retainer services for vendors: Although we will accept briefings from anyone, some vendors opt for a tighter, ongoing

relationship. We offer a number of flexible retainer packages. Example services available as part of a retainer package

include market and product analysis and strategy, technology guidance, product evaluations, and merger and acquisi-

tion assessments. Even with paid clients, we maintain our strict objectivity and confidentiality requirements. More in-

formation on our retainer services (PDF) is available.

• External speaking and editorial: Securosis analysts frequently speak at industry events, give online presentations, and

write and/or speak for a variety of publications and media.

• Other expert services: Securosis analysts are available for other services as well, including Strategic Advisory Days,

Strategy Consulting engagements, and Investor Services. These services tend to be customized to meet a client’s

specific requirements.

Our clients range from stealth startups to some of the best known technology vendors and end users. They include large

financial institutions, institutional investors, mid-sized enterprises, and major security vendors.

Additionally, Securosis partners with security testing labs to provide unique product evaluations that combine in-depth

technical analysis with high-level product, architecture, and market analysis.

Securosis: Database Security Quant
 80

http://securosis.com/about/totally-transparent-research
http://securosis.com/about/totally-transparent-research
http://securosis.com/about/totally-transparent-research
http://securosis.com/about/totally-transparent-research
http://securosis.com/images/uploads/Securosis_Retainer_Packages_2010-01.pdf
http://securosis.com/images/uploads/Securosis_Retainer_Packages_2010-01.pdf

