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Part I: Programming 
environments for motion, 
graphics, and geometry

Part I of this text book will discuss:

• simple programming environments

• program design

• informal versus formal notations

• reducing a solution to primitive operations, and programming as an activity independent of language.

The purpose of an artificial programming environment

A program can be designed with the barest of tools, paper and pencil, or in the programmer's head. In the realm  

of such informal environments, a program design may contain vague concepts expressed in an informal notation. 

Before  he  or  she  can  execute  this  program,  the  programmer  needs  a  programming  environment,  typically  a 

complex  system with many distinct  components:  a  computer  and its  operating  system,  utilities,  and program 

libraries; text and program editors; various programming languages and their processors. Such real programming  

environments force programmers to express themselves in formal notations.

Programming is the realization of a solution to a problem, expressed in terms of those operations provided by a 

given programming environment. Most programmers work in environments that provide very powerful operations 

and tools.

The more powerful a programming environment, the simpler the programming task, at least to the expert who 

has achieved mastery of this environment. Even an experienced programmer may need several months to master a 

new programming environment, and a novice may give up in frustration at the multitude of concepts and details he  

or she must understand before writing the simplest program.

The simpler a programming environment, the easier it is to write and run small programs, and the more work it 

is to write substantial, useful programs. In the early days of computing, before the proliferation of programming  

languages during the 1960s, most programmers worked in environments that were exceedingly simple by modern  

standards: Acquaintance with an assembler, a loader, and a small program library sufficed. The programs they 

wrote  were  small  compared  to  what  a  professional  programmer  writes  today.  The  simpler  a  programming 

environment is, the better suited it is for learning to program. Alas, today simple environments are hard to find! 

Even a home computer is equipped with complex software that is not easily ignored or bypassed. For the sake of  

education it  is  useful  to invent  artificial  programming environments.  Their  only  purpose  is  to  illustrate  some 

important concepts in the simplest possible setting and to facilitate insight. Part I of this book introduces such a toy 
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programming environment suitable for programming graphics and motion, and illustrates how it can gradually be  

enriched to approach a simple but useful graphics environment.

Textbooks on computer graphics.  The computer-driven graphics screen is  a powerful new medium for 

communication.  Visualization  often  makes  it  possible  to  present  the  results  of  a  computation  in  intuitively 

appealing  ways  that  convey  insights  not  easily  gained  in  any  other  manner.  To  exploit  this  medium,  every 

programmer  must  master  basic  visualization  techniques.  We  refer  the  reader  interested  in  a  systematic  

introduction to computer graphics to such excellent textbooks as [BG 89], [FDFH 90], [NS 79], [Rog 85], [Wat 89],  

and [Wol 89].
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1. Reducing a task to given 
primitives: programming 
motion

Learning objectives:

• primitives for specifying motion 

• expressing an algorithm in informal notations and in high- and low-level programming languages 

• program verification 

• program optimization

A robot car, its capabilities, and the task to be performed

Some aspects  of  programming can be learned without  a  computer,  by  inventing an artificial  programming  

environment as a purely mental exercise. The example of a vehicle that moves under program control in a fictitious 

landscape  is  a  microcosmos  of  programming  lore.  In  this  section  we  introduce  important  concepts  that  will 

reappear later in more elaborate settings.

The environment. Consider a two-dimensional square grid, a portion of which is enclosed by a wall made up 

of horizontal and vertical line segments that run halfway between the grid points (Exhibit 1.1). A robot car enclosed 

within the wall moves along this grid under computer control, one step at a time, from grid point to adjacent grid  

point. Before and after each step, the robot's state is described by a location (grid point) and a direction (north, east,  

south, or west).

Exhibit 1.1: The robot's crosshairs show its current location on the grid.

The robot is controlled by a program that uses the following commands:

left Turn 90 degrees counterclockwise.
right Turn 90 degrees clockwise.
forward Move one step, to the next grid point in front of 

you
goto # Send program control to the label #.
if touch goto # If you are touching a wall to your front, send 

program control to the label #.
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1. Reducing a task to given primitives: programming motion

A program for the robot is a sequence of commands with distinct labels. The labels serve merely to identify the 

commands and need not be arranged either consecutively or in increasing order. Execution begins with the first 

command and proceeds to successive commands in the order in which they appear, except when flow of control is  

redirected by either of the goto commands.

Example

The following program moves the robot forward until it bumps into a wall:

1 if touch goto 4
2 forward
3 goto 1
4 { there is no command here; just a label }

In developing programs for the robot, we feel free to use any high-level language we prefer, and embed robot  

commands in it. Thus we might have expressed our wall-finding program by the simpler statement 

while not touch do forward; 

and then translated it into the robot's language.

A program for this robot car to patrol the walls of a city consists of two parts: First, find a wall, the problem we  

just solved. Second, move along the wall forever while maintaining two conditions: 

1. Never lose touch with the wall; at all times, keep within one step of it.

2. Visit every spot along the wall in a monotonic progression.

The mental image of walking around a room with eyes closed, left arm extended, and the left hand touching the 

wall at all times will prove useful. To mirror this solution we start the robot so that it has a wall on its immediate left 

rather than in front. As the robot has no sensor on its left side, we will let it turn left at every step to sense the wall  

with its front bumper, then turn right to resume its position with the wall to its left.

Wall-following algorithm described informally

Idea of solution: Touch the wall with your left hand; move forward, turning left or right as required to keep 

touching the wall.

Wall-following  algorithm described  in  English: Clockwise,  starting  at  left,  look  for  the  first  direction  not 

blocked by a wall, and if found, take a step in that direction.

Let us test this algorithm on some critical configurations. The robot inside a unit square turns forever, never 

finding a direction to take a step (Exhibit 1.2). In Exhibit 1.3 the robot negotiates a left-hand spike. After each step, 

there is a wall to its left-rear. In Exhibit 1.4 the robot enters a blind alley. At the end of the alley, it turns clockwise 

twice, then exits by the route it entered.

Exhibit 1.2: Robot in a box spins on its heels.
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Exhibit 1.3: The robot turns around a spike.

Exhibit 1.4: Backing up in a blind alley.

Algorithm specified in a high-level language

The ideas presented informally in above section are made precise in the following elegant, concise program:

{ wall to left-rear }
loop

{ wall to left-rear }
left;
{ wall to left-front }
while touch do

 { wall to right-front }
 right;
 { wall to left-front }

endwhile;
{ wall to left-front }
forward;
{ wall to left-rear }

forever;
{ wall to left-rear }

Program verification. The comments in braces are  program invariants: Assertions about the state of the 

robot that are true every time the flow of control reaches the place in the program where they are written. We need 

three types of invariants to verify the wall-following program: "wall to left-rear", "wall to left-front", and "wall to  

right-front". The relationships between the robot's position and the presence of a nearby wall that must hold for 

each assertion to be true are illustrated in  Exhibit 1.5. Shaded circles indicate points through which a wall must 

pass. Each robot command transforms its  precondition (i.e. the assertion true before the command is executed) 

into its  postcondition (i.e. the assertion true after its execution). Thus each of the commands 'left',  'right',  and  

'forward' is a predicate transformer, as suggested in Exhibit 1.6.

Exhibit 1.5: Three types of invariants relate the positions of robot and wall.
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1. Reducing a task to given primitives: programming motion

Exhibit 1.6: Robot motions as predicate transformers.

Algorithm programmed in the robot's language

A  straightforward  translation  from  the  high-level  program  into  the  robot's  low-level language  yields  the 

following seven-line wall-following program:

loop
left; 1 left
while touch do 2 if touch goto 4

3 goto 6
right; 4 right

endwhile; 5 goto 2
forward; 6 forward

forever; 7 goto 1

The robot's program optimized

In  designing a  program  it  is  best  to  follow  simple,  general  ideas,  and  to  decide  on  details  in  the  most 

straightforward  manner,  without  regard  for  the  many  alternative  ways  that  are  always  available  for  handling 

details. Once a program is proven correct, and runs, then we may try to improve its efficiency, measured by time  

and memory requirements. This process of program transformation can often be done syntactically, that is merely 

by considering the definition of individual statements, not the algorithm as a whole. As an example, we derive a  

five-line version of the wall-following program by transforming the seven-line program in two steps.

If we have the complementary primitive 'if not touch goto #', we can simplify the flow of the program at the left 

as shown on the right side.

{ wall to left-rear } { wall to left-rear }
1 left 1 left
2 if touch goto 4 2 if not touch goto 6
3 goto 6

{ wall to right-front } { wall to right-front }
4 right 4 right

12
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5 goto 2 5 goto 2
6 forward 6 forward
7 goto 1 7 goto 1

An optimization technique called loop rotation allows us to shorten this program by yet another instruction. It 

changes the structure of the program significantly, as we see from the way the labels have been permuted. The 

assertion "wall to right-front" attached to line 4 serves as an invariant of the loop "keep turning right while you 

can't advance".

{ wall to right-front }
4 right
2 if touch goto 4
6 forward
1 left
7 goto 2

Programming projects

1. Design a data structure suitable for storing a wall made up of horizontal and vertical line segments in a 

square grid of bounded size. Write a "wall-editor", i.e. an interactive program that lets the user define and 

modify an instance of such a wall.

2. Program the wall-following algorithm and animate its execution when tracking a wall entered with the wall-

editor. Specifically, show the robot's position and orientation after each change of state.
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2. Graphics primitives and 
environments

Learning objectives:

• turtle graphics

• QuickDraw: A graphics toolbox

• frame program

• interactive graphics input/output

• example: polyline input

Turtle graphics: a basic environment

Seymour Papert [Pap80] introduced the term  turtle graphics to denote a set of primitives for line drawing. 

Originally implemented in the programming language Logo, turtle graphics primitives are now available for several  

computer systems and languages.  They come in  different  versions,  but  the essential  point  is  the same as  that 

introduced in the example of the robot car: The pen (or "turtle") is a device that has a state (position, direction) and  

is driven by incremental operations “move” and “turn” that transform the turtle to a new state depending on its 

current state:

move(s) { take s unit steps in the direction you are facing }
turn(d) { turn counterclockwise d degrees }

The turtle's initial state is set by the following operations:

moveto(x,y) { move to the position (x,y) in absolute coordinates }
turnto(d) { face d degrees from due east }

In addition, we can specify the color of the trail drawn by the moving pen:

pencolor(c) { where c = white, black, none, etc. }

Example

The following program fragment approximates a circle tangential to the x-axis at the origin by drawing a 36-

sided polygon:

moveto(0, 0); { position pen at origin }
turnto(0); { face east }
step := 7; { arbitrarily chosen step length }
do 36 times { 36 sides · 10° = 360° }

{ move(step);  turn(10) } { 10 degrees counterclockwise }

In graphics programming we are likely to use basic figures, such as circles, over and over again, each time with a 

different size and position. Thus we wish to turn a program fragment such as the circle approximation above into a 

reusable procedure.
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Procedures as building blocks

A program is built from components at many different levels of complexity. At the lowest level we have the  

constructs provided by the language we use: constants, variables, operators, expressions, and simple (unstructured) 

statements. At the next higher level we have procedures: they let us refer to a program fragment of arbitrary size 

and complexity  as  a  single  entity,  and build  hierarchically  nested  structures.  Modern  programming languages 

provide yet another level of packaging: modules, or packages, useful for grouping related data and procedures. We 

limit our discussion to the use of procedures.

Programmers accumulate their own collection of useful program fragments. Programming languages provide 

the concept of a  procedure as the major tool for turning fragments into  reusable building blocks. A procedure 

consists of two parts with distinct purposes:

1. The  heading specifies an important part of the procedure's external behavior through the list of  formal 

parameters: namely, what type of data moves in and out of the procedure.

2. The body implements the action performed by the procedure, processing the input data and generating the 

output data.

A program fragment that embodies a single coherent concept is best written as a procedure. This is particularly 

true if we expect to use this fragment again in a different context. The question of how general we want a procedure 

to be deserves careful thought. If the procedure is too specific, it will rarely be useful. If it is too general, it may be  

unwieldy: too large, too slow, or just too difficult to understand. The generality of a procedure depends primarily on 

the choice of formal parameters.

Example: the long road toward a procedure “circle”

Let us illustrate these issues by discussing design considerations for a procedure that draws a circle on the 

screen. The program fragment above for drawing a regular polygon is easily turned into

procedure ngon(n,s: integer);  { n = number of sides, s = step 
size }

var  i,j: integer;
begin

j := 360 div n;
for i := 1 to n do  { move(s);  turn(j) }

end;

But, a useful procedure to draw a circle requires additional arguments. Let us start with the following:

procedure circle(x, y, r, n: integer);
{ centered at (x, y);  r = radius;  n = number of sides }

var  a, s, i: integer;  { angle, step, counter }
begin

moveto(x, y – r);  { bottom of circle }
turnto(0);  { east }
a := 360 div n;
s := r · sin(a);  { between inscribed and circumscribed polygons }
for  i := 1  to  n  do  { move(s);  turn(a) }

end;

This procedure places the burden of choosing n on the programmer. A more sophisticated, "adaptive" version  

might choose the number of sides on its own as a function of the radius of the circle to be drawn. We assume that  

lengths are measured in terms of pixels (picture elements) on the screen. We observe that a circle of radius r is of  
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length 2πr. We approximate it by drawing short-line segments, about 3 pixels long, thus needing about 2·r line  

segments. 

procedure circle(x, y, r: integer);  { centered at (x, y);  radius 
r}

var  a, s, i: integer;  { angle, step, counter }
begin

moveto(x, y – r);  { bottom of circle }
turnto(0);  { east }
a := 180 div r;  { 360 / (# of line segments) }
s := r · sin(a);  { between inscribed and circumscribed polygons }
for  i := 1  to  2 · r  do  { move(s);  turn(a) }

end;

This circle procedure still suffers from severe shortcomings:

1. If we discretize a circle by a set of pixels, it is an unnecessary detour to do this in two steps as done above:  

first, discretize the circle by a polygon; second, discretize the polygon by pixels. This two-step process is a  

source of unnecessary work and errors.

2. The approximation of the circle by a polygon computed from vertex to vertex leads to rounding errors that 

accumulate.  Thus the polygon may fail  to close,  in particular  when using integer computation with its  

inherent large rounding error.

3. The procedure attempts to draw its circle on an infinite screen. Computer screens are finite, and attempted 

drawing beyond the screen boundary may or may not cause an error. Thus the circle ought to be clipped at 

the boundaries of an arbitrarily specified rectangle.

Writing a good circle procedure is a demanding task for professionals. We started this discussion of desiderata  

and difficulties of a simple library procedure so that the reader may appreciate the thought and effort that go into 

building a useful programming environment. In chapter 14 we return to this problem and present one possible goal 

of "the long road toward a procedure 'circle'". We now make a huge jump from the artificially small environments 

discussed so far to one of today's realistic programming environments for graphics

QuickDraw: a graphics toolbox 

For  the  sake  of  concreteness,  the  next  few  sections  show  programs  written  for  a  specific  programming 

environment:  MacPascal  using  the QuickDraw library  of  graphics  routines  [App 85].  It  is  not  our  purpose  to 

duplicate a manual,  but only to convey the flavor of  a realistic graphics package and to explain enough about  

QuickDraw for the reader to understand the few programs that follow. So our treatment is highly selective and  

biased.

Concerning the circle that we attempted to program above, QuickDraw offers five procedures for drawing circles 

and related figures:

procedure FrameOval(r: Rect);
procedure PaintOval(r: Rect);
procedure EraseOval(r: Rect);
procedure InvertOval(r: Rect);
procedure FillOval(r: Rect; pat: Pattern);

Each one inscribes an oval in an aligned rectangle r (sides parallel to the axes) so as to touch the four sides of r.  

If r is a square, the oval becomes a circle. We quote from [App 85]:
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2. Graphics primitives and environments

FrameOval draws an outline just inside the oval that fits inside the specified rectangle, using the current  

grafPort's pen pattern, mode, and size. The outline is as wide as the pen width and as tall as the pen height.  

It's drawn with the pnPat, according to the pattern transfer mode specified by pnMode. The pen location is  

not changed by this procedure.

Right away we notice a trade-off when comparing QuickDraw to the simple turtle graphics environment we 

introduced earlier. At one stroke, “FrameOval” appears to be able to produce many different pictures, but before we 

can exploit this power, we have to learn about grafPorts, pen width, pen height, pen patterns, and pattern transfer  

modes. 'FrameOval' draws the perimeter of an oval, 'PaintOval' paints the interior as well, 'EraseOval' paints an oval  

with the current grafPort's background pattern, 'InvertOval' complements the pixels: 'white' becomes 'black', and  

vice versa. 'FillOval' has an additional argument that specifies a pen pattern used for painting the interior.

We may not need to know all of this in order to use one of these procedures, but we do need to know how to  

specify  a rectangle.  QuickDraw has predefined a  type 'Rect'  that,  somewhat ambiguously  at  the programmer's 

choice, has either of the following two interpretations:

type Rect  = record  top, left, bottom, right: integer  end;
type Rect  = record  topLeft, botRight: Point  end;

with one of the interpretations of type 'Point' being
type Point = record  v, h: integer  end;

Exhibit  2.1 illustrates  and  provides  more  information  about  these  concepts.  It  shows  a  plane  with  first 

coordinate v that runs from top to bottom, and a second coordinate h that runs from left to right. (The reason for v  

running from top to bottom, rather than vice versa as used in math books, is compatibility with text coordinates 

where lines are naturally numbered from top to bottom.) The domain of v and h are the integers from –215= –32768 

to 215– 1 = 32767. The points thus addressed on the screen are shown as intersections of grid lines. These lines and 

grid points are infinitely thin - they have no extension. The pixels are the unit squares between them. Each pixel is  

paired with its top left grid point. This may be enough information to let us draw a slightly fat point of radius 3 

pixels at the grid point with integer coordinates (v, h) by calling

PaintOval(v – 3, h – 3, v + 3, h + 3);

Exhibit 2.1: Screen coordinates define the location of pixels.

To understand the procedures of this section, the reader has to understand a few details about two key aspects of  

interactive graphics:

• timing and synchronization of devices and program execution

• how screen pictures are controlled at the pixel level
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Synchronization

In interactive applications we often wish to specify a grid point by letting the user point the mouse-driven cursor 

to some spot on the screen. The 'procedure GetMouse(v, h)' returns the coordinates of the grid point where the 

cursor is located at the moment 'GetMouse' is executed. Thus we can track and paint the path of the mouse by a  

loop such as

repeat  GetMouse(v, h);  PaintOval(v – 3, h – 3, v + 3, h + 3) 
until stop;

This does not give the user any timing control over when he or she wants the computer to read the coordinates  

of the mouse cursor. Clicking the mouse button is the usual way to tell the computer "Now!". A predefined boolean 

function  'Button'  returns  'true'  when  the  mouse  button  is  depressed,  'false'  when  not.  We  often  synchronize  

program execution with the user's clicks by programming busy waiting loops:

repeat until Button; { waits for the button to be pressed }
while Button do; { waits for the button to be released }

The following procedure waits for the next click:
procedure waitForClick;
begin  repeat until Button;  while Button do  end;

Pixel acrobatics

The QuickDraw pen has four parameters that can be set to draw lines or paint textures of great visual variety: 

pen location 'pnLoc', pen size 'pnSize' (a rectangle of given height and width), a pen pattern 'pnPat', and a drawing 

mode 'pnMode'. The pixels affected by a motion of the pen are shown in Exhibit 2.2.

Exhibit 2.2: Footprint of the pen.

Predefined values of 'pnPat' include 'black', 'gray', and 'white'. 'pnPat' is set by calling the predefined 'procedure 

PenPat(pat: Pattern)' [e.g. 'PenPat(gray)']. As 'white' is the default background, drawing in 'white' usually serves for 

erasing.

The result of drawing also depends critically on the transfer mode 'pnMode', whose values include 'patCopy',  

'patOr',  and  'patXor'.  A  transfer  mode  is  a  boolean  operation  executed  in  parallel  on  each  pair  of  pixels  in  

corresponding positions, one on the screen and one in the pen pattern.

• 'patCopy' uses the pattern pixel to overwrite the screen pixel, ignoring the latter's previous value; it is the 

default and most frequently used transfer mode.

• 'patOr' paints a black pixel if either or both the screen pixel or the pattern pixel were black; it progressively  

blackens the screen.
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• 'patXor' (exclusive-or, also known as "odd parity") sets the result to black iff exactly one of (screen pixel, 

pattern pixel) is black. A white pixel in the pen leaves the underlying screen pixel unchanged; a black pixel  

complements it. Thus a black pen inverts the screen.

'pnMode' is set by calling the predefined 'procedure PenMode(mode: integer)' [e.g. 'PenMode(patXor)'].

The meaning of the remaining predefined procedures our examples use, such as 'MoveTo' and 'LineTo', is easily 

guessed. So we terminate our peep into some key details of a powerful graphics package, and turn to examples of its  

use.

A graphics frame program

Reusable software is a time saving concept that can be practiced profitably in the small. We keep a program that 

contains nothing but  a few of  the most  useful  input/output  procedures,  displays  samples  of  their  results,  and 

conducts a minimal dialog so that the user can step through its execution. We call this a frame program because its 

real purpose is to facilitate development and testing of new procedures by embedding them in a ready-made, tested  

environment. A simple frame program like the one below makes it very easy for a novice to write his first interactive 

graphics program.

This particular frame program contains procedures 'GetPoint', 'DrawPoint', 'ClickPoint', 'DrawLine', 'DragLine', 

'DrawCircle', and 'DragCircle' for input and display of points, lines, and circles on a screen idealized as a part of a  

Euclidean plane, disregarding the discretization due to the raster screen. Some of these procedures are so short that  

one asks why they are introduced at all. 'GetPoint', for example, only converts integer mouse coordinates v, h into a  

point p with real coordinates. It enables us to refer to a point p without mentioning its coordinates explicitly. Thus,  

by bringing us closer to standard geometric notation, 'GetPoint' makes programs more readable.

The procedure 'DragLine', on the other hand, is a very useful routine for interactive input of line segments. It  

uses the rubber-band technique, which is familiar to users of graphics editors. The user presses the mouse button 

to fix the first endpoint of a line segment, and keeps it depressed while moving the mouse to the desired second  

endpoint. At all times during this motion the program keeps displaying the line segment as it would look if the 

button were released at that moment. This rubber band keeps getting drawn and erased as it moves across other 

objects on the screen. The user should study a key detail in the procedure 'DragLine' that prevents other objects 

from  being  erased  or  modified  as  they  collide  with  the  ever-refreshed  rubber  band:  We  temporarily  set 

'PenMode(patXor)'. We encourage you to experiment by modifying this procedure in two ways:

1. Change the first call of the 'procedure DrawLine(L.p1, L.p2, black)' to 'DrawLine(L.p1, L.p2, white)'. You will 

have turned the procedure 'DragLine' into an artful, if somewhat random, painting brush.

2. Remove the call 'PenMode(patXor)' (thus reestablishing the default 'pnMode = patCopy'), but leave the first 

'DrawLine(L.p1, L.p2, white)', followed by the second 'DrawLine(L.p1, L.p2, black)'. You now have a naive 

rubber-band routine: It  alternates erasing (draw 'white') and drawing (draw 'black') the current rubber 

band, but in so doing it modifies other objects that share pixels with the rubber band. This is our first  

example of the use of the versatile exclusive-or; others will follow later in the book.

program Frame;
  { provides mouse input and drawing of points, line segments, 

circles }

type point = record  x, y: real  end;
lineSegment = record  p1, p2: point  { endpoints }  end;
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var c, p: point;
r: real;  { radius of a circle }
L: lineSegment;

procedure WaitForClick;
begin  repeat until Button;  while Button do  end;

procedure GetPoint (var p: point);
var  v, h: integer;
begin

GetMouse(v, h);
p.x := v;  p.y := h  { convert integer to real }

end;

procedure DrawPoint(p: point; pat: Pattern);
const  t = 3;  { radius of a point }
begin

PenPat(pat);
PaintOval(round(p.y) – t, round(p.x) – t, round(p.y) + t, 

round(p.x) + t)
end;

procedure ClickPoint(var p: point);
begin  WaitForClick;  GetPoint(p);  DrawPoint(p, Black)  end;

function Dist(p, q: point): real;
begin  Dist := sqrt(sqr(p.x – q.x) + sqr(p.y – q.y))  end;

procedure DrawLine(p1, p2: point; pat: Pattern);
begin

PenPat(pat);
MoveTo(round(p1.x), round(p1.y));
LineTo(round(p2.x), round(p2.y))

end;

procedure DragLine(var L: lineSegment);
begin

repeat until Button;  GetPoint(L.p1);  L.p2 := L.p1; 
PenMode(patXor);

while Button do  begin
DrawLine(L.p1, L.p2, black);
{ replace 'black' by 'white' above to get an artistic drawing 

tool }
GetPoint(L.p2);
DrawLine(L.p1, L.p2, black)

end;
PenMode(patCopy)

end;  { DragLine }

procedure DrawCircle(c: point; r: real; pat: Pattern);
begin

PenPat(pat);
FrameOval(round(c.y – r), round(c.x – r), round(c.y + r), 

round(c.x + r))
end;

procedure DragCircle(var c: point; var r: real);
var  p: point;
begin

repeat until Button;  GetPoint(c);  r := 0.0;  PenMode(patXor);
while Button do  begin

DrawCircle(c, r, black);
GetPoint(p);
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r := Dist(c, p);
DrawCircle(c, r, black);

end;
PenMode(patCopy)

end;  { DragCircle }

procedure Title;
begin

ShowText;  { make sure the text window and … }
ShowDrawing;  { … the graphics window show on the screen }
WriteLn('Frame program');
WriteLn('with simple graphics and interaction routines.');
WriteLn('Click to proceed.');
WaitForClick

end;  { Title }

procedure What;
begin

WriteLn('Click a point in the drawing window.');
ClickPoint(p);
WriteLn('Drag mouse to enter a line segment.');
DragLine(L);
WriteLn('Click center of a circle and drag its radius');
DragCircle(c, r)

end;  { What }

procedure Epilog;
begin  WriteLn('Bye.')  end;

begin  { Frame }
Title;  What;  Epilog

end.  { Frame }

Example of a graphics routine: polyline input

Let  us illustrate  the use of  the frame program above  in  developing a  new graphics  procedure.  We choose  

interactive polyline input as an example. A polyline is a chain of directed straight-line segments—the starting point 

of the next segment coincides with the endpoint of the previous one. 'Polyline' is the most useful tool for interactive 

input  of  most  drawings made up of  straight lines.  The user  clicks  a  starting  point,  and each subsequent  click  

extends the polyline by another line segment. A double click terminates the polyline.

We  developed  'PolyLine'  starting  from  the  frame  program  above,  in  particular  the  procedure  'DragLine',  

modifying  and  adding  a  few  procedures.  Once  'Polyline'  worked,  we  simplified  the  frame  program a  bit.  For 

example,  the  original  frame  program  uses  reals  to  represent  coordinates  of  points,  because  most  geometric  

computation is done that way. A polyline on a graphics screen only needs integers, so we changed the type 'point' to  

integer coordinates. At the moment, the code for polyline input is partly in the procedure 'NextLineSegment' and in 

the procedure 'What'. In the next iteration, it would probably be combined into a single self-contained procedure,  

with all the subprocedures it needs, and the frame program would be tossed out—it has served its purpose as a  

development tool.

program PolyLine;
{ enter a chain of line segments and compute total length }
{ stop on double click }

type point = record  x, y: integer;  end;
var stop: boolean;

length: real;
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p, q: point;

function EqPoints (p, q: point): boolean;
begin  EqPoints := (p.x = q.x) and (p.y = q.y)  end;

function Dist (p, q: point): real;
begin  Dist := sqrt(sqr(p.x – q.x) + sqr(p.y – q.y))  end;

procedure DrawLine (p, q: point; c: Pattern);
begin  PenPat(c);  MoveTo(p.x, p.y);  LineTo(q.x, q.y)  end;

procedure WaitForClick;
begin  repeat until Button;  while Button do  end;

procedure NextLineSegment (var stp, endp: point);
begin

endp := stp;
repeat

DrawLine(stp, endp, black);  { Try 'white' to generate artful 
pictures! }

GetMouse(endp.x, endp.y);
DrawLine(stp, endp, black)

until Button;
while Button do

end;  { NextLineSegment }

procedure Title;
begin

ShowText;  ShowDrawing;
WriteLn('Click to start a polyline.');
WriteLn('Click to end each segment.');
WriteLn('Double click to stop.')

end;  { Title }

procedure What;
begin

WaitForClick;  GetMouse(p.x, p.y);
stop := false;  length := 0.0;
PenMode(patXor);
while  not stop  do  begin

NextLineSegment(p, q);
stop := EqPoints(p, q);  length := length + Dist(p, q);  p := q

end
end;  { What }

procedure Epilog;
begin  WriteLn('Length of polyline = ', length);  WriteLn('Bye.') 

end;

begin  { PolyLine }
Title;  What;  Epilog

end.  { PolyLine }

Programming projects

1. Implement a simple package of turtle graphics operations on top of the graphics environment available on 

your computer.

2. Use this package to implement and test a procedure 'circle' that meets the requirements listed at the end of 

the section “Turtle graphics: a basic environment”.
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3. Implement your personal graphics frame program as described in “A graphics frame program”. Your effort  

will pay off in time saved later, as you will be using this program throughout the entire course.
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3. Algorithm animation
I hear and I forget, I see and I remember, I do and I understand.

A picture is worth a thousand words—the art of presenting information in visual form. 

Learning objectives:

• adding animation code to a program

• examples of algorithm snapshots 

Computer-driven visualization: characteristics and techniques

The computer-driven graphics screen is a powerful new communications medium; indeed, it is the only two-way 

mass communications medium we know. Other mass communications media–the printed e.g. recorded audio and 

video—are one-way streets suitable for delivering a monolog. The unique strength of our new medium is interactive 

presentation of information. Ideally, the viewer drives the presentation, not just by pushing a start button and  

turning  a  channel  selector,  but  controls  the  presentation  at  every  step.  He  controls  the  flow  not  only  with  

commands such as "faster", "slower", "repeat", "skip", "play this backwards", but more important, with a barrage of  

"what if?" questions. What if the area of this triangle becomes zero? What if we double the load on this beam? What 

if world population grows a bit faster? This powerful new medium challenges us to use it well.

When using any medium, we must ask: What can it do well, and what does it do poorly? The computer-driven 

screen is ideally suited for rapid and accurate display of information that can be deduced from large amounts of  

data by means of straightforward algorithms and lengthy computation. It can do so in response to a variety of user 

inputs as long as this variety is contained in an algorithmically tractable, narrow domain of discourse. It is not  

adept at tasks that require judgment, experience, or insight. By comparison, a speaker at the blackboard is slow and 

inaccurate and can only call upon small amounts of data and tiny computations; we hope she makes up for this 

technical  shortcoming by good judgment, teaching experience, and insight into the subject.  By way of another  

comparison, books and films may accurately and rapidly present results based on much data and computation, but 

they lack the ability to react to a user's input.

Algorithm  animation,  the  technique  of  displaying  the  state  of  programs  in  execution,  is  ideally  suited  for  

presentation on a  graphics  screen.  There is  a  need for  this  type of  computation,  and there are  techniques for 

producing them. The reasons for animating programs in execution fall into two major categories, which we label  

checking and exploring.

Checking 

To understand an algorithm well, it is useful to understand it from several distinct points of view. One of them is 

the static point of view on which correctness proofs are based: Formulate invariants on the data and show that 

these are preserved under the program's operations. This abstract approach appeals to our rational mind. A second,  

equally important point of view, is dynamic: Watch the algorithm go through its paces on a variety of input data.  

This  concrete  approach appeals  to our  intuition.  Whereas the static  approach relies  mainly  on "thinking",  the 

dynamic approach calls  mostly  for  "doing" and "perceiving",  and thus is  a prime candidate for  visual  human-
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computer  interaction.  In  this  use of  algorithm animation,  the user  may be checking his understanding of  the 

algorithm, or may be checking the algorithm's correctness—in principle, he could reason this out, but in practice, it 

is faster and safer to have the computer animation as a double check.

Exploring

In a growing number of applications, computer visualization cannot be replaced by any other technique. This is  

the case, for example, in exploratory data analysis, where a scientist may not know a priori what she is looking for,  

and  the  only  way  to  look  at  a  mass  of  data  is  to  generate  pictures  from it  (see  a  special  issue  on  scientific  

visualization [Nie 89]). At times static pictures will do, but in simulations (e.g. of the onset of turbulent flow) we 

prefer to see an animation over time.

Turning to the  techniques  of  animation,  computer  technology is  in  the midst  of  extremely  rapid  evolution 

toward ever-higher-quality  interactive  image generation on powerful  graphics  workstations (see  [RN 91] for  a  

survey of the state of the art). Fortunately, animating algorithms such as those presented in this book can be done 

adequately with the graphics tools available on low-cost workstations. These algorithms operate on discrete data 

configurations (such as matrices, trees, graphs), and use standard data structures, such as arrays and lists. For such  

limited classes of algorithms, there are software packages that help produce animations based on specifications, 

with a minimum of extra programming required. An example of an algorithm animation environment is the BALSA  

system [Bro 88,  BS 85].  A  more recent  example is  the XYZ GeoBench,  which animates  geometric  algorithms  

[NSDAB 91].

In our experience, the bottleneck of algorithm animation is not the extra code required, but graphic design.  

What do you want to show, and how do you display it, keeping in mind the limitations of the system you have to  

work with? The key point to consider is that data does not look like anything until we have defined a mapping from  

the data space into visual space. Defining such a mapping ranges from trivial to practically impossible.

1. For  some  kinds  of  data,  such  as  geometric  data  in  two-  and  three-dimensional  space,  or  real-valued  

functions of one or two real variables, there are natural mappings that we learned in school. These help us  

greatly in getting a feel for the data.

2. Multidimensional data (dimension ≥ 3) can be displayed on a two-dimensional screen using a number of 

straight forward techniques, such as projections into a subspace, or using color or gray level as a fourth 

dimension. But our power of perception diminishes rapidly with increasing dimensionality.

3. For discrete combinatorial data there is often no natural or accepted visual representation. As an example, 

we often draw a graph by mapping nodes into points and edges into lines. This representation is natural for  

graphs that are embedded in Euclidean space, such as a road network, and we can readily make sense of a 

map with thousands of cities and road links. When we extend it to arbitrary graphs by placing a node 

anywhere on the screen, on the other hand, we get a random crisscrossing of lines of little intuitive value.

In addition to such inherent problems of visual representation, practical difficulties of the most varied type  

abound. Examples:

• Some screens are awfully small, and some data sets are awfully large for display even on the largest screens.

• An animation has to run within a narrow speed range. If it is too fast, we fail to follow, or the screen may 

flicker disturbingly; if too slow, we may lack the time to observe it.
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In conclusion, we hold that it is not too difficult to animate simple algorithms as discussed here by interspersing 

drawing statements into the normal code. Independent of the algorithm to be animated, you can call on your own  

collection of display and interaction procedures that you have built up in your frame program (in the section "A 

graphics frame program). But designing an adequate graphic representation is hard and requires a creative effort 

for each algorithm—that is where animators/programmers will spend the bulk of their effort. More on this topic in  

[NVH 86].

Example: the convex hull of points in the plane

The following program is an illustrative example for algorithm animation. 'ConvexHull'  animates an  on-line 

algorithm that constructs half the convex hull (say, the upper half) of a set of points presented incrementally. It 

accepts one point at a time, which must lie to the right of all preceding ones, and immediately extends the convex 

hull. The algorithm is explained in detail in “sample problems and algorithms”.

program ConvexHull;  { of n ≤ 20 points in two dimensions }

const nmax = 19;  { max number of points }
r = 3; { radius of point plot }

var x, y, dx, dy: array[0 .. nmax] of integer;
b: array[0 .. nmax] of integer;  { backpointer }
n: integer;  { number of points entered so far }
px, py: integer;  { new point }

procedure PointZero;
begin

n := 0;
x[0] := 5;  y[0] := 20;  { the first point at fixed location }
dx[0] := 0;  dy[0] := 1;  { assume vertical tangent }
b[0] := 0;  { points back to itself }
PaintOval(y[0] – r, x[0] – r, y[0] + r, x[0] + r)

end;

function NextRight: boolean;
begin

if  n ≥ nmax  then
NextRight := false

else  begin
repeat until Button;
while Button do  GetMouse(px, py);
if  px ≤ x[n]  then

NextRight := false
else  begin

PaintOval(py – r, px – r, py + r, px + r);
n := n + 1;  x[n] := px;  y[n] := py;
dx[n] := x[n] – x[n – 1]; { dx > 0 } dy[n] := y[n] – y[n –1];
b[n] := n – 1;
MoveTo(px, py);  Line(–dx[n], –dy[n]);  NextRight := true

end
end

end;

procedure ComputeTangent;
var i: integer;
begin

i := b[n];
while  dy[n] · dx[i] > dy[i] · dx[n]  do  begin  { dy[n]/dx[n] > 

dy[i]/dx[i] }
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i := b[i];
dx[n] := x[n] – x[i];  dy[n] := y[n] – y[i];
MoveTo(px, py);  Line(–dx[n], –dy[n]);
b[n] := i

end;
MoveTo(px, py);  PenSize(2, 2);  Line(–dx[n], –dy[n]);  PenNormal

end;

procedure Title;
begin

ShowText;  ShowDrawing;  { make sure windows lie on top }
WriteLn('The convex hull');
WriteLn('of n points in the plane sorted by x-coordinate');
WriteLn('is computed in linear time.');
Write('Click next point to the right, or Click left to quit.')

end;

begin  { ConvexHull }
Title;  PointZero;
while  NextRight  do  ComputeTangent;
Write('That's it!')
end.

A gallery of algorithm snapshots

The screen dumps shown in Exhibit 3.1 were taken from demonstration programs that we use to illustrate topics 

discussed in class. Although snapshots cannot convey the information and the impact of animations, they may give  

the reader  ideas  to try  out.  We select  two standard algorithm animation  topics  (sorting  and random number 

generation), and an example showing the effect of cumulative rounding errors.

Exhibit 3.1: Initial configuration of data, …
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Exhibit 3.1: … and snapshots from two sorting algorithms.

Visual test for randomness

Our visual system is amazingly powerful at detecting patterns of certain kinds in the midst of noise.  Random 

number generators (RNGs) are intended to simulate "noise" by means of simple formulas. When patterns appear in 

the visual representation of supposedly random numbers, chances are that this RNG will also fail more rigorous 

statistical tests. The eyes' pattern detection ability serves well to disqualify a faulty RNG but cannot certify one as  

adequate.  Exhibit  3.2 shows a simulation of the Galton board. In theory, the resulting density diagram should  

approximate a bellshaped Gaussian distribution. Obviously, the RNG used falls short of expectations. 

Exhibit 3.2: One look suffices to unmask a bad RNG.

Numerics of chaos, or chaos of numerical computation?

The following example shows the effect of rounding errors and precision in linear recurrence relations. The d-

step linear recurrence with constant coefficients in the domain of real or complex numbers,
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is one of the most frequent formulas evaluated in scientific and technical computation (e.g. for the solution of  

differential equations). By proper choice of the constants ci and of initial values z0,  z1,  … , zd–1 we can generate 

sequences zk that when plotted in the plane of complex numbers form many different figures. With d= 1 and |χ 1|= 1, 

for example, we generate circles. The pictures in  Exhibit 3.3 were all generated with d = 3 and conditions that 

determine a curve that is most easily described as a circle 3 running around the perimeter of another circle 2 that  

runs around a stationary circle 1. We performed this computation with a floating-point package that lets us pick 

precision P (i.e. the number of bits in the mantissa). The resulting pictures look a bit chaotic, with a behavior we  

have come to associate with fractals—even if the mathematics of generating them is completely different, and linear 

recurrences computed without error would look much more regular. Notice that the first two images are generated 

by the same formula, with a single bit of difference in the precision used. The whim of this 1-bit difference in 

precision changes the image entirely.
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Exhibit 3.3: The effect of rounding errors in linear recurrence relations.

Programming projects

1. Use  your  personal  graphics  frame  program  (the  programming  project  of  “graphics  primitives  and 

environments”) to implement and animate the convex hull algorithm example.
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2. Use  your  graphics  frame  program  to  implement  and  animate  the  behavior  of  recurrence  relations  as 

discussed in the section “A gallery of algorithm snapshots”.

3. Extend your graphics frame program with a set of dialog control operations sufficient to guide the user  

through the various steps of the animation of recurrence relations: in particular, to give him the options, at  

any time, to enter a new set of parameters, then execute the algorithm and animate it in either 'movie 

mode' (it runs at a predetermined speed until stopped by the user), or 'step mode' [the display changes only 

when the user enters a logical command 'next' (e.g. by clicking the mouse or hitting a specific key)].
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Part II: Programming 
concepts: beyond notation

Thoughts on the role of programming notations

A programming language is the main interface between a programmer and the physical machine, and a novice  

programmer will tend to identify "programming" with "programming in the particular language she has learned".  

The  realization  that  there  is  much to  programming  "beyond notation"  (i.e.  principles  that  transcend any  one  

language) is a big step forward in a programmer's development.

Part II aims to help the reader take this step forward. We present examples that are best understood by focusing 

on abstract principles of algorithm design, and only later do we grope for suitable notations to turn this principle 

into an algorithm expressed in sufficient detail to become executable. In keeping with our predilection for graphic  

communication, the first informal expression of an algorithmic idea is often pictorial. We show by example how 

such representations, although they may be incomplete, can be turned into programs in a formal notation.

The  literature  on  programming  and  languages.  There  are  many  books  that  present  principles  of 

programming and of programming languages from a higher level of abstraction. The principles highlighted differ 

from  author  to  author,  ranging  from  intuitive  understanding  to  complete  formality.  The  following  textbooks 

provide an excellent sample from the broad spectrum of approaches: [ASS 84], [ASU 86], [Ben 82], [Ben 85], [Ben  

88], [Dij 76], [DF 88], [Gri 81], and [Mey 90].
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4. Algorithms and programs 
as literature: substance and 
form

Learning objectives:

• programming in the large versus programming in the small

• large flat programs versus small deep programs

• programs as literature

• fractal pictures: snowflakes and Hilbert's space-filling curve

• recursive definition of fractals by production or rewrite rules 

• Pascal and programming notations

Programming in the large versus programming in the small

In studying and discussing the art of programming it is useful to distinguish between large programs and small  

programs, since these two types impose fundamentally different demands on the programmer.

Programming in the large

Large  programs  (e.g.  operating  systems,  database  systems,  compilers,  application  packages)  tax  our 

organizational  ability.  The  most  important  issues  to  be  dealt  with  include  requirements  analysis,  functional 

specification, compatibility with other systems, how to break a large program into modules of manageable size,  

documentation, adaptability to new systems and new requirements, how to organize the team of programmers, and 

how to test the software. These issues are the staple of  software engineering. When compared to the daunting 

managerial and design challenges, the task of actual coding is relatively simple. Large programs are often flat: Most 

of the listing consists of comments, interface specifications, definitions, declarations, initializations, and a lot of 

code that is executed only rarely. Although the function of any single page of source code may be rather trivial when  

considered by itself, it is difficult to understand the entire program, as you need a lot of information to understand  

how this page relates to the whole. The classic book on programming in the large is [Bro 75].

Programming in the small

Small  programs,  of  the  kind  discussed  in  this  book,  challenge  our  technical  know-how  and  inventiveness.  

Algorithmic  issues dominate  the  programmer's  thinking:  Among  several  algorithms  that  all  solve  the  same 

problem, which is the most efficient under the given circumstances? How much time and space does it take? What  

data structures do we use? In contrast to large programs, small programs are usually  deep, consisting of short, 

compact code many of whose statements are executed very often. Understanding a small program may also be 

difficult, at least initially, since the chain of thought is often subtle. Once you understand it thoroughly, you can  

reproduce it at any time with much less effort than was first required. Mastery of interesting small programs is the 
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best way to get started in computer science. We encourage the reader to work out all the details of the examples we  

present.

This book is concerned only with programming in the small.  This decision determines our choice of 

topics to be presented, our style of presentation, and the notation we use to express programs, explanations, and  

proofs, and heavily influences our comments on techniques of programming. Our style of presentation appeals to  

the reader's intuition more than to formal rigor. We aim at highlighting the key idea of any argument that we make 

rather than belaboring the details. We take the liberty of using a free notation that suits the purpose of any specific  

argument we wish to make, trusting that the reader understands our small programs so well that he can translate 

them into the programming language of his choice. In a nut shell, we emphasize substance over form.

The purpose of Part II is to help engender a fluency in using different notations. We provide yet other examples 

of unconventional notations that match the nature of the problem they are intended to describe, and we show how  

to translate  them into Pascal-like  programs.  Since much of  the difference between programming languages  is  

merely syntactic, we include two chapters that cover the basics of syntax and syntax analysis.  These topics are  

important  in  their  own right;  we present  them early  in  the hope  that  they will  help  the student  see  through 

differences of notation that are merely "syntactic sugar".

Documentation versus literature: is it meant to be read?

It is instructive to distinguish two types of written materials,  and two corresponding types of writing tasks:  

documents and literature.  Documents are constrained by requirements of many kinds, are read when a specific 

need arises (rarely for pleasure), and their quality is judged by criteria such as formality, conformity to a standard,  

completeness, accuracy, and consistency.  Literature is a form of art free from conventions, read for education or 

entertainment, and its quality is judged by aesthetic criteria much harder to enumerate than the ones above. The  

touchstone is the question: Is it meant to be read? If the answer is "only if necessary", then it's a document, not  

literature.

As the name implies, the documentation of large programs is a typical document-writing chore. Much has been 

written in software engineering about documentation, a topic whose importance grows with the size and complexity 

of the system to be documented. We hold that small programs are not documented, they are explained. As such,  

they are literature, or ought to be. The idea of programs as literature is widely held (see, e.g. [Knu 84]). The key idea  

is that an algorithm or program is part of the text and melts into the text in the same way as a paragraph, a formula,  

or a picture does. There are also formal notations and systems designed to support a style of programming that  

integrates text and code to form a package that is both readable for humans and executable by machines [Knu 83].

Whatever notation is used for literate programming, it has to describe all phases of a program's evolution, from 

idea to specification to algorithm to program. Details of a good program cannot be understood, or at least not  

appreciated, without an awareness of the grand design that guided the programmer. Whereas details are usually  

well expressed in some formal notation, grand designs are not. For this reason we renounce formality and attempt  

to convey ideas in whatever notation suits our purpose of insightful explanation. Let us illustrate this philosophy  

with some examples.
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A snowflake

Fractal pictures are intuitively characterized by the requirement that any part of the picture, of any size, when 

sufficiently magnified, looks like the whole picture. Two pieces of information are required to define a specific  

fractal:

1. A picture primitive that serves as a building-block: Many copies of this primitive, scaled to many different  

sizes, are composed to generate the picture.

2. A recursive rule that defines the relative position of the primitives of different size.

A picture primitive is surely best defined by a drawing, and the manner of composing primitives in space again  

calls for a pictorial representation, perhaps augmented by a verbal explanation. In this style we define the fractal  

'Snowflake' by the following production rule, which we read as follows: A line segment, as shown on the left-hand 

side, must be replaced by a polyline, a chain of four shorter segments, as shown at the right-hand side (Exhibit 4.1). 

We start with an initial configuration (the zero-generation) consisting of a single segment (Exhibit 4.2). If we apply 

the production rule just once to every segment of the current generation, we obtain successively a first, second, and  

third generation, as shown in Exhibit 4.3. Further generations quickly exhaust the resolution of a graphics screen or 

the  printed  page,  so  we  stop  drawing  them.  The  curve  obtained as  the  limit  when  this  process  is  continued 

indefinitely is a fractal. Although we cannot draw it exactly, one can study it as a mathematical object and prove  

theorems about it.

Exhibit 4.1: Production for replacing a straight-line segment by a polyline

Exhibit 4.2: The simplest initial configuration

Exhibit 4.3: The first three generations

The production rule drawn above is the essence of this fractal, and of the sequence of pictures that lead up to it.  

The initial configuration, on the other hand, is quite arbitrary: If we had started with a regular hexagon, rather than 

a single line segment, the pictures obtained would really have lived up to their name, snowflake. Any other initial 

configuration still generates curves with the unmistakable pattern of snowflakes, as the reader is encouraged to  

verify.

After  having familiarized  ourselves  with  the  objects  described,  let  us  turn  our  attention  to  the  method  of 

description and raise three questions about the formality and executability of such notations.

1. Is our notation sufficiently formal to serve as a program for a computer to draw the family of generations of 

snowflakes? Certainly  not,  as we stated certain  rules  in colloquial  language and left  others  completely  

unsaid, implying them only by sample drawings. As an example of the latter, consider the question: If a  
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segment is to be replaced by a "plain with a mountain in the center", on which side of the segment should  

the peak point? The drawings above suggest that all peaks stick out on the same side of the curve, the  

outside.

2. Could our method of description be extended and formalized to serve as  a programming language for  

fractals? Of course. As an example, the production shown in  Exhibit 4.4 specifies the side on which the 

peak is to point. Every segment now has a + side and a – side. The production above states that the new 

peak is to grow over the + side of the original segment and specifies the + sides and – sides of each of the 

four  new  segments.  For  every  other  aspect  that  our  description  may  have  left  unspecified,  such  as 

placement on the screen, some notation could readily be designed to specify every detail with complete  

rigor. In “Syntax” and “Syntax analysis” we introduce some of the basic techniques for designing and using 

formal notations.

Exhibit 4.4: Refining the description to specify a "left-right" orientation.

3. Should we formalize this method of description and turn it into a machine-executable notation? It depends 

on the purpose for which we plan to use it. Often in this book we present just one or a few examples that  

share a common design. Our goal is for the reader to understand these few examples, not to practice the  

design of artificial programming languages. To avoid being sidetracked by a pedantic insistence on rigorous 

notation, with its inevitable overhead of introducing formalisms needed to define all details, we prefer to  

stop  when we have  given  enough information  for  an  attentive  reader  to  grasp  the  main  idea  of  each 

example.

Hilbert's space-filling curve

Space-filling curves have been an object of mathematical curiosity since the nineteenth century, as they can be  

used to prove that the cardinality of an interval, considered as a set of points, equals the cardinality of a square (or 

any other finite two-dimensional region). The term  space-filling describes the surprising fact that such a curve 

visits every point within a square. In mathematics, space-filling curves are constructed as the limit to which an 

infinite  sequence  of  curves  Ci converges.  On a  discretized  plane,  such  as  a  raster-scanned  screen,  no limiting 

process is needed, and typically one of the first dozen curves in the sequence already paints every pixel, so the term 

space-filling is quickly seen to be appropriate.

Let us illustrate this phenomenon using Hilbert's space-filling curve (David Hilbert, 1862–1943), whose first six  

approximations are shown in Exhibit 4.5. As the pictures suggest, Hilbert curves are best-described recursively, but 

the composition rule is more complicated than the one for snowflakes. We propose the two productions shown in 

Exhibit 4.6 to capture the essence of Hilbert (and similar) curves. This pictorial program requires explanation, but  

we hope the reader who has once understood it will find this notation useful for inventing fractals of her own. As 

always, a production is read: "To obtain an instance of the left-handside, get instances of all the things listed on the  

right-handside", or equivalently, "to do the task specified by the left-hand side, do all the tasks listed on the right-

hand side".
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Exhibit 4.5: Six generations of the family of Hilbert curves

Exhibit 4.6: Productions for painting a square in terms of its quadrants

The left-hand side of the first production stands for the task: paint a square of given size, assuming that you 

enter at the lower left corner facing in the direction indicated by the arrow and must leave in the upper left corner,  

again facing in the direction indicated by that arrow. We assume turtle graphics primitives, where the state of the  

brush is given by a position and a direction. The hatching indicates the area to be painted. It lies to the right of the 

line that connects entry and exit corners, which we read as "paint with your right hand", and the hatching is in thick 

strokes. The left-hand side of the second production is similar: Paint a square "with your left hand" (hatching is in 

thin strokes), entering and exiting as indicated by the arrows.

The right-hand sides of the productions are now easily explained. They say that in order to paint a square you  

must paint each of its quadrants, in the order indicated. They give explicit instructions on where to enter and exit,  
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what direction to face, and whether you are painting with your right or left hand. The last detail is to make sure that  

when the brush exits from one quadrant it gets into the correct state for entering the next. This requires the brush  

to turn by 90˚, either left or right, as the curved arrows in the pictures indicate. In the continuous plane we imagine  

the brush to "turn on its heels", whereas on a discrete grid it also moves to the first grid point of the adjacent  

quadrant.

These  productions  omit  any rule  for  termination,  thus  simulating the limiting  process  of  true  space-filling 

curves. To draw anything on the screen we need to add some termination rules that specify two things: (1) when to  

invoke the termination rule (e.g.  at some fixed depth of recursion), and (2) how to paint the square that invokes the 

termination rule (e.g. paint it all black). As was the case with snowflakes and with all fractals, the primitive pictures  

are much less important than the composition rule, so we omit it.

The  following  program  implements  a  specific  version  of  the  two  pictorial  productions  shown  above.  The 

procedure 'Walk' implements the curved arrows in the productions: the brush turns by 'halfTurn', takes a step of 

length s, and turns again by 'halfTurn'. The parameter 'halfTurn' is introduced to show the effect of cumulative  

small errors in recursive procedures. 'halfTurn = 45' causes the brush to make right-angle turns and yields Hilbert  

curves. The reader is encouraged to experiment with 'halfTurn = 43, 44, 46, 47', and other values.

program PaintAndWalk;
const pi = 3.14159;  s = 3;  { step size of walk }
var turtleHeading: real;  { counterclockwise, radians }

halfTurn, depth: integer;  { recursive depth of painting }

procedure TurtleTurn(angle: real);
{ turn the turtle angle degrees counterclockwise }
begin  { angle is converted to radian before adding }

turtleHeading := turtleHeading + angle · pi / 180.0
end;  { TurtleTurn }

procedure TurtleLine(dist: real);
{ draws a straight line, dist units long }
begin

Line(round(dist · cos(turtleHeading)), round(–dist·sin(turtle 
Heading)))  

end;  { TurtleLine }

procedure Walk (halfTurn: integer);
begin  TurtleTurn(halfTurn);  TurtleLine(s);  TurtleTurn(halfTurn) 

end;

procedure Qpaint (level: integer; halfTurn: integer);
begin

if  level = 0  then
TurtleTurn(2 · halfTurn)

else  begin
Qpaint(level – 1, –halfTurn);
Walk(halfTurn);
Qpaint(level – 1, halfTurn);
Walk(–halfTurn);
Qpaint(level – 1, halfTurn);
Walk(halfTurn);
Qpaint(level – 1, –halfTurn)

end
end;  { Qpaint }

begin  { PaintAndWalk }
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ShowText;  ShowDrawing;
MoveTo(100, 100);  turtleHeading := 0;  { initialize turtle 

state }
WriteLn('Enter halfTurn 0 .. 359  (45 for Hilbert curves): ');
ReadLn(halfTurn);
TurtleTurn(–halfTurn);  { init turtle turning angle }
Write('Enter depth 1 .. 6: ');  ReadLn(depth);
Qpaint(depth, halfTurn)

end.  { PaintAndWalk }

As a summary of this discourse on notation, we point to the fact that an executable program necessarily has to 

specify many details that are irrelevant from the point of view of human understanding. This book assumes that the  

reader has learned the basic steps of programming, of thinking up such details, and being able to express them  

formally in a programming language. Compare the verbosity of the one-page program above with the clarity and 

conciseness of the two pictorial productions above. The latter state the essentials of the recursive construction, and  

no more, in a manner that a human can understand "at a glance". We aim our notation to appeal to a human mind,  

not necessarily to a computer, and choose our notation accordingly.

Pascal and its dialects: lingua franca of computer science

Lingua franca (1619):

1.  A common language that consists of Italian mixed with French, Spanish, Greek and Arabic and is spoken  

in Mediterranean ports

2. Any of various languages used as common or commercial tongues among peoples of diverse speech

3. Something resembling a common language

                                          (From Webster's Collegiate Dictionary)

Pascal as representative of today's programming languages

The definition above fits Pascal well: In the mainstream of the development of programming languages for a 

couple of decades, Pascal embodies, in a simple design, some of the most important language features that became 

commonly accepted in the 1970s. This simplicity, combined with Pascal's preference for language features that are  

now  well  understood,  makes  Pascal  a  widely  understood  programming  notation.  A  few  highlights  in  the 

development of programming languages may explain how Pascal got to be a lingua franca of computer science.

Fortran  emerged in  1954 as  the first  high-level  programming language to gain  acceptance and became  the 

programming language of the 1950s and early 1960s. Its appearance generated great activity in language design,  

and suddenly, around 1960, dozens of programming languages emerged. Three among these, Algol 60, COBOL, and  

Lisp, became milestones in the development of programming languages, each in its own way. Whereas COBOL 

became the most widely used language of the 1960s and 1970s, and Lisp perhaps the most innovative, Algol 60 

became the most influential in several respects: it set new standards of rigor for the definition and description of a 

language,  it  pioneered  hierarchical  block structure as  the major  technique for  organizing  large programs,  and 

through these major technical contributions became the first of a family of mainstream programming languages 

that includes PL/1, Algol 68, Pascal, Modula-2, and Ada.

The decade of the 1960s remained one of great ferment and productivity in the field of programming languages.  

PL/1 and Algol  68,  two ambitious projects that attempted to integrate many recent advances in programming 

language technology and theory, captured the lion's share of attention for several years. Pascal, a much smaller  
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project and language designed by Niklaus Wirth during the 1960s, ended up eclipsing both of these major efforts.  

Pascal took the best of Algol 60, in streamlined form, and added just one major extension, the then novel type 

definitions  [Hoa 72].  This  lightweight  edifice  made it  possible  to implement efficient Pascal  compilers  on the  

microcomputers  that  mushroomed  during  the  mid  1970s  (e.g.  UCSD  Pascal),  which  opened  the  doors  to 

universities and high schools. Thus Pascal became the programming language most widely used in introductory  

computer science education, and every computer science student must be fluent in it.

Because  Pascal  is  so widely  understood,  we base  our programming notation on it  but  do  not  adhere  to  it  

slavishly. Pascal is more than 20 years old, and many of its key ideas are 30 years old. With today's insights into 

programming languages, many details would probably be chosen differently. Indeed, there are many "dialects" of 

Pascal, which typically extend the standard defined in 1969 [Wir 71] in different directions. One extension relevant 

for a publication language is that with today's hardware that supports large character sets and many different fonts 

and styles, a greater variety of symbols can be used to make the source more readable. The following examples 

introduce some of the conventions that we use often.

"Syntactic sugar": the look of programming notations

Pascal statements lack an explicit terminator. This makes the frequent use of begin-end brackets necessary, as in 

the following program fragment, which implements the insertion sort algorithm (see chapter 17 and the section 

"Simple sorting algorithms that work in time"); –∞ denotes a constant ≤ any key value:

A[0] := –∞;
for i := 2 to n do  begin

j := i;
while  A[j] < A[j – 1]  do

begin  t := A[j];  A[j] := A[j – 1];  A[j – 1] := t;  j := j – 1  end;
end;

We aim at brevity and readability but wish to retain the flavor of Pascal to the extent that any new notation we  

introduce can be translated routinely into standard Pascal. Thus we write the statements above as follows:

A[0] := –∞;
for i := 2 to n do  begin

j := i;  { comments appear in italics }
while  A[j] < A[j – 1]  do  { A[j] :=: A[j – 1];  j := j – 1 }
{ braces serve as general-purpose brackets, including begin-end }
{ :=: denotes the exchange operator }

end;

Borrowing heavily from standard mathematical  notation, we use conventional mathematical signs to denote  

operators whose Pascal designation was constrained by the small character sets typical of the early days, such as:

≠ ≤ ≥ ≠ ¬ ∧ ∨ ∈ ∉ ∩ ∪ \ |x| instead of 
<> <= >= <> not and or in not in · + – abs(x) respectively

We also use signs that may have no direct counterpart in Pascal, such 
as:

⊃ ⊇ ⊄ ⊂ ⊆ Set-theoretic relations

∞ Infinity, often used for a 
"sentinel" (i.e. a number 
larger than all numbers to 
be processed in a given 
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application)

± Plus-or-minus, used to 
define an interval [of 
uncertainty]

∑∏ Sum and product

            x Ceiling of a real number x 
(i.e. the smallest integer 
≥ x)

x Floor of a real number x (i.e. the 
largest integer ≤ x)

√ Square root

log Logarithm to the base 2

ln Natural logarithm, to the base e

iff If and only if

Although we may take a cavalier attitude toward notational differences, and readily use concise notations such  

as ∧ ∨ for the more verbose 'and', 'or', we will try to remind readers explicitly about our assumptions when there is a  

question about semantics. As an example, we assume that the boolean operators ∧ and ∨ are conditional, also called 

'cand' and 'cor': An expression containing these operators is evaluated from left to right, and the evaluation stops as  

soon as the result is known. In the expression x  ∧ y, for example, x is evaluated first. If x evaluates to 'false', the 

entire expression is 'false' without y ever being evaluated. This convention makes it possible to leave y undefined 

when x is 'false'. Only if x evaluates to 'true' do we proceed to evaluate y. An analogous convention applies to x ∨ y.

Program structure

Whereas the concise notations introduced above to denote operators can be translated almost one-to-one into a  

single line of standard Pascal, we also introduce a few extensions that may affect the program structure. In our view 

these changes make programs more elegant and easier to understand. Borrowing from many modern languages, we 

introduce a 'return()'  statement to exit  from procedures and functions and to return the value computed by a 

function.

Example
function gcd(u, v: integer): integer;
{ computes the greatest common divisor (gcd) of u and v }
begin  if  v = 0  then  return(u)  else  return(gcd(v, u mod v)) 

end;

In this example, 'return()' merely replaces the Pascal assignments 'gcd := u' and 'gcd := gcd(v, u mod v)'. The 

latter  in  particular  illustrates  how  'return()'  avoids  a  notational  blemish  in  Pascal:  On the  left  of  the  second  

assignment, 'gcd' denotes a variable, on the right a function. 'Return()' also has the more drastic consequence that it 

causes control to exit from the surrounding procedure or function as soon as it is executed. Without entering into a  

controversy over the general advantages and disadvantages of this "flow of control" mechanism, let us present one 

example, typical of many search procedures, where 'return()' greatly simplifies coding. The point is that a search 
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routine terminates in one of (at least) two different ways: successfully, by having found the item in question, or 

unsuccessfully, because of a number of reasons (the item is not present, and some index is about to fall outside the 

range of a table; we cannot insert an item because the table is full, or we cannot pop a stack because it is empty,  

etc.). For the sake of efficiency as well as readability we prefer to exit from the routine as soon as a case has been  

identified and dealt with, as the following example from “Address computation:” illustrates:

function insert-into-hash-table(x: key): addr; 
var  a: addr;
begin

a := h(x);  { locate the home address of the item x to be 
inserted }

while  T[a] ≠ empty  do  begin
{ skipping over cells that are already occupied }
if  T[a] = x  then  return(a);  { x is already present; return 

its address }

a := (a + 1) mod m  { keep searching at the next address }
end;
{ we've found an empty cell; see if there is room for x to be 

inserted }

if  n < m – 1  then  { n := n + 1;  T[a] := x }  else  err-
msg('table is full');

return(a)  { return the address where x was inserted }
end;

This  code  can  only  be  appreciated  by  comparing  it  with  alternatives  that  avoid  the  use  of  'return()'.  We 

encourage readers to try their hands at this challenge. Notice the three different ways this procedure can terminate: 

(1) no need to insert x because x is already in the table, (2) impossible to insert x because the table is full, and (3)  

the normal case when x is inserted. Standard Pascal incorporates no facilities for "exception handling" (e.g.  to 

cover the first two cases that should occur only rarely) and forces all three outcomes to exit the procedure at its  

textual end.

Let us just mention a few other liberties that we may take. Whereas Pascal limits results of functions to certain  

simple types, we will let them be of  any type: in particular, structured types, such as records and arrays. Rather 

than nesting if-then-else statements in order to discriminate among more than two mutually exclusive cases, we use  

the "flat" and more legible control structure:

if B1 then S1 elsif B2 then S2 elsif … else Sn ;

Our  sample  programs  do  not  return  dynamically  allocated  storage  explicitly.  They  rely  on  a  memory 

management system that retrieves free storage through "garbage collection". Many implementations of Pascal avoid  

garbage collection and instead provide a procedure 'dispose(…)' for the programmer to explicitly return unneeded 

cells. If you work with such a version of Pascal and write list-processing programs that use significant amounts of 

memory, you must insert calls to 'dispose(…)' in appropriate places in your programs.

The  list  above  is  not  intended  to  be  exhaustive,  and  neither  do  we  argue  that  the  constructs  we  use  are  

necessarily superior to others commonly available. Our reason for extending the notation of Pascal (or any other  

programming language we might have chosen as a starting point) is the following: in addressing human readers, we  

believe an open-ended, somewhat informal notation is preferable to the straightjacket of any one programming 

language. The latter becomes necessary if and when we execute a program, but during the incubation period when 
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our understanding slowly grows toward a firm grasp of an idea, supporting intuition is much more important than 

formality. Thus we describe data structures and algorithms with the help of figures, words, and programs as we see  

fit in any particular instance.

Programming project

1. Use your graphics frame program of “Graphics primitives and environments” to implement an editor for  

simple graphics productions such as those used to define snowflakes (e.g. 'any line segment gets replaced 

by a specified sequence of line segments'), and an interpreter that draws successive generations of the 

fractals defined by these productions.
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5. Divide-and-conquer and 
recursion

Learning objectives:

• The algorithmic principle of divide-and-conquer leads directly to recursive procedures. 

• Examples: Merge sort, tree traversal. Recursion and iteration.

• My friend liked to claim "I'm 2/3 Cherokee." Until someone would challenge him "Two- thirds? You mean 

1/2 , or, or maybe 3/8, how on earth can you be 2/3 of anything?" "It's easy," said Jim, "both my parents are  

2/3."

An algorithmic principle

Let A(D) denote the application of an algorithm A to a set of data D, producing a result R. An important class of 

algorithms, of a type called divide-and-conquer, processes data in two distinct ways, according to whether the data 

is small or large:

• If the set D is small, and/or of simple structure, we invoke a simple algorithm A0 whose application A0(D) 

yields R.

• If the set D is large, and/or of complex structure, we partition it into smaller subsets D 1, … , Dk. For each i, 

apply A(Di) to yield a result Ri. Combine the results R1, … , Rk to yield R.

This  algorithmic principle  of  divide-and-conquer leads  naturally to the notion of recursive procedures.  The  

following example outlines  the concept  in  a  high-level  notation,  highlighting  the role  of  parameters  and local  

variables.

procedure A(D: data; var R: result);
var  D1, … , Dk: data;  R1, … , Rk: result;
begin

if  simple(D) then R := A0(D)

else { D1, … , Dk := partition(D);

R1 := A(D1); … ; Rk := A(Dk);

R := combine(R1, … , Rk) }
end;

Notice how an initial data set D spawns sets  D1, … , Dk which, in turn, spawn children of their own. Thus the 

collection of all data sets generated by the partitioning scheme is a tree with root D. In order for the recursive  

procedure A(D) to terminate in all cases, the partitioning function must meet the following condition: Each branch 

of the partitioning tree, starting from the root D, eventually terminates with a data set D0 that satisfies the predicate 

'simple(D0)', to which we can apply the algorithm.

Divide-and-conquer reduces a problem on data set D to k instances of the same problem on new sets D 1, … , Dk 

that  are  "simpler"  than  the  original  set  D.  Simpler  often  means  "has  fewer  elements",  but  any  measure  of  
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"simplicity" that monotonically heads for the predicate 'simple' will do, when algorithm A0 will finish the job. "D is  

simple" may mean "D has no elements", in which case A0 may have to do nothing at all; or it may mean "D has 

exactly one element", and A0 may just mark this element as having been visited.

The following sections show examples of divide-and-conquer algorithms. As we will see, the actual workload is  

sometimes  distributed  unequally  among  different  parts  of  the  algorithm.  In  the  sorting  example,  the  step 

'R:=combine(R1, … , Rk)' requires most of the work; in the "Tower of Hanoi" problem, the application of algorithm 

A0 takes the most effort.

Divide-and-conquer expressed as a diagram: merge sort

Suppose that we wish to sort a sequence of names alphabetically, as shown in Exhibit 5.1. We make use of the 

divide-and-conquer strategy by partitioning a "large" sequence D into two subsequences D1 and D2, sorting each 

subsequence, and then merging them back together into sorted order. This is our algorithm A(D). If D contains at  

most one element, we do nothing at all. A0 is the identity algorithm, A0(D) = D.

Exhibit 5.1: Sorting the sequence {Z, A, S, D} by using a divide-and-conquer scheme

procedure sort(var D: sequence);
var  D1, D2: sequence;

function combine(D1, D2: sequence): sequence;
begin  { combine }

merge the two sorted sequences D1 and D2 
into a single sorted sequence D';
return(D')

end;  { combine }

begin  { sort}
if  |D| > 1  then  { split D into two sequences D1 and D2 of 

equal size;
sort(D1);  sort(D2);  D := combine(D1, D2) }

{ if |D| ≤ 1, D is trivially sorted, do nothing }
end;  { sort }
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In the chapter on “sorting and its complexity”, under the section “merging and merge sorts” we turn this divide-

and-conquer scheme into a program.

Recursively defined trees

A tree, more precisely, a rooted, ordered tree, is a data type used primarily to model any type of hierarchical  

organization.  Its  primitive  parts  are  nodes and  leaves.  It  has  a  distinguished node  called  the  root,  which,  in 

violation of nature, is typically drawn at the top of the page, with the tree growing downward. Each node has a  

certain number of children, either leaves or nodes; leaves have no children. The exact definition of such trees can  

differ slightly with respect to details and terminology. We may define a binary tree, for example, by the condition 

that each node has either exactly, or at most, two children.

The pictorial  grammar shown in  Exhibit  5.2 captures  this  recursive definition of 'binary  tree'  and fixes  the 

details left unspecified by the verbal description above. It uses an alphabet of three symbols: the nonterminal 'tree 

symbol', which is also the start symbol; and two terminal symbols, for 'node' and for 'leaf'.

Exhibit 5.2: The three symbols of the alphabet of a tree grammar

There are  two production or rewriting rules,  p1 and p2 (Exhibit  5.3).  The  derivation shown in  Exhibit  5.4 

illustrates the application of the production rules to generate a tree from the nonterminal start symbol.

Exhibit 5.3: Rule p1 generates a leaf, rule p2 generates a node and two new trees

Exhibit 5.4: One way to derive the tree at right

We may make the production rules more detailed by explicitly naming the coordinates associated with each 

symbol.  On a display  device  such as a computer screen,  the x-  and y-values of  a point  are typically Cartesian 

coordinates with the origin in the upper-left corner. The x-values increase toward the bottom and the y-values  

increase toward the right of the display. Let (x, y) denote the screen position associated with a particular symbol,  

and let d denote the depth of a node in the tree. The root has depth 0, and the children of a node with depth d have  

depth d+1. The different levels of the tree  are separated by some constant distance s.  The separation between 

siblings is determined by a (rapidly decreasing) function t(d) which takes as argument the depth of the siblings and 

depends on the drawing size of the symbols and the resolution of the screen. These more detailed productions are  

shown in Exhibit 5.5.
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Exhibit 5.5: Adding coordinate information to productions in order to control graphic layout

The translation of these two rules into high-level code is now plain:

procedure p1(x, y: coordinate);
begin

eraseTreeSymbol(x, y);
drawLeafSymbol(x, y)

end;

procedure p2(x, y: coordinate; d: level);
begin

eraseTreeSymbol(x, y);
drawNodeSymbol(x, y);
drawTreeSymbol(x + s, y – t(d + 1));
drawTreeSymbol(x + s, y + t(d + 1))

end;

If we choose t(d) = c · 2–d, these two procedures produce the display shown in Exhibit 5.6 of the tree generated 

in Exhibit 5.4.

Exhibit 5.6: Sample layout obtained by halving horizontal displacement at each successive level

Technical remark about the details of defining binary trees: Our grammar forces every node to have exactly two 

children: A child may be a node or a leaf. This lets us subsume two frequently occurring classes of binary trees 

under one common definition.

1. 0-2 (binary) trees. We may identify leaves and nodes, making no distinction between them (replace the 

squares by circles in Exhibit 5.3 and Exhibit 5.4). Every node in the new tree now has either zero or two 

children, but not one. The smallest tree has a single node, the root.

2. (Arbitrary)  Binary trees. Ignore  the leaves  (drop  the squares  in  Exhibit  5.3 and  Exhibit  5.4 and the 

branches leading into a square). Every node in the new tree now has either zero, one, or two children. The 

smallest tree (which consisted of a single leaf) now has no node at all; it is empty.

For clarity's sake, the following examples use the terminology of nodes and leaves introduced in the defining  

grammar. In some instances we point out what happens under the interpretation that leaves are dropped.  
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Recursive tree traversal

Recursion is a powerful tool for programming divide-and-conquer algorithms in a straightforward manner. In  

particular, when the data to be processed is defined recursively, a recursive processing algorithm that mirrors the 

structure of the data is most natural. The recursive tree traversal procedure below illustrates this point.

Traversing a tree (in general: a graph, a data structure) means visiting every node and every leaf in an orderly 

sequence, beginning and ending at the root. What needs to be done at each node and each leaf is of no concern to 

the traversal algorithm, so we merely designate that by a call to a 'procedure visit( )'. You may think of inspecting 

the contents of all nodes and/or leaves, and writing them to a file.

Recursive tree traversals use divide-and-conquer to decompose a tree into its subtrees: At each node visited 

along the way, the two subtrees L and R to the left and right of this node must be traversed. There are three natural  

ways to sequence the node visit and the subtree traversals:

1. node; L; R  { preorder, or prefix }

2. L; node; R  { inorder or infix }

3. L; R; node  { postorder or suffix }

The following example translates this traversal algorithm into a recursive procedure:

procedure traverse(T: tree);
{ preorder, inorder, or postorder traversal of tree T with 

leaves }
begin

if  leaf(T) then visitleaf(T)
else { T is composite }

{ visit1(root(T));
traverse(leftsubtree(T));
visit2(root(T));
traverse(rightsubtree(T);
visit3(root(T)) }

end;

When leaves are ignored (i.e. a tree consisting of a single leaf is considered to be empty), the procedure body  

becomes slightly simpler:

if  not empty(T)  then  { … }

To accomplish the k-th traversal scheme (k = 1, 2, 3), 'visitk' performs the desired operation on the node, while 

the other two visits do nothing. If all three visits print out the name of the node, we obtain a sequence of node 

names  called  'triple  tree  traversal',  shown  in  Exhibit  5.7 along  with  the  three  traversal  orders  of  which  it  is 

composed. During the traversal the nodes are visited in the following sequence:
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Exhibit 5.7: Three standard orders merged into a triple tree traversal

Recursion versus iteration: the Tower of Hanoi

The "Tower of Hanoi" is a stack of n disks of different sizes, held in place by a tall peg (Exhibit 5.8). The task is to 

transfer the tower from source peg S to a target peg T via an intermediate peg I, one disk at a time, without ever  

placing a larger disk on a smaller one. In this case the data set D is a tower of n disks, and the divide-and-conquer  

algorithm A partitions D asymmetrically into a small "tower" consisting of a single disk (the largest, at the bottom 

of the pile) and another tower D' (usually larger, but conceivably empty) consisting of the n – 1 topmost disks. The  

puzzle is solved recursively in three steps:

1. Transfer D' to the intermediate peg I.  

2. Move the largest disk to the target peg T.  

3. Transfer D' on top of the largest disk at the target peg T.

Exhibit 5.8: Initial configuration of the Tower of Hanoi.

Step 1 deserves more explanation. How do we transfer the n – 1 topmost disks from one peg to another? Notice  

that  they  themselves  constitute  a  tower,  to  which we  may  apply  the same three-step  algorithm.  Thus we  are 

presented with successively simpler problems to solve, namely, transferring the n – 1 topmost disks from one peg to 

another, for decreasing n, until finally, for n = 0, we do nothing.

procedure Hanoi(n: integer; x, y, z: peg);
{ transfer a tower with n disks from peg x, via y, to z }

begin
if  n > 0  then  { Hanoi(n – 1, x, z, y);  move(x, z);  Hanoi(n – 

1, y, x, z) }
end;

Recursion has the advantage of intuitive clarity. Elegant and efficient as this solution may be, there is some 

complexity hidden in the bookkeeping implied by recursion.
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The following procedure is an equally elegant and more efficient iterative solution to this problem. It assumes 

that the pegs are cyclically ordered, and the target peg where the disks will first come to rest depends on this order  

and on the parity of n (Exhibit 5.9). For odd values of n, 'IterativeHanoi' moves the tower to peg I, for even values of  

n, to peg T.

Exhibit 5.9: Cyclic order of the pegs.

procedure IterativeHanoi(n: integer);
var  odd: boolean;  { odd represents the parity of the move }
begin

odd := true;
repeat

 case  odd  of
true: transfer smallest disk cyclically to next peg;
false: make the only legal move leaving the smallest in place

end;
odd := not odd

until  entire tower is on target peg
end;

Exercise: recursive or iterative pictures?

Chapter 4 presented some beautiful examples of recursive pictures, which would be hard to program without 

recursion.  But  for  simple  recursive  pictures  iteration  is  just  as  natural.  Specify  a  convenient  set  of  graphics  

primitives  and  use  them  to  write  an  iterative  procedure  to  draw  Exhibit  5.10 to  a  nesting  depth  given  by  a 

parameter d.

Exhibit 5.10: Interleaved circles and equilateral triangles cause the radius to be exactly halved at each step.

Solution

There  are  many  choices  of  suitable  primitives  and  many  ways  to  program  these  pictures.  Specifying  an  

equilateral triangle by its center and the radius of its circumscribed circle simplifies the notation. Assume that we  

may use the procedures:

procedure circle(x, y, r: real); { coordinates of center and 
radius }

procedure equitr(x, y, r: real); { center and radius of 
circumscribed circle}
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procedure citr(x, y, r: real; d: integer);
var vr: real;  { variable radius }

i: integer;
begin

vr := r;
for i := 1 to d do  { equitr(x, y, vr);  vr := vr/2;  circle(x, y, 

vr) }
{ show that the radius of consecutively nested circles gets

exactly halved at each step }
end;

The flag of Alfanumerica: an algorithmic novel on iteration and recursion

In the process of automating its flag industry, the United States of Alfanumerica announced a competition for 

the most elegant program to print its flag:

All solutions submitted to the prize committee fell into one of two classes, the iterative and recursive programs. 

The proponents of these two algorithm design principles could not agree on a winner, and the selection process 

sparked a civil war that split the nation into two: the Iterative States of Alfanumerica (ISA) and the Recursive States  

of Alfanumerica (RSA). Both nations fly the same flag but use entirely different production algorithms.

1. Write a 

procedure ISA(k: integer);

to print the ISA flag, using an iterative algorithm, of course. Assume that k is a power of 2 and k ≤ (half the  

line length of the printer).

2. Explain why the printer industry in RSA is much more innovative than the one in ISA. All modern RSA 

printers include operations for positioning the writing head anywhere within a line, and line feed works  

both forward and backward.

3. Specify  the  precise  operations  for  some  RSA  printer  of  your  design.  Using  these  operations,  write  a 

recursive 

procedure RSA(k: integer); 

to print the RSA flag.

4. Explain an unforeseen consequence of this drive to automate the flag industry of Alfanumerica: In both ISA 

and RSA, a growing number of flags can be seen fluttering in the breeze turned around by 90˚.

Exercises

1. Whereas divide-and-conquer algorithms usually attempt to divide the data in equal halves, the recursive  

Tower  of  Hanoi  procedure  presented  in  the  section  'Recursion  versus  iteration:  The  Tower  of  Hanoi" 

divides the data in a very asymmetric manner: a single disk versus n – 1 disks. Why?

2. Prove by induction on n that the iterative program 'IterativeHanoi' solves the problem in 2n–1 iterations.

52

                ****************
        ********        ********
    ****    ****    ****    ****
  **  **  **  **  **  **  **  **
 * * * * * * * * * * * * * * * *

k blanks followed by k stars
twice (k/2 blanks followed by k/2 stars)
…
continue doubling and halving
down to runs length of 1.



This book is licensed under a Creative Commons Attribution 3.0 License

6. Syntax
Learning objectives:

• syntax and semantics

• syntax diagrams and EBNF describe context-free grammars 

• terminal and nonterminal symbols 

• productions 

• definition of EBNF by itself 

• parse tree

• grammars must avoid ambiguities 

• infix, prefix, and postfix notation for arithmetic expressions

• prefix and postfix notation do not need parentheses

Syntax and semantics

Computer science has borrowed some important concepts from the study of natural languages (e.g. the notions  

of syntax and semantics).  Syntax rules prescribe how the sentences of a language are formed, independently of 

their meaning. Semantics deals with their meaning. The two sentences "The child draws the horse" and "The horse 

draws the child" are both syntactically correct according to the accepted rules of grammar. The first sentence clearly 

makes sense, whereas the second sentence is baffling: perhaps senseless (if "draw" means "drawing a picture"),  

perhaps meaningful (if "draw" means "pull"). Semantic aspects—whether a sentence is meaningful or not, and if so,  

what it means—are much more difficult to formalize and decide than syntactic issues.

However, the analogy between natural languages and programming languages does not go very far. The choice  

of  English  words  and  phrases  such  as  "begin",  "end",  "goto",  "if-then-else"  lends  a  programming  language  a 

superficial similarity to natural language, but no more. The possibility of verbal encoding of mathematical formulas 

into pseudo-English has deliberately been built  into COBOL; for example,  "compute velocity times time giving 

distance" is nothing but syntactic sugar for "distance := velocity · time". Much more important is the distinction 

that natural languages are not rigorously defined (neither the vocabulary, nor the syntax, and certainly not the  

semantics), whereas programming languages should be defined according to a rigorous formalism. Programming 

languages are much closer to the formal notations of mathematics than to natural languages, and programming 

notation would be a more accurate term.

The lexical part of a modern programming language [the alphabet, the set of reserved words, the construction 

rules for the identifiers (i.e. the equivalent to the vocabulary of a natural language) and the  syntax are usually 

defined formally. However, system-dependent differences are not always described precisely. The compiler often 

determines  in  detail  the  syntactic  correctness  of  a  program  with  respect  to  a  certain  system (computer  and  

operating system). The semantics of a programming language could also be defined formally, but this is rarely  

done, because formal semantic definitions are extensive and difficult to read.
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The syntax of a programming language is not as important as the semantics, but good understanding of the 

syntax often helps in understanding the language. With some practice one can often guess the semantics from the 

syntax, since the syntax of a well-designed programming language is the frame that supports the semantics.

Grammars and their representation: syntax diagrams and EBNF

The syntax of  modern programming languages  is  defined by  grammars.  These are  mostly  of  a  type called 

context-free  grammars,  or  close  variants  thereof,  and can be given in  different  notations.  Backus-Naur form 

(BNF), a milestone in the development of programming languages, was introduced in 1960 to define the syntax of 

Algol. It is the basis for other notations used today, such as EBNF (extended BNF) and graphical representations 

such as syntax diagrams. EBNF and syntax diagrams are syntactic notations that describe exactly the context-free 

grammars of formal language theory.

Recursion is a central theme of all these notations: the syntactic correctness and structure of a large program  

text  are  reduced to  the syntactic  correctness  and structure of  its  textual  components.  Other  common notions 

include: terminal symbol, nonterminal symbol, and productions or rewriting rules that describe how nonterminal 

symbols generate strings of symbols.

The set of terminal symbols forms the alphabet of a language, the symbols from which the sentences are built. In 

EBNF a terminal symbol is enclosed in single quotation marks; in syntax diagrams a terminal symbol is represented  

by writing it in an oval:

Nonterminal symbols represent syntactic entities: statements, declarations, or expressions. Each nonterminal 

symbol is given a name consisting of a sequence of letters and digits, where the first character must be a letter. In  

syntax diagrams a nonterminal symbol is represented by writing its name in a rectangular box:

If a construct consists of the catenation of constructs A and B, this is expressed by

If a construct consists of either A or B, this is denoted by

If a construct may be either construct A or nothing, this is expressed by

If a construct consists of the catenation of any number of A's (including none), this is denoted by

In EBNF parentheses may be used to group entities [e.g. ( A | B )].
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For each nonterminal symbol there must be at least one production that describes how this syntactic entity is  

formed from other terminal or nonterminal symbols using the composition constructs above:

The following examples show productions and the constructs they generate. A, B, C, D may denote terminal or  

nonterminal symbols.

EBNF is  a formal language over a finite alphabet of symbols introduced above, built  according to the rules 

explained above. Thus it is no great surprise that EBNF can be used to define itself. We use the following names for  

syntactic entities:

stmt A syntactic equation.

expr A list of alternative terms.

term A concatenation of factors.

factor A single syntactic entity or parenthesized expression.

nts Nonterminal symbol that denotes a syntactic entity. It consists of a sequence of letters and digits 

where the first character must be a letter.

ts Terminal symbol that belongs to the defined language's vocabulary. Since the vocabulary 

depends on the language to be defined there is no production for ts.

EBNF is now defined by the following productions:

EBNF = { stmt } .

Algorithms and Data Structures 55  A Global Text

http://creativecommons.org/licenses/by/3.0/


6. Syntax

stmt = nts '=' expr '.' .

expr = term { '|' term } .

term = factor { factor } .

factor = nts | ts | '(' expr ')' | '[' expr ']' | '{' expr '}' .

nts= letter { letter | digit } .

Example: syntax of simple expressions

The following productions for the three nonterminals E(xpression), T(erm), and F(actor) can be traced back to  

Algol 60. They form the core of all grammars for arithmetic expressions. We have simplified this grammar to define 

a class of expressions that lacks, for example, a unary minus operator and many other convenient notations. These 

details  are  but  not  important  for  our  purpose:  namely,  understanding  how  this  grammar  assigns  the  correct 

structure to each expression. We have further simplified the grammar so that constants and variables are replaced 

by the single terminal symbol # (Exhibit 6.1):

E = T { ( '+' | '–' ) T } .
T = F { ( '·' | '/' ) F } .
F = '#' | '(' E ')' .

Exhibit 6.1: Syntax diagrams for simple arithmetic expressions.

From the nonterminal E we can derive different expressions. In the opposite direction we start with a sequence 

of terminal symbols and check by syntactic analysis, or parsing, whether a given sequence is a valid expression. If 

this is the case the grammar assigns to this expression a unique tree structure, the parse tree (Exhibit 6.2).
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Exhibit 6.2: Parse tree for the expression  # · ( # ) + # / # .

Exercise: syntax diagrams for palindromes

A palindrome is a string that reads the same when read forward or backward. Examples: 0110 and 01010. 01 is 

not a palindrome, as it differs from its reverse 10.

1. What is the shortest palindrome?

2. Specify  the syntax  of  palindromes  over  the alphabet  {0,  1}  in  EBNF-notation,  and by drawing syntax  

diagrams.

Solution

1. The shortest palindrome is the null or empty string.

2. S  =  [ '0' | '1' ]  |  '0' S '0'  |  '1' S '1' (Exhibit 6.3).

Exhibit 6.3: Syntax diagram for palindromes 

An overly simple syntax for simple expressions

Why does the grammar given in previous section contain term and factor? An expression E that involves only 

binary operators (e.g. +, –, · and /) is either a primitive operand, abbreviated as #, or of the form 'E op E'. Consider  

a "simpler" grammar for simple, parenthesis-free expressions (Exhibit 6.4):

E = '#' | E ( '+' | '–' | '·' | '/' ) E .
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Exhibit 6.4: A syntax that generates parse trees of ambiguous structure

Now the expression # · # + # can be derived from E in two different ways (Exhibit 6.5). Such an  ambiguous 

grammar is useless since we want to derive the semantic interpretation from the syntactic structure, and the tree at  

the left contradicts the conventional operator precedence of · over +.

Exhibit 6.5: Two incompatible structures for the expression  # · # + # .

“Everything should be explained as simply as possible, but not simpler.”

(Albert Einstein)

We can salvage the idea of a grammar with a single nonterminal E by enclosing every expression of the form 'E  

op E' in parentheses, thus ensuring that every expression has a unique structure (Exhibit 6.6):

E = '#' | '(' E ( '+' | '–' | '·' | '/' ) E ')' .

Exhibit 6.6: Parentheses serve to restore unique structure.
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In doing so we change the language. The more complex grammar with three nonterminals E(xpression, T(erm),  

and F(actor) lets us write expressions that are only partially parenthesized and assigns to them a unique structure  

compatible with our priority conventions: · and / have higher priority than + and –.

Exercise: the ambiguity of the dangling "else"

The problem of the dangling "else" is an example of a syntax chosen to be "too simple" for the task it is supposed  

to handle. The syntax of several programming languages (e.g., Pascal) assigns to nested 'if-then[-else]' statements 

an ambiguous structure. It is left to the semantics of the language to disambiguate.

Let  E,  E1,  E2,  …  denote  Boolean  expressions,  S,  S1,  S2,  … statements.  Pascal  syntax  allows  two  types  of  if 

statements:

if E then S

and
if E then S else S

1. Draw one syntax diagram that expresses both of these syntactic possibilities.

2. Show all the possible syntactic structures of the statement

 if E1 then if E2 then S1 else S2

3. Propose a small modification to the Pascal language that avoids the syntactic ambiguity of the dangling 

else.  Show  that  in  your  modified  Pascal  any  arbitrarily  nested  structure  of  'if-then'  and  'if-then-else' 

statements must have a unique syntactic structure.

Parenthesis-free notation for arithmetic expressions

In the usual  infix notation for arithmetic expressions a binary operator is written between its two operands. 

Even  with  operator  precedence  conventions,  some  parentheses  are  required  to  guarantee  a  unique  syntactic  

structure.  The  selective  use  of  parentheses  complicates  the  syntax  of  infix  expressions:  Syntax  analysis, 

interpretative evaluation, and code generation all become more complicated.

Parenthesis-free or Polish notation (named for the Polish logician Jan Lukasiewicz) is a simpler notation for  

arithmetic expressions. All operators are systematically written either before (prefix notation) or after (postfix or 

suffix notation) the operands to which they apply. We restrict our examples to the binary operators +, –, · and /.  

Operators with different arities (i.e. different numbers of arguments) are easily handled provided that the number 

of arguments used is uniquely determined by the operator symbol. To introduce the unary minus we simply need a  

different symbol than for the binary minus.

Infix a+b a+(b·c)(a+b)·c
Prefix +ab +a·bc ·+abc
Postfix ab+ abc·+ ab+c·

Postfix notation mirrors the sequence of operations performed during the evaluation of an expression. 'ab+' is 

interpreted as: load a (find first operand); load b (find the second operand); add both. The syntax of arithmetic  

expressions in postfix notation is determined by the following grammar:

S = '#' | S S ( '+' | '–' | '·' | '/' )
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Exhibit 6.7: Suffix expressions have a unique structure even without the use of parentheses.

Exercises

1.  Consider the following syntax, given in EBNF:

S = A.

A = B | 'IF' A 'THEN' A 'ELSE' A.

B = C | B 'OR' C.

C = D | C 'AND' D.

D = 'x' | '(' A ')' | 'NOT' D.

(a) Determine the sets of terminal and nonterminal symbols.

(b) Give the syntax diagrams corresponding to the rules above.

(c) Which  of  the  following  expressions  is  correct  corresponding  to  the  given  syntax?  For  the  correct 

expressions show how they can be derived from the given rules:

x AND x

x NOT AND x

(x OR x) AND NOT x

IF x AND x THEN x OR x ELSE NOT x

x AND OR x

2. Extend the grammar of Section 6.3 to include the 'unary minus' (i.e. an arithmetic operator that turns any 

expression into its negative, as in –x). Do this under two different assumptions:

(a) The unary minus is denoted by a different character than the binary minus, say ¬.

(b) The character – is 'overloaded' (i.e. it is used to denote both unary and binary minus). For any specific  

occurrence of –, only the context determines which operator it designates.

3. Extended Backus-Naur form and syntax diagrams

Define each of the four languages described below using both EBNF and syntax diagrams. Use the following  

conventions and notations: Uppercase letters denote nonterminal symbols. Lowercase letters and the three 

separators ',' '(' and ')' denote terminal symbols. "" stands for the empty or null string. Notice that the blank 

character does not occur in these languages, so we use it to separate distinct sentences.
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L ::= a | b | … | z Letter

D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Digit

S ::= D { D } Sequence of digits I ::= L { L | D } Identifier

(a) Real numbers (constants) in Pascal

Examples:  –3  + 3.14  10e–06  –10.0e6    but not  10e6

(b) Nonnested lists of identifiers (including the empty list)

Examples:  ()  (a)  (year, month, day)    but not  (a,(b))  and not  ""

(c) Nested lists of identifiers (including empty lists)

Examples: in addition to the examples in part (b), we have lists such as

((),())  (a, ())  (name, (first, middle, last))    but not  (a)(b)  and not  ""

(d) Parentheses expressions

Almost the same problem as part (c), except that we allow the null string, we omit identifiers and commas, 

and we allow multiple outermost pairs of parentheses.

Examples:  ""  ()  ()()  ()(())  ()(()())()()

4. Use both syntax diagrams and EBNF to define the repeated if-then-else statement:

if  B1  then  S1  elsif  B2  then  S2  elsif  …  else  S
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7. Syntax analysis
Learning objectives:

• syntax is the frame that carries the semantics of a language

• syntax analysis

• syntax tree

• top-down parser

• syntax analysis of parenthesis-free expressions by counting

• syntax analysis by recursive descent

• recursive coroutines

The role of syntax analysis

The syntax of a language is the skeleton that carries the semantics. Therefore, we will try to get as much work as  

possible done as a side effect of syntax analysis; for example, compiling a program (i.e. translating it from one  

language into another) is a mainly semantic task. However, a good language and compiler are designed in such a  

way that  syntax analysis  determines  where  to start  with the translation process.  Many processes  in computer  

science are syntax-driven in this sense. Hence syntax analysis is important. In this section we derive algorithms for 

syntax analysis  directly from syntax diagrams.  These algorithms reflect  the recursive  nature  of  the underlying 

grammars. A program for syntax analysis is called a parser.

The composition of a sentence can be represented by a syntax tree or parse tree. The root of the tree is the start 

symbol; the leaves represent the sentence to be recognized. The tree describes how a syntactically correct sentence  

can be derived from the start symbol by applying the productions of the underlying grammar (Exhibit 7.1).

Exhibit 7.1: The unique parse tree for  # · # + # 

Top-down parsers begin with the start symbol as the goal of the analysis. In our example, "search for an E". The 

production for E tells us that we obtain an E if we find a sequence of T's separated by + or –. Hence we look for T's.  

The structure tree of an expression grows in this way as a sequence of goals from top (the root) to bottom (the  

leaves).  While satisfying the goals (nonterminal symbols) the parser reads suitable symbols (terminal symbols) 

from left to right. In many practical cases a parser needs no backtrack. No backtracking is required if the current  
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input symbol and the nonterminal to be expanded determine uniquely the production to be applied. A recursive-

descent parser uses a set of recursive procedures to recognize its input with no backtracking.

Bottom-up  methods build the structure tree from the leaves to the root.  The text  is  reduced until  the start 

symbol is obtained.

Syntax analysis of parenthesis-free expressions by counting

Syntax analysis can be very simple. Arithmetic expressions in Polish notation are analyzed by counting. For sake 

of simplicity we assume that each operand in an arithmetic expression is denoted by the single character #. In order 

to decide whether a given string c1 c2 … cn is a correct expression in postfix notation, we form an integer sequence t 0, 

t1, … , tn according to the following rule:

t0 = 0.

ti+1 = ti + 1, if i > 0 and ci+1 is an operand.

ti+1 = ti – 1, if i > 0 and ci+1 is an operator.

Example of a correct expression:

# # # # – – + # ·

c1  c2 c3 c4 c5 c6 c7 c8 c9
t0  t1 t2 t3 t4 t5 t6 t7 t8 t9

0 1 2 3 4 3 2 1 2 1

Example of an incorrect expression (one operator is missing):

# #   #     +     ·   #  #    /
c1 c2   c3    c4  c5  c6  c7 c8

t0 t1  t2  t3  t4   t5  t6  t7 t8
0    1     2   3  2    1   2   3  2

Theorem: The string c1 c2 … cn over the alphabet A = { # , + , – , · , / } is a syntactically correct expression in  

postfix notation if and only if the associated integer sequence t0, t1, … , tn satisfies the following conditions:

ti > 0 for 1 ≤ i < n,  tn = 1.

Proof  ⇒: Let c1 c2 … cn be a correct arithmetic expression in postfix notation. We prove by induction on the 

length n of the string that the corresponding integer sequence satisfies the conditions.

Base of induction: For n = 1 the only correct postfix expression is c 1 = #, and the sequence t0 = 0, t1 = 1 has the 

desired properties.

Induction hypothesis: The theorem is correct for all expressions of length ≤ m.

Induction step: Consider a correct postfix expression S of length m + 1 > 1 over the given alphabet A. Let s = (s i) 0 ≤ i 

≤ m+1 be the integer sequence associated with S. Then S is of the form S = T U Op, where 'Op' is an operator and T  

and U are correct postfix expressions of length j ≤ m and length k ≤ m, j + k = m. Let t = (t i) 0 ≤ I ≤ j and u = (ui) 0 ≤ i ≤ k 

be the integer sequences associated with T and U. We apply the induction hypothesis to T and U. The sequence s is  

composed from t and u as follows:
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s = s0 , s1 , s2 , … , sj , sj + 1 , sj + 2 , … , sm ,    sm+1

 t0 , t1 , t2 , … , tj , u1 + 1 , u2 + 1 , … , uk + 1 , 1

 0, … ,1, … ,2,1

Since t ends with 1, we add 1 to each element in u, and the subsequence therefore ends with u k + 1 = 2. Finally, 

the operator 'Op' decreases this element by 1, and s therefore ends with sm+1 = 1. Since ti > 0 for 1 ≤ i < j and ui > 0 for 

1 ≤i < k, we obtain that si > 0 for 1 ≤ i < k + 1. Hence s has the desired properties, and we have proved one direction 

of the theorem.

Proof ⇐: We prove by induction on the length n that a string c1 c2 … cn over A is a correct arithmetic expression 

in postfix notation if the associated integer sequence satisfies the conditions stated in the theorem.

Base of induction: For n = 1 the only sequence is t0 = 0, t1 = 1. It follows from the definition of the sequence that 

c1 = #, which is a correct arithmetic expression in postfix notation.

Induction hypothesis: The theorem is correct for all expressions of length ≤ m.

Induction step: Let s = (si) 0 ≤ i ≤ m+1 be the integer sequence associated with a string S = c1 c2 … cm+1 of length m + 1 

> 1 over the given alphabet A which satisfies the conditions stated in the theorem. Let j < m + 1 be the largest index  

with sj = 1. Since s1 = 1 such an index j exists. Consider the substrings T = c1 c2 … cj and U = cj cj+1 … cm. The integer 

sequences (si)  0 ≤  i ≤ j  and (si – 1)  j ≤  i ≤ m associated with T and U both satisfy the conditions stated in the theorem. 

Hence we can apply the induction hypothesis and obtain that both T and U are correct postfix expressions. From 

the definition of the integer sequence we obtain that cm+1 is an operand 'Op'.  Since T and U are correct postfix 

expressions, S = T U Op is also a correct postfix expression, and the theorem is proved.

A similar  proof  shows that  the  syntactic  structure  of  a  postfix  expression  is  unique.  The  integer  sequence 

associated with a postfix expression is of practical importance: The sequence describes the depth of the stack during  

evaluation of the expression, and the largest number in the sequence is therefore the maximum number of storage  

cells needed.

Analysis by recursive descent

We return to the syntax of the simple arithmetic expressions of chapter 6 in the section “Example: syntax of  

simple expressions” (Exhibit   7.2). Using the expression   # · (# – #) as an example, we show how these syntax  

diagrams are  used to analyze  any expressions  by  means of  a  technique  called  recursive-descent  parsing.  The 

progress of the analysis depends on the current state and the next symbol to be read: a lookahead of exactly one  

symbol suffices to avoid backtracking. In  Exhibit 7.3 we move one step to the right after each symbol has been 

recognized, and we move vertically to step up or down in the recursion.
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Exhibit  7.2: Standard syntax for simple arithmetic expressions (graphic does not match)

Exhibit 7.3: Trace of syntax analysis algorithm parsing the expression  # · ( # – # ).

Turning syntax diagrams into a parser

In a programming language that allows recursion the three syntax diagrams for simple arithmetic expressions 

can be translated directly into procedures. A nonterminal symbol corresponds to a procedure call, a loop in the 

diagram generates a while loop, and a selection is translated into an if statement. When a procedure wants to  

delegate a goal it calls another, in cyclic order: E calls T calls F calls E, and so on. Procedures implementing such a 

recursive control structure are often called recursive coroutines.
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The procedures that follow must be embedded into a program that provides the variable 'ch' and the procedures 

'read' and 'error'. We assume that the procedure 'error' prints an error message and terminates the program. In a  

more sophisticated implementation, 'error' would return a message to the calling procedure (e.g. 'factor'). Then this  

error message is returned up the ladder of all recursive procedure calls active at the moment.

Before the first call of the procedure 'expression', a character has to be read into 'ch'. Furthermore, we assume  

that a correct expression is terminated by a period:

…
read(ch);  expression;  if  ch ≠ '.'  then  error;
…

Exercises

1. Design recursive  algorithms to translate  the simple  arithmetic  expressions of  chapter 6  in  the section 

“Example: syntax of a simple expressions” into corresponding prefix and postfix expressions as defined in 

chapter  6  in  the  section  “Parenthesis-free  notation  for  arithmetic  expressions”.  Same  for  the  inverse 

translations.

2. Using syntax diagrams and EBNF define a language of 'correctly nested parentheses expressions'. You have 

a bit of freedom (how much?) in defining exactly what is correctly nested and what is not, but obviously  

your definition must include expressions such as (), ((())), (()(())), and must exclude strings such as (, )(, ())

().

3. Design two parsing algorithms for your class of correctly nested parentheses expressions: one that works by 

counting, the other through recursive descent. 
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Part III: Objects, algorithms, 
programs

Computing with numbers and other objects

Since the introduction of computers four or five decades ago the meaning of the word  computation has kept 

expanding. Whereas "computation" traditionally implied "numbers", today we routinely compute pictures, texts,  

and many other types of objects. When classified according to the types of objects being processed, three types of  

computer  applications  stand  out  prominently  with  respect  to  the  influence  they  had  on  the  development  of  

computer science.

The first generation involved numerical computing, applied mainly to scientific and technical problems. Data to 

be processed consisted almost exclusively of numbers, or sets of numbers with a simple structure, such as vectors  

and  matrices.  Programs  were  characterized  by  long execution  times  but  small  sets  of  input  and  output  data. 

Algorithms were more important than data structures, and many new numerical algorithms were invented. Lasting 

achievements of this first phase of computer applications include systematic study of numerical algorithms, error  

analysis, the concept of program libraries, and the first high-level programming languages, Fortran and Algol.

The second generation, hatched by the needs of commercial data processing, leads to the development of many 

new data structures. Business applications thrive on record keeping and updating, text and form processing, and 

report generation: there is not much computation in the numeric sense of the word, but a lot of reading, storing,  

moving,  and  printing  of  data.  In  other  words,  these  applications  are  data  intensive  rather  than  computation 

intensive.  By  focusing  attention  on  the  problem  of  efficient  management  of  large,  dynamically  varying  data 

collections, this phase created one of the core disciplines of computer science: data structures, and corresponding 

algorithms for managing data, such as searching and sorting.

We are  now  in  a  third  generation of  computer  applications,  dominated  by  computing with  geometric  and 

pictorial objects. This change of emphasis was triggered by the advent of computers with bitmap graphics. In turn,  

this leads to the widespread use of sophisticated user interfaces that depend on graphics, and to a rapid increase in 

applications such as computer-aided design (CAD) and image processing and pattern recognition (in medicine,  

cartography,  robot  control).  The  young discipline  of  computational  geometry  has  emerged in  response  to  the 

growing  importance  of  processing  geometric  and  pictorial  objects.  It  has  created  novel  data  structures  and 

algorithms, some of which are presented in Parts V and VI.

Our selection of algorithms in Part III reflects the breadth of applications whose history we have just sketched. 

We choose the simplest types of objects from each of these different domains of computation and some of the most  

concise and elegant algorithms designed to process them. The study of typical small programs is an essential part of  

programming. A large part of computer science consists of the knowledge of how typical problems can be solved;  

and the best way to gain such knowledge is to study the main ideas that make standard programs work.
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Algorithms and programs

Theoretical computer science treats algorithm as a formal concept, rigorously defined in a number of ways, such 

as Turing machines or lambda calculus. But  in the context of  programming,  algorithm is  typically used as an 

intuitive  concept  designed  to  help  people  express  solutions  to  their  problems.  The  formal  counterpart  of  an 

algorithm is a procedure or program (fragment) that expresses the algorithm in a formally defined programming 

language. The process of formalizing an algorithm as a program typically requires many decisions: some superficial  

(e.g. what type of statement is chosen to set up a loop), some of great practical consequence (e.g. for a given range 

of values of n, is the algorithm's asymptotic complexity analysis relevant or misleading?).

We present algorithms in whatever notation appears to convey the key ideas most clearly, and we have a clear 

preference for pictures. We present programs in an extended version of Pascal; readers should have little difficulty  

translating this into any programming language of their choice. Mastery of interesting small programs is the best  

way to get started in computer science. We encourage the reader to work the examples in detail.

The literature on algorithms. The development of new algorithms has been proceeding at a very rapid pace 

for several decades, and even a specialist can only stay abreast with the state of the art in some subfield, such as  

graph algorithms,  numerical  algorithms,  or  geometric  algorithms.  This  rapid development is  sure  to continue 

unabated, particularly in the increasingly important  field  of  parallel  algorithms.  The cutting  edge of algorithm 

research is published in several journals that specialize in this research topic, including the Journal of Algorithms 

and  Algorithmica.  This  literature  is  generally  accessible  only  after  a  student  has  studied  a  few  textbooks  on 

algorithms, such as [AHU 75], [Baa 88], [BB 88], [CLR 90], [GB 91], [HS 78], [Knu 73a], [Knu 81], [Knu 73b],  

[Man 89], [Meh 84a], [Meh 84b], [Meh 84c], [RND 77], [Sed 88], [Wil 86], and [Wir 86].
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8. Truth values, the data 
type 'set', and bit acrobatics

Learning objectives:

• truth values, bits

• boolean variables and functions

• bit sum: four clever algorithms compared

• trade-off between time and space

Bits and boolean functions

The English mathematician George Boole (1815–1864) became one of the founders of symbolic logic when he 

endeavored to express logical arguments in mathematical form. The goal of his 1854 book The Laws Of Thought 

was "to investigate the laws of those operations of the mind by which reasoning is performed; to give expression to  

them in the symbolic language of calculus. …"

Truth values or boolean values, named in Boole's honor, possess the smallest possible useful domain: the binary  

domain, represented by yes/no, 1/0, true/false,  T/F. In the late 1940s, as the use of binary arithmetic became 

standard and as information theory came to regard a two-valued quantity as the natural unit of information, the 

concise term bit was coined as an abbreviation of "binary digit". A bit, by any other name, is truly a primitive data 

element—at a sufficient level of detail, (almost) everything that happens in today's computers is bit manipulation.  

Just  because bits  are  simple data  quantities  does not  mean that  processing them is  necessarily simple,  as we 

illustrate in this section by presenting some clever and efficient bit manipulation algorithms.

Boolean variables range  over  boolean values,  and  boolean functions take  boolean  arguments and produce 

boolean results. There are only four distinct boolean functions of a single boolean variable, among which 'not' is the  

most useful: It yields the complement of its argument (i.e. turns 0 into 1, and vice versa). The other three are the 

identity and the functions that yield the constants 0 and 1. There are 16 distinct boolean functions of two boolean 

variables, of which several are frequently used, in particular: 'and', 'or'; their negations 'nand', 'nor'; the exclusive-or  

'xor'; and the implication '⊃'. These functions are defined as follows:

a b a and b a or b a nand b a nor b a xor b a ⊃ b

0 0 0 0 1 1 0 1

0 1 0 1 1 0 1 1

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 1

Bits are the atomic data elements of today's computers, and most programming languages provide a data type 

'boolean'  and built-in operators  for  'and',  'or',  'not'.  To avoid the necessity for  boolean expressions to be fully 
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parenthesized, precedence relations are defined on these operators: 'not' takes precedence over 'and', which takes 

precedence over 'or'. Thus

x and not y or not x and y  ⇔  ((x and (not y)) or ((not x) and y)).

What can you compute with boolean variables? Theoretically everything, since large finite domains can always 

be represented by a sufficient number of boolean variables: 16-bit integers, for example, use 16 boolean variables to  

represent the integer domain –215 .. 215–1. Boolean variables are often used for program optimization in practical 

problems where efficiency is important.

Swapping and crossovers: the versatile exclusive-or

Consider the swap statement x :=: y, which we use to abbreviate the cumbersome triple:  t := x;  x := y;  y := t.  

On computers that provide bitwise boolean operations on registers, the swap operator :=: can be implemented 

efficiently without the use of a temporary variable.

The operator exclusive-or, often abbreviated as 'xor', is defined as

x xor y  =  x and not y or not x and y.

It yields true iff exactly one of its two arguments is true.

The bitwise boolean operation z:= x op y on n-bit registers: x[1 .. n], y[1 .. n], z[1 .. n], is defined as

for  i := 1  to  n  do  z[i] := x[i] op y[i]

With a bitwise exclusive-or, the swap x :=: y can be programmed as

x := x xor y;  y := x xor y;  x := x xor y;

It still takes three statements, but no temporary variable. Given that registers are usually in short supply, and  

that a logical operation on registers is typically just as fast as an assignment, the latter code is preferable. Exhibit 

8.1 traces the execution of this code on two 4-bit  registers and shows exhaustively that the swap is performed  

correctly for all possible values of x and y.

Exhibit 8.1: Trace of registers x and y under repeated exclusive-or operations.

Exercise: planar circuits without crossover of wires

The code above has yet another interpretation: How should we design a logical circuit that effects a logical 

crossover of two wires x and y while avoiding any physical crossover? If we had an 'xor' gate, the circuit diagram  

shown in Exhibit 8.2 would solve the problem. 'xor' gates must typically be realized as circuits built from simpler  

primitives, such as 'and', 'or', 'not'. Design a circuit consisting of 'and', 'or', 'not' gates only, which has the effect of  

crossing wires x and y while avoiding physical crossover.

Exhibit 8.2: Three exclusive-or gates in series interchange values on two wires.
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The bit sum or "population count"

A computer word is a fixed-length sequence of bits, call it a bit vector. Typical word lengths are 16, 32, or 64, and 

most instructions in most computers operate on all the bits in a word at the same time, in parallel. When efficiency  

is of great importance,  it is worth exploiting to the utmost the bit  parallelism built  into the hardware of most  

computers. Today's programming languages often fail to refer explicitly to hardware features such as registers or 

words in memory, but it is usually possible to access individual bits if one knows the representation of integers or 

other data types. In this section we take the freedom to drop the constraint of strong typing built into Pascal and 

other modern languages. We interpret the content of a register or a word in memory as it suits the need of the  

moment: a bit string, an integer, or a set.

We are well aware of the dangers of such ambiguous interpretations: Programs become system and compiler  

dependent, and thus lose portability. If such ambiguity is localized in a single, small procedure, the danger may be  

kept under control, and the gain in efficiency may outweigh these drawbacks. In Pascal, for example, the type 'set' is 

especially well suited to operate at the bit level. 'type s = set of (a, b, c)' consists of the 23 sets that can be formed 

from the three elements a, b, c. If the basic set M underlying the declaration of

type S = set of M

consists of n elements, then S has 2n elements. Usually, a value of type S is internally represented by a vector of n 

contiguously allocated bits, one bit for each element of the set M. When computing with values of type S we operate 

on single bits using the boolean operators. The union of two sets of type S is obtained by applying bitwise 'or', the  

intersection by applying bitwise 'and'. The complement of a set is obtained by applying bitwise 'not'.

Example
M = {0, 1, … , 7}

Set                                 Bit vector

7       6       5       4       3       2       1        0  Elements

s1 {0, 3, 4, 6} 0 1 0 1 1 0 0 1

s2 {0, 1, 4, 5} 0 0 1 1 0 0 1 1

s1 ∪ s2 {0, 1, 3, 4, 5, 6} 0 1 1 1 1 0 1 1

s1 ∩ s2 {0, 4} 0 0 0 1 0 0 0 1

¬ s1 {1, 2, 5, 7} 1 0 1 0 0 1 1 0

Integers are represented on many small computers by 16 bits. We assume that a type 'w16', for "word of length  

16", can be defined. In Pascal, this might be

type  w16 = set of 0 .. 15;

A variable of type 'w16' is a set of at most 16 elements represented as a vector of 16 bits.

Asking for the number of elements in a set s is therefore the same as asking for the number of 1's in the bit 

pattern that represents s. The operation that counts the number of elements in a set, or the number of 1's in a word,  

is  called  the  population  count or  bit  sum. The  bit  sum  is  frequently  used  in  inner  loops  of  combinatorial 

calculations, and many a programmer has tried to make it as fast as possible. Let us look at four of these tries, 

beginning with the obvious.
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Inspect every bit
function bitsum0(w: w16): integer;

var  i, c: integer;
begin

c := 0;
for  i := 0  to  15  do  { inspect every bit }

if  i ∈ w {w[i] = 1}  then  c := c + 1;  { count the ones}
return(c)

end;

Skip the zeros

Is there a faster way? The following algorithm looks mysterious and tricky. The expression w ∩ (w – 1) contains 

both an intersection operation '∩', which assumes that its operands are sets, and a subtraction, which assumes that 

w is an integer:

c := 0;
while  w ≠ 0  do  { c := c + 1;  w := w ∩ (w – 1) } ;

Such mixing makes sense only if we can rely on an implicit assumption on how sets and integers are represented 

as bit vectors. With the usual binary number representation, an example shows that when the body of the loop is  

executed once, the rightmost 1 of w is replaced by 0:

w 1000100011001000

w – 1     1000100011000111

w ∩ (w – 1) 1000100011000000

This clever code seems to look at the 1's only and skip over all the 0's: Its loop is executed only as many times as  

there are 1's in the word. This savings is worthwhile for long, sparsely populated words (few 1's and many 0's).

In the statement w := w ∩  (w – 1), w is used both as an integer (in w – 1) and as a set (as an operand in the  

intersection operation '∩').  Strongly typed languages, such as Pascal, do not allow such mixing of types. In the 

following function 'bitsum1',  the  conversion routines  'w16toi'  and 'itow16'  are  introduced  to  avoid  this  double 

interpretation of w. However, 'bitsum1' is of interest only if such a type conversion requires no extra time (i.e. if one 

knows how sets and integers are represented internally).

function bitsum1(w: w16): integer;

var  c, i: integer;  w0, w1: w16;

begin
w0 := w;  c := 0;

while  w0 ≠ Ø  { empty set }  do  begin

i := w16toi(w0);  { w16toi converts type w16 to integer }

i := i – 1;
w1 := itow16(i);  { itow16 converts type integer to w16 }

w0 := w0 ∩ w1;  { intersection of two sets }
c := c + 1

end;
return(c)

end;
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Most languages  provide some facility for  permitting  purely formal type conversions that result  in no work:  

'EQUIVALENCE' statements in Fortran, 'UNSPEC' in PL/1, variant records in Pascal. Such "conversions" are done 

merely by interpreting the contents of a given storage location in different ways.

Logarithmic bit sum

For a computer of word length n, the following algorithm computes the bit sum of a word w running through its  

loop only ⎡log2  n⎤ times,  as  opposed  to  n  times  for  'bitsum0'  or  up  to  n  times  for  'bitsum1'.  The  following 

description holds for arbitrary n but is understood most easily if n = 2h.

The logarithmic bit sum works on the familiar principle of divide-and-conquer. Let w denote a word consisting  

of n = 2h bits, and let S(w) be the bit sum of the bit string w. Split w into two halves and denote its left part by wL  

and its right part by wR. The bit sum obviously satisfies the recursive equation S(w) = S(wL) + S(wR). Repeating 

the same argument on the substrings wL and wR, and, in turn, on the substrings they create, we arrive at a process 

to compute S(w). This process terminates when we hit substrings of length 1 [i.e. substrings consisting of a single  

bit b; in this case we have S(b) = b]. Repeated halving leads to a recursive decomposition of w, and the bit sum is  

computed by a tree of n – 1 additions as shown below for n = 4 (Exhibit 8.3).

Exhibit 8.3: Logarithmic bit sum algorithm as a result of divide-and-conquer.

This approach of treating both parts of w symmetrically and repeated halving leads to a computation of depth h 

= ⎡log2 n⎤ . To obtain a logarithmic bit sum, we apply the additional trick of performing many additions in parallel.  

Notice that the total length of all operands on the same level is always n. Thus we can pack them into a single word  

and, if we arrange things cleverly, perform all the additions at the same level in one machine operation, an addition  

of two n-bit words.

Exhibit 8.4 shows how a number of the additions on short strings are carried out by a single addition on long 

strings. S(w) now denotes not only the bit sum but also its binary representation, padded with zeros to the left so as 

to have the appropriate length. Since the same algorithm is being applied to wL and wR, and since wL and wR are of 

equal  length,  exactly  the same operations are  performed at  each stage on wL and its  parts  as  on wR and its 

corresponding parts. Thus if the operations of addition and shifting operate on words of length n, a single one of  

these operations can be interpreted as performing many of the same operations on the shorter parts into which w 

has been split. This logarithmic speedup works up to the word length of the computer. For n = 64, for example,  

recursive splitting generates six levels and translates into six iterations of the loop below.

Algorithms and Data Structures 73  A Global Text

http://creativecommons.org/licenses/by/3.0/


8. Truth values, the data type 'set', and bit acrobatics

Exhibit 8.4: All processes generated by divide-and-conquer are performed in parallel  

on shared data registers.

 The algorithm is best explained with an example; we use n = 8.

w7 w6 w5 w4 w3 w2 w1 w0

w 1 1 0 1 0 0 0 1

First, extract the even-indexed bits w6 w4 w2 w0 and place a zero to the left of each bit to obtain weven. The newly 

inserted zeros are shown in small type.

w6 w4 w2 w0

weven
0 1 0 1 0 0 0 1

Next, extract the odd-indexed bits w7 w5 w3 w1, shift them right by one place into bit positions w6 w4 w2 w0, and 

place a zero to the left of each bit to obtain wodd.

w7 w5 w3 w1

wodd
0 1 0 0 0 0 0 0

Then, numerically add weven and wodd, considered as integers written in base 2, to obtain w'.

w'7 w'6 w'5 w'4 w'3 w'2 w'1 w'0

weven 0 1 0 1 0 0 0 1

wodd 0 1 0 0 0 0 0 0

w' 1 0 0 1 0 0 0 1

Next, we index not bits, but pairs of bits, from right to left: (w'1 w'0) is the zeroth pair, (w'5 w'4) is the second pair. 

Extract the even-indexed pairs w'5 w'4 and w'1 w'0, and place a pair of zeros to the left of each pair to obtain w'even.
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w'5 w'4 w'1 w'0

w'even
0 0 0 1 0 0 0 1

Next, extract the odd-indexed pairs w'7 w'6  and w'3 w'2 , shift them right by two places into bit positions w'5  w'4 

and w'1 w'0 , respectively, and insert a pair of zeros to the left of each pair to obtain w'odd.

w'7 w'6 w'3 w'2

w'odd
0 0 1 0 0 0 0 0

Numerically, add w'even and w'odd to obtain w".

w"7 w"6 w"5 w"4 w"3 w"2 w"1 w"0

w" 0 0 1 1 0 0 0 1

Next, we index quadruples of bits, extract the quadruple w"3 w"2 w"1 w"0, and place four zeros to the left to obtain 

w"even.

w"3 w"2 w"1 w"0

w"even
0 0 0 0 0 0 0 1

Extract the quadruple w"7 w"6 w"5 w"4, shift it right four places into bit positions w"3 w"2 w"1 w"0, and place four 

zeros to the left to obtain w"odd.

w"7 w"6 w"5 w"4

w"odd
0 0 0 0 0 0 1 1

Finally, numerically add w"even and w"odd to obtain w''' = (00000100), which is the representation in base 2 of the 

bit sum of w (4 in this example). The following function implements this algorithm.

Logarithmic bit sum implemented for a 16-bit computer:

In 'bitsum2' we apply addition and division operations directly to variables of type 'w16' without performing the 

type conversions that would be necessary in a strongly typed language such as Pascal.

function bitsum2(w: w16): integer;

const mask[0] = '0101010101010101'; 
mask[1] = '0011001100110011';
mask[2] = '0000111100001111';
mask[3] = '0000000011111111';

var  i, d: integer;  weven, wodd: w16;
begin

d := 2;
for  i := 0  to  3  do  begin

weven := w ∩ mask[i];

w := w / d;  { shift w right 2i bits }

d := d2;
wodd := w ∩ mask[i];

w := weven + wodd
end;
return(w)

end;
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Trade-off between time and space: the fastest algorithm

Are there  still  faster  algorithms for computing the bit  sum of  a word? Is  there  an  optimal algorithm? The 

question of optimality of algorithms is important, but it can be answered only in special cases. To show that an  

algorithm is optimal, one must specify precisely the class of algorithms allowed and the criterion of optimality. In 

the case of bit sum algorithms, such specifications would be complicated and largely arbitrary, involving specific  

details of how computers work.

However, we can make a plausible argument that the following bit sum algorithm is the fastest possible, since it  

uses a table lookup to obtain the result in essentially one operation. The penalty for this speed is an extravagant use  

of memory space (2n locations), thereby making the algorithm impractical except for small values of n. The choice 

of an algorithm almost always involves trade-offs among various desirable properties, and the better an algorithm is  

from one aspect, the worse it may be from another.

The algorithm is based on the idea that we can precompute the solutions to all possible questions, store the  

results, and then simply look them up when needed. As an example, for n = 3, we would store the information

Word Bit sum

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 1
1 0 1 2
1 1 0 2
1 1 1 3

What is the fastest way of looking up a word w in this table? Under assumptions similar to those used in the  

preceding algorithms, we can interpret w as an address of a memory cell that contains the bit sum of w, thus giving  

us an algorithm that requires only one memory reference.

Table lookup implemented for a 16-bit computer:

function bitsum3(w: w16): integer;

const  c: array[0 .. 65535] of integer = [0, 1, 1, 2, 1, 2, 2, 3, 
… , 15, 16];

begin  return(c[w])  end;

In concluding this example, we notice the variety of algorithms that exist for computing the bit sum, each one  

based on entirely different principles, giving us a different trade-off between space and time. 'bitsum0' and 'bitsum3' 

solve the problem by "brute force" and are simple to understand: 'bitsum0' looks at each bit and so requires much 

time; 'bitsum3' stores the solution for each separate case and thus requires much space. The logarithmic bit sum 

algorithm  is  an  elegant  compromise:  efficient  with  respect  to  both  space  and  time,  it  merely  challenges  the 

programmer's wits.

Exercises

1. Show that there are exactly 16 distinct boolean functions of two variables.

2. Show that each of the boolean functions 'nand' and 'nor' is universal in the following sense: Any boolean 

function f(x, y) can be written as a nested expression involving only 'nands', and it can also be written using 

only 'nors'. Show that no other boolean function of two variables is universal.
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3. Consider the logarithmic bit sum algorithm, and show that any strategy for splitting w (not just the halving 

split) requires n – 1 additions.
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9. Ordered sets
Learning objectives:

• searching in ordered sets 

• sequential search. proof of program correctness

• binary search 

• in-place permutation

• nondeterministic algorithms

• cycle rotation

• cycle clipping

Sets of elements processed on a computer are always ordered according to some criterion. In the preceding 

example of the "population count" operation, a set is ordered arbitrarily and implicitly simply because it is mapped 

onto linear storage; a programmer using that set can ignore any order imposed by the implementation and access  

the set through functions that hide irrelevant details. In most cases, however, the order imposed on a set is not  

accidental,  but  is  prescribed by the problem to be solved and/or the algorithm to be  used.  In  such cases  the 

programmer explicitly deals with issues of how to order a set and how to use any existing order to advantage.

Searching in ordered sets is one of the most frequent tasks performed by computers: whenever we operate on a 

data item, that item must be selected from a set of items. Searching is also an ideal ground for illustrating basic  

concepts and techniques of programming.

At times, ordered sets need to be rearranged (permuted). The chapter “Sorting and its complexity” is dedicated 

to the most frequent type of rearrangement: permuting a set of elements into ascending order. Here we discuss 

another type of rearrangement: reordering a set according to a given permutation.

Sequential search

Consider the simple case where a fixed set of n data elements is given in an array A:

const  n = … ;  { n > 0 }
type  index = 0 .. n;  elt = … ;
var  A: array[1 .. n] of elt;    or    var A: array[0 .. n] of elt;

Sequential or linear search is the simplest technique for determining whether A contains a given element x. It is 

a trivial example of an incremental algorithm, which processes a set of data one element at a time. If the search for 

x is successful, we return an index i, 1 ≤ i ≤ n, to point to x. The convention that i = 0 signals unsuccessful search is 

convenient and efficient, as it encodes all possible outcomes in a single parameter.

function find(x: elt): index; 
var  i: index;
begin

i := n;
while  (i > 0)  { can access A }  cand  (A[i] ≠ x)  { not yet 

found }  do
(1)  { (1 ≤ i ≤ n) ∧ (∀ k, i ≤ k: A[k] ≠ x) }

 i := i – 1;
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(2)  { (∀k, i < k: A[k] ≠ x) ∧ ((i= 0) ∧ ((1 ≤ i ≤ n) ∧ (A[i] = x))) }
 return(i)

end;

The 'cand' operator used in the termination condition is the conditional 'and'. Evaluation proceeds from left to 

right and stops as soon as the value of the boolean expression is determined: If i > 0 yields 'false', we immediately 

terminate evaluation of the boolean expression without accessing A[i], thus avoiding an out-of-bounds error.

We have included two assertions, (1)  and (2),  that express the main points necessary for a formal proof of 

correctness: mainly, that each iteration of the loop extends by one element the subarray known not to contain the 

search argument x. Assertion (1) is trivially true after the initialization i := n, and remains true whenever the body 

of the while loop is about to be executed. Assertion (2) states that the loop terminates in one of two ways:

• i = 0 signals that the entire array has been scanned unsuccessfully.

• x has been found at index i.

A formal correctness proof would have to include an argument that the loop does indeed terminate—a simple 

argument here, since i is initialized to n, decreases by 1 in each iteration, and thus will become 0 after a finite 

number of steps.

The loop is terminated by a Boolean expression composed of two terms: reaching the end of the array, i = 0, and 

testing the current array element, A[i] = x. The second term is unavoidable, but the first one can be spared by  

making sure that x is always found before the index i drops off the end of the array. This is achieved by extending  

the array by one cell A[0] and placing the search argument x in it as a sentinel. If no true element x stops the scan of 

the array, the sentinel will. Upon exit from the loop, the value of i reveals the outcome of the search, with the  

convention that 0 signals an unsuccessful search:

function find(x: elt): index; 
var  i: index;
begin

A[0] := x;  i := n;
while  A[i] ≠ x  do  i := i – 1;
return(i)

end;

How efficient is sequential search? An unsuccessful search always scans the entire array. If all n array elements  

have equal probability of being searched for, the average number of iterations of the while loop in a successful  

search is

This algorithm needs time proportional to n in the average and the worst case.

Binary search

If the data elements stored in the array A are ordered according to the order relation ≤ defined on their domain,  

that is

∀ k, 1 ≤ k < n:  A[k] ≤ A[k + 1]

the search for an element x can be made much faster because a comparison of x with any array element A[m]  

provides more information than it does in the unordered case. The result x ≠ A[m] excludes not only A[m], but also  

all elements on one or the other side of A[m], depending on whether x is greater or smaller than A[m] (Exhibit 9.1).
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Exhibit 9.1: Binary search identifies regions where the search argument is guaranteed to be absent.

The following function exploits this additional information:

const  n = … ;  { n > 0 }
type  index = 1 .. n;  elt = … ;
var  A: array[1 .. n] of elt;

function find(x: elt;  var m: index): boolean;
var  u, v: index;
begin

u := 1;  v := n;
while  u ≤ v  do  begin

(1) { (u ≤ v) ∧ (∀ k, 1 ≤ k < u: A[k] < x) ∧(∀ k, v < k ≤ n: A[k] > 
x) }

m := any value such that u ≤ m ≤ v ;
if     x < A[m]    thenv := m – 1
elsif  x > A[m]   then u := m + 1

(2) else  {x = A[m] } return(true)
end;

(3) { (u = v + 1) ∧(∀ k, 1 ≤ k < u: A[k]< x) ∧ (∀ k, v < k ≤ n: 
A[k] > x) }

return(false)
end;

u and v bound the interval of uncertainty that might contain x. Assertion (1) states that A[1], … , A[u – 1] are known  

to be smaller than x; A[v + 1], … , A[n] are known to be greater than x. Assertion (2), before exit from the function, 

states that x has been found at index m. In assertion (3), u = v + 1 signals that the interval of uncertainty has shrunk 

to become empty. If there exists more than one match, this algorithm will find one of them.

This algorithm is correct independently of the choice of m but is most efficient when m is the midpoint of the  

current search interval:

m := (u + v) div 2;

With this choice of m each comparison either finds x or eliminates half of the remaining elements. Thus at most 

⎡log2 n⎤ iterations of the loop are performed in the worst case.

Exercise: binary search

The array

var A: array [1 .. n] of integer;

contains n integers in ascending order: A[1] ≤ A[2] ≤ … ≤ A[n].

(a) Write a recursive binary search

function rbs (x, u, v: integer): integer;

that returns 0 if x is not in A, and an index i such that A[i] = x if x is in A.

(b) What is the maximal depth of recursive calls of 'rbs' in terms of n?
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(c) Describe the advantages and disadvantages of this recursive binary search as compared to the iterative  

binary search.

Exercise: searching in a partially ordered two-dimensional array

Consider the n by m array:

var  A: array[1 .. n, 1 .. m] of integer;

and assume that the integers in each row and in each column are in ascending order; that is,

A[i, j] ≤ A[i, j + 1]for i = 1, … , n and j = 1, … , m – 1;
A[i, j] ≤ A[i + 1, j]for i = 1, … , n – 1 and j = 1, … , m.

(a) Design an algorithm that determines whether a given integer x is stored in the array A. Describe your 

algorithm in words and figures. Hint: Start by comparing x with A[1, m] (Exhibit 9.2).

Exhibit 9.2: Another example of the idea of excluded regions.

(b) Implement your algorithm by a

function IsInArray (x: integer): boolean;

(c) Show that your algorithm is correct and terminates, and determine its worst case time complexity.

Solution

(a) The algorithm compares x first with A[1, m]. If x is smaller than A[1, m], then x cannot be contained in the 

last column, and the search process is continued by comparing x with A[1, m – 1]. If x is greater than A[1,  

m], then x cannot be contained in the first row, and the search process is continued by comparing x with 

A[2, m]. Exhibit 9.3 shows part of a typical search process.

Exhibit 9.3: Excluded regions combine to leave only a staircase-shaped strip to examine.

(b) function IsInArray(x: integer): boolean;
var  r, c: integer;
begin

r := 1;  c := m;
while  (r ≤ n) and (c ≥ 1)  do
{1} if x < A[r, c] then c := c – 1

elsif x > A[r, c] then r := r + 1
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else { x = A[r, c] } {2} return(true);
{3}  return(false)

end;

(c) At positions {1}, {2}, and {3}, the invariant

∀ i, 1 ≤ i ≤ n,∀ j, 1 ≤ j ≤ m:

(j > c ⇒ x ≠ A[i, j]) ∧ (i < r ⇒ x ≠ A[i, j] (∗)

states that the hatched rows and columns of A do not contain x. At {2},

(1 ≤ r ≤ n) ∧ (1 ≤ c ≤ m) ∧ (x = A[r, c])

states that r and c are within index range and x has been found at (r, c). At {3},

(r = n + 1) ∨(c = 0)

states that r or c are outside the index range. This coupled with (*) implies that x is not in A: 

(r = n + 1) ∨ (c = o) ⇒ ∀ i, 1 ≤ i ,≤ n, ∀ j. 1 ≤ j ≤ m: x ≠ A[i, j].

Each iteration through the loop either decreases c by one or increases r by one. If x is not contained in the array,  

either c becomes zero or r becomes greater than n after a finite number of steps, and the algorithm terminates. In  

each step, the algorithm eliminates either a row from the top or a column from the right. In the worst case it works 

its way from the upper right corner to the lower left corner in n + m – 1 steps, leading to a complexity of Θ(n + m).

In-place permutation

Representations of a permutation.  Consider an array D[1 ..  n] that holds n data elements of type 'elt'. 

These are ordered by their position in the array and must be rearranged according to a specific permutation given 

in another array. Exhibit 9.4 shows an example for n = 5. Assume that a, b, c, d, e, stored in this order, are to be  

rearranged in the order c, e, d, a, b. This permutation is represented naturally by either of the two permutation 

arrays t (to) or f (from) declared as

var  t, f: array[1 .. n] of 1 .. n;

The exhibit also shows a third representation of the same permutation: the decomposition of this permutation 

into cycles. The element in D[1] moves into D[4], the one in D[4] into D[3], the one in D[3] into D[1], closing a cycle  

that we abbreviate as (1 4 3), or (4 3 1), or (3 1 4). There is another cycle (2 5), and the entire permutation is  

represented by (1 4 3) (2 5).

Exhibit 9.4: A permutation and its representations in terms of  'to', 'from', and cycles. 

The cycle representation is intuitively most informative, as it directly reflects the decomposition of the problem  

into independent subproblems, and both the 'to' and 'from' information is easily extracted from it. But 'to' and 

'from' dispense with parentheses and lead to more concise programs.
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Consider the problem of executing this permutation in place: Both the given data and the result are stored in the 

same array D, and only a (small) constant amount of auxiliary storage may be used, independently of n. Let us use 

the example of in-place permutation to introduce a notation that is frequently convenient, and to illustrate how the  

choice of primitive operations affects the solution.

A multiple assignment statement will do the job, using either 'to' or 'from':

// (1 ≤ i ≤ n)  { D[t[i]] := D[i] }

or

// (1 ≤ i ≤ n)  { D[i]} := D[f[i]] }

The characteristic properties of a multiple assignment statement are:

• The left-hand side is a sequence of variables, the right-hand side is a sequence of expressions, and the two  

sequences are matched according to length and type. The value of the i-th expression on the right is  

assigned to the i-th variable on the left.

• All the expressions on the right-hand side are evaluated using the original values of all variables that occur  

in them, and the resulting values are assigned "simultaneously" to the variables on the left-hand side. We 

use the sign // to designate concurrent or parallel execution.

Few of today's programming languages offer multiple assignments, in particular those of variable length used 

above.  Breaking  a  multiple  assignment  into  single  assignments  usually  forces  the  programmer  to  introduce 

temporary variables. As an example, notice that the direct sequentialization:

for  i := 1  to  n  do  D[t[i]] := D[i]

or

for  i := 1  to  n  do  D[i] := D[f[i]]

is faulty, as some of the elements in D will be overwritten before they can be moved. Overwriting can be avoided at 

the cost of nearly doubling memory requirements by allocating an array A[1 .. n] of data elements for temporary  

storage:

for  i := 1  to  n  do  A[t[i]] := D[i];

for  i := 1  to  n  do  D[i] := A[i];

This,  however,  is  not  an  in-place  computation,  as  the  amount  of  auxiliary  storage  grows  with  n.  It  is  

unnecessarily inefficient: There are elegant in-place permutation algorithms based on the conventional primitive of 

the single assignment statement. They all assume that the permutation array may be destroyed as the permutation 

is being executed. If the representation of the permutation must be preserved, additional storage is required for 

bookkeeping, typically of a size proportional to n. Although this additional space may be as little as n bits, perhaps  

in order to distinguish the elements processed from those yet to be moved, such an algorithm is not technically in  

place.

Nondeterministic algorithms.  Problems of rearrangement always appear to admit many different solutions

—a phenomenon that is most apparent when one considers the multitude of sorting algorithms in the literature. 

The reason is clear: When n elements must be moved, it may not matter much which elements are moved first and 

which ones later. Thus it is useful to look for nondeterministic algorithms that refrain from specifying the precise 

sequence  of  all  actions  taken,  and  instead  merely  iterate  condition ⇒ action statements,  with  the  meaning 

"wherever  condition  applies perform the corresponding  action". These algorithms are nondeterministic because 

each of  several  distinct  conditions may apply  at  lots  of  different  places,  and we may "fire"  any  action that  is  
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currently  enabled.  Adding  sequential  control  to  a  nondeterministic  algorithm  turns  it  into  a  deterministic 

algorithm. Thus a nondeterministic algorithm corresponds to a class of  deterministic ones that share common 

invariants, but differ in the order in which steps are executed. The correctness of a nondeterministic algorithm 

implies the correctness of all its sequential instances. Thus it is good algorithm design practice to develop a correct 

nondeterministic algorithm first, then turn it into a deterministic one by ordering execution of its steps with the 

goal of efficiency in mind.

Deterministic sequential algorithms come in a variety of forms depending on the choice of primitive (assignment  

or swap), data representation ('to' or 'from'), and technique. We focus on the latter and consider two techniques: 

cycle rotation and cycle clipping. Cycle rotation follows naturally from the idea of decomposing a permutation into 

cycles  and  processing  one  cycle  at  a  time,  using  temporary  storage  for  a  single  element.  It  fits  the  'from'  

representation somewhat more efficiently than the 'to' representation, as the latter requires a swap of two elements 

where the former uses an assignment. Cycle clipping uses the primitive 'swap two elements' so effectively as a step 

toward executing a permutation that it needs no temporary storage for elements. Because no temporary storage is  

tied up, it is not necessary to finish processing one cycle before starting on the next one–elements can be clipped 

from their cycles in any order. Clipping works efficiently with either representation, but is easier to understand with 

'to'.  We present  cycle  rotation  with  'from'  and  cycle  clipping  with  'to'  and leave  the  other  two  algorithms  as 

exercises.

Cycle rotation

A search for an in-place algorithm naturally leads to the idea of processing a permutation one cycle at a time: 

every element we place at its destination bumps another one, but we avoid holding an unbounded number of  

bumped elements in temporary storage by rotating each cycle, one element at a time. This works best using the 

'from' representation. The following loop rotates the cycle that passes through an arbitrary index i:

Rotate the cycle starting at index i, updating f:

j := i;{ initialize a two-pronged fork to travel along the cycle }
p := f[j]; { p is j's predecessor in the cycle }
A := D[j]; { save a single element in an auxiliary variable A }
while  p ≠ i  do  { D[j] := D[p];  f[j] := j;  j := p;  p := f[j]} ;
D[j] := A; { reinsert the saved element into the former cycle … }
f[j] := j; { … but now it is a fixed point }

This code works trivially for a cycle of length 1, where p = f[i] = i guards the body of the loop from ever being  

executed. The statement f[j]  := j  in the loop is unnecessary for rotating the cycle.  Its purpose is to identify an 

element that has been placed at its final destination, so this code can be iterated for 1 ≤ i ≤ n to yield an in-place  

permutation algorithm. For the sake of efficiency we add two details: (1) We avoid unnecessary movements  A :=  

D[j];  D[j] := A  of a possibly voluminous element by guarding cycles of length 1 with the test 'i ≠ f[i]', and (2) we  

terminate the iteration at n – 1 on the grounds that when n – 1 elements of a permutation are in their correct place, 

the n-th one is also. Using the code above, this leads to

for  i := 1  to  n – 1  do if  i ≠ f[i]  then  rotate the cycle starting at index i, updating f

Exercise

Implement  cycle  rotation  using  the  'to'  representation.  Hint: Use  the  swap  primitive  rather  than  element 

assignment.
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Cycle clipping

Cycle clipping is the key to elegant in-place permutation using the 'to' representation. At each step, we clip an 

arbitrary element d out of an arbitrary cycle of length > 1, thus reducing the latter's length by 1. As shown in Exhibit 

9.5, we place d at its destination, where it forms a cycle of length 1 that needs no further processing. The element it 

displaces, c, can find a (temporary) home in the cell vacated by d. It is probably out of place there, but no more so  

than it was at its previous home; its time will come to be relocated to its final destination. Since we have permuted 

elements, we must update the permutation array to reflect accurately the permutation yet to be performed. This is a 

local operation in the vicinity of the two elements that were swapped, somewhat like tightening a belt by one notch

—all but two of the elements in the clipped cycle remain unaffected. The Exhibit below shows an example. In order  

to execute the permutation (1 4 3) (2 5), we clip d from its cycle (1 4 3) by placing d at its destination D[3], thus  

bumping c into the vacant cell D[4]. This amounts to representing the cycle (1 4 3) as a product of two shorter 

cycles: the swap (3 4), which can be done right away, and the cycle (1 4) to be executed later. The cycle (2 5) remains  

unaffected. The ovals in Exhibit 9.5 indicate that corresponding entries of D and t are moved together. Exhibit 9.6 

shows what happens to a cycle clipped by a swap 

// { t[i], D[i]  :=:  t[t[i]], D[t[i]] }

Exhibit 9.5: Clipping one element out of a cycle of a permutation.

Exhibit 9.6: Effect of a swap caused by the condition i ≠ t[i].
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Cycles of length 1 are left alone, and the absence of cycles of length > 1 signals termination. Thus the following 

condition ⇒ action statement,  iterated  as  long  as  the  condition  i  ≠  t[i]  can  be  met,  executes  a  permutation 

represented in the array t:

∃ i:i ≠ t[i]  ⇒  // { t[i], D[i]  :=:  t[t[i]], D[t[i]] }

We use the multiple swap operator // { :=: } with the meaning: evaluate all four expressions using the original 

values of all the variables involved, then perform all four assignments simultaneously. It can be implemented using 

six single assignments and two auxiliary variables, one of type 1 .. n, the other of type 'elt'. Each swap places (at 

least) one element into its final position, say j, where it is guarded from any further swaps by virtue of j = t[j]. Thus  

the nondeterministic algorithm above executes at most n – 1 swaps: When n – 1 elements are in final position, the  

n-th one is also.

The conditions on i can be checked in any order, as long as they are checked exhaustively, for example:

{ (0)  (1 ≤ j < 0) ⇒ j = t[j] }
for  i := 1  to  n – 1  do

{ (1)  (1 ≤ j < i) ⇒ j = t[j] }
while  i ≠ t[i]  do  // { t[i], D[i]  :=:  t[t[i]], D[t[i]] }
{ (2)  (1 ≤ j ≤ i) ⇒ j = t[j] }

{ (3)  (1 ≤ j ≤ n – 1) ⇒ j = t[j] }

For each value of i, i is the leftmost position of the cycle that passes through i. As the while loop reduces this  

cycle to cycles of length 1, all swaps involve i and t[i] > i, as asserted by the invariant (1) (1 ≤ j < I) ⇒ j = t[j], which 

precedes the while loop. At completion of the while loop, the assertion is strengthened to include i, as stated in 

invariant (2) (1 ≤ j ≤ I) ⇒ j = t[j]. This reestablishes (1) for the next higher value of i. The vacuously true assertion 

(0) serves as the basis of this proof by induction. The final assertion (3) is just a restatement of assertion (2) for the  

last value of i. Since t[1] … t[n] is a permutation of 1 …n, (3) implies that n = t[n].

Exercise: cycle clipping using the 'from' representation

The nondeterministic algorithm expressed as a multiple assignment

// (1 ≤ i ≤ n)  { D[i]} := D[f[i]] }

is equally as valid for the 'from' representation as its analog 

// (1 ≤ i ≤ n)  { D[t[i]] := D[i] }

was for the 'to' representation. But in contrast to the latter, the former cannot be translated into a simple iteration 

of the condition ⇒ action statement:

∃ i: i ≠ f[i]  ⇒  // { f[i], D[i]  :=:  f[f[i]], D[f[i]] }

Why not? Can you salvage the idea of cycle clipping using the 'from' representation

Exercises

1. Write two functions that implement sequential  search,  one with sentinel  as shown in the first  section, 

"Sequential search" the other without sentinel. Measure and compare their running time on random arrays  

of various sizes

2. Measure and compare the running times of sequential search and binary search on random arrays of size n, 

for n = 1 to n = 100. Sequential search is obviously faster for small values of n, and binary search for large n,  

but where is the crossover? Explain your observations.
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10. Strings 

Learning objectives:
• searching for patterns in a string 

• finite-state machine

Most programming languages support simple operations on strings (e.g. comparison, concatenation, extraction, 

searching). Searching for a specified pattern in a string (text) is the computational kernel of most string processing 

operations. Several efficient algorithms have been developed for this potentially time-consuming operation. The 

approach presented here is very general; it allows searching for a pattern that consists not only of a single string,  

but a set of strings. The cardinality of this set influences the storage space needed, but not the time. It leads us to  

the concept of a finite-state machine (fsm).

Recognizing a pattern consisting of a single string

Problem: Given a (long) string z = z1 z2 … zn of n characters and a (usually much shorter) string p = p1 p2 … pm of 

m characters (the pattern), find all (nonoverlapping) occurrences of p in z. By sliding a window of length m from 

left to right along z and examining most characters z i  m times we solve the problem using m · n comparisons. By 

constructing a finite-state machine from the pattern p it suffices to examine each character z i exactly once, as shown 

in Exhibit 10.1. Each state corresponds to a prefix of the pattern, starting with the empty prefix and ending with the 

complete pattern. The input symbols are the input characters z1, z2, … , zn of z. In the j-th step the input character z j 

leads from a state corresponding to the prefix p1 p2 … pi to

• the state with prefix p1 p2 … pi pi+1 if zj = pi+1

• a different state (often the empty prefix, λ) if zj ≠ pi+1

Example

p = barbara (Exhibit 10.1).

Exhibit 10.1: State diagram showing some of the transitions. All other state transitions lead back to the 

initial state.

Notice  that  the  pattern  'barbara',  although  it  sounds  repetitive,  cannot  overlap  with  any  part  of  itself.  

Constructing a finite-state machine for such a pattern is straightforward. But consider a self-overlapping pattern 

such as 'barbar',  or 'abracadabra',  or 'xx',  where the first  k > 0 characters are identical  with the last: The text  

'barbarbar' contains two overlapping occurrences of the pattern 'barbar', and 'xxxx' contains three occurrences of 

'xx'. A finite-state machine constructed in an analogous fashion as the one used for 'barbara' always finds the first of 
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several  overlapping  occurrences  but  might  miss  some  of  the  later  ones.  As  an  exercise,  construct  finite-state  

machines that detect all occurrences of self-overlapping patterns.

Recognizing a set of strings: a finite-state-machine interpreter

Finite-state machines (fsm, also called "finite automata") are typically used to recognize patterns that consist of  

a  set of  strings.  An adequate treatment of  this more general problem requires introducing some concepts and 

terminology widely used in computer science.

Given a finite set A of input symbols, the  alphabet, A*  denotes the (infinite) set of all (finite) strings over A, 

including the nullstring  λ. Any subset L  ⊆ A*, finite or infinite, is called a set of strings, or a  language, over A. 

Recognizing a language L refers to the ability to examine any string z ∈ A*, one symbol at a time from left to right, 

and deciding whether or not z ∈ L.

A deterministic finite-state machine M is essentially given by a finite set S of states, a finite alphabet A of input 

symbols, and a  transition function f: S x A → S. The state diagram depicts the states and the inputs, which lead 

from one state to another; thus a finite-state machine maps strings over A into sequences of states.

When treating any specific problem, it is typically useful to expand this minimal definition by specifying one or 

more of the following additional concepts. An initial state s0 S, a subset F ⊆ S of final or accepting states, a finite 

alphabet B of output symbols and an output function g: S → B, which can be used to assign certain actions to the 

states in S. We use the concepts of initial state s0 and of accepting states F to define the notion "recognizing a set of 

strings":

A set L ⊆ A* of strings is recognized or accepted by the finite-state machine M = (S, A, f, s0, F) iff all the strings 

in L, and no others, lead M from s0 to some state s ∈ F.

Example

Exhibit 10.3 shows the state diagram of a finite-state machine that recognizes parameter lists as defined by the  

syntax diagrams in  Exhibit 10.2. L (letter) stands for a character a .. z, D (digit) for a digit 0 .. 9.

Exhibit 10.2: Syntax diagram of simple parameter lists.
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Exhibit 10.3: State diagram of finite-state machine to accept parameter lists. The 

starting state is '1', the single accepting state is '8'.

A straightforward implementation of a finite-state machine interpreter uses a transition matrix T to represent 

the state diagram. From the current state s the input symbol c leads to the next state T[s, c]. It is convenient to  

introduce an error state that captures all illegal transitions. The transition matrix T corresponding to Exhibit 10.3 

looks as follows:

L represents a character a .. z.
D represents a digit 0 .. 9.
! represents all characters that are not explicitly mentioned.

( ) : , ; L D !

0
1
2
3
4
5
6
7
8

0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
2
4
4
5
7
7
8

0
0
0
0
0
0
0

0
0
0
0
8
8
0

0
5
5
0
0
0
0

0 0 3 0 0
3
0
6
6
0
0

2
2
0
0
0
0

0
0

2
2
0

0

3
0
0
6
0
0

0
0
0
0
0
0

error state
skip blank
left parenthesis read
reading variable identifier
skip blank
colon read
reading type identifier
skip blank
right parenthesis read

The following is a suitable environment for programming a finite-state-machine interpreter:

const  nstate = 8; { number of states, without error state }
type state = 0 .. nstate; { 0 = error state, 1 = initial state }

inchar = ' ' .. '¨'; { 64 consecutive ASCII characters }
tmatrix = array[state, inchar] of state;

var  T: tmatrix;

After initializing the transition matrix T, the procedure 'silentfsm' interprets the finite-state machine defined by 

T. It processes the sequence of input characters and jumps around in the state space, but it produces no output.

procedure silentfsm(var T: tmatrix);
var  s: state;  c: inchar;
begin

s := 1;  { initial state }
while  s ≠ 0  do  { read(c);  s := T[s, c] }
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end;

The  simple  structure  of  'silentfsm'  can  be  employed  for  a  useful  finite-state-machine  interpreter  in  which 

initialization, error condition, input processing and transitions in the state space are handled by procedures or 

functions 'initfsm', 'alive', 'processinput', and 'transition' which have to be implemented according to the desired 

behavior. The terminating procedure 'terminate' should print a message on the screen that confirms the correct  

termination of the input or shows an error condition.

procedure fsmsim(var T: tmatrix);
var  … ;
begin

initfsm;
while  alive  do  { processinput;  transition };
terminate

end;

Exercise: finite-state recognizer for multiples of 3

Consider the set of strings over the alphabet {0, 1} that represent multiples of 3 when interpreted as binary  

numbers, such as: 0, 00, 11, 00011, 110. Design two finite-state machines for recognizing this set:

• Left to right: Mlr reads the strings from most significant bit to least significant.

• Right to left: Mrl reads the strings from least significant bit to most significant.

Solution

Left to right: Let rk be the number represented by the k leftmost bits, and let b be the (k + 1)-st bit, interpreted  

as an integer. Then rk+1  = 2·rk + b. The states correspond to rk mod 3 (Exhibit 10.4). Starting state and accepting 

state: 0'.

Exhibit 10.4: Finite-state machine computes remainder modulo 3 left to right.

Right to left: rk+1 = b·2k + rk. Show by induction that the powers of 2 are alternatingly congruent to 1 and 2 

modulo 3 (i.e. 2k mod 3 = 1 for k even, 2k mod 3 = 2 for k odd). Thus we need a modulo 2 counter, which appears in 

Exhibit 10.5 as two rows of three states each. Starting state: 0. Accepting states: 0 and 0'.
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Exhibit 10.5: Finite-state machine computes remainder modulo 3 right to left.

Exercises and programming projects

1. Draw  the  state  diagram  of  several  finite-state  machines,  each  of  which  searches  a  string  z  for  all 

occurrences of an interesting pattern with repetitive parts, such as 'abaca' or 'Caracas'.

2. Draw the state diagram of finite-state machines that detect all occurrences of  a self-overlapping pattern 

such as 'abracadabra', 'barbar', or 'xx'.

3. Finite-state recognizer for various days:

Design a finite-state machine for automatic recognition of the set of nine words:

'monday','tuesday','wednesday','thursday',

'friday', 'saturday', 'sunday', 'day', 'daytime'

in a text. The underlying alphabet consists of the lowercase letters 'a' .. 'z' and the blank. Draw the state 

diagram of the finite-state machine; identify the initial state and indicate accepting states by a double circle.  

It suffices to recognize membership in the set without recognizing each word individually.

4. Implementation of a pattern recognizer:

Some  useful  procedures  and  functions  require  no  parameters,  hence  most  programming  languages 

incorporate the concept of an empty parameter list. There are two reasonable syntax conventions about 

how to write the headers of parameterless procedures and functions:

(1) procedure p; function f: T;

(2) procedure p();function f(): T;

Examples: Pascal uses convention (1); Modula-2 allows both (1) and (2) for procedures, but only (2) for  

function procedures.

For each convention (1) and (2), modify the syntax diagram in Exhibit 10.2 to allow empty parameter lists, 

and draw the state diagrams of the corresponding finite-state machines.

5. Standard Pascal defines parameter lists by means of the syntax diagram shown in Exhibit 10.6.
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Exhibit 10.6: Syntax diagram for standard Pascal parameter lists. 

Draw a state diagram for the corresponding finite-state machine. For brevity's sake, consider the reserved words  

'function', 'var' and 'procedure' to be atomic symbols rather than strings of characters.
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11. Matrices and graphs: 
transitive closure

Learning objectives:

• atomic versus structured objects

• directed versus undirected graphs

• transitive closure

• adjacency and connectivity matrix

• boolean matrix multiplication

• efficiency of an algorithm. asymptotic notation

• Warshall’s algorithm

• weighted graph

• minimum spanning tree

In any  systematic presentation of  data  objects,  it  is  useful  to distinguish  primitive or  atomic objects from 

composite or structured objects. In each of the preceding chapters we have seen both types: A bit, a character, or an 

identifier is usually considered primitive; a word of bits, a string of characters, an array of identifiers is naturally  

treated as composite. Before proceeding to the most common primitive objects of computation, numbers, let us  

discuss one of the most important types of structured objects, matrices. Even when matrices are filled with the 

simplest of primitive objects, bits, they generate interesting problems and useful algorithms.

Paths in a graph

Syntax diagrams and state diagrams are examples of a type of object that abounds in computer science: A graph 

consists  of  nodes  or  vertices,  and of  edges  or  arcs that  connect  a pair of  nodes.  Nodes and edges often have 

additional information attached to them, such as labels or numbers. If we wish to treat graphs mathematically, we  

need a definition of these objects.

Directed graph. Let N be the set of n elements {1, 2, … , n} and E a binary relation: E  N ⊆ ξ N, also denoted by 

an arrow,  →. Consider N to be the set of nodes of a directed graph G, and E the set of arcs (directed edges). A  

directed graph G may be represented by its  adjacency matrix A (Exhibit  11.1), an n  ξ  n boolean matrix whose 

elements A[i, j] determine the existence of an arc from i to j:

A[i, j] = true    iff    i → j.

An arc is a path of length 1. From A we can derive all paths of any length. This leads to a relation denoted by a  

double arrow, ⇒, called the transitive closure of E:

i ⇒ j, iff there exists a path from i to j

(i.e. a sequence of arcs i  → i1, i1 → i2, i2 → i3, … , ik → j). We accept paths of length 0 (i.e. i ⇒ i for all i). This 

relation ⇒ is represented by a matrix C= A∗(Exhibit 11.1):
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C[i, j] = true    iff    i ⇒ j.

C stands for connectivity or reachability matrix; C = A
∗

 is also called transitive hull or transitive closure, since 

it is the smallest transitive relation that "encloses" E.

 Exhibit 11.1: Example of a directed graph with its adjacency and connectivity matrix.

(Undirected) graph. If the relation E ⊆ N ξ N is symmetric [i.e. for every ordered pair (i, j) of nodes it also 

contains the opposite pair (j, i)] we can identify the two arcs (i, j) and (j, i) with a single edge, the unordered pair (i, 

j). Books on graph theory typically start with the definition of undirected graphs (graphs, for short), but we treat 

them as a special case of directed graphs because the latter occur much more often in computer science. Whereas  

graphs are based on the concept of an edge between two nodes,  directed graphs embody the concept of one-way 

arcs leading from a node to another one.

Boolean matrix multiplication

Let A, B, C be n ξ n boolean matrices defined by

type nnboolean: array[1 .. n, 1 .. n] of boolean;
var  A, B, C: nnboolean;

The boolean matrix multiplication C = A · B is defined as and implemented by

and implemented by

procedure mmb(var a, b, c: nnboolean);
var  i, j, k: integer;
begin

for  i := 1  to  n  do
for  j := 1  to  n  do  begin

c[i, j] := false;
for  k := 1  to  n  do  c[i, j] := c[i, j] or (a[i, k] and 

b[k, j])  (∗∗)
end

end;

Remark:  Remember (in the section,  “Pascal  and its  dialects:  Lingua franca of computer science”)  that  we 

usually assume the boolean operations 'or' and 'and' to be conditional (i.e. their arguments are evaluated only as far  

as necessary to determine the value of the expression). An extension of this simple idea leads to an alternative way  

of coding boolean matrix multiplication that speeds up the innermost loop above for large values of n. Explain why  

the following code is equivalent to (∗∗):

k:=1;
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while  not c[i, j] and (k ≤ n)  do  { c[i, j] := a[i, k] and b[k, 
j];  k := k + 1 }

Multiplication also defines powers, and this gives us a first solution to the problem of computing the transitive 

closure. If Al+1 denotes the L-th power of A, the formula 

has a clear interpretation: There exists a path of length L + 1 from i to j iff, for some node k, there exists a path of 

length L from i to k and a path of length 1 (a single arc) from k to j. Thus A2 represents all paths of length 2; in 

general, AL represents all paths of length L, for L ≥ 1:

AL[i, j] = true  iff  there exists a path of length L from i to j.

Rather than dealing directly with the adjacency matrix A, it is more convenient to construct the matrix A' = A or 

I. The identity matrix I has the values 'true' along the diagonal, 'false' everywhere else. Thus in A' all diagonal  

elements A'[i,  i]  = true.  Then A'L describes all  paths of  length ≤ L (instead of exactly equal to L),  for  L ≥ 0. 

Therefore, the transitive closure is A∗ =  A'(n-1)

The efficiency of an algorithm is often measured by the number of "elementary" operations that are executed on 

a given data set. The execution time of an elementary operation [e.g. the binary boolean operators (and, or) used  

above] does not depend on the operands. To estimate the number of elementary operations performed in boolean 

matrix multiplication as a function of the matrix size n, we concentrate on the leading terms and neglect the lesser 

terms. Let us use asymptotic notation in an intuitive way; it is defined formally in Part IV.

The number of operations (and, or), executed by procedure 'mmb' when multiplying two boolean n ξ n matrices 

is  Θ(n3)  since each of  the nested  loops is  iterated n  times.  Hence  the cost for  computing A' (n–1) by  repeatedly 

multiplying with A' is Θ(n4). This algorithm can be improved to Θ(n3 · log n) by repeatedly squaring: A'2, A'4, A'8 , … , 

A'k where k is the smallest power of 2 with k ≥ n – 1. It is not necessary to compute exactly A' (n–1). Instead of A'13, for 

example, it suffices to compute A'16, the next higher power of 2, which contains all paths of length at most 16. In a 

graph with 14 nodes, this set is equal to the set of all paths of length at most 1.

Warshall's algorithm

In search of a faster algorithm we consider other ways of iterating over the set of all paths. Instead of iterating  

over paths of growing length, we iterate over an increasing number of nodes that may be used along a path from 

node i to node j. This idea leads to an elegant algorithm due to Warshall [War 62]:

Compute a sequence of matrices B0, B1, B2, … , Bn:

B0[i, j] = A'[i, j] = true    iff    i = j  or  i → j.

B1[i, j] = true    iff    i ⇒ j using at most node 1 along the way.

B2[i, j] = true    iff    i ⇒ j using at most nodes 1 and 2 along the way

…

Bk[i, j] = true    iff    i ⇒ j using at most nodes 1, 2, … , k along the way.

The matrices B0, B1, … express the existence of paths that may touch an increasing number of nodes along the 

way from node i to node j; thus Bn talks about unrestricted paths and is the connectivity matrix C = Bn.

An iteration step Bk–1 → Bk is computed by the formula
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Bk[i, j]  =  Bk–1[i, j]  or  (Bk–1[i, k] and Bk–1[k, j]).

The cost for performing one step is  Θ(n2), the cost for computing the connectivity matrix is therefore Θ(n3). A 

comparison of the formula for Warshall's algorithm with the formula for matrix multiplication shows that the n-ary 

'OR' has been replaced by a binary 'or'.

At first sight, the following procedure appears to execute the algorithm specified above, but a closer look reveals 

that  it  executes  something  else:  the  assignment  in  the  innermost  loop  computes  new  values  that  are  used 

immediately, instead of the old ones.

procedure warshall(var a: nnboolean);
var i, j, k: integer;
begin

for  k := 1  to  n  do
for  i := 1  to  n  do

for  j := 1  to  n  do
a[i, j] := a[i, j] or (a[i, k] and a[k, j])
{ this assignment mixes values of the old and new matrix }

end;

A more thorough examination, however, shows that this "naively" programmed procedure computes the correct  

result in-place more efficiently than would direct application of the formulas for the matrices Bk. We encourage you 

to verify that the replacement of old values by new ones leaves intact all values needed for later steps; that is, show 

that the following equalities hold:

Bk[i, k] = Bk–1[i, k]  and  Bk[k, j] = Bk–1[k, j].

Exercise: distances in a directed graph, Floyd's algorithm

Modify Warshall's algorithm so that it computes the shortest distance between any pair of nodes in a directed 

graph where each arc is assigned a length ≥ 0. We assume that the data is given in an n ξ n array of reals, where d[i, 

j] is the length of the arc between node i and node j. If no arc exists, then d[i, j] is set to ∞, a constant that is the  

largest real number that can be represented on the given computer. Write a procedure 'dist' that works on an array  

d of type

type  nnreal = array[1 .. n, 1 .. n] of real;

Think of  the meaning of  the boolean operations 'and'  and 'or'  in Warshall's  algorithm, and find arithmetic 

operations that play an analogous role for the problem of computing distances. Explain your reasoning in words 

and pictures.

Solution

The  following  procedure  'dist'  implements  Floyd's  algorithm  [Flo  62].  We  assume  that  the  length  of  a  

nonexistent arc is ∞, that x + ∞ = ∞, and that min(x, ∞) = x for all x.

procedure dist(var d: nnreal);
var  i, j, k: integer;
begin

for  k := 1  to  n  do
for  i := 1  to  n  do

for  j := 1  to  n  do
d[i, j] := min(d[i, j], d[i, k] + d[k, j])

end;
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Exercise: shortest paths 

In addition to the distance d[i, j] of the preceding exercise, we wish to compute a shortest path from i to j (i.e.  

one that realizes this distance).  Extend the solution above and write a procedure 'shortestpath' that returns its  

result in an array 'next' of type:

type  nnn = array[1 .. n, 1 .. n] of 0 .. n;
next[i,j] contains the next node after i on a shortest path from i to 
j, or 0 if no such path exists.

Solution
procedure shortestpath(var d: nnreal; var next: nnn);
var  i, j, k: integer;
begin

for  i := 1  to  n  do
for  j := 1  to  n  do

if  d[i, j] ≠ ∞  then  next[i, j] := j  else  next[i, j] := 
0;

for  k := 1  to  n  do
for  i := 1  to  n  do

for  j := 1  to  n  do
if  d[i, k] + d[k, j] < d[i, j]  then

{ d[i, j] := d[i, k] + d[k, j];  next[i, j] := next[i, k] 
}

end;

It is easy to prove that next[i, j] = 0 at the end of the algorithm iff d[i, j] = ∞ (i.e. there is no path from i to j).

Minimum spanning tree in a graph

Consider a weighted graph G = (V, E, w), where V = {v1, …, vn} is the set of vertices, E = {e1, … , em} is the set of 

edges, each edge ei is an unordered pair (vj, vk) of vertices, and w: E → R assigns a real number to each edge, which 

we call its weight. We consider only connected graphs G, in the sense that any pair (vj, vk) of vertices is connected by 

a sequence of edges. In the following example, the edges are labeled with their weight  (Exhibit 11.2).

Exhibit 11.2: Example of a minimum spanning tree.

 A tree T is a connected graph that contains no circuits: any pair (vj, vk) of vertices in T is connected by a unique 

sequence of edges. A spanning tree of a graph G is a subgraph T of G, given by its set of edges ET ⊆ E, that is a tree 

and satisfies the additional condition of being maximal, in the sense that no edge in E \ E T can be added to T 

without destroying the tree property. Observation: a connected graph G has at least one spanning tree. The weight 
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of a spanning tree is the sum of the weights of all its edges. A minimum spanning tree is a spanning tree of minimal 

weight. In Exhibit 11.2, the bold edges form the minimal spanning tree.

Consider the following two algorithms:

Grow:

ET := ∅;  { initialize to empty set } while  T is not a spanning tree  do ET := ET ∪ {a min cost edge that does 

not form a circuit when added to ET}

Shrink:

ET := E;  { initialize to set of all edges } while  T is not a spanning tree  do ET := ET \ {a max cost edge that 

leaves T connected after its removal}

Claim: The "growing algorithm" and "shrinking algorithm" determine a minimum spanning tree.

If T is a spanning tree of G and e = (v j, vk) ∉ ET, we define Ckt(e, T), "the circuit formed by adding e to T" as the 

set of edges in ET that form a path from v j to vk. In the example of Exhibit 11.2 with the spanning tree shown in bold 

edges we obtain Ckt((v4, v5), T) = {(v4, v1), (v1, v2), (v2, v5)}.

Exercise

Show that for each edge e ∉ ET there exists exactly one such circuit. Show that for any e ∉ ET and any t ∉ Ckt(e, 

T) the graph formed by (ET \ {t}) ∪ {e} is still a spanning tree.

A local minimum spanning tree of G is a spanning tree T with the property that there exist no two edges e ∉ ET , 

t ∉ Ckt(e, T) with w(e) < w(t).

Consider the following 'exchange algorithm', which computes a local minimum spanning tree:

Exchange:

T := any spanning tree;

while  there exists e ∉ ET, t ∈ Ckt(e, T) with w(e) < w(t)  do

ET := (ET \ {t}) ∪ {e};  { exchange }

Theorem: A local minimum spanning tree for a graph G is a minimum spanning tree.

For the proof of this theorem we need:

Lemma: If T' and T" are arbitrary spanning trees for G, T' ≠ T", then there exist e" ∉ ET' , e' ∉ ET" , such that e" 

∈ Ckt(e', T") and e' ∈ Ckt(e", T').

Proof: Since T' and T" are spanning trees for G and T' ≠ T", there exists e" ∈ ET" \ ET'. Assume that Ckt(e", T') 

⊆T". Then e" and the edges in Ckt(e", T') form a circuit in T" that contradicts the assumption that T" is a tree. Hence 

there must be at least one e' ∈ Ckt(e", T') \ ET".

Assume that for all e' ∈ Ckt(e", T') \ ET" we have e" ∈ Ckt(e', T"). Then 

forms a circuit in T" that contradicts the proposition that T" is a tree. Hence there must be at least one e' ∈ Ckt(e",  

T') \ ET" with e" ∈ Ckt(e', T").
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Proof of the Theorem: Assume that T' is a local minimum spanning tree. Let T" be a minimum spanning tree. 

If T' ≠ T" the lemma implies the existence of e' ∈ Ckt(e", T') \ ET" and e" ∈ Ckt(e', T") \ ET'.

If w(e') < w(e"), the graph defined by the edges (ET" \ {e"}) ∪ {e'} is a spanning tree with lower weight than T". 

Since T" is a minimum spanning tree, this is impossible and it follows that

w(e') ≥w (e"). ( ∗)

If w(e') > w(e"), the graph defined by the edges (ET' \ {e'}) ∪ {e"} is a spanning tree with lower weight than T'. 

Since T" is a local minimum spanning tree, this is impossible and it follows that

w(e') ≤ w(e"). (∗∗)

From (∗∗) and (∗∗∗∗) it follows that w(e') = w(e") must hold. The graph defined by the edges (E T" \ {e"}) ∪ {e'} is 

still  a  spanning tree  that has  the same weight  as  T".  We replace T" by this  new minimum spanning tree and 

continue the replacement process. Since T' and T" have only finitely many edges the process will terminate and T" 

will become equal to T'. This proves that T" is a minimum spanning tree.

The theorem implies that the tree computed by 'Exchange' is a minimum spanning tree.

Exercises

1. Consider how to extend the transitive closure algorithm based on boolean matrix multiplication so that it  

computes (a) distances and (b) a shortest path.

2. Prove  that  the  algorithms 'Grow'  and  'Shrink'  compute local  minimum spanning  trees.  Thus  they  are 

minimum spanning trees by the theorem of the section entitled “Minimum spanning tree in a graph”.
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12. Integers
Learning objectives:

• integers and their operations

• Euclidean algorithm

• Sieve of Eratosthenes

• large integers

• modular arithmetic

• Chinese remainder theorem

• random numbers and their generators

Operations on integers

Five basic operations account for the lion's share of integer arithmetic:

+ – · div mod

The product 'x · y', the quotient 'x div y', and the remainder 'x mod y' are related through the following div-mod 

identity:

(1)  (x div y) · y + (x mod y) = x for y ≠ 0.

Many  programming  languages  provide  these  five  operations,  but  unfortunately,  'mod'  tends  to  behave 

differently not only between different languages but also between different implementations of the same language.  

How come have we not learned in school what the remainder of a division is?

The div-mod identity, a cornerstone of number theory, defines 'mod' assuming that all the other operations are  

defined. It is mostly used in the context of nonnegative integers x ≥ 0, y > 0, where everything is clear, in particular 

the convention 0 ≤ x mod y < y. One half of the domain of integers consists of negative numbers, and there are good  

reasons for extending all five basic operations to the domain of all integers (with the possible exception of y = 0),  

such as:

• Any operation with an undefined result hinders the portability and testing of programs: if the "forbidden" 

operation does get executed by mistake, the computation may get into nonrepeatable states. Example: from 

a practical point of view it is better not to leave 'x div 0' undefined, as is customary in mathematics, but to  

define the result as '= overflow', a feature typically supported in hardware.

• Some algorithms that we usually consider in the context of nonnegative integers have natural extensions 

into the domain of all integers (see the following sections on 'gcd' and modular number representations).

Unfortunately, the attempt to extend 'mod' to the domain of integers runs into the problem mentioned above: 

How  should  we  define  'div'  and  'mod'?  Let's  follow  the  standard  mathematical  approach  of  listing  desirable  

properties these operations might possess. In addition to the "sacred" div-mod identity (1) we consider:

(2) Symmetry of div: (–x) div y = x div (–y) = –(x div y).

The most plausible way to extend 'div' to negative numbers.
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(3) A constraint on the possible values assumed by 'x mod y', which, for y > 0, reduces to the convention of  

nonnegative remainders:

0 ≤ x mod y < y.

This is important because a standard use of 'mod' is to partition the set of integers into y residue classes. We 

consider a weak and a strict requirement:

(3') Number of residue classes = |y|: for given y and varying x, 'x mod y' assumes exactly |y| distinct values.

(3") In addition, we ask for nonnegative remainders: 0 ≤ x mod y < |y|.

Pondering  the consequences  of  these desiderata,  we soon realize  that  'div'  cannot  be  extended  to negative  

arguments by means of symmetry.  Even the relatively innocuous case of  positive denominator y > 0 makes it 

impossible to preserve both (2) and (3"), as the following failed attempt shows:

((–3) div 2) · 2 + ((–3) mod 2) ?=? –3 Preserving (1)

(–(3 div 2)) · 2 + 1 ?=? –3 and using (2) and (3")

(–1) · 2 + 1 ≠ –3 … fails!

Even the weak condition (3'), which we consider essential, is incompatible with (2). For y = –2, it follows from  

(1) and (2) that there are three residue classes modulo (–2): x mod (–2) yields the values 1, 0, –1; for example,

1 mod (–2) = 1, 0 mod (–2) = 0, (–1) mod (–2) = –1.

This does not go with the fact that 'x mod 2' assumes only the two values 0, 1. Since a reasonable partition into  

residue classes is more important than the superficially appealing symmetry of 'div', we have to admit that (2) was  

just wishful thinking.

Without giving any reasons, [Knu 73a] (see the chapter "Reducing a task to given primitives;  programming 

motion) defines 'mod' by means of the div-mod identity (1) as follows:

x mod y = x – y · x / y, if y ≠ 0; x mod 0 = x;

Thus he implicitly defines x div y = x / y, where z, the "floor" of z, denotes the largest integer ≤ z; the "ceiling" 

z denotes the smallest integer ≥ z. Knuth extends the domain of 'mod' even further by defining "x mod 0 = x". 

With the exception of this special case y = 0, Knuth's definition satisfies (3'): Number of residue classes = |y|. The 

definition does not satisfy (3"), but a slightly more complicated condition. For given y ≠ 0, we have 0 ≤ x mod y < y,  

if y > 0; and 0 ≥ x mod y > y, if y < 0. Knuth's definition of 'div' and 'mod' has the added advantage that it holds for  

real numbers as well, where 'mod' is a useful operation for expressing the periodic behavior of functions [e.g. tan x 

= tan (x mod π)].

Exercise: another definition of 'div' and 'mod'

1. Show that the definition 

in conjunction with the div-mod identity (1) meets the strict requirement (3").
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Solution 

Exercise

Fill out comparable tables of values for Knuth's definition of 'div' and 'mod'.

Solution

 

The Euclidean algorithm

A famous algorithm for computing the greatest common divisor (gcd) of two natural numbers appears in Book 7  

of Euclid's Elements (ca. 300 BC). It is based on the identity gcd(u, v) = gcd(u – v, v), which can be used for u > v to  

reduce the size of the arguments, until the smaller one becomes 0.

We use these properties of the greatest common divisor of two integers u and v > 0:

gcd(u, 0) = u By convention this also holds for u = 0.

gcd(u, v) = gcd(v, u) Permutation of arguments, important for the termination of the following procedure.

gcd(u, v) = gcd(v, u – q · v) For any integer q.

The formulas above translate directly into a recursive procedure:
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function gcd(u, v: integer): integer;
begin

if  v = 0  then  return(u)  else  return(gcd(v, u mod v))
end;

A test for the relative size of u and v is unnecessary. If initially u < v, the first recursive call permutes the two  

arguments, and thereafter the first argument is always larger than the second.

This simple and concise solution has a relatively high implementation cost. A stack, introduced to manage the 

recursive  procedure calls,  consumes space and time.  In addition to the operations visible  in the code (test for 

equality, assignment, and 'mod'), hidden stack maintenance operations are executed. There is an equally concise 

iterative version that requires a bit more thinking and writing, but is significantly more efficient:

function gcd(u, v: integer): integer;
var  r: integer;
begin

while  v ≠ 0  do  { r := u mod v;  u := v;  v := r };
return(u)

end;

The prime number sieve of Eratosthenes

The oldest and best-known algorithm of type sieve is named after Eratosthenes (ca. 200 BC). A set of elements is  

to be separated into two classes, the "good" ones and the "bad" ones. As is often the case in life, bad elements are 

easier to find than good ones. A sieve process successively eliminates elements that have been recognized as bad; 

each element eliminated helps in identifying further bad elements. Those elements that survive the epidemic must 

be good.

Sieve algorithms are often applicable when there is a striking asymmetry in the complexity or length of the 

proofs of the two assertions "p is a good element" and "p is a bad element". This theme occurs prominently in the  

complexity theory of problems that appear to admit only algorithms whose time requirement grows faster than 

polynomially in the size of  the input (NP completeness).  Let us illustrate this  asymmetry in the case of prime  

numbers, for which Eratosthenes' sieve is designed. In this analogy, "prime" is "good" and "nonprime" is "bad".

A prime is a positive integer greater than 1 that is divisible only by 1 and itself. Thus primes are defined in terms 

of their lack of an easily verified property: a prime has no factors other than the two trivial ones. To prove that 1 675  

307 419 is not prime, it suffices to exhibit a pair of factors:

1 675 307 419 = 1 234 567 · 1 357.

This verification can be done by hand. The proof that 217 – 1 is prime, on the other hand, is much more elaborate. 

In general (without knowledge of any special property this particular number might have) one has to verify, for 

each and every number that qualifies as a candidate factor, that it is not a factor. This is obviously more time  

consuming than a mere multiplication.

Exhibiting factors through multiplication is an example of what is sometimes called a "one-way" or "trapdoor" 

function: the function is  easy to evaluate (just one multiplication),  but its  inverse is  hard.  In this  context,  the 

inverse  of  multiplication  is  not  division,  but  rather  factorization.  Much of  modern cryptography relies  on the 

difficulty of factorization.

The prime number sieve of Eratosthenes works as follows. We mark the smallest prime, 2, and erase all of its 

multiples within the desired range 1 .. n. The smallest remaining number must be prime; we mark it and erase its  
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multiples. We repeat this process for all numbers up to √n: If an integer c < n can be factored, c = a · b, then at least  

one of the factors is <√n.

{ sieve of Eratosthenes marks all the primes in 1 .. n }
const  n = … ;
var sieve: packed array [2 .. n] of boolean;

p, sqrtn, i: integer;
…
begin

for  i := 2  to  n  do  sieve[i] := true;  { initialize the 
sieve }

sqrtn := trunc(sqrt(n));
{ it suffices to consider as divisors the numbers up to √ n }
p := 2;
while  p ≤ sqrtn  do  begin

i := p · p;
while  i ≤ n  do  { sieve[i] := false;  i := i + p };
repeat  p := p + 1  until  sieve[p];

end;
end;

Large integers

The range of numbers that can be represented directly in hardware is typically limited by the word length of the 

computer. For example, many small computers have a word length of 16 bits and thus limit integers to the range –

215 ≤ a < +215 =32768. When the built-in number system is insufficient, a variety of software techniques are used to 

extend its range. They differ greatly with respect to their properties and intended applications, but all of them come  

at an additional cost in memory and, above all, in the time required for performing arithmetic operations. Let us 

mention the most common techniques.

Double-length or double-precision integers.  Two words are  used to hold an integer that squares  the 

available range as compared to integers stored in one word. For a 16-bit computer we get 32-bit integers, for a 32-

bit computer we get 64-bit integers. Operations on double-precision integers are typically slower by a factor of 2 to 

4.

Variable precision integers. The idea above is extended to allocate as many words as necessary to hold a 

given  integer.  This  technique  is  used  when the  size  of  intermediate  results  that  arise  during  the  course  of  a  

computation is unpredictable. It calls for list processing techniques to manage memory. The time of an operation  

depends on the size of its arguments: linearly for addition, mostly quadratically for multiplication.

Packed BCD integers. This is a compromise between double precision and variable precision that comes from  

commercial data processing. The programmer defines the maximal size of every integer variable used, typically by  

giving the maximal number of decimal digits that may be needed to express it. The compiler allocates an array of  

bytes to this variable that contains the following information: maximal length, current length, sign, and the digits.  

The latter are stored in BCD (binary-coded decimal) representation: a decimal digit is coded in 4 bits, two of them  

are packed into a byte.  Packed BCD integers are expensive in space because most of  the time there is  unused 

allocated  space;  and  even  more  so  in  time,  due  to  digit-by-digit  arithmetic.  They  are  unsuitable  for  lengthy 

scientific/technical computations, but OK for I/O-intensive data processing applications.
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Modular number systems: the poor man's large integers

Modular arithmetic is a special-purpose technique with a narrow range of applications, but is extremely efficient 

where it applies—typically in combinatorial and number-theoretic problems. It handles addition, and particularly 

multiplication,  with  unequaled  efficiency,  but  lacks  equally  efficient  algorithms  for  division  and  comparison. 

Certain  combinatorial  problems  that  require  high  precision  can  be  solved  without  divisions  and  with  few 

comparisons; for these, modular numbers are unbeatable.

Chinese Remainder Theorem:  Let m1, m2, … ,  mk be pairwise  relatively prime positive  integers,  called 

moduli. Let m = m1 · m2 · … · mk be their product. Given k positive integers r1, r2, … , rk, called residues, with 0 ≤ ri < 

mi for 1 ≤ i ≤ rk, there exists exactly one integer r, 0 ≤ r < m, such that  r mod m i = ri  for 1 ≤ i ≤ k.

The Chinese remainder theorem is used to represent integers in the range 0 ≤ r < m uniquely as k-tuples of their 

residues modulo mi. We denote this number representation by

r ~ [r1, r2, … , rk].

The practicality of modular number systems is based on the following fact: The arithmetic operations (+ , – , ·) 

on integers r in the range 0 ≤ r< m are represented by the same operations, applied componentwise to k-tuples [r 1, 

r2, … , rk]. A modular number system replaces a single +, –, or · in a large range by k operations of the same type in 

small ranges.

If r ~ [r1, r2, … , rk], s ~ [s1, s2, … , sk], t ~ [t1, t2, … , tk], 

then:
(r + s)mod m = t ⇔ (ri + si) mod mi = ti for 1 ≤ i ≤ k,

(r – s)mod m = t ⇔ (ri – si) mod mi = ti for 1 ≤ i ≤ k,

(r · s)mod m = t ⇔ (ri · si) mod mi = ti for 1 ≤ i ≤ k.

Example

m1 = 2 and m2 = 5, hence m = m1 · m2 = 2 · 5 = 10. In the following table the numbers r in the range 0 .. 9 are  

represented as pairs modulo 2 and modulo 5.

Let r = 2 and s = 3, hence r · s = 6. In modular representation: r ~ [0, 2], s ~ [1, 3], hence r · s ~ [0, 1].

A useful modular number system is formed by the moduli

m1 = 99, m2 = 100, m3 = 101, hence m = m1 · m2 · m3 = 999900.

Nearly a million integers in the range 0 ≤ r < 999900 can be represented. The conversion of a decimal number  

to its modular form is easily computed by hand by adding and subtracting pairs of digits as follows:

r mod 99: Add pairs of digits, and take the resulting sum mod 99.

r mod 100: Take the least significant pair of digits.

r mod 101: Alternatingly add and subtract pairs of digits, and take the result mod 101.

The largest integer produced by operations on components is 1002 ~ 213; it is smaller than 215 = 32768 ~ 32k and 

thus causes no overflow on a computer with 16-bit arithmetic.

105



This book is licensed under a Creative Commons Attribution 3.0 License

Example

r = 123456

r mod  99 = (56 + 34 + 12) mod 99 =   3

r mod 100 = 56

r mod 101 = (56 – 34 + 12) mod 101 = 34

r ~ [3, 56, 34]

s = 654321

s mod  99 = (21 + 43 + 65) mod 99 = 30

s mod 100 = 21

s mod 101 = (21 – 43 + 65) mod 101 = 43

s ~ [30, 21, 43]

r + s ~ [3, 56, 34] + [30, 21, 43] = [33, 77, 77]

Modular  arithmetic  has  some  shortcomings:  division,  comparison,  overflow  detection,  and  conversion  to 

decimal notation trigger intricate computations.

Exercise: Fibonacci numbers and modular arithmetic

The sequence of Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

is defined by 

x0 = 0, x1 = 1, xn = xn–1 + xn–2 for n ≥ 2.

Write (a) a recursive function (b) an iterative function that computes the n-th element of this sequence. Using 

modular arithmetic, compute Fibonacci numbers up to 108 on a computer with 16-bit integer arithmetic, where the 

largest integer is 215 – 1 = 32767.

(c) Using moduli m1 = 999, m2 = 1000, m3 = 1001, what is the range of the integers that can be represented 

uniquely by their residues [r1, r2, r3] with respect to these moduli?

(d) Describe in words and formulas how to compute the triple [r1, r2, r3] that uniquely represents a number 

r in this range.

(e) Modify the function in (b) to compute Fibonacci numbers in modular arithmetic with the moduli 999,  

1000, and 1001. Use the declaration

type  triple = array [1 .. 3] of integer;

and write the procedure

procedure modfib(n: integer; var r: triple);

Solution
(a) function fib(n: integer): integer;

begin
if  n ≤ 1  then  return(n)  else  return(fib(n – 1) + fib(n – 2))

end;

(b) function fib(n: integer): integer;
var  p, q, r, i: integer;
begin

if  n ≤ 1  then  return(n)
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else  begin
p := 0;  q := 1;
for  i := 2  to  n  do  { r := p + q;  p := q;  q := r };
return(r)

end
end;

(c) The range is 0 .. m – 1 with m = m1 · m2 · m3 = 999 999 000.

(d) r = d1 · 1 000 000 + d2 · 1000 + d3 with 0 ≤ d1, d2, d3 ≤ 999

1 000 000 = 999 999 + 1= 1001 · 999 + 1

1000 = 999 + 1 = 1001 – 1

r1 = r mod 999 = (d1 + d2 + d3) mod 999

r2 = r mod 1000 = d3

r3 = r mod 1001 = (d1 – d2 + d3) mod 1001

(e) procedure modfib(n: integer; var r: triple);
var p, q: triple;

i, j: integer;
begin

if  n ≤ 1  then
for  j := 1  to  3  do  r[j] := n

else  begin
for  j := 1  to  3  do  { p[j] := 0;  q[j] := 1 };
for  i := 2  to  n  do  begin

for  j := 1  to  3  do  r [j] := (p[j] + q[j]) mod (998 + j);
p := q;  q := r

end
end

end;

Random numbers

The colloquial meaning of the term at random often implies "unpredictable". But random numbers are used in 

scientific/technical  computing  in  situations  where  unpredictability  is  neither  required  nor  desirable.  What  is  

needed in simulation, in sampling, and in the generation of test data is  not unpredictability but certain statistical 

properties. A random number generator is a program that generates a sequence of numbers that passes a number 

of specified statistical tests. Additional requirements include: it runs fast and uses little memory; it is portable to  

computers that use a different arithmetic; the sequence of random numbers generated can be reproduced (so that a 

test run can be repeated under the same conditions).

In practice, random numbers are generated by simple formulas. The most widely used class, linear congruential 

generators, given by the formula

ri+1 = (a · ri + c) mod m

are characterized by three integer constants: the multiplier a, the increment c, and the modulus m. The sequence is  

initialized with a seed r0.

All  these  constants  must  be  chosen  carefully.  Consider,  as  a  bad  example,  a  formula  designed to  generate  

random days in the month of February:

r0 = 0,  ri+1 = (2 · ri + 1) mod 28.

It generates the sequence 0, 1, 3, 7,  15, 3,  7,  15,  3, … . Since 0 ≤ r i < m, each generator of the form above 

generates a sequence with a prefix of length < m which is followed by a period of length ≤ m. In the example, the 
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prefix 0, 1 of length 2 is followed by a period 3, 7, 15 of length 3. Usually we want a long period. Results from  

number theory assert that a period of length m is obtained if the following conditions are met:

• m is chosen as a prime number.

• (a – 1) is a multiple of m.

• m does not divide c.

Example
r0 = 0,  ri+1 = (8 · ri + 1) mod 7

generates a sequence: 0, 1, 2, 3, 4, 5, 6, 0, … with a period of length 
7.

Shall we accept this as a sequence of random integers, and if not, why not? Should we prefer the sequence 4, 1, 6,  

2, 3, 0, 5, 4, … ?

For each application  of  random numbers,  the programmer/analyst  has  to identify  the important  statistical  

properties required. Under normal circumstances these include:

No periodicity over the length of the sequence actually used.  Example: to generate a sequence of 100 random 

weekdays  ∈ {Su, Mo, … , Sat}, do not pick a generator with modulus 7, which can generate a period of length at  

most 7; pick one with a period much longer than 100.

A desired distribution, most often the uniform distribution. If the range 0 .. m – 1 is partitioned into k equally  

sized intervals I1, I2, … , Ik, the numbers generated should be uniformly distributed among these intervals; this must 

be the case not only at the end of the period (this is trivially so for a generator with maximal period m), but for any  

initial part of the sequence.

Many well-known statistical tests are used to check the quality of random number generators. The run test (the 

lengths  of  monotonically  increasing  and  monotonically  decreasing  subsequences  must  occur  with  the  right 

frequencies); the gap test (given a test interval called the "gap", how many consecutively generated numbers fall 

outside?);  the  permutation test (partition the sequence into subsequences  of  t  elements;  there  are  t!  possible  

relative orderings of elements within a subsequence; each of these orderings should occur about equally often).

Exercise: visualization of random numbers

Write a program that lets its user enter the constants a, c, m, and the seed r0 for a linear congruential generator, 

then displays the numbers generated as dots on the screen: A pair of consecutive random numbers is interpreted as 

the (x, y)-coordinates of the dot. You will observe that most generators you enter have obvious flaws: our visual 

system is  an excellent  detector  of  regular patterns,  and most  regularities  correspond to undesirable  statistical 

properties.

The point made above is substantiated in [PM 88].

The following simple random number generator and some of its properties are easily memorized:

r0 = 1,  ri+1 = 125 · ri mod 8192.

1. 8192 = 213, hence the remainder mod 8192 is represented by the 13 least significant bits.

2. 125 = 127 – 2 = (1111101) in binary representation.

3. Arithmetic can be done with 16-bit integers without overflow and without regard to the representation of 

negative numbers.
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4. The numbers rk generated are exactly those in the range 0 ≤ rk < 8192 with rk mod 4 = 1 (i.e. the period has 

length 211 = 2048).

5. Its statistical properties are described in [Kru 69], [Knu 81] contains the most comprehensive treatment of  

the theory of random number generators.

As a conclusion of this brief introduction, remember an important rule of thumb:

Never choose a random number generator at random!

Exercises

1. Work out the details of implementing double-precision, variable-precision, and BCD integer arithmetic, and 

estimate the time required for each operation as compared to the time of the same operation in single 

precision. For variable precision and BCD, introduce the length L of the representation as a parameter.

2. The least common multiple (lcm) of two integers u and v is the smallest integer that is a multiple of u and v. 

Design an algorithm to compute lcm(u, v).

3. The prime decomposition of a natural number n > 0 is the (unique) multiset PD(n) = [p1, p2, … , pk] of  

primes pi whose product is n. A multiset differs from a set in that elements may occur repeatedly (e.g.  

PD(12) = [2, 2, 3]). Design an algorithm to compute PD(n) for a given n > 0. 

4. Work out the details of modular arithmetic with moduli 9, 10, 11.

5. Among the 95 linear congruential random number generators given by the formula ri+1 = a · ri mod m,  

with prime modulus m = 97 and 1 < a < 97, find out how many get disqualified "at first sight" by a simple  

visual test. Consider that the period of these RNGs is at most 97.
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13. Reals
Learning objectives:

• floating-point numbers and their properties 

• pitfalls of numeric computation 

• Horner's method

• bisection 

• Newton's method

Floating-point numbers

Real numbers, those declared to be of type REAL in a programming language, are represented as floating-point  

numbers on most computers. A floating-point number z is represented by a (signed) mantissa m and a (signed) 

exponent e with respect to a base b: z=± m·b±e (e.g. z=+0.11·2–1). This section presents a very brief introduction to 

floating-point arithmetic. We recommend [Gol91] as a comprehensive survey.

Floating-point numbers can only approximate real numbers, and in important ways, they behave differently.  

The major difference is due to the fact that any floating-point number system is a  finite number system, as the 

mantissa m and the exponent e lie  in a bounded range.  Consider,  as a simple example,  the following number 

system:

z = ±0.b1b2 · 2±e, where b1, b2, and e may take the values 0 and 1.

The number representation is  not unique:  The same real number may have many different representations, 

arranged in the following table by numerical value (lines) and constant exponent (columns).

1.5       + 0.11 · 2+1

1.0      + 0.10 · 2+1

0.75                           + 0.11 · 2±0

0.5     + 0.01 · 2+1 + 0.10 · 2±0

0.375                                               +0.11 · 2–1

0.25                           + 0.01 · 2±0 +0.10 · 2–1

0.125                                               +0.01 · 2–1

0.      +0.00 · 2+1   + 0.00 · 2±0 +0.00 · 2–1

The table is symmetric for negative numbers. Notice the cluster of representable numbers around zero. There 

are only 15 different numbers, but 25= 32 different representations.

Exercise: a floating-point number system

Consider floating-point numbers represented in a 6-bit "word" as follows: The four bits b b 2 b1 b0 represent a 

signed mantissa, the two bits e e0 a signed exponent to the base 2. Every number has the form x=b b2  b1  b0·2 ee0. 
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Both the exponent and the mantissa are integers represented in 2's complement form. This means that the integer 

values –2..1 are assigned to the four different representations e e0 as shown:

v e e0

      0    0  0  

1     0  1

   –2  1    0

   –1     1     1

1. Complete the following table of  the values of the mantissa and their representation,  and write down a 

formula to compute v from b b2 b1 b0.

v b b2 b1 b0

0 0  0  0  0

1    0  0  0   1

      …

7 0  1  1  1

   –8 1     0  0  0

      …

   –1   1     1  1  1

2. How many different number representations are there in this floating-point system?

3. How many different numbers are there in this system? Draw all of them on an axis, each number with all its  

representations.

On a byte-oriented machine, floating-point numbers are often represented by 4 bytes =32 bits: 24 bits for the  

signed mantissa, 8 bits for the signed exponent. The mantissa m is often interpreted as a fraction 0 ≤ m < 1, whose  

precision  is  bounded  by  23  bits;  the  8-bit  exponent  permits  scaling  within  the  range  

2–128 ≤ 2e  ≤ 2127. Because 32- and 64-bit floating-point number systems are so common, often coexisting on the 

same  hardware,  these  number  systems  are  often  identified  with  "single  precision"  and  "double  precision", 

respectively. In recent years an IEEE standard format for-single precision floating-point numbers has emerged,  

along with standards for higher precisions: double, single extended, and double extended.
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The following example shows the representation of the number

+1.011110 … 0 · 2–54

in the IEEE format:

Some dangers

Floating-point computation is fraught with problems that are hard to analyze and control. Unexpected results  

abound, as the following examples show. The first two use a binary floating-point number system with a signed 2-

bit mantissa and a signed 1-bit exponent. Representable numbers lie in the range

–0.11 · 2+1 ≤ z ≤ +0.11 · 2+1.

Example: y + x = y and x ≠ 0

It suffices to choose |x| small as compared to |y|; for example,

x = 0.01 · 2–1,  y = 0.10 · 2+1.

The addition forces the mantissa of x to be shifted to the right until the exponents are equal (i.e. x is represented 

as 0.0001·2+1). Even if the sum is computed correctly as 0.1001 ·2+1 in an accumulator of double length, storing the 

result in memory will force rounding: x + y=0.10·2+1=y.

Example: Addition is not associative: (x + y) + z ≠ x + (y + z)

The following values for x, y, and z assign different values to the left and right sides.

Left side: (0.10 · 2+1 + 0.10 · 2–1) + 0.10 · 2–1 = 0.10 · 2+1

Right side: 0.10 · 2+1 + (0.10 · 2–1 + 0.10 · 2–1) = 0.11 · 2+1

A useful rule of thumb helps prevent the loss of significant digits: Add the small numbers before adding the large 

ones.

Example: ((x + y)2 – x2 – 2xy) / y2 = 1?

Let's evaluate this expression for large |x| and small |y| in a floating-point number system with five decimal 

digits.

x = 100.00, y = .01000

x + y = 100.01

(x + y)2 = 10002.0001, rounded to five digits yields 10002.

x2 = 10000.

(x + y)2 – x2 = 2.???? (four digits have been lost!)

2xy = 2.0000

(x + y)2 – x2 – 2xy = 2.???? – 2.0000 = 0.?????

Now five digits have been lost, and the result is meaningless.

Example: numerical instability

Recurrence relations for sequences of numbers are prone to the phenomenon of numerical instability. Consider 

the sequence

x0 = 1.0,   x1 = 0.5,   xn+1 = 2.5 · xn – xn–1.
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We first solve this linear recurrence relation in closed form by trying x i=ri for r≠0. This leads to rn+1 = 2.5 · rn– 

rn–1, and to the quadratic equation 0 = r2– 2.5 · r + 1, with the two solutions r = 2 and r = 0.5.

The general solution of the recurrence relation is a linear combination:

xi = a · 2i + b · 2–i.

The starting values x0 = 1.0 and x1 = 0.5 determine the coefficients a=0 and b=1, and thus the sequence is given 

exactly as xi = 2–i. If the sequence xi = 2–i is computed by the recurrence relation above in a floating-point number 

system with one decimal digit, the following may happen:

x2 = 2.5 · 0.5 – 1          =0.2 (rounding the exact value 0.25),

x3 = 2.5 · 0.2 – 0.5          =0 (represented exactly with one decimal digit),

x4 = 2.5 · 0 – 0.2           =–0.2 (represented exactly with one decimal digit),

x5 = 2.5 · (–0.2)–0          =–0.5 represented exactly with one decimal digit),

x6 = 2.5 · (–0.5)–(–0.2) = –1.05 (exact) = –1.0 (rounded),

x7 = 2.5 · (–1) – (–0.5)    = –2.0 (represented exactly with one decimal digit),

x8 = 2.5 · (–2)–(–1)     = –4.0(represented exactly with one decimal digit).

As soon as the first rounding error has occurred, the computed sequence changes to the alternative solution x i = 

a · 2i, as can be seen from the doubling of consecutive computed values.

Exercise: floating-point number systems and calculations

(a) Consider a floating-point number system with two ternary digits t1, t2 in the mantissa, and a ternary digit e 

in the exponent to the base 3. Every number in this system has the form x = .t 1  t2  · 3
e, where t1, t2, and e 

assume a value chosen among{0,1,2}. Draw a diagram that shows all the different numbers in this system, 

and for each number, all of its representations. How many representations are there? How many different 

numbers?

(b) Recall the series

which holds for |x| < 1, for example,

Use this formula to express 1/0.7 as a series of powers.

Horner's method

A polynomial of n-th degree (e.g. n = 3) is usually represented in the form

a3 · x3 + a2 · x2 + a1 · x + a0

but is better evaluated in nested form,

((a3 · x + a2) · x + a1) · x + a0.
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The first formula needs n multiplications of the form a i · x
i and, in addition, n–1 multiplications to compute the 

powers of x. The second formula needs only n multiplications in total: The powers of x are obtained for free as a  

side effect of the coefficient multiplications.

The following procedure assumes that the (n+1) coefficients ai are stored in a sufficiently large array a of  type 

'coeff':

type  coeff = array[0 .. m] of real;

function horner(var a: coeff;  n: integer;  x: real): real;
var  i: integer;  h: real;
begin

h := a[n];
for  i := n – 1  downto  0  do  h := h · x + a[i];
return(h)

end;

Bisection

Bisection is an iterative method for solving equations of the form f(x) = 0. Assuming that the function f : R → R 

is continuous in the interval [a, b] and that f(a) · f(b) < 0, a root of the equation f(x) = 0 (a zero of f) must lie in the 

interval [a, b] (Exhibit 13.1). Let m be the midpoint of this interval. If f(m) = 0, m is a root. If f(m) · f(a) < 0, a root 

must be contained in [a, m], and we proceed with this subinterval; if f(m) · f(b) < 0, we proceed with [m, b]. Thus at 

each iteration the interval of uncertainty that must contain a root is half the size of the interval produced in the 

previous  iteration.  We iterate  until  the  interval  is  smaller  than  the  tolerance  within  which  the  root  must  be 

determined.

Exhibit 13.1: As in binary search, bisection excludes half of the interval

under consideration at every step.

function bisect(function f: real;  a, b: real): real;

const  epsilon = 10–6;
var  m: real;  faneg: boolean;
begin

faneg := f(a) < 0.0;
repeat

m := (a + b) / 2.0;
if  (f(m) < 0.0) = faneg  then  a := m  else  b := m

until  |a – b| < epsilon;
return(m)
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end;

A sequence x1, x2, x3,… converging to x converges linearly if there exist a constant c and an index i0 such that for 

all I > i0:  |xi+1  – x| ≤ c ·  |xi  – x|.  An  algorithm is  said to converge linearly if  the sequence of approximations 

constructed by this algorithm converges linearly. In a linearly convergent algorithm each iteration adds a constant 

number  of  significant  bits.  For  example,  each  iteration of  bisection  halves  the interval  of  uncertainty  in  each 

iteration (i.e. adds one bit of precision to the result). Thus bisection converges linearly with c = 0.5. A sequence x 1, 

x2, x3,… converges quadratically if there exist a constant c and an index i0 such that for all i > i0: |xi+1 – x| ≤ c ·|xi – 

x|2.

Newton's method for computing the square root

Newton's method for solving equations of  the form f(x) = 0 is  an example of  an algorithm with quadratic  

convergence. Let f: R → R be a continuous and differentiable function. An approximation xi+1 is obtained from xi by 

approximating f(x) in the neighborhood of xi by its tangent at the point (xi, f(xi)), and computing the intersection of 

this tangent with the x-axis (Exhibit 13.2). Hence

x ix i+1

f(x  )i

x

Exhibit 13.2: Newton's iteration approximates a curve locally by a tangent.

Newton's method is not guaranteed to converge (Exercise: construct counterexamples), but when it converges, it 

does so quadratically and therefore very fast, since each iteration doubles the number of significant bits.

To compute the square root x = √a of a real number a > 0 we consider the function f(x) = x2 – a and solve the 

equation x2– a = 0. With f'(x)= 2 · x we obtain the iteration formula:

The  formula  that  relates  xi and  xi+1 can  be  transformed  into  an  analogous  formula  that  determines  the 

propagation of the relative error:
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Since

we obtain for the relative error:

Using

we get a recurrence relation for the relative error:

If we start with x0 > 0, it follows that 1+R0 > 0. Hence we obtain

R1 > R2 > R3 > … > 0.

As soon as Ri becomes small (i.e. Ri « 1), we have 1 + Ri  ≈ 1, and we obtain

Ri+1 ≈ o.5 · Ri
2

Newton's method converges quadratically as soon as xi is close enough to the true solution. With a bad initial 

guess Ri  » 1 we have, on the other hand, 1 + Ri  ≈ Ri, and we obtain Ri+1 ≈ 0.5 · Ri (i.e. the computation appears to 

converge linearly until Ri « 1 and proper quadratic convergence starts).

Thus it is highly desirable to start with a good initial approximation x0 and get quadratic convergence right from 

the beginning. We assume normalized binary floating-point numbers (i.e. a = m · 2e with 0.5 ≤ m <1). A good 

approximation of is obtained by choosing any mantissa c with 0.5 ≤ c < 1 and halving the exponent:

In order to construct this initial approximation x0, the programmer needs read and write access not only to a 

"real number" but also to its components, the mantissa and exponent, for example, by procedures such as

procedure mantissa(z: real): integer;
procedure exponent(z: real): integer;
procedure buildreal(mant, exp: integer): real;

Today's programming languages often lack such facilities, and the programmer is forced to use backdoor tricks 

to construct a good initial approximation. If x0 can be constructed by halving the exponent, we obtain the following 

upper bounds for the relative error:

R1 < 2–2, R2 < 2–5, R3 < 2–11, R4 < 2–23, R5 < 2–47,R6 < 2–95.
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It is remarkable that four iterations suffice to compute an exact square root for 32-bit floating-point numbers,  

where 23 bits are used for the mantissa, one bit for the sign and eight bits for the exponent, and that six iterations  

will do for a "number cruncher" with a word length of 64 bits. The starting value x 0 can be further optimized by 

choosing c carefully. It can be shown that the optimal value of c for computing the square root of a real number is c  

= 1/√2 ≈ 0.707.

Exercise: square root

Consider a floating-point number system with two decimal digits in the mantissa: Every number has the form x  

= ± .d1 d2 · 10±e.

(a) How many different number representations are there in this system?

(b) How many different numbers are there in this system? Show your reasoning.

(c) Compute √50 · 102 in this number system using Newton's method with a starting value x0 = 10. Show every 

step of the calculation. Round the result of any operation to two digits immediately.

Solution

(a) A number representation contains two sign bits and three decimal digits, hence there are 22 · 103 = 4000 

distinct number representations in this system.

(b) There are three sources of redundancy:

1. Multiple representations of zero

2. Exponent +0 equals exponent –0

3. Shifted mantissa: ±.d0 · 10 ±e=±.0d · 10 ±e + 1

A detailed count reveals that there are 3439 different numbers.

Zero has 22·10 = 40 representations, all of the form ±.00·10±e, with two sign bits and one decimal digit e to be 

freely chosen. Therefore, r1 = 39 must be subtracted from 4000.

If e = 0, then ±.d1d2 · 10+0=±.d1d2 · 10–0. We assume furthermore that d1d2 ≠ 00. The case d1d2 = 00 has been 

covered above. Then there are 2 · 99 such pairs. Therefore, r2= 198 must be subtracted from 4000.

If d2 = 0, then ±.d10 · 10±e = ±.0d1 · 10±e+1. The case d1 = 0 has been treated above. Therefore, we assume that d1 

≠ 0. Since ±e can assume the 18 different values –9, –8, … , –1, +0, +1, … +8, there are 2 · 9 · 18 such pairs.  

Therefore, r3 = 324 must be subtracted from 4000.

There are 4000 – r1– r2– r3 = 3439 different numbers in this system.

(c) Computing Newton's square root algorithm:

x0 = 10

x1 = .50 · (10 + 50/10) = .50 · (10 + 5) = .50 · 15 = 7.5

x2 = .50 · (7.5 + 50/7.5) = .50 · (7.5 + 6.6) = .50 · 14 = 7

x3 = .50 · = .50 · (7 + 50/7) = (7 + 7.1) = .50 · 14 = 7
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Exercises

1. Write up all the distinct numbers in the floating-point system with number representations of the form 

z=0.b1b2 ·  2e1e2,  where  b1,  b2 and e1,  e2 may take  the values  0 and 1,  and mantissa  and exponent  are 

represented in 2's complement notation.

2. Provide  simple  numerical  examples  to  illustrate  floating-point  arithmetic  violations  of  mathematical 

identities.
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14. Straight lines and circles
Learning objectives:

• intersection of two line segments

• degenerate configurations

• clipping

• digitized lines and circles

• Bresenham's algorithms

• braiding straight lines

Points are the simplest geometric objects; straight lines and line segments come next. Together, they make up 

the lion's share of all primitive objects used in two-dimensional geometric computation (e.g. in computer graphics). 

Using these two primitives only, we can approximate any curve and draw any picture that can be mapped onto a  

discrete raster. If we do so, most queries about complex figures get reduced to basic queries about points and line 

segments, such as: is a given point to the left, to the right, or on a given line? Do two given line segments intersect? 

As simple as these questions appear to be, they must be handled efficiently and carefully. Efficiently because these 

basic primitives of geometric computations are likely to be executed millions of times in a single program run.  

Carefully because the ubiquitous phenomenon of degenerate configurations easily traps the unwary programmer 

into overflow or meaningless results.

Intersection

The  problem  of  deciding  whether  two  line  segments  intersect  is  unexpectedly  tricky,  as  it  requires  a 

consideration  of  three  distinct  nondegenerate  cases,  as  well  as  half  a  dozen  degenerate  ones.  Starting  with 

degenerate objects, we have cases where one or both of the line segments degenerate into points. The code below 

assumes that line segments of length zero have been eliminated. We must also consider nondegenerate objects in 

degenerate configurations, as illustrated in Exhibit 14.1. Line segments A and B intersect (strictly). C and D, and E 

and F, do not intersect; the intersection point of the infinitely extended lines lies on C in the first case, but lies  

neither on E nor on F in the second case. The next three cases are degenerate: G and H intersect barely (i.e. in an  

endpoint);  I  and  J  overlap  (i.e.  they  intersect  in  infinitely  many  points);  K  and  L  do  not  intersect.  Careless  

evaluation of these last two cases is likely to generate overflow.

Exhibit 14.1: Cases to be distinguished for the segment intersection problem.

Computing the intersection point of the infinitely extended lines is a naive approach to this decision problem  

that leads to a three-step process:
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1. Check whether the two line segments are parallel (a necessary precaution before attempting to compute the 

intersection point). If so, we have a degenerate configuration that leads to one of three special cases: not  

collinear, collinear nonoverlapping, collinear overlapping

2. Compute the intersection point of the extended lines (this step is still subject to numerical problems for  

lines that are almost parallel).

3. Check whether this intersection point lies on both line segments.

If  all  we  want  is  a  yes/no  answer  to  the  intersection  question,  we  can  save  the  effort  of  computing  the 

intersection point and obtain a simpler and more robust procedure based on the following idea: two line segments  

intersect strictly iff the two endpoints of each line segment lie on opposite sides of the infinitely extended line of the 

other segment.

Let L be a line given by the equation h(x, y) = a · x + b · y + c = 0, where the coefficients have been normalized  

such that a2 + b2 = 1. For a line L given in this Hessean normal form, and for any point p = (x, y), the function h 

evaluated at p yields the signed distance between p and L: h(p) > 0 if p lies on one side of L, h(p) < 0 if p lies on the  

other side, and h(p) = 0 if p lies on L. A line segment is usually given by its endpoints (x 1, y1) and (x2, y2), and the 

Hessean normal form of the infinitely extended line L that passes through (x 1, y1) and (x2, y2) is 

where 

is the length of the line segment, and h(x, y) is the distance of p = (x, y) from L. Two points p and q lie on opposite  

sides of L iff h(p) · h(q) < 0 (Exhibit 14.2). h(p) = 0 or h(q) = 0 signals a degenerate configuration. Among these, 

h(p) = 0 and h(q) = 0 iff the segment (p, q) is collinear with L.

Exhibit 14.2: Segment s, its extended line L, and distance to points p, q as computed by function h.

type point  =  record  x, y: real  end;
segment  =  record  p1, p2: point  end;

function d(s: segment; p: point): real;
{ computes h(p) for the line L determined by s }
var dx, dy, L12: real;
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begin
dx := s.p2.x – s.p1.x;  dy := s.p2.y – s.p1.y;

L12 := sqrt(dx · dx + dy · dy);

return((dy · (p.x – s.p1.x) – dx · (p.y – s.p1.y)) / L12)

end;

To optimize the intersection function, we recall the assumption L12 > 0 and notice that we do not need the actual 

distance, only its sign. Thus the function d used below avoids computing L12. The function 'intersect'  begins by 

checking whether the two line segments are collinear, and if so, tests them for overlap by intersecting the intervals  

obtained by projecting the line segments onto the x-axis (or onto the y-axis, if  the segments are vertical). Two 

intervals [a, b] and [c, d] intersect iff min(a, b) ≤ max(c, d) and min(c, d) ≤ max(a, b). This condition could be 

simplified under the assumption that the representation of segments and intervals is ordered "from left to right" 

(i.e. for interval [a, b] we have a ≤ b). We do not assume this, as line segments often have a natural direction and 

cannot be "turned around".

function d(s: segment;  p: point): real;
begin

return((s.p2.y – s.p1.y) · (p.x – s.p1.x) – (s.p2.x – s.p1.x) · 

(p.y – s.p1.y))

end;

function overlap(a, b, c, d: real): boolean;
begin  return((min(a, b) ≤ max(c, d)) and (min(c, d) ≤ max(a, b))) 

end;

function intersect(s1, s2: segment): boolean;

var  d11, d12, d21, d22: real;

begin
d11 := d(s1, s2.p1);  d12 := d(s1, s2.p2);

if  (d11 = 0) and (d12 = 0)  then  { s1 and s2 are collinear }

if  s1.p1.x = s1.p2.x  then  { vertical }

return(overlap(s1.p1.y, s1.p2.y, s2.p1.y, s2.p2.y))

else  { not vertical }
return(overlap(s1.p1.x, s1.p2.x, s2.p1.x, s2.p2.x))

else  begin  { s1 and s2 are not collinear }

d21 := d(s2, s1.p1);  d22 := d(s2, s1.p2);

return((d11 · d12 ≤ 0) and (d21 · d22 ≤ 0))

end
end;

In addition to the degeneracy issues we have addressed, there are numerical issues of near-degeneracy that we  

only mention. The length L12 is a condition number (i.e. an indicator of the computation's accuracy). As Exhibit 14.3 

suggests, it may be numerically impossible to tell on which side of a short line segment L a distant point p lies.

Algorithms and Data Structures 121  A Global Text

http://creativecommons.org/licenses/by/3.0/


14. Straight lines and circles

Exhibit 14.3: A point's distance from a segment amplifies the error of the "which side" computation.

Conclusion: A geometric algorithm must check for degenerate configurations explicitly—the code that handles 

configurations "in general position" will not handle degeneracies.

Clipping

The  widespread  use  of  windows  on  graphic  screens  makes  clipping  one  of  the  most  frequently  executed 

operations: Given a rectangular window and a configuration in the plane, draw that part of the configuration which  

lies within the window. Most configurations consist of line segments, so we show how to clip a line segment given  

by its endpoints (x1, y1) and (x2, y2) into a window given by its four corners with coordinates {left, right}  × {top, 

bottom}.

The position of a point in relation to the window is described by four boolean variables: ll (to the left of the left  

border), rr (to the right of the right border), bb (below the lower border), tt (above the upper border):

type  wcode = set of (ll, rr, bb, tt);

A point inside the window has the code ll = rr = bb = tt = false, abbreviated 0000 (Exhibit 14.4).

Exhibit 14.4: The clipping window partitions the plane into nine regions.

The procedure 'classify' determines the position of a point in relation to the window:

procedure classify(x, y: real; var c: wcode);
begin

c := Ø;  { empty set }
if  x < left  then  c := {ll}  elsif  x > right  then  c := {rr};
if  y < bottom  then  c := c ∪ {bb}  elsif  y > top  then c := c ∪ 

{tt}
end;

The procedure 'clip' computes the endpoints of the clipped line segment and calls the procedure 'showline' to  

draw it:

procedure clip(x1, y1, x2, y2: real);

122

p

L



This book is licensed under a Creative Commons Attribution 3.0 License

var  c, c1, c2: wcode;  x, y: real;  outside: boolean;

begin  { clip }
classify(x1, y1, c1);  classify(x2, y2, c2);  outside := false;

while  (c1 ≠ Ø) or (c2 ≠ Ø)  do

if  c1 ∩ c2 ≠ Ø  then
{ line segment lies completely outside the window }
{ c1 := Ø;  c2 := Ø;  outside := true }

else  begin
c := c1;

if  c = Ø  then  c := c2;

if  ll ∈ c  then  { segment intersects left }
{ y := y1 + (y2 – y1) · (left – x1) / (x2 – x1);  x := left }

elsif  rr ∈ c  then  { segment intersects right }
{ y := y1 + (y2 – y1) · (right – x1) / (x2 – x1); x := right }

elsif  bb ∈ c  then  { segment intersects bottom }
{ x := x1 + (x2 – x1) · (bottom – y1) / (y2 – y1); y := bottom }

elsif  tt ∈ c  then  { segment intersects top }
{ x := x1 + (x2 – x1) · (top – y1) / (y2 – y1);  y := top };

if  c = c1 then { x1 := x;  y1 := y;  classify(x, y, c1) }

else { x2 := x;  y2 := y;  classify(x, y, c2) }

end;
if  not outside  then  showline(x1, y1, x2, y2)

end;  { clip }

Drawing digitized lines

A raster graphics screen is an integer grid of pixels, each of which can be turned on or off. Euclidean geometry 

does not apply directly to such a discretized plane. Any designer using a CAD system will prefer Euclidean geometry 

to a discrete geometry as a model of the world. The problem of how to approximate the Euclidean plane by an  

integer grid turns out to be a hard question: How do we map Euclidean geometry onto a digitized space in such a 

way as to preserve the rich structure of geometry as much as possible? Let's begin with simple instances: How do 

you map a straight line onto an integer grid, and how do you draw it efficiently?  Exhibit 14.5 shows reasonable 

examples.

Exhibit 14.5: Digitized lines look like staircases.

Consider the slope m = (y2 – y1) / (x2 – x1) of a segment with endpoints p1 = (x1, y1) and p2 = (x2, y2). If |m| ≤ 1 we 

want one pixel blackened on each x coordinate; if |m| ≥ 1, one pixel on each y coordinate; these two requirements  

are consistent for diagonals with |m| = 1. Consider the case |m| ≤ 1. A unit step in x takes us from point (x, y) on the 

line to (x + 1, y + m). So for each x between x1 and x2 we paint the pixel (x, y) closest to the mathematical line 

according to the formula y = round(y1 + m · (x – x1)). For the case |m| > 1, we reverse the roles of x and y, taking a  

unit step in y and incrementing x by 1/m. The following procedure draws line segments with |m| ≤ 1 using unit  

steps in x.

procedure line(x1, y1, x2, y2: integer);

var  x, sx: integer;  m: real;
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begin
PaintPixel(x1, y1);

if  x1 ≠ x2  then  begin

x := x1;  sx := sgn(x2 – x1);  m := (y2 – y1) / (x2 – x1);

while  x ≠ x2  do

{ x := x + sx;  PaintPixel(x, round(y1 + m · (x – x1))) }

end
end;

This straightforward implementation has a number of disadvantages. First, it uses floating-point arithmetic to  

compute integer coordinates of pixels, a costly process. In addition, rounding errors may prevent the line from 

being reversible: reversibility means that we paint the same pixels, in reverse order, if we call the procedure with 

the two endpoints interchanged. Reversibility is desirable to avoid the following blemishes:  that a line painted 

twice, from both ends, looks thicker than other lines; worse yet, that painting a line from one end and erasing it 

from the other leaves spots on the screen. A weaker constraint, which is only concerned with the result and not the 

process of painting, is easy to achieve but is less useful.

Weak  reversibility is  most  easily  achieved  by  ordering  the  points  p1 and  p2 lexicographically  by  x  and  y 

coordinates, drawing every line from left to right, and vertical lines from bottom to top. This solution is inadequate 

for animation, where the direction of drawing is important, and the sequence in which the pixels are painted is  

determined by the application—drawing the trajectory of a falling apple from the bottom up will not do. Thus 

interactive graphics needs the stronger constraint.

Efficient  algorithms,  such  as  Bresenham's  [Bre  65],  avoid  floating-point  arithmetic  and  expensive 

multiplications through incremental computation: Starting with the current point p1, a next point is computed as a 

function of the current point and of the line segment parameters. It turns out that only a few additions, shifts, and  

comparisons are required. In the following we assume that the slope m of the line satisfies |m| ≤ 1. Let

∆x = x2 – x1,    sx = sign(∆x),        ∆y = y2 – y1,    sy = sign(∆y).

Assume that the pixel (x, y) is the last that has been determined to be the closest to the actual line, and we now 

want to decide whether the next pixel to be set is (x + sx, y) or (x + sx, y + sy). Exhibit 14.6 depicts the case sx = 1 

and sy = 1.

Exhibit 14.6: At the next coordinate x + sx, we identify and paint the pixel closest to the line.

Let t denote the absolute value of the difference between y and the point with abscissa x + sx on the actual line.  

Then t is given by

124



This book is licensed under a Creative Commons Attribution 3.0 License

The value of t determines the pixel to be drawn:

As the following example shows, reversibility is not an automatic consequence of the geometric fact that two  

points  determine  a  unique  line,  regardless  of  correct  rounding  or  the  order  in  which  the  two  endpoints  are  

presented. A problem arises when two grid points are equally close to the straight line (Exhibit 14.7).

Exhibit 14.7: Breaking the tie among equidistant grid points.

If  the tie  is  not  broken in  a  consistent  manner  (e.g.  by  always  taking the  upper  grid  point),  the resulting 

algorithm fails to be reversible:

All the variables introduced in this problem range over the integers, but the ratio
(Δ y)

(Δ x)
 appears to introduce 

rational expressions. This is easily remedied by multiplying everything with ∆x. We define the decision variable d as

d = |∆x| · (2 · t – 1) = sx · ∆x · (2 · t – 1). (∗∗)

Let di denote the decision variable which determines the pixel (x (i), y(i)) to be drawn in the i-th step. Substituting t 

and inserting x = x(i–1) and y = y(i–1) in (∗∗) we obtain

di = sx · sy · (2·∆x · y1 + 2 · (x(i–1) + sx – x1) · ∆y – 2·∆x · y(i–1) – ∆x · sy)

and

di+1 = sx · sy · (2·∆x · y1 + 2 · (x(i) + sx – x1) · ∆y – 2·∆x · y(i) – ∆x · sy).

Subtracting di from di+1, we get

di+1 – di = sx · sy · (2 · (x(i) – x(i–1)) · ∆y – 2 · ∆x · (y(i) – y(i–1))).

Since x(i) – x(i–1) = sx, we obtain

di+1 = di + 2 · sy · ∆y – 2 · sx · ∆x · sy · (y(i) – y(i–1)).
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If di < 0, or di = 0 and sy = –1, then y(i) = y(i–1), and therefore

di+1 = di + 2 · |∆y|.

If di > 0, or di = 0 and sy = 1, then y(i) = y(i–1) + sy, and therefore

di+1 = di + 2 · |∆y| – 2 · |∆x|.

This iterative computation of di+1 from the previous di lets us select the pixel to be drawn. The initial starting 

value for d1 is found by evaluating the formula for di, knowing that (x(0), y(0)) = (x1, y1). Then we obtain

d1 = 2 · |∆y| – |∆x|.

The arithmetic needed to evaluate these formulas is minimal: addition, subtraction and left shift (multiplication 

by 2). The following procedure implements this algorithm; it assumes that the slope of the line is between –1 and 1.

procedure BresenhamLine(x1, y1, x2, y2: integer);

var  dx, dy, sx, sy, d, x, y: integer;
begin

dx := |x2 – x1|;  sx := sgn(x2 – x1);

dy := |y2 – y1|;  sy := sgn(y2 – y1);

d := 2 · dy – dx;  x := x1;  y := y1;

PaintPixel(x, y);
while  x ≠ x2  do  begin

if  (d > 0) or ((d = 0) and (sy = 1))  then  { y := y + sy;– 
2·dx};

x := x + sx;  d := d + 2 · dy;
PaintPixel(x, y)

end
end;

The riddle of the braiding straight lines

Two straight lines in a plane intersect in at most one point, right? Important geometric algorithms rest on this  

well-known theorem of Euclidean geometry and would have to be reexamined if it were untrue. Is this theorem true 

for  computer lines,  that is, for data objects that represent and approximate straight lines to be processed by a 

program? Perhaps yes, but mostly no.

Yes. It is possible, of course, to program geometric problems in such a way that every pair of straight lines has at  

most, or exactly, one intersection point. This is most readily achieved through symbolic computation. For example,  

if the intersection of L1 and L2 is denoted by an expression 'Intersect(L1, L2)' that is never evaluated but simply 

combined with other expressions to represent a geometric construction, we are free to postulate that 'Intersect(L 1, 

L2)' is a point.

No.  For  reasons  of  efficiency,  most  computer  applications  of  geometry  require  the  immediate  numerical  

evaluation of every geometric operation. This calculation is done in a discrete, finite number system in which case 

the theorem need not be true. This fact is most easily seen if  we work with a discrete plane of pixels, and we 

represent a straight line by the set of all pixels touched by an ideal mathematical line.  Exhibit 14.8 shows three 

digitized straight lines in such a square grid model of plane geometry. Two of the lines intersect in a common  

interval of three pixels, whereas two others have no pixel in common, even though they obviously intersect.
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Exhibit 14.8: Two intersecting lines may share none, one, or more pixels.

With floating-point arithmetic the situation is more complicated; but the fact remains that the Euclidean plane  

is replaced by a discrete set of points embedded in the plane—all those points whose coordinates are representable 

in the particular number system being used. Experience with numerical computation, and the hazards of rounding 

errors,  suggests that the question "In how many points can two straight lines  intersect?" admits the following 

answers:

• There is no intersection—the mathematically correct intersection cannot be represented in the number 

system.

• A set of points that lie close to each other: for example, an interval.

• Overflow aborts the calculation before a result is computed, even if the correct result is representable in the 

number system being used.

Exercise: two lines intersect in how many points?

Construct  examples  to  illustrate  these  phenomena  when  using  floating-point  arithmetic.  Choose  a  suitable 

system G of floating-point numbers and two distinct straight lines

ai · x + bi · y + ci = 0  with  ai, bi, ci ∈ G, i=1, 2,

such that, when all operations are performed in G:

(a) There is no point whose coordinates x, y ∈ G satisfy both linear equations.

(b) There are many points whose coordinates x, y ∈ G satisfy both linear equations.

(c) There is exactly one point whose coordinates x, y ∈ G satisfy both linear equations, but the straightforward 

computation of x and y leads to overflow.

(d) As a consequence of (a) it follows that the definition "two lines intersect  they share a common point" is  

inappropriate for numerical computation. Formulate a numerically meaningful definition of the statement 

"two line segments intersect".

Exercise (b) may suggest that the points shared by two lines are neighbors. Pictorially, if the slopes of the two 

lines are almost identical, we expect to see a blurred, elongated intersection. We will show that worse things may  

happen: two straight lines may intersect in arbitrarily many points, and these points are separated by intervals in  

which the two lines alternate in lying on top of each other. Computer lines may be braided! To understand this 
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phenomenon, we need to clarify some concepts: What exactly is a straight line represented on a computer? What is  

an intersection?

There is no one answer, there are many! Consider the analogy of the mathematical concept of real numbers, 

defined by axioms. When we approximate real numbers on a computer, we have a choice of many different number 

systems  (e.g.  various  floating-point  number  systems,  rational  arithmetic  with  variable  precision,  interval  

arithmetic).  These  systems  are  typically  not  defined  by  means  of  axioms,  but  rather  in  terms  of  concrete  

representations  of  the  numbers  and  algorithms  for  executing  the  operations  on  these  numbers.  Similarly,  a 

computer line will be defined in terms of a concrete representation (e.g. two points, a point and a slope, or a linear  

expression).  All  we  obtain  depends  on  the  formulas  we  use  and  on  the  basic  arithmetic  to  operate  on  these  

representations. The notion of a straight line can be formalized in many different ways, and although these are 

likely  to  be  mathematically  equivalent,  they  will  lead  to  data  objects  with  different  behavior  when  evaluated  

numerically. Performing an operation consists of evaluating a formula. Substituting a formula by a mathematically  

equivalent  one  may  lead  to  results  that  are  topologically  different,  because  equivalent  formulas  may  exhibit 

different sensitivities toward rounding errors.

Consider a computer that has only integer arithmetic, i.e. we use only the operations +, –, ·, div. Let Z be the set  

of integers. Two straight lines gi (i = 1, 2) are given by the following equations:

ai · x + bi · y + ci = 0  with  ai, bi, ci ∈ Z;  bi ≠ 0.

We consider the problem of whether two given straight lines intersect in a given point x0. We use the following 

method: Solve the equations for y [i. e. y = E1(x) and y = E2(x)] and test whether E1(x0) is equal to E2(x0).

Is this method suitable? First, we need the following definitions:

x ∈ Z is a turn for the pair (E1, E2) iff

sign(E1(x) – E2(x))  ≠  sign(E1(x + 1) – E2(x + 1)).

An algorithm for the intersection problem is correct iff there are at most two turns.

The intuitive idea behind this definition is the recognition that rounding errors may force us to deal with an 

intersection interval rather than a single intersection point; but we wish to avoid separate intervals. The definition 

above partitions the x-axis into at most three disjoint intervals such that in the left interval the first line lies above  

or  below  the  second  line,  in  the  middle  interval  the  lines  "intersect",  and  in  the  right  interval  we  have  the 

complementary relation of the left one (Exhibit 14.9).
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Exhibit 14.9: Desirable consistency condition for intersection of nearly parallel lines.

Consider the straight lines:

3 · x – 5 · y + 40 = 0 and 2 · x – 3 · y + 20 = 0

which lead to the evaluation formulas

Our naive approach compares the expressions

(3 · x + 40) div 5 and (2 · x + 20) div 3.

Using the definitions it is easy to calculate that the turns are

7, 8, 10, 11, 12, 14, 15, 22, 23, 25, 26, 27, 29, 30.

The straight lines have become step functions that intersect many times. They are braided (Exhibit 14.10).

Exhibit 14.10: Braiding straight lines violate the consistency condition of Exhibit 14.9.

Exercise: show that the straight lines

x – 2 · y = 0

k · x – (2 · k + 1) · y = 0 for any integer k > 0
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have 2 · k – 1 turns in the first quadrant.

Is  braiding  due  merely  to  integer  arithmetic?  Certainly  not:  rounding  errors  also  occur  in  floating-point 

arithmetic,  and  we  can  construct  even  more  pathological  behavior.  As  an  example,  consider  a  floating-point 

arithmetic with a two-decimal-digit mantissa. We perform the evaluation operation:

and truncate intermediate results immediately to two decimal places. Consider the straight lines (Exhibit 14.11)

4.3 · x – 8.3 · y = 0,

1.4 · x – 2.7 · y = 0.

Exhibit 14.11: Example to be verified by manual computation.

These examples were constructed by intersecting straight lines with almost the same slope—a numerically ill-

conditioned problem. While working with integer arithmetic, we made the mistake of using the error-prone 'div' 

operator. The comparison of rational expressions does not require division.

Let a1 · x + b1 · y + c1 = 0 and a2 · x + b2 · y + c2 = 0 be two straight lines. To find out whether they intersect at x0, 

we have to check whether the equality

holds. This is equivalent to  b2 · c1 – b1 · c2 = x0 · (a2 · b1 – a1 · b2).

The last formula can be evaluated without error if sufficiently large integer arguments are allowed. Another way 

to evaluate this formula without error is to limit the size of the operands. For example, if a i, bi, ci, and x0 are n-digit 

binary numbers, it suffices to be able to represent 3n-digit binary numbers and to compute with n-digit and 2n-

digit binary numbers.

These  examples  demonstrate  that  programming  even  a  simple  geometric  problem  can  cause  unexpected 

difficulties. Numerical computation forces us to rethink and redefine elementary geometric concepts.
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Digitized circles 

The concepts, problems and techniques we have discussed in this chapter are not at all restricted to dealing with 

straight lines—they have their counterparts for any kind of digitized spatial object. Straight lines, defined by linear 

formulas, are the simplest nontrivial spatial objects and thus best suited to illustrate problems and solutions. In this  

section we show that the incremental drawing technique generalizes in a straightforward manner to more complex  

objects such as circles.

The basic parameters that define a circle are the center coordinates (xc, yc) and the radius r. To simplify the 

presentation we first  consider a  circle  with radius  r  centered around the origin.  Such a  circle is  given  by the  

equation

x2 + y2 = r2.

Efficient  algorithms for  drawing circles,  such as  Bresenham's  [Bre  77],  avoid  floating-point  arithmetic  and 

expensive multiplications through incremental  computation: A new point is computed depending on the current 

point  and on the circle parameters.  Bresenham's circle algorithm was conceived for use with pen plotters and 

therefore generates all points on a circle centered at the origin by incrementing all the way around the circle. We 

present a modified version of his algorithm which takes advantage of the eight-way symmetry of a circle. If (x, y) is 

a point on the circle, we can easily determine seven other points lying on the circle ( Exhibit 14.12). We consider only 

the 45˚ segment of the circle shown in the figure by incrementing from x = 0 to x = y = r / , and use eight-way  

symmetry to display points on the entire circle.

Exhibit 14.12: Eightfold symmetry of the circle.

Assume that the pixel p = (x, y) is the last that has been determined to be closest to the actual circle, and we now 

want to decide whether the next pixel to be set is p1 = (x + 1, y) or p2 = (x + 1, y – 1). Since we restrict ourselves to 

the 45˚ circle segment shown above these pixels are the only candidates. Now define

d' = (x + 1)2 + y2 – r2

d" = (x + 1)2 + (y – 1)2 – r2

which are the differences between the squared distances from the center of the circle to p 1 (or p2) and to the actual 

circle. If |d'| ≤ |d"|, then p1 is closer (or equidistant) to the actual circle; if |d'| > |d"|, then p2 is closer. We define the 

decision variable d as

d = d' + d". (∗∗)

We will show that the rule

If d ≤ 0 then select p1 else select p2.
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correctly selects the pixel that is closest to the actual circle. Exhibit 14.13 shows a small part of the pixel grid and 

illustrates the various possible ways [(1) to (5)] how the actual circle may intersect the vertical line at x + 1 in 

relation to the pixels p1 and p2.

Exhibit 14.13: For a given octant of the circle, if pixel p is lit, only two other pixels 

p1 and p2 need be examined.

In cases (1) and (2) p2 lies inside, p1 inside or on the circle, and we therefore obtain d' ≤ 0 and d" < 0. Now d < 0,  

and applying the rule above will lead to the selection of p 1. Since |d'| ≤ |d"| this selection is correct. In case (3) p 1 

lies outside and p2 inside the circle and we therefore obtain d' > 0 and d" < 0. Applying the rule above will lead to  

the selection of p1 if d ≤ 0, and p2 if d > 0. This selection is correct since in this case d ≤ 0 is equivalent to |d'| ≤ |d"|.  

In cases (4) and (5) p1 lies outside, p2 outside or on the circle and we therefore obtain d' > 0 and d" ≥ 0. Now d > 0, 

and applying the rule above will lead to the selection of p2. Since |d'| > |d"| this selection is correct.

Let di denote the decision variable that determines the pixel (x (i), y(i)) to be drawn in the i-th step. Starting with 

(x(0), y(0)) = (0, r) we obtain

d1 = 3 – 2 · r.

If di ≤ 0, then (x(i), y(i)) = (x(i) + 1, y(i–1)), and therefore

di+1 = di + 4 · xi–1 + 6.

If di > 0, then (x(i), y(i)) = (x(i) + 1, y(i–1) – 1), and therefore

di+1 = di + 4 · (xi–1 – yi–1) + 10.

This iterative computation of di+1 from the previous di lets us select the correct pixel to be drawn in the (i + 1)-th 

step.  The  arithmetic  needed  to  evaluate  these  formulas  is  minimal:  addition,  subtraction,  and  left  shift 

(multiplication by 4). The following procedure 'BresenhamCircle' which implements this algorithm draws a circle 

with center (xc, yc) and radius r. It uses the procedure 'CirclePoints' to display points on the entire circle. In the 

cases x = y or r = 1 'CirclePoints' draws each of four pixels twice. This causes no problem on a raster display.

procedure BresenhamCircle(xc, yc, r: integer);

procedure CirclePoints(x, y: integer);
begin

PaintPixel(xc + x, yc + y); PaintPixel(xc – x, yc + y);

PaintPixel(xc + x, yc – y); PaintPixel(xc – x, yc – y);

PaintPixel(xc + y, yc + x); PaintPixel(xc – y, yc + x);

PaintPixel(xc + y, yc – x); PaintPixel(xc – y, yc – x)

end;
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var  x, y, d: integer;
begin

x := 0;  y := r;  d := 3 – 2 · r;
while  x < y  do  begin

CirclePoints(x, y);
if  d < 0 then d := d + 4 · x + 6

else { d := d + 4 · (x – y) + 10;  y := y – 1 };
x := x + 1

end;
if  x = y  then  CirclePoints(x, y)

end;    .i).Bresenham's algorithm:circle;

Exercises and programming projects

1. Design and implement an efficient geometric primitive which determines whether two aligned rectangles 

(i.e. rectangles with sides parallel to the coordinate axes) intersect.

2. Design and implement a geometric primitive

function inTriangle(t: triangle; p: point): …;

which takes a triangle t given by its three vertices and a point p and returns a ternary value: p is inside t, p 

is on the boundary of t, p is outside t.

3. Use the functions 'intersect' of in "Intersection" and 'inTriangle' above to program a

function SegmentIntersectsTriangle(s: segment; t: triangle): …;

to check whether segment s and triangle t share common points.  'SegmentIntersectsTriangle' returns a 

ternary value: yes, degenerate, no. List all distinct cases of degeneracy that may occur, and show how your 

code handles them.

4. Implement Bresenham's incremental algorithms for drawing digitized straight lines and circles.

5. Two circles (x', y',  r') and (x'', y'', r'') are given by the coordinates of their center and their radius. Find  

effective formulas for deciding the three-way question whether  (a)  the circles intersect as lines, (b) the 

circles intersect as disks, or (c) neither. Avoid the square-root operation whenever possible.
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Part IV: Complexity of 
problems and algorithms

Fundamental issues of computation

A successful search for better and better algorithms naturally leads to the question "Is there a best algorithm?",  

whereas an unsuccessful search leads one to ask apprehensively: "Is there any algorithm (of a certain type) to solve 

this problem?" These questions turned out to be difficult and fertile. Historically, the question about the existence 

of an algorithm came first, and led to the concepts of computability and decidability in the 1930s. The question  

about a "best" algorithm led to the development of complexity theory in the 1960s.

The  study  of  these  fundamental  issues  of  computation  requires  a  mathematical  arsenal  that  includes 

mathematical  logic,  discrete  mathematics,  probability  theory,  and  certain  parts  of  analysis,  in  particular  

asymptotics.  We  introduce  a  few  of  these  topics,  mostly  by  example,  and  illustrate  the  use  of  mathematical  

techniques of algorithm analysis on the important problem of sorting.
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15. Computability and 
complexity

Learning objectives:

• algorithm

• computability

• RISC: Reduced Instruction Set Computer

• Almost nothing is computable.

• The halting problem is undecidable.

• complexity of algorithms and problems

• Strassen's matrix multiplication

Models of computation: the ultimate RISC

Algorithm and computability are originally intuitive concepts. They can remain intuitive as long as we only want  

to show that some specific result can be computed by following a specific algorithm. Almost always an informal  

explanation  suffices  to  convince  someone  with  the  requisite  background  that  a  given  algorithm  computes  a 

specified result. We have illustrated this informal approach throughout Part III. Everything changes if we wish to 

show that a desired result is not computable. The question arises immediately: "What tools are we allowed to use?" 

Everything is computable with the help of an oracle that knows the answers to all questions. The attempt to prove  

negative  results  about  the  nonexistence  of  certain  algorithms  forces  us  to  agree  on  a  rigorous  definition  of  

algorithm.

The question "What can be computed by an algorithm, and what cannot?"  was studied intensively during the 

1930s  by  Emil  Post  (1897–1954),  Alan  Turing  (1912–1954),  Alonzo  Church  (1903),  and  other  logicians.  They 

defined  various  formal  models  of  computation,  such  as  production  systems,  Turing  machines,  and  recursive 

functions, to capture the intuitive concept of "computation by the application of precise rules". All these different 

formal models of computation turned out to be equivalent. This fact greatly strengthens Church's thesis that the 

intuitive concept of algorithm is formalized correctly by any one of these mathematical systems.

We will not define any of these standard models of computation. They all share the trait that they were designed  

to be conceptually simple: their primitive operations are chosen to be as weak as possible, as long as they retain  

their  property  of  being  universal  computing  systems  in  the  sense  that  they  can  simulate  any  computation 

performed on any other machine. It usually comes as a surprise to novices that the set of primitives of a universal  

computing machine can be so simple as long as these machines possess two essential  ingredients:  unbounded 

memory and unbounded time.

Most simulations of a powerful computer on a simple one share three characteristics: it is straightforward in 

principle,  it  involves  laborious  coding  in  practice,  and  it  explodes  the  space  and  time  requirements  of  a  
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computation. The weakness of the primitives, desirable from a theoretical point of view, has the consequence that  

as simple an operation as integer addition becomes an exercise in programming.

The model of computation used most often in algorithm analysis is significantly more powerful than a Turing 

machine in two respects: (1) its memory is not a tape, but an array, and (2) in one primitive operation it can deal  

with numbers of arbitrary size. This model of computation is called random access machine, abbreviated as RAM. 

A RAM is essentially a random access memory, also abbreviated as RAM, of unbounded capacity, as suggested in 

Exhibit 15.1. The memory consists of an infinite array of memory cells, addressed 0, 1, 2, … . Each cell can hold a  

number, say an integer, of arbitrary size, as the arrow pointing to the right suggests.

Exhibit 15.1: RAM - unbounded address space, unbounded cell size.

A RAM has an arithmetic unit and is driven by a program. The meaning of the word random is that any memory 

cell can be accessed in unit time (as opposed to a tape memory, say, where access time depends on distance). A  

further crucial  assumption in the RAM model is  that  an arithmetic operation (+,  –, ·,  /)  also takes unit  time, 

regardless of the size of the numbers involved. This assumption is unrealistic in a computation where numbers may  

grow very large, but often is a useful assumption. As is the case with all models, the responsibility for using them  

properly lies with the user.  To give the reader the flavor of  a model of  computation, we define a RAM whose  

architecture is rather similar to real computers, but is unrealistically simple.

The ultimate RISC

RISC stands for  Reduced Instruction Set Computer, a machine that has only a few types of instructions built 

into the hardware. What is the minimum number of instructions a computer needs to be universal? In theory, one.

Consider a stored-program computer of the "von Neumann type" where data and program are stored in the  

same memory (John von Neumann, 1903–1957). Let the random access memory (RAM) be "doubly infinite": There 

is a countable infinity of memory cells addressed 0, 1, … , each of which can hold an integer of arbitrary size, or an  

instruction.  We assume that  the constant 1  is  hardwired into memory cell  1;  from 1 any other integer can be 

constructed.  There  is  a  single  type  of  "three-address  instruction"  which  we  call  "subtract,  test  and  jump", 

abbreviated as

STJ  x, y, z

where x, y, and z are addresses. Its semantics is equivalent to

STJ  x, y, z   ⇔   x := x – y;  if  x ≤ 0  then  goto z;

x, y, and z refer to cells Cx, Cy, and Cz. The contents of Cx and Cy are treated as data (an integer); the contents of 

Cz, as an instruction (Exhibit 15.2).
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Exhibit 15.2: Stored program computer: data and instructions share the memory.

Since this RISC has just one type of instruction, we waste no space on an op-code field. An instruction contains 

three addresses, each of which is an unbounded integer. In theory, fortunately, three unbounded integers can be 

packed into the same space required for a single unbounded integer. In the following exercise, this simple idea  

leads to a well-known technique introduced into mathematical logic by Kurt Gödel (1906 – 1978).

Exercise: Gödel numbering

(a) Motel Infinity has a countable infinity of rooms numbered 0, 1, 2, … . Every room is occupied, so the sign  

claims "No Vacancy". Convince the manager that there is room for one more person.

(b) Assume that a memory cell in our RISC stores an integer as a sign bit followed by a sequence d0, d1, d2, … of 

decimal digits, least significant first. Devise a scheme for storing three addresses in one cell.

(c) Show how a sequence of positive integers i1, i2, … , in of arbitrary length n can be encoded in a single natural 

number j: Given j, the sequence can be uniquely reconstructed. Gödel's solution:

Basic program fragments

This  computer  is  best  understood  by  considering  program  fragments  for  simple  tasks.  These  fragments 

implement simple operations, such as setting a variable to a given constant, or the assignment operator, that are  

given as primitives in most programming languages. Programming these fragments naturally leads us to introduce 

basic concepts of assembly language, in particular symbolic and relative addressing.

Set the content of cell 0 to 0:

STJ  0, 0, .+1

Whatever the current content of cell 0, subtract it from itself to obtain the integer 0. This instruction resides at  

some address in memory, which we abbreviate as '.', read as "the current value of the program counter". '.+1' is the  

next address, so regardless of the outcome of the test, control flows to the next instruction in memory.

a := b, where a and b are symbolic addresses. Use a temporary variable t:

STJ  t, t, .+1 { t := 0 }

STJ  t, b, .+1 { t := –b }

STJ  a, a, .+1 { a := 0 }

STJ  a, t, .+1 { a := –t, so now a = b }

Exercise: a program library

(a) Write RISC programs for a:= b + c, a := b · c, a := b div c, a := b mod c, a := |b|, a : = min(b, c), a := gcd(b,  

c).
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(b) Show how this RISC can compute with rational numbers represented by a pair [a, b] of integers denoting  

numerator and denominator.

(c) (Advanced) Show that this RISC is universal, in the sense that it can simulate any computation done by any  

other computer.

The exercise of building up a RISC program library for elementary functions provides the same experience as the  

equivalent exercise for Turing machines, but leads to the goal much faster, since the primitive STJ is much more 

powerful than the primitives of a Turing machine.

The purpose of this  section is  to introduce the idea that conceptually simple models of  computation are as  

powerful, in theory, as much more complex models, such as a high-level programming language. The next two  

sections demonstrate results of an opposite nature: Universal computers, in the sense we have just introduced, are 

subject to striking limitations, even if we remove any limit on the memory and time they may use. We prove the 

existence of noncomputable functions and show that the "halting problem" is undecidable.

The theory of computability was developed in the 1930s, and greatly expanded in the 1950s and 1960s. Its basic  

ideas have become part of the foundation that any computer scientist is expected to know. Computability theory is  

not  directly  useful.  It  is  based  on  the  concept  "computable  in  principle"  but  offers  no  concept  of  a  "feasible  

computation".  Feasibility,  rather  than "possible in  principle",  is  the touchstone of  computer science.  Since the 

1960s, a theory of the complexity of computation is being developed, with the goal of partitioning the range of  

computability  into  complexity  classes  according  to  time  and  space  requirements.  This  theory  is  still  in  full 

development and breaking new ground, in particular in the area of concurrent computation. We have used some of 

its concepts throughout Part III and continue to illustrate these ideas with simple examples and surprising results.

Almost nothing is computable

Consider  as  a  model  of  computation  any  programming  language,  with  the  fictitious  feature  that  it  is 

implemented  on  a  machine  with  infinite  memory  and  no  operational  time  limits.  Nevertheless  we  reach  the 

conclusion that "almost nothing is computable".  This follows simply from the observation that there are fewer 

programs than problems to be solved (functions to be computed). Both the number of programs and the number of  

functions are infinite, but the latter is an infinity of higher cardinality.

A programming language L is defined over an alphabet A= {a1, a2, … , ak} of k characters. The set of programs in 

L is  a  subset  of  the set  A∗ of  all  strings  over A.  A∗ is  countable,  and so is  its  subset  L,  as  it  is  in one-to-one 

correspondence with the natural numbers under the following mapping:

1. Generate all strings in A∗ in order of increasing length and, in case of equal length, in lexicographic order.

2. Erase all strings that do not represent a program according to the syntax rules of L.

3. Enumerate the remaining strings in the originally given order.

Among all programs in L we consider only those which compute a (partial) function from the set N = {1, 2, 3, …} 

of natural numbers into N. This can be recognized by their heading; for example,

function f(x: N): N;

As this is a subset of L, there exist only countably many such programs.

However, there are uncountably many functions f: N → N, as Georg Cantor (1845–1918) proved by his famous 

diagonalization argument. It starts by assuming the opposite, that the set {f | f: N →  N} is countable, then derives 
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a contradiction. If there were only a countable number of such functions, we could enumerate all of them according 

to the following scheme:

f1(1)f1 f1(2) f1(3) f1(4)

f2(1) f2(3) f2(4)f2(2)f2

f3 f3(1) f3(3) f3(4)f3(2)

1 2 3 4

.

.

.

. . .

f4 f4(1) f4(3) f4(4)f4(2)

Construct a function g:  N → N, g(i) = fi(i) + 1, which is obtained by adding 1 to the diagonal elements in the 

scheme above. Hence g is different from each fi, at least for the argument i: g(i) ≠ fi(i). Therefore, our assumption 

that we have enumerated all functions f: N → N is wrong. Since there exists only a countable infinity of programs, 

but an uncountable infinity of functions, almost all functions are noncomputable.

The halting problem is undecidable

If we could predict, for any program P executed on any data set D, whether P terminates or not (i.e. whether it  

will get into an infinite loop), we would have an interesting and useful technique. If this prediction were based on 

rules that prescribe exactly how the pair (P, D) is to be tested, we could write a program H for it. A fundamental  

result of computability theory states that under reasonable assumptions about the model of computation, such a 

halting program H cannot exist.

Consider a programming language L that contains the constructs we will use: mainly recursive procedures and  

procedure parameters. Consider all procedures P in L that have no parameters, a property that can be recognized  

from the heading

procedure P;

This simplifies the problem by avoiding any data dependency of termination.

Assume that there exists a program H in L that takes as argument any parameterless procedure P in L and 

decides whether P halts or loops (i.e. runs indefinitely):

Consider the behavior of the following parameterless procedure X:

procedure X;
begin  while  H(X)  do;  end; 

Consider the reference of X to itself;  this  trick corresponds to the diagonalization in the previous example.  

Consider further the loop

while  H(X)  do;

which is infinite if H(X) returns true (i.e. exactly when X should halt) and terminates if H(X) returns false (i.e. 

exactly when X should run forever). This trick corresponds to the change of the diagonal g(i) = f i(i) + 1. We obtain:
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By definition of X: By construction of X:

The fiendishly crafted program X traps H in a web of contradictions. We blame the weakest link in the chain of  

reasoning  that  leads  to  this  contradiction,  namely  the  unsupported  assumption  of  the  existence  of  a  halting  

program H. This proves that the halting problem is undecidable.

Computable, yet unknown

In the preceding two sections we have illustrated the limitations of computability: clearly stated questions, such 

as the halting problem, are undecidable. This means that the halting question cannot be answered, in general, by 

any  computation  no matter  how extensive  in  time and  space.  There  are,  of  course,  lots  of  individual  halting 

questions that can be answered, asserting that a particular program running on a particular data set terminates, or  

fails to do so. To illuminate this key concept of theoretical computer science further, the following examples will  

highlight a different type of practical limitation of computability.

Computable or decidable is a concept that naturally involves  one algorithm and a  denumerably infinite set of 

problems, indexed by a parameter, say n. Is there a uniform procedure that will solve any one problem in the  

infinite set? For example, the "question" (really a denumerable infinity of questions) "Can a given integer n > 2 be 

expressed as the sum of two primes?" is decidable because there exists the algorithm 's2p' that will answer any 

single instance of this question:

procedure s2p(n: integer): boolean;
{ for n>2, s2p(n) returns true if n is the sum of two primes,

false otherwise }

function p(k: integer): integer;
{ for k>0, p(k) returns the k-th prime: p(1) = 2, p(2) = 3, p(3) 

= 5, … }
end;

begin
for all i, j such that p(i) < n and p(j )< n do

if  p(i) + p(j) = n  then  return(true);
return(false);

end;  { s2p }

So the general question "Is any given integer the sum of two primes?" is solved readily by a simple program. A 

single related question, however, is much harder: "Is every even integer >2 the sum of two primes?" Let's try:

4 = 2 + 2, 6 = 3 + 3,  8 = 5 + 3,  10 = 7 + 3 = 5 + 5,  12 = 7 + 5,

14 = 11 + 3 = 7 + 7,  16 = 13 + 3 = 11 + 5,  18 = 13 + 5 = 11 + 7,

20 = 17 + 3 = 13 + 7,  22 = 19 + 3 = 17 + 5 = 11 + 11, 

24 = 19 + 5 = 17 + 7 = 13 + 11,  26 = 23 + 3 = 21 + 5 = 19 + 7 = 13 + 13,

28 = 23 + 5 = 17 + 11,  30 = 23 + 7 = 19 + 11 = 17 + 13,

32 = 29 + 3 = 19 + 13,  34 = 31 + 3 = 29 + 5 = 23 + 11 = 17 + 17,

36 = 33 + 3 = 31 + 5 = 29 + 7 = 23 + 13 = 19 + 17.
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A bit of experimentation suggests that the number of distinct representations as a sum of two primes increases  

as  the  target  integer  grows.  Christian  Goldbach  (1690–1764)  had  the  good  fortune  of  stating  the  plausible 

conjecture "yes" to a problem so hard that it has defied proof or counterexample for three centuries.

One might ask: Is the Goldbach conjecture decidable? The straight answer is that the concept of decidability  

does not apply to a single yes/no question such as Goldbach's conjecture. Asking for an algorithm that tells us  

whether  the  conjecture  is  true  or  false  is  meaninglessly  trivial.  Of  course,  there  is  such  an  algorithm!  If  the 

Goldbach conjecture is true, the algorithm that says 'yes' decides. If the conjecture is false, the algorithm that says  

'no' will do the job. The problem that we  don't know which algorithm is the right one is quite compatible with 

saying that  one of those  two is  the right  algorithm.  If  we package  two trivial  algorithms into one,  we get  the 

following trivial algorithm for deciding Goldbach's conjecture:

function GoldbachOracle(): boolean:
begin  return(GoldbachIsRight)  end;

Notice that  'GoldbachOracle'  is  a function without arguments,  and 'GoldbachIsRight'  is  a boolean constant, 

either true or false. Occasionally, the stark triviality of the argument above is concealed so cleverly under technical 

jargon as to sound profound. Watch out to see through the following plot.

Let us call an even integer > 2 that is not a sum of two primes a counterexample. None have been found as yet, 

but we can certainly reason about them, whether they exist or not. Define the

function G(k: cardinal): boolean;

as follows:

Goldbach's conjecture is equivalent to G(0) = true. The (implausible) rival conjecture that there is exactly one  

counterexample is equivalent to G(0) = false, G(1) = true. Although we do not know the value of G(k) for any single  

k, the definition of G tells us a lot about this artificial function, namely: 

if G(i) = true for any i, then G(k) = true for all k > i.

With such a strong monotonicity property, how can G look? 

1. If Goldbach is right, then G is a constant: G(k) = true for all k.

2. If there are a finite number i of exceptions, then G is a step function: 

G(k) = false for k < i, G(k) = true for k ≥ i.

3. If there is an infinite number of exceptions, then G is again a constant: 

G(k) = false for all k.

Each of the infinitely many functions listed above is obviously computable. Hence G is computable. The value of  

G(0) determines truth or falsity of Goldbach's conjecture. Does that help us settle this time-honored mathematical  

puzzle? Obviously not. All we have done is to rephrase the honest statement with which we started this section, 

"The answer is yes or no, but I don't know which" by the circuitous "The answer can be obtained by evaluating a 

computable function, but I don't know which one". 
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Multiplication of complex numbers

Let us turn our attention from noncomputable functions and undecidable problems to very simple functions that 

are obviously computable, and ask about their complexity: How many primitive operations must be executed in  

evaluating a specific function? As an example, consider arithmetic operations on real numbers to be primitive, and 

consider the product z of two complex numbers x and y:

x = x1 + i · x2 and y = y1 + i · y2,

x · y = z = z1 + i · z2.

The complex product is defined in terms of operations on real numbers as follows:

z1 = x1 · y1 – x2 · y2,

z2 = x1 · y2 + x2 · y1.

It  appears  that  one  complex  multiplication  requires  four  real  multiplications  and  two  real  

additions/subtractions. Surprisingly, it turns out that multiplications can be traded for additions. We first compute  

three intermediate variables using one multiplication for each, and then obtain z by additions and subtractions:

p1 = (x1 + x2) · (y1 + y2),

p2 = x1 · y1,

p3 = x2 · y2,

z1 = p2 – p3, z2 = p1 – p2 – p3.

This evaluation of the complex product requires only 3 real multiplications, but 5 real additions / subtractions.  

This  trade  of  one  multiplication for  three additions may  not  look  like  a  good deal  in  practice,  because  many 

computers have arithmetic chips with fast multiplication circuitry. In theory, however, the trade is clearly favorable. 

The cost of  an addition grows linearly in the number of  digits,  whereas the cost of  a multiplication using the 

standard method grows quadratically. The key idea behind this algorithm is that "linear combinations of k products  

of sums can generate more than k products of simple terms". Let us exploit this idea in a context where it makes a  

real difference.

Complexity of matrix multiplication

The complexity of an algorithm is given by its time and space requirements. Time is usually measured by the 

number of operations executed, space by the number of variables needed at any one time (for input, intermediate 

results, and output). For a given algorithm it is often easy to count the number of operations performed in the worst  

and in the best case; it is usually difficult to determine the average number of operations performed (i.e. averaged 

over all possible input data). Practical algorithms often have time complexities of the order O(log n), O(n2), O(n · 

log n), O(n2), and space complexity of the order O(n), where n measures the size of the input data.

The complexity of a problem is defined as the minimal complexity of all algorithms that solve this problem. It is 

almost always difficult to determine the complexity of a problem, since all possible algorithms must be considered,  

including those yet unknown. This may lead to surprising results that disprove obvious assumptions.

The complexity of an algorithm is an upper bound for the complexity of the problem solved by this algorithm.  

An algorithm is a witness for the assertion: You need at most this many operations to solve this problem. A specific  

algorithm never provides a lower bound on the complexity of a problem— it cannot extinguish the hope for a more 

efficient algorithm. Occasionally, algorithm designers engage in races lasting decades that result in (theoretically) 

faster and faster algorithms for solving a given problem. Volker Strassen started such a race with his 1969 paper  
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"Gaussian  Elimination  Is  Not  Optimal"  [Str  69],  where  he  showed  that  matrix  multiplication  requires  fewer 

operations than had commonly been assumed necessary. The race has not yet ended.

The obvious way to multiply two n × n matrices uses three nested loops, each of which is iterated n times, as we  

saw in a transitive hull algorithm in the chapter, “Matrices and graphs: transitive closure”. The fact that the obvious 

algorithm  for  matrix  multiplication  is  of  time  complexity  Θ(n3),  however,  does  not  imply  that  the  matrix 

multiplication problem is of the same complexity.

Strassen's matrix multiplication

The standard algorithm for multiplying two n  × n matrices needs n3 scalar multiplications and n2 ·  (n – 1) 

additions; for the case of 2  × 2 matrices,  eight multiplications and four additions. Seven scalar multiplications 

suffice if we accept 18 additions/subtractions.

Evaluate seven expressions, each of which is a product of sums:

p1 = (a11 + a22) · (b11 + b22),

p2 = (a21 + a22) · b11

p3 = a11 · (b12 – b22)

p4 = a22 · (–b11 + b21) p5 = (a11 + a12) · b22

p6 = (–a11 + a21) · (b11 + b12)p7 = (a12 – a22) · (b21 + b22).

The elements of the product matrix are computed as follows:

r11 = p1 + p4 – p5 + p7,

r12 = p3 + p5,

r21 = p2 + p4, r22 = p1 – p2 + p3 + p6.

This algorithm does not rely on the commutativity of scalar multiplication. Hence it can be generalized to n × n 

matrices using the divide-and-conquer principle. For reasons of simplicity consider n to be a power of 2 (i.e. n = 2 k); 

for other values of n, imagine padding the matrices with rows and columns of zeros up to the next power of 2. An n  

× n matrix is partitioned into four n/2 × n/2 matrices:

The product  of  two n  × n matrices by Strassen's method requires  seven (not  eight)  multiplications and 18 

additions/subtractions of n/2  × n/2 matrices.  For large n, the work required for the 18 additions is  negligible 

compared to the work required for even a single multiplication (why?); thus we have saved one multiplication out of 

eight, asymptotically at no cost.

Each n/2  × n/2 matrix is again partitioned recursively into four n/4  × n/4 matrices; after log2 n partitioning 

steps we arrive at 1  × 1 matrices for which matrix multiplication is the primitive scalar multiplication. Let T(n) 

denote the number of scalar arithmetic operations used by Strassen's method for multiplying two n × n matrices. 

For n > 1, T(n) obeys the recursive equation
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If we are only interested in the leading term of the solution, the constants 7 and 2 justify omitting the quadratic  

term, thus obtaining

Thus the number of primitive operations required to multiply two n  × n matrices using Strassen's method is 

proportional to n2.81, a statement that we abbreviate as "Strassen's matrix multiplication takes time Θ(n2.81)".

Does this asymptotic improvement lead to a more efficient program in practice? Probably not, as the ratio

grows too slowly to be of practical importance: For n ≈ 1000, for example, we have 5√1024 = 4 (remember: 210 = 

1024). A factor of 4 is not to be disdained, but there are many ways to win or lose a factor of 4. Trading an algorithm  

with  simple  code,  such  as  straightforward  matrix  multiplication,  for  another  that  requires  more  elaborate  

bookkeeping, such as Strassen's, can easily result in a fourfold increase of the constant factor that measures the 

time it takes to execute the body of the innermost loop.

Exercises

1. Prove that the set of all ordered pairs of integers is countably infinite.

2. A  recursive  function is  defined by a  finite  set  of  rules  that  specify  the function in  terms of  variables, 

nonnegative integer constants, increment ('+1'), the function itself, or an expression built from these by  

composition of functions. As an example, consider Ackermann's function defined as A(n) = An(n) for n ≥ 1, 

where Ak(n) is determined by

Ak(1) = 2 for k ≥ 1

A1(n) = A1(n–1) + 2 for n ≥ 2

Ak(n) = Ak–1(Ak(n–1)) for k ≥ 2

(a) Calculate A(1) , A(2) , A(3), A(4).

(b) Prove that

Ak(2) = 4 for k ≥ 1,

A1(n) = 2·n for n ≥ 1,

A2(n) = 2n for n ≥ 1,

A3(n) = 2A
3

(n–1) for n ≥ 2.

(c) Define the inverse of Ackermann's function as

α(n) = min{m: A(m) ≥ n}.

 Show that α(n) ≤ 3 for n ≤ 16, that α(n) ≤ 4 for n at most a "tower" of 65536 2's, and that α(n) → ∞ as n 

→ ∞.
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3. Complete Strassen's algorithm by showing how to multiply n × n matrices when n is not an exact power of 

2.

4. Assume that you can multiply 3 × 3 matrices using k multiplications. What is the largest k that will lead to 

an asymptotic improvement over Strassen's algorithm?

5. A permutation matrix P is an n × n matrix that has exactly one '1' in each row and each column; all other 

entries are '0'. A permutation matrix can be represented by an array

var a: array[1 .. n] of integer;

as follows: a[i] = j if the i-th row of P contains a '1' in the j-th column.

6. Prove that the product of two permutation matrices is again a permutation matrix.

7. Design  an  algorithm  that  multiplies  in  time  Θ(n)  two  permutation  matrices  given  in  the  array 

representation above, and stores the result in this same array representation.
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16. The mathematics of 
algorithm analysis

Learning objectives:

• worst-case and average performance of an algorithm

• growth rate of a function

• asymptotics: O(), Ω(), ∴Θ()

• asymptotic behavior of sums

• solution techniques for recurrence relations

• asymptotic performance of divide-and-conquer algorithms

• average number of inversions and average distance in a permutation

• trees and their properties

Growth rates and orders of magnitude

To understand a specific algorithm, it is useful to ask and answer the following questions, usually in this order:  

What is the problem to be solved? What is the main idea on which this algorithm is based? Why is it correct? How  

efficient is it?

The variety of problems is vast, and so is the variety of "main ideas" that lead one to design an algorithm and  

establish its correctness. True, there are general algorithmic principles or schemas which are problem-independent, 

but these rarely suffice: Interesting algorithms typically exploit specific features of a problem, so there is no unified 

approach  to  understanding  the  logic  of  algorithms.  Remarkably,  there  is a  unified  approach  to  the efficiency 

analysis  of  algorithms,  where  efficiency  is  measured  by  a  program's  time  and  storage  requirements.  This  is 

remarkable because there is great variety in (1) sets of input data and (2) environments (computers, operating  

systems, programming languages, coding techniques), and these differences have a great influence on the run time 

and storage consumed by a program. These two types of differences are overcome as follows.

Different sets of input data: worst-case and average performance

The most important characteristic of a set of data is its size, measured in terms of any unit convenient to the 

problem at hand. This is typically the number of primitive objects in the data, such as bits, bytes, integers, or any  

monotonic function thereof, such as the magnitude of an integer. Examples: For sorting, the number n of elements 

is natural; for square matrices, the number n of rows and columns is convenient; it is a monotonic function (square 

root) of the actual size n2 of the data. An algorithm may well behave very differently on different data sets of equal  

size n—among all possible configurations of given size n some will be favorable, others less so. Both the worst-case 

data set of size n and the  average over all data sets of size n provide well-defined and important measures of  

efficiency.  Example:  When sorting data sets about whose order nothing is known, average performance is well  

characterized by averaging run time over all n! permutations of the n elements.
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Different environments: focus on growth rate and ignore constants

The work performed by an algorithm is expressed as a function of the problem size, typically measured by size n 

of the input data. By focusing on the growth rate of this function but ignoring specific constants, we succeed in 

losing a lot of detail information that changes wildly from one computing environment to another, while retaining  

some  essential  information  that  is  remarkably  invariant  when  moving  a  computation  from  a  micro-  to  a 

supercomputer, from machine language to Pascal, from amateur to professional programmer. The definition of 

general measures for the complexity of problems and for the efficiency of algorithms is a major achievement of 

computer science. It is based on the notions of  asymptotic time and space complexity.  Asymptotics renounces 

exact measurement but states how the work grows as the problem size increases. This information often suffices to 

distinguish efficient algorithms from inefficient ones. The asymptotic behavior of an algorithm is described by the 

O(),  Ω(),  Θ(), and o() notations. To determine the amount of work to be performed by an algorithm we count  

operations that take constant time (independently of n) and data objects that require constant storage space. The  

time required by an addition, comparison,  or  exchange of  two numbers is  typically independent of  how many 

numbers we are processing; so is the storage requirement for a number.

Assume that the time required by four algorithms A1, A2, A3, and A4 is log2n, n, n · log2n, and n2, respectively. The 

following table shows that for sizes of data sets that frequently occur in practice, from n ≈ 10 3 to 106, the difference 

in growth rate translates into large numerical differences:

n A1 = log2n A2 = n A3 = n · log2n A4 = n2

25 = 32 5 25 = 32
5 · 25 = 160 210 ≈ 103

210 = 1024 10 210 ≈ 103 10 · 210 ≈ 104 220 ≈ 106

220 ≈ 106 20 220 ≈ 106 20 · 220 ≈ 2 · 107 240 ≈ 1012

For a specific algorithm these functions are to be multiplied by a constant factor proportional to the time it takes  

to execute the body of the innermost loop. When comparing different algorithms that solve the same problem, it  

may well happen that one innermost loop is 10 times faster or slower than another. It is rare that this difference  

approaches a factor of 100. Thus for n ≈ 1000 an algorithm with time complexity Θ(n · log n) will almost always be 

much more efficient than an algorithm with time complexity Θ(n2). For small n, say n = 32, an algorithm of time 

complexity Θ(n2) may be more efficient than one of complexity Θ(n · log n) (e.g. if its constant is 10 times smaller).

When we wish to predict exactly how many seconds and bytes a program needs, asymptotic analysis is still 

useful but is only a small part of the work. We now have to go back over the formulas and keep track of all the  

constant factors discarded in cavalier fashion by the O() notation. We have to assign numbers to the time consumed 

by scores of primitive O(1) operations. It may be sufficient to estimate the time consuming primitives, such as  

floating-point operations; or it may be necessary to include those that are  hidden by a high-level programming 

language and answer questions such as: How long does an array access a[i, j] take? A procedure call? Incrementing 

the index i in a loop "for i := 0 to n"?

Asymptotics

Asymptotics  is  a  technique  used  to  estimate  and  compare  the  growth  behavior  of  functions.  Consider  the  

function
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f(x) is said to behave like x for x → ∞ and like 1 / x for x → 0. The motivation for such a statement is that both x and 

1 / x are intuitively simpler, more easily understood functions than f(x). A complicated function is unlike any simpler 

one across its entire domain, but it usually behaves like a simpler one as x approaches some particular value. Thus 

all asymptotic statements include the qualifier x → x0. For the purpose of algorithm analysis we are interested in 

the behavior of functions for large values of their argument, and all our definitions below assume x → ∞.

The asymptotic behavior of functions is described by the O(), Ω(), Θ (), and o() notations, as in f(x) ∈ O(g(x)). 

Each of these notations assigns to a given function g the set of all functions that are related to g in a well-defined 

way. Intuitively, O(),  Ω(),  Θ(), and o() are used to compare the growth of functions, as ≤, ≥, =, and < are used to  

compare numbers. O(g) is the set of all functions that are ≤ g in a precise technical sense that corresponds to the 

intuitive notion "grows no faster than g". The definition involves some technicalities signaled by the preamble ∃ ∃c > 

0,∃ >  ∃x0 ∈ X,  ∀ x ≥ x0.  It  says that we ignore constant factors and initial behavior and are interested only in a 

function's behavior from some point on. N0 is the set of nonnegative integers, R0 the set of nonnegative reals. In the 

following definitions X stands for either N0 or R0. Let g: X → X.

Definition of O(), "big oh":

 O(g) := {f: X → X | ∃ c > 0, ∃ x0 ∈ X, ∀ x ≥  xo : f(x) ≤ c · g(x)} 

We say that f ∈ O(g), or that f grows at most as fast as g(x) for x → ∞.

Definition of Ω(), "omega":

Ω(g) := {f: X → X  ∃ c > 0  x0 ∈ X, ∀∀ x ≥ x0: f(x) ≥ c · g(x)}.

We say that f ∈ O(g), or that f grows at least as fast as g(x) for x → ∞.

Definition of Θ(), "theta":

Θ(g) := O(g) ∩ Ω(g).

We say that f ∈ Θ(g), or that f has the same growth rate as g(x) for x → ∞.

Definition of o(), "small oh":

We say that f ∈ o(g), or that f grows slower than g(x) for x → ∞.

Notation: Most of the literature uses = in place of our ∈, such as in x = O(x2). If you do so, just remember that 

this = has none of the standard properties of an equality relation—it is neither commutative nor transitive. Thus 

O(x2) = x is not used, and from x = O(x2) and x2 = O(x2) it does not follow that x = x2. The key to avoiding confusion 

is the insight that O() is not a function but a set of functions.

Summation formulas

log2 denotes the logarithm to the base 2, ln the natural logarithm to the base e.
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The asymptotic behavior of a sum can be derived by comparing the sum to an integral that can be evaluated in 

closed form. Let f(x) be a monotonically increasing, integrable function. Then 

is bounded below and above by sums (Exhibit 16.1):

Exhibit 16.1: Bounding a definite integral by lower and upper sums.

Letting xi = i + 1, this inequality becomes 

so
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Example

By substituting 

with k > 0 in (∗) we obtain 

and therefore

Example

By substituting

 f x=ln x and ∫ ln x dx=x⋅ln x−x

 in (∗∗) we obtain

(n+1)⋅ln (n+1)−n−ln (n+1)≤∑
i=1

n

ln i≤(n+1)cdotln (n+1)−n ,  

and therefore

∑
i=1

n

log
2
i=(n+1)⋅log

2
(n+1)− n

ln 2
+g(n)with g (n)∈O( log n)

Example

By substituting 

in (∗∗) we obtain 

with g(n) ∈ O(n · log n).

Recurrence relations

A homogeneous linear recurrence relation with constant coefficients is of the form

xn = a1 · xn–1 + a2 · xn–2 + … + ak · xn–k

where the coefficients ai are independent of n and x1, x2, … , xn–1 are specified. There is a general technique for 

solving linear recurrence relations with constant coefficients - that is, for determining x n as a function of n. We will 

demonstrate this technique for the Fibonacci sequence which is defined by the recurrence
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xn = xn–1 + xn–2,  x0 = 0,  x1 = 1.

We seek a solution of the form

xn = c · rn

with constants c and r to be determined. Substituting this into the Fibonacci recurrence relation yields

c · rn = c · rn–1 + c · rn–2

or

c · rn–2 · (r2 – r – 1) = 0.

This equation is satisfied if either c = 0 or r = 0 or r2 – r – 1 = 0. We obtain the trivial solution xn = 0 for all n if c 

= 0 or r = 0. More interestingly, r2– r – 1 = 0 for

The sum of two solutions of a homogeneous linear recurrence relation is obviously also a solution, and it can be 

shown that any linear combination of solutions is again a solution. Therefore, the most general solution of the  

Fibonacci recurrence has the form

where c1 and c2 are determined as solutions of the linear equations derived from the initial conditions:

which yield 

the complete solution for the Fibonacci recurrence relation is therefore 

Recurrence  relations  that  are  not  linear  with  constant  coefficients  have  no  general  solution  techniques 

comparable  to  the  one  discussed  above.  General  recurrence  relations  are  solved  (or  their  solutions  are 

approximated or bounded) by trial-and-error techniques. If the trial and error is guided by some general technique, 

it will yield at least a good estimate of the asymptotic behavior of the solution of most recurrence relations.

Example

Consider the recurrence relation 
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with a > 0 and b > 0, which appears often in the average-case analysis of algorithms and data structures. When we 

know from the interpretation of this recurrence that its solution is monotonically nondecreasing, a systematic trial-

and-error process leads to the asymptotic behavior of the solution. The simplest possible try is a constant, xn = c. 

Substituting this into ( ∗) leads to 

so xn = c is not a solution. Since the left-hand side xn is smaller than an average of previous values on the right-hand 

side, the solution of this recurrence relation must grow faster than c. Next, we try a linear function xn = c · n: 

At this stage of the analysis it suffices to focus on the leading terms of each side: c · n on the left and (c + a) · n on  

the right. The assumption a > 0 makes the right side larger than the left, and we conclude that a linear function also 

grows too slowly to be a solution of the recurrence relation. A new attempt with a function that grows yet faster, xn = 

c · n2, leads to 

Comparing the leading terms on both sides, we find that the left side is now larger than the right, and conclude  

that a quadratic function grows too fast. Having bounded the growth rate of the solution from below and above, we  

try functions whose growth rate lies between that of a linear and a quadratic function, such as xn = c · n1.5. A more 

sophisticated approach considers a family of functions of the form xn = c · n1+e for any ε > 0: All of them grow too 

fast. This suggests xn = c · n · log2 n, which gives 

with g(n) ∈ O(n · log n) and h(n) ∈ O(log n). To match the linear terms on each side, we must choose c such that

or c = a · ln 4 ≈ 1.386 · a. Hence we now know that the solution to the recurrence relation (∗) has the form

Algorithms and Data Structures 152  A Global Text

http://creativecommons.org/licenses/by/3.0/


16. The mathematics of algorithm analysis

Asymptotic performance of divide-and-conquer algorithms

We  illustrate  the  power  of  the  techniques  developed  in  previous  sections  by  analyzing  the  asymptotic  

performance not of a specific algorithm, but rather, of an entire class of divide-and-conquer algorithms. In “Divide 

and conquer recursion” we presented the following schema for divide-and-conquer algorithms that partition the set  

of data into two parts:

A(D):  if  simple(D) then return(A0(D))
else 1. divide: partition D into D1 and D2;

2. conquer: R1 := A(D1);  R2 := A(D2);
3. combine: return(merge(R1, R2));

Assume further that the data  set D can always be partitioned into two halves,  D1 and D2,  at  every  level  of 

recursion. Two comments are appropriate:

1. For repeated halving to be possible it is not necessary that the size n of the data set D be a power of 2, n =  

2k. It is not important that D be partitioned into two exact halves—approximate halves will do. Imagine  

padding any data set D whose size is not a power of 2 with dummy elements, up to the next power of 2.  

Dummies  can  always  be  found that  do  not  disturb  the  real  computation:  for  example,  by  replicating 

elements  or  by  appending  sentinels.  Padding  is  usually  just  a  conceptual  trick  that  may  help  in 

understanding the process, but need not necessarily generate any additional data.

2. Whether or not the divide step is guaranteed to partition D into two approximate halves, on the other hand,  

depends critically on the problem and on the data structures used. Example: Binary search in an ordered 

array partitions D into halves by probing the element at the midpoint; the same idea is impractical in a  

linked list because the midpoint is not directly accessible.

Under our assumption of halving, the time complexity T(n) of algorithm A applied to data D of size n satisfies 

the recurrence relation

where f(n) is the sum of the partitioning or splitting time and the "stitching time" required to merge two solutions 

of size n / 2 into a solution of size n. Repeated substitution yields

The term n · T(1) expresses the fact that every data item gets looked at, the second sums up the splitting and  

stitching time. Three typical cases occur:

(a) Constant time splitting and merging f(n) = c yields
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T(n) = (T(1) + c) · n.

Example: Find the maximum of n numbers.

(b) Linear time splitting and merging f(n) = a · n + b yields

T(n) = a · n · log2 n + (T(1) + b) · n.

Examples: Mergesort, quicksort.

(c) Expensive splitting and merging: n ∈ o(f(n)) yields

T(n) = n · T(1) + O(f(n) · log n)

and therefore rarely leads to interesting algorithms.

Permutations
Inversions

Let (ak: 1 ≤ k ≤ n) be a permutation of the integers 1 .. n. A pair (a i, aj), 1 ≤ I < j ≤ n, is called an inversion iff ai > 

aj. What is the average number of inversions in a permutation? Consider all permutations in pairs; that is, with any 

permutation A:

a1 = x1; a2 = x2; … ; an = xn

consider its inverse A', which contains the elements of A in inverse order:

a1 = xn; a2 = xn–1; … ; an = x1.

In one of these two permutations xi and xj are in the correct order, in the other, they form an inversion. Since 

there are n· (n – 1) / 2 pairs of elements (xi, xj) with 1 ≤ i < j ≤ n there are, on average, 

inversions.

Average distance

Let (ak: 1 ≤ k ≤ n) be a permutation of the natural numbers from 1 to n. The distance of the element a i from its 

correct position is |ai – i|. The total distance of all elements from their correct positions is 

Therefore, the average total distance (i.e. the average over all n! permutations) is

Algorithms and Data Structures 154  A Global Text

http://creativecommons.org/licenses/by/3.0/


16. The mathematics of algorithm analysis

Let 1 ≤  i ≤ n and 1 ≤ j ≤ n. Consider all permutations for which a i is equal to j. Since there are (n – 1)! such 

permutations, we obtain

Therefore, 

the average distance of an element ai from its correct position is therefore

Trees

Trees are ubiquitous in discrete mathematics and computer science, and this section summarizes some of the 

basic concepts, terminology, and results. Although trees come in different versions, in the context of algorithms and 

data structures, "tree" almost always means an ordered rooted tree. An ordered rooted tree is either empty or it 

consists of a node, called a root, and a sequence of k ordered subtrees T1, T2, … , Tk (Exhibit 16.2). The nodes of an 

ordered tree that have only empty subtrees are called leaves or external nodes, the other nodes are called  internal 

nodes (Exhibit 16.3). The roots of the subtrees attached to a node are its children; and this node is their parent.
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Exhibit 16.2: Recursive definition of a rooted, ordered tree.

The level of a node is defined recursively. The root of a tree is at level 0. The children of a node at level t are at 

level t + 1. The level of a node is the length of the path from the root of the tree to this node. The height of a tree is 

defined as the maximum level of all leaves. The path length of a tree is the sum of the levels of all its nodes (Exhibit 

16.3).

Exhibit 16.3: A tree of height = 4 and path length = 35.

A binary tree is  an ordered tree whose nodes have at most two children. A 0-2 binary tree is a tree in which 

every node has zero or two children but not one. A 0-2 tree with n leaves has exactly n – 1 internal nodes. A binary 

tree of height h is called complete (completely balanced)  if it has 2h+1 – 1 nodes (Exhibit 16.4. A binary tree of height 

h is called  almost complete if  all its leaves are on levels h – 1 and h, and all leaves on level h are as far left as 

possible (Exhibit 16.4).
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Exhibit 16.4: Examples of well-balanced binary trees.

Exercises

1. Suppose that we are comparing implementations of two algorithms on the same machine. For inputs of size 

n, the first algorithm runs in 9 · n2 steps, while the second algorithm runs in 81 · n · log2 n steps. Assuming 

that the steps in both algorithms take the same time, for which values of n does the first algorithm beat the  

second algorithm?

2. What is the smallest value of n such that an algorithm whose running time is 256 · n2 runs faster than an 

algorithm whose running time is 2n on the same machine?

3. For each of the following functions fi(n), determine a function g(n) such that fi(n) ∈ Θ(g(n)). The function 

g(n) should be as simple as possible.

f1(n) = 0.001 · n7 + n2 + 2 · n

f2(n) = n · log n + log n + 1234 · n

f3(n) = 5 · n · log n + n2 · log n + n2

f4(n) = 5 · n · log n + n3 + n2 · log n

4. Prove formally that 1024 · n 2+ 5 · n ∈ Θ(n2).

5. Give an asymptotically tight bound for the following summation:

6. Find the most general solutions to the following recurrence relations.

7. Solve the recurrence T(√n) = 2·T() + log2 n. Hint: Make a change of variables m = log2 n.

8. Compute the number of inversions and the total distance for the permutation (3 1  2 4).
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17. Sorting and its 
complexity

Learning objectives:

• What is sorting? 

• basic ideas and intrinsic complexity

• insertion sort

• selection sort

• merge sort

• distribution sort

• a lower bound Ω(n· log  n)

• Quicksort

• Sorting in linear time?

• sorting networks

What is sorting? How difficult is it?
The problem

Assume that S is a set of n elements x1, x2, … , xn drawn from a domain X, on which a total order ≤ is defined (i.e.  

a relation that satisfies the following axioms):

≤ is reflexive (i.e ∀ ∀x ∈ X:  x ≤ x)
≤ is antisymmetric (i.e ∀ ∀x, y ∈ X:  x ≤ y  ∧  y ≤ x ⇒ x = y)
≤ is transitive (i.e ∀ ∀x, y, z ∈ X:  x ≤ y  ∧  y ≤ z  ⇒  x ≤ z)
≤ is total (i.e. ∀ ∀x, y ∈ X  ⇒ x ≤ y  ∨  y ≤ x)

Sorting is the process of generating a sequence 

such that (i1, i2, … , in) is a permutation of the integers from 1 to n and 

holds.  Phrased  abstractly,  sorting  is  the  problem  of  finding  a  specific  permutation  (or  one  among  a  few  

permutations,  when distinct  elements  may  have equal  values)  out  of  n!  possible  permutations  of  the n  given  

elements. Usually, the set S of elements to be sorted will be given in a data structure; in this case, the elements of S  

are ordered implicitly by this data structure, but not necessarily according to the desired order ≤. Typical sorting  

problems assume that S is given in an array or in a sequential file (magnetic tape), and the result is to be generated  

in the same structure. We characterize elements by their position in the structure (e.g. A[i] in the array A or by the 
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value of a pointer in a sequential file). The access operations provided by the underlying data structure determine  

what sorting algorithms are possible.

Algorithms

Most sorting algorithms are refinements of the following idea:

while ∃(i, j):  i < j  ∧  A[i] > A[j]  do  A[i] :=: A[j];

where :=: denotes the exchange operator. Even sorting algorithms that do not explicitly exchange pairs of elements,  

or do not use an array as the underlying data structure, can usually be thought of as conforming to the schema 

above. An insertion sort, for example, takes one element at a time and inserts it in its proper place among those 

already sorted.  To find the correct place of insertion, we can think of a ripple effect whereby the new element 

successively displaces (exchanges position with) all those larger than itself.

As the schema above shows, two types of operations are needed in order to sort:

• collecting information about the order of the given elements

• ordering the elements (e.g. by exchanging a pair)

When designing an efficient algorithm we seek to economize the number of operations of both types: We try to  

avoid  collecting  redundant  information,  and  we  hope  to  move  an  element  as  few  times  as  possible.  The  

nondeterministic  algorithm  given  above  lets  us  perform  any  one  of  a  number  of  exchanges  at  a  given  time,  

regardless of their usefulness. For example, in sorting the sequence

x1 = 5, x2 = 2, x3 = 3, x4 = 4, x5 = 1

the nondeterministic algorithm permits any of seven exchanges

x1 :=: xi for 2 ≤ i ≤ 5  and  xj :=: x5 for 2 ≤ j ≤ 4.

We might have reached the state shown above by following an exotic sorting technique that sorts "from the 

middle toward both ends", and we might know at this time that the single exchange x 1 :=: x5 will complete the sort. 

The nondeterministic algorithm gives us no handle to express and use this knowledge.

The attempt to economize work forces us to depart from nondeterminacy and to impose a control structure that 

carefully sequences the operations to be performed so as to make maximal use of the information gained so far. The 

resulting algorithms will  be more complex  and difficult  to understand.  It  is  useful  to remember,  though,  that  

sorting is basically a simple problem with a simple solution and that all the acrobatics in this chapter are due to our  

quest for efficiency.

Intrinsic complexity

There are obvious limits to how much we can economize. In the absence of any previously acquired information,  

it is clear that each element must be inspected and, in general, moved at least once. Thus we cannot hope to get  

away with fewer than Ω(n) primitive operations. There are less obvious limits, we mention two of them here.

1. If  information is  collected  by asking binary questions only (any question that  may receive one of two  

answers (e.g. a yes/no question, or a comparison of two elements that yields either ≤ or >), then at least n · 

log2 n questions are necessary in general, as will be proved in the section "A lower bound Ωn · logn". Thus in 

this model of computation, sorting requires time Θ(n · log n).

2. In addition to collecting information, one must rearrange the elements. In the section "Permutation" in 

chapter 16,  we have shown that  in a permutation the average distance of an element from its  correct  
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position is approximately n/3. Therefore elements have to move an average distance of approximately n/3 

elements to end up at their destination.  Depending on the access operations of the underlying storage 

structure, an element can be moved to its correct position in a single step of average length n/3, or in n/3  

steps of average length 1. If elements are rearranged by exchanging adjacent elements only, then on average 

Θ(n2) moving operations are required. Therefore, short steps are insufficient to obtain an efficient Θ(n · log 

n) sorting algorithm.

Practical aspects of sorting

Records instead of elements. We discuss sorting assuming only that the elements to be sorted are drawn 

from a totally ordered domain. In practice these elements are just the keys of records that contain additional data  

associated with the key: for example,

type recordtype = record
key: keytype;  { totally ordered by ≤ }
data: anytype

end;

We use the relational operators =, <, ≤ to compare keys, but in a given programming language, say Pascal, these 

may be undefined on values of type keytype. In general, they must be replaced by procedures: for example, when 

comparing strings with respect to the lexicographic order.

If the key field is only a small part of a large record, the exchange operation :=:, interpreted literally, becomes an 

unnecessarily costly copy operation. This can be avoided by leaving the record (or just its data field) in place, and 

only moving a small surrogate record consisting of a key and a pointer to its associated record.

Sort generators. On many systems, particularly in the world of commercial data processing, you may never 

need to write a sorting program, even though sorting is a frequently executed operation. Sorting is taken care of by  

a sort generator, a program akin to a compiler; it selects a suitable sorting algorithm from its repertoire and tailors 

it to the problem at hand, depending on parameters such as the number of elements to be sorted, the resources  

available, the key type, or the length of the records.

Partially sorted sequences. The algorithms we discuss ignore any order that may exist in the sequence to be 

sorted. Many applications call for sorting files that are almost sorted, for example, the case where a sorted master 

file is updated with an unsorted transaction file. Some algorithms take advantage of any order present in the input 

data; their time complexity varies from O(n) for almost sorted files to O(n · log n) for randomly ordered files.

Types of sorting algorithms

Two important classes of incremental sorting algorithms create order by processing each element in turn and 

placing  it  in  its  correct  position.  These  classes,  insertion  sorts and  selection  sorts,  are  best  understood  as 

maintaining two disjoint, mutually exhaustive structures called 'sorted' and 'unsorted'.

Initialize: 'sorted' := Ø;  'unsorted' := {x1, x2, … , xn};

Loop: for i := 1 to n do
move an element from 'unsorted' to its correct place in 

'sorted';

The following illustrations show 'sorted'  and 'unsorted'  sharing  an  array[1  ..  n].  In  this  case  the boundary 

between 'sorted' and 'unsorted' is represented by an index i that increases as more elements become ordered. The  

important distinction between the two types of sorting algorithms emerges from the question: In which of the two  
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structures  is  most  of  the work done?  Insertion  sorts  remove  the first  or  most  easily  accessible  element  from 

'unsorted' and search through 'sorted' to find its proper place. Selection sorts search through 'unsorted' to find the  

next element to be appended to 'sorted'.

Insertion sort

The i-th step inserts the i-th element into the sorted sequence of the first (i – 1) elements Exhibit 17.1).

Exhibit 17.1: Insertion sorts move an easily accessed element to its correct place.

Selection sort

The i-th step selects the smallest among the n – i + 1 elements not yet sorted, and moves it to the i-th position 

(Exhibit 17.2).

Exhibit 17.2: Selection sorts search for the correct element to move to an easily accessed place. 

Insertion and selection sorts repeatedly search through a large part of the entire data to find the proper place of  

insertion  or  the  proper  element  to  be  moved.  Efficient  search  requires  random  access,  hence  these  sorting 

techniques are used primarily for internal sorting in central memory.

Merge sort

Merge sorts process (sub)sequences of elements in unidirectional order and thus are well suited for  external 

sorting on secondary storage media that provide sequential access only, such as magnetic tapes; or random access 

to large blocks of data, such as disks. Merge sorts are also efficient for internal sorting. The basic idea is to merge  

two sorted sequences of elements, called runs, into one longer sorted sequence. We read each of the input runs, and 

write the output run, starting with small elements and ending with the large ones. We keep comparing the smallest  

of the remaining elements on each input run, and append the smaller of the two to the output run, until both input 

runs are exhausted (Exhibit 17.3).
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Exhibit 17.3: Merge sorts exploit order already present.

The processor shown at left in  Exhibit 17.4 reads two tapes, A and B. Tape A contains runs 1 and 2; tape B 

contains runs 3 and 4. The processor merges runs 1 and 3 into the single run 1 & 3 on tape C, and runs 2 and 4 into 

the single run 2 & 4 on tape D. In a second merge step, the processor shown at the right reads tapes C and D and  

merges the two runs 1 & 3 and 2 & 4 into one run, 1  &  3  &  2  & 4.

Exhibit 17.4: Two merge steps in sequence.

Distribution sort

Distribution  sorts  process  the  representation of  an  element  as  a  value in  a  radix  number  system and use 

primitive arithmetic operations such as "extract the k-th digit". These sorts do not compare elements directly. They  

introduce  a  different  model  of  computation  than  the  sorts  based  on  comparisons,  exchanges,  insertions,  and 

deletions that we have considered thus far. As an example, consider numbers with at most three digits in radix 4  

representation. In a first step these numbers are distributed among four queues according to their least significant  

digit, and the queues are concatenated in increasing order. The process is repeated for the middle digit, and finally 

for the leftmost, most significant digit, as shown in Exhibit 17.5
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Exhibit 17.5 Distribution sorts use the radix representation of keys to organize elements in buckets

We have now seen the basic ideas on which all sorting algorithms are built. It is more important to understand  

these ideas than to know dozens of algorithms based on them. To appreciate the intricacy of sorting, you must 

understand some algorithms in detail: we begin with simple ones that turn out to be inefficient.

Simple sorting algorithms that work in time Θ(n2)

If you invent your own sorting technique without prior study of the literature, you will probably "discover" a 

well-known inefficient algorithm that works in time O(n2), requires time Θ(n2) in the worst case, and thus is of time 

complexity Ω(n2). Your algorithm might be similar to one described below.

Consider in-place algorithms that work on an array declared as

var  A: array[1 .. n] of elt;

and place the elements in ascending order. Assume that the comparison operators are defined on values of type elt. 

Let cbest, caverage, and cworst denote the number of comparisons, and ebest, eaverage, and eworst the number of exchange

operations performed in the best, average, and worst case, respectively. Let invaverage denote the average number of 

inversions in a permutation.

Insertion sort (Exhibit 17.6)

Let –∞ denote a constant ≤ any key value. The smallest value in the domain often serves as a sentinel –∞.
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Exhibit 17.6: Straight insertion propagates a ripple-effect across the sorted part of the array.

A[0] := –∞;
for i := 2 to n do  begin

j := i;
while  A[j] < A[j – 1]  do  { A[j] :=: A[j – 1]; { exchange } 

j := j – 1 }
end;

This straight insertion sort is an Θ(n) algorithm in the best case and an Θ(n2) algorithm in the average and worst 

cases. In the program above, the point of insertion is found by a linear search interleaved with exchanges. A binary  

search is  possible  but  does not  improve the time complexity  in  the average and worst  cases,  since the actual  

insertion still requires a linear-time ripple of exchanges.

Selection sort (Exhibit 17.7)

Exhibit 17.7: Straight selection scans the unsorted part of the array.

for i := 1 to n – 1 do  begin
minindex := i;  minkey := A[i];
for j := i + 1 to n do

if  A[j] < minkey  then  { minkey := A[j];  minindex := j }
A[i] :=: A[minindex]  { exchange }

end;
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The sum in the formula for the number of comparisons reflects the structure of the two nested for loops. The  

body of the inner loop is executed the same number of times for each of the three cases. Thus this straight selection 

sort is of time complexity Θ(n2).

A lower bound Ω(n · log n)

A straightforward counting argument yields a lower bound on the time complexity of any sorting algorithm that  

collects information about the ordering of the elements by asking only binary questions. A binary question has a 

two-valued answer: yes or no, true or false. A comparison of two elements, x ≤ y, is the most obvious example, but  

the following theorem holds for binary questions in general.

Theorem:  Any sorting algorithm that collects information by asking binary questions only executes at least 

binary questions both in the worst case, and averaged over all n! permutations. Thus the average and worst-case 

time complexity of such an algorithm is Ω(n · log n).

Proof: A sorting algorithm of the type considered here can be represented by a  binary decision tree.  Each 

internal node in such a tree represents a binary question, and each leaf corresponds to a result of the decision 

process. The decision tree must distinguish each of the n! possible permutations of the input data from all the  

others; and thus must have at least n! leaves, one for each permutation.

Example: The decision tree shown in Exhibit 17.8 collects the information necessary to sort three elements, x, y 

and z, by comparisons between two elements.

Exhibit 17.8 The decision tree shows the possible n! Outcomes when sorting n elements.
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The average number of binary questions needed by a sorting algorithm is equal to the average depth of the  

leaves of this decision tree. The lemma following this theorem will show that in a binary tree with k leaves the 

average depth of the leaves is at least log2k. Therefore, the average depth of the leaves corresponding to the n! 

permutations is at least log2n!. Since 

it follows that on average at least 

n∗log
2
n1−

n

ln2

binary questions are needed, that is, the time complexity of each such sorting algorithm is  Ω(n · log n) in the 

average, and therefore also in the worst case.

Lemma: In a binary tree with k leaves the average depth of the leaves is at least log2k.

Proof: Suppose that the lemma is not true, and let T be the counterexample with the smallest number of nodes. 

T cannot consist of a single node because the lemma is true for such a tree. If the root r of T has only one child, the  

subtree T' rooted at this child would contain the k leaves of T that have an even smaller average depth in T' than in  

T. Since T was the counterexample with the smallest number of nodes, such a T' cannot exist. Therefore, the root r  

of T must have two children, and there must be kL > 0 leaves in the left subtree and kR > 0 leaves in the right subtree 

of r (kL + kR = k). Since T was chosen minimal, the kL leaves in the left subtree must have an average depth of at least 

log2 kL, and the kR leaves in the right subtree must have an average depth of at least log2 kR. Therefore, the average 

depth of all k leaves in T must be at least 

It is easy to see that (∗) assumes its minimum value if kL = kR. Since (∗) has the value log2 k if kL = kR = k / 2 we have 

found a contradiction to our assumption that the lemma is false.

Quicksort

Quicksort  (C.  A.  R.  Hoare,  1962)  [Hoa  62]  combines  the  powerful  algorithmic  principle  of  divide-and-

conquer  with an efficient way of moving elements using few exchanges. The divide phase partitions the array into 

two disjoint parts: the "small" elements on the left and the "large" elements on the right. The conquer phase sorts 

each part separately. Thanks to the work of the divide phase, the merge phase requires no work at all to combine 

two partial solutions. Quicksort's efficiency depends crucially on the expectation that the divide phase cuts two  

sizable subarrays rather than merely slicing off an element at either end of the array (Exhibit 17.9).
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Exhibit 17.9: Quicksort partitions the array into the "small" elements on the left and the "large" elements 

on the right.

We chose an arbitrary threshold value m to define "small" as ≤ m, and "large" as ≥ m, thus ensuring that any 

"small element" ≤ any "large element". We partition an arbitrary subarray A[L .. R] to be sorted by executing a left-

to-right scan (incrementing an index i) "concurrently" with a right-to-left scan (decrementing j) (Exhibit 17.10). The 

left-to-right scan pauses at the first element A[i] ≥ m, and the right-to-left scan pauses at the first element A[j] ≤ m. 

When both scans have paused, we exchange A[i] and A[j] and resume the scans. The partition is complete when the 

two scans have crossed over with j < i. Thereafter, quicksort is called recursively for A[L .. j] and A[i .. R], unless one  

or both of these subarrays consists of a single element and thus is trivially sorted. Example of partitioning (m = 16):

 25 23 3 16 4 7 29 6
 i j
 6 23 3 16 4 7 29 25

 i j
 6 7 3 16 4 23 29 25

 i j
 6 7 3 4 16 23 29 25

j  i

Exhibit 17.10: Scanning the array concurrently from left to right and from right to left.

Although the threshold value m appeared arbitrary in the description above, it must meet criteria of correctness 

and efficiency. Correctness: if either the set of elements ≤ m or the set of elements ≥ m is empty, quicksort fails to 

terminate. Thus we require that min(xi) ≤ m ≤ max(xi). Efficiency requires that m be close to the median.

How do we find the median of n elements? The obvious answer is to sort the elements and pick the middle one,  

but  this  leads  to  a  chicken-and-egg  problem  when  trying  to  sort  in  the  first  place.  There  exist  sophisticated 

algorithms  that  determine  the  exact  median  of  n  elements  in  time  O(n)  in  the  worst  case  [BFPRT  72].  The  

multiplicative constant might be large, but from a theoretical point of view this does not matter. The elements are  

partitioned into two equal-sized halves, and quicksort runs in time O(n · log n) even in the worst case. From a 

practical point of view, however, it is not worthwhile to spend much effort in finding the exact median when there 

are much cheaper ways of finding an acceptable approximation. The following techniques have all been used to pick  

a threshold m as a "guess at the median":

• An array element in a fixed position such as A[(L + R) div 2]. Warning: stay away from either end, A[L] or 

A[R], as these thresholds lead to poor performance if the elements are partially sorted.

• An array element in a random position: a simple technique that yields good results.

• The median of three or five array elements in fixed or random positions.
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• The average between the smallest and largest element. This requires a separate scan of the entire array in  

the beginning; thereafter, the average for each subarray can be calculated during the previous partitioning  

process.

The recursive procedure 'rqs' is a possible implementation of quicksort. The function 'guessmedian' must yield a 

threshold that lies on or between the smallest and largest of the elements to be sorted. If an array element is used as 

the threshold, the procedure 'rqs' should be changed in such a way that after finishing the partitioning process this 

element is in its final position between the left and right parts of the array.

procedure rqs (L, R: 1 .. n);  { sorts A[L], … , A[R] }
var  i, j: 0 .. n + 1;

procedure partition;
var  m: elt;
begin  { partition }

m := guessmedian (L, R);
{ min(A[L], … , A[R]) ≤ m ≤ max(A[L], … , A[R]) }
i := L;  j := R;
repeat

{ A[L], … , A[i – 1] ≤ m ≤ A[j + 1], … , A[R] }
while  A[i] < m  do  i := i + 1;
{ A[L], … , A[i – 1] ≤ m ≤ A[i] }
while  m < A[j]  do  j := j – 1;
{ A[j] ≤ m ≤ A[j + 1], … , A[R] }
if  i ≤ j  then  begin

A[i] :=: A[j];  { exchange }
{ i ≤ j ⇒ A[i] ≤ m ≤ A[j] }
i := i + 1;  j := j – 1
{ A[L], … , A[i – 1] ≤ m ≤ A[j + 1], … , A[R] }

end
else

{ i > j ⇒ i = j + 1 ⇒ exit }
end

until  i > j
end;  { partition }

begin  { rqs }
partition;
if L < j then  rqs(L, j);
if i < R then  rqs(i, R)

end;  { rqs }

An initial call 'rqs(1, n)' with n > 1 guarantees that L < R holds for each recursive call.

An iterative implementation of quicksort is given by the following procedure, 'iqs', which sorts the whole array  

A[1 .. n]. The boundaries of the subarrays to be sorted are maintained on a stack.

procedure iqs;
const  stacklength = … ;
type  stackelement = record  L, R: 1 .. n  end;
var i, j, L, R, s: 0 .. n;

stack: array[1 .. stacklength] of stackelement;

procedure partition;  { same as in rqs }
end;  { partition }

begin  { iqs }
s := 1;  stack[1].L := 1;  stack[1].R := n;
repeat

L := stack[s].L;  R := stack[s].R;  s := s – 1;
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repeat
partition;
if  j – L < R – i  then  begin

if  i <  R then  { s := s + 1;  stack[s].L := i; 
stack[s].R := R };

R := j
end
else  begin

if  L < j  then  { s := s + 1;  stack[s].L := L; 
stack[s].R := j };

L := i
end

until  L ≥ R
until  s = 0

end;  { iqs }

After partitioning, 'iqs' pushes the bounds of the larger part onto the stack, thus making sure that part will be  

sorted later, and sorts the smaller part first. Thus the length of the stack is bounded by log2n.

For very small  arrays,  the overhead of  managing a  stack  makes quicksort  less efficient  than simpler  O(n 2) 

algorithms, such as an insertion sort. A practically efficient implementation of quicksort might switch to another  

sorting technique for subarrays of size up to 10 or 20. [Sed 78] is a comprehensive discussion of how to optimize  

quicksort.

Analysis for three cases: best, "typical", and worst

Consider a quicksort algorithm that chooses a guessed median that differs from any of the elements to be sorted  

and thus partitions the array into two parts, one with k elements, the other with n – k elements. The work q(n)  

required to sort n elements satisfies the recurrence relation

The constant b measures the cost of calling quicksort for the array to be sorted. The term a · n covers the cost of 

partitioning, and the terms q(k) and q(n – k) correspond to the work involved in quicksorting the two subarrays.  

Most quicksort algorithms partition the array into three parts: the "small" left part, the single array element used to  

guess the median, and the "large" right part. Their work is expressed by the equation

We analyze  equation  (*);  it  is  close  enough to  the second equation to have the same asymptotic  solution. 

Quicksort's behavior in the best and worst cases are easy to analyze, but the average over all permutations is not.  

Therefore, we analyze another average which we call the typical case.

Quicksort's  best-case behavior is  obtained if  we guess the correct median that partitions the array into two 

equal-sized  subarrays.  For  simplicity's  sake the following calculation assumes that  n is  a power  of  2,  but this 

assumption does not affect the solution. Then (*) can be rewritten as

We use this recurrence equation to calculate
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and substitute on the right-hand side to obtain 

Repeated substitution yields

The constant q(1), which measures quicksort's work on a trivially sorted array of length 1, and b, the cost of a  

single procedure call, do not affect the dominant term n · log2n. The constant factor a in the dominant term can be 

estimated by analyzing the code of the procedure 'partition'. When these details do not matter,  we summarize:  

Quicksort's time complexity in the best case is Θ(n · log n).

Quicksort's  worst-case  behavior occurs when one of the two subarrays consists of a single element after each 

partitioning. In this case equation (∗) becomes

We use this recurrence equation to calculate 

and substitute on the right-hand side to obtain 

Repeated substitution yields 

Therefore the time complexity of quicksort in the worst case is Θ(n2).

For the analysis of quicksort's typical behavior we make the plausible assumption that the array is equally likely 

to get partitioned between any two of its elements: For all k, 1 ≤ k < n, the probability that the array A is partitioned  

into the subarrays A[1 .. k] and A[k + 1 .. n] is 1 / (n – 1). Then the average work to be performed by quicksort is 

expressed by the recurrence relation
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This recurrence relation approximates the recurrence relation discussed in chapter 16 well enough to have the 

same solution

Since ln 4 ≈ 1.386, quicksort's asymptotic behavior in the typical case is only about 40% worse than in the best 

case, and remains in Θ(n · log n). [Sed 77] is a thorough analysis of quicksort.

Merging and merge sorts

The internal sorting algorithms presented so far require direct access to each element. This is reflected in our 

analyses by treating an array access A[i], or each exchange A[i] :=: A[j], as a primitive operation whose cost is  

constant (independent of n). This assumption is not valid for elements stored on secondary storage devices such as  

magnetic tapes or disks. A better assumption that mirrors the realities of external sorting is that the elements to be 

sorted are stored as a sequential file f. The file is accessed through a file pointer which, at any given time, provides  

direct access to a single element. Accessing other elements requires repositioning of the file pointer. Sequential files 

may permit the pointer to advance in one direction only, as in the case of Pascal files, or to move backward and  

forward.  In  either  case,  our  theoretical  model  assumes that  the time required  for  repositioning the pointer  is  

proportional  to  the  distance  traveled.  This  assumption  obviously  favors  algorithms  that  process  (compare, 

exchange) pairs of adjacent elements, and penalizes algorithms such as quicksort that access elements in random 

positions.

The following external sorting algorithm is  based on the merge sort principle.  To make optimal  use of  the  

available main memory, the algorithm first creates initial runs; a run is a sorted subsequence of elements fi, fi+1, … , 

fj stored consecutively in file f, fk ≤ fk+1 for all k with i ≤ k ≤ j – 1. Assume that a buffer of capacity m elements is 

available in main memory to create initial runs of length m (perhaps less for the last run). In processing the r-th 

run, r = 0, 1, … , we read the m elements fr·m+1, fr·m+2, … , fr·m+m into memory, sort them internally, and write the sorted 

sequence to a modified file f, which may or may not reside in the same physical storage area as the original file f.  

This new file f is partially sorted into runs: fk ≤ fk+1 for all k with r · m + 1 ≤ k < r · m + m.

At this point we need two files, g and h, in addition to the file f, which contai ns the initial runs. In a copy phase 

we distribute the initial runs by copying half of them to g, the other half to h. In the subsequent merge phase each 

run of g is merged with exactly one run of h, and the resulting new run of double length is written onto f ( Exhibit 

17.11). After the first cycle, consisting of a copy phase followed by a merge phase, f contains half as many runs as it  

did before. After log2(n / m) cycles f contains one single run, which is the sorted sequence of all elements.
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Exhibit 17.11: Each copy-merge cycle halves the number of runs and doubles their lengths. 

Exercise: a merge sort in main memory

Consider the following procedure that sorts the array A:

const  n = … ;
var  A: array[1 .. n] of integer;
…

procedure sort (L, R: 1 .. n);
var  m: 1 .. n;

procedure combine;
var B: array [1 .. n] of integer;

i, j, k: 1 .. n;
begin  { combine }

i := L;  j := m + 1;
for k := L to R do

if  (i > m) cor ((j ≤ R) cand (A[j] < A[i]))  then
{ B[k] := A[j];  j := j + 1 }

else
{ B[k] := A[i];  i := i + 1 } ;

for k := L to R do  A[k] := B[k]
end;  { combine }

begin  { sort}
if  L < R  then

{ m := (L + R) div 2;  sort(L, m);  sort(m + 1, R);  combine }
end;  { sort }

The relational operators 'cand' and 'cor' are conditional! The procedure is initially called by

sort(1,n); 

(a) Draw a picture to show how 'sort' works on an array of eight elements.

(b) Write down a recurrence relation to describe the work done in sorting n elements.

(c) Determine the asymptotic time complexity by solving this recurrence relation.

(d) Assume that 'sort' is called for m subarrays of equal size, not just for two. How does the asymptotic time  

complexity change?

Solution

(a) 'sort' depends on the algorithmic principle of divide and conquer. After dividing an array into a left and a 

right subarray whose numbers of elements differ by at most one, 'sort' calls itself recursively on these two  

subarrays. After these two calls are finished, the procedure 'combine'  merges the two sorted subarrays 

A[L .. m] and A[m + 1 .. R] together in B. Finally, B is copied to A. An example is shown in Exhibit 17.12.

Algorithms and Data Structures 172  A Global Text

http://creativecommons.org/licenses/by/3.0/


17. Sorting and its complexity

Exhibit 17.12: Sorting an array by using a divide-and-conquer scheme.

(b) The work w(n) performed while sorting n elements satisfies

The first term describes the cost of the two recursive calls of 'sort', the term a · n is the cost of merging the  

two sorted subarrays, and the constant b is the cost of calling 'sort' for the array.

(c) If

is substituted in (*∗), we obtain 

Continuing this substitution process results in 
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since w(1) is constant the time complexity of 'sort' is Θ(n · log n).

(d) If 'sort' is called recursively for m subarrays of equal size, the cost w'(n) is

solving this recursive equation shows that the time complexity does not change [i.e. it is Θ(n · log n)].

Is it possible to sort in linear time?

The lower bound Ω(n · log n) has been derived for sorting algorithms that gather information about the ordering 

of the elements by binary questions and nothing else. This lower bound need not apply in other situations.

Example 1: sorting a permutation of the integers from 1 to n

If we know that the elements to be sorted are a permutation of the integers 1 .. n, it is possible to sort in time 

Θ(n) by storing element i in the array element with index i.

Example 2: sorting elements from a finite domain

Assume that the elements to be sorted are samples from a finite domain W = 1 .. w. Then it is possible to sort in  

time Θ(n) if gaps between the elements are allowed (Exhibit 17.13). The gaps can be closed in time Θ(w).

Exhibit 17.13: Sorting elements from a finite domain in linear time.

Do these examples contradict the lower bound  Ω(n  · log n)? No, because in these examples the information 

about the ordering of elements is obtained by asking questions more powerful than binary questions: namely, n-

valued questions in Example 1 and w-valued questions in Example 2.

A  k-valued  question  is  equivalent  to  log2k  binary  questions.  When  this  "exchange  rate"  is  taken  into 

consideration, the theoretical time complexities of the two sorting techniques above are Θ(n · log n) and Θ(n · log 

w), respectively, thus conforming to the lower bound in the section "A lower bound Ω(n · log n)".

Sorting algorithms that sort in linear time (expected linear time, but not in the worst case) are described in the  

literature under the terms bucket sort, distribution sort, and radix sort.

Sorting networks

The sorting algorithms above are designed to run on a sequential machine in which all operations, such as  

comparisons and exchanges, are performed one at a time with a single processor. If algorithms are to be efficient,  

they need to be rethought when the ground rules for their execution change: when the theoretician uses another 

model of computation, or when they are executed on a computer with a different architecture. This is particularly 

true of the many different types of multiprocessor architectures that have been built or conceived. When many  

processors  are  available  to share the workload,  questions  of  how to distribute  the work among them, how to 

synchronize their operation, and how to transport data, prevail. It is not our intention to discuss sorting on general-

purpose parallel machines. We wish to illustrate the point that algorithms must be redesigned when the model of  
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computation changes. For this purpose a discussion of special-purpose sorting networks suffices. The "processors"  

in a sorting network are merely comparators: Their only function is to compare the values on two input wires and 

switch them onto two output wires such that the smaller is on top, the larger at the bottom (Exhibit 17.14).

Exhibit 17.14: Building block of sorting networks.

Comparators are arranged into a network in which n wires enter at the left and n wires exit at the right, as  

Exhibit 17.15 shows, where each vertical connection joining a pair of wires represents a comparator. The illustration  

also shows what happens to four input elements, chosen to be 4, 1, 3, 2 in this example, as they travel from left to  

right through the network.

Exhibit 17.15: A comparator network that fails to sort. The output of each 

comparator performing an exchange is shown in the ovals.

A network of  comparators  is  a  sorting network if  it  sorts every  input configuration.  We consider an input 

configuration to consist of distinct elements, so that without loss of generality we may regard it as one of the n!  

permutations of the sequence (1,  2,  … ,  n). A network that sorts a duplicate-free configuration will  also sort a  

configuration containing duplicates.

The comparator network above correctly sorts many of  its  4!  = 24 input configurations,  but it  fails  on the  

sequence (4, 1, 3, 2). Hence it is not a sorting network. It is evident that a network with a sufficient number of  

comparators in the right places will sort correctly, but as the example above shows, it is not immediately evident 

what  number suffices or  how the comparators should be placed.  The network in  Exhibit  17.16 shows that five 

comparators, arranged judiciously, suffice to sort four elements.

Exhibit 17.16: Five comparators suffice to sort four elements.

How can we tell if a given network sorts successfully? Exhaustive testing is feasible for small networks such as 

the one above, where we can trace the flow of all 4! = 24 input configurations. Networks with a regular structure 
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usually admit a simpler correctness proof. For this example, we observe that c1, c2, and c3 place the smallest element 

on the top wire. Similarly, c1, c2, and c4 place the largest on the bottom wire. This leaves the middle two elements on 

the middle two wires, which c5 then puts into place.

What  design  principles  might  lead  us  to  create  large  sorting  networks  guaranteed  to  be  correct?  Sorting  

algorithms  designed  for  a  sequential  machine  cannot,  in  general,  be  mapped  directly  into  network  notation, 

because the network is a more restricted model of computation: Whereas most sequential sorting algorithms make 

comparisons based on the outcome of previous comparisons, a sorting network makes the same comparisons for all 

input  configurations.  The  same  fundamental  algorithm  design  principles  useful  when  designing  sequential  

algorithms also apply to parallel algorithms.

Divide-and-conquer. Place two sorting networks for n wires next to each other, and combine them into a sorting 

network for 2 · n wires by appending a merge network to merge their outputs. In sequential computation merging 

is simple because we can choose the most useful comparison depending on the outcome of previous comparisons.  

The rigid structure of comparator networks makes merging networks harder to design.

Incremental algorithm.We place an n-th wire next to a sorting network with n – 1 wires, and either precede or 

follow the network by a "ladder" of comparators that tie the extra wire into the existing network, as shown in the  

following figures. This leads to designs that mirror the straight insertion and selection algorithms  in the section 

"Simple sorting algorithms that work in time Θ(n2)

Insertion sort. With the top n – 1 elements sorted, the element on the bottom wire trickles into its correct place.  

Induction yields the expanded diagram on the right in Exhibit 17.17.

Exhibit 17.17: Insertion sort leads by induction to the sorting network on the right.

Selection sort. The maximum element first trickles down to the bottom, then the remaining elements are sorted. 

The expanded diagram is on the right in Exhibit 17.18.

Exhibit 17.18: Selection sort leads by induction to the sorting network on the right.

Comparators can be shifted along their pair of wires so as to reduce the number of stages, provided that the  

topology of the network remains unchanged. This compression reduces both insertion and selection sort to the  

triangular network shown in  Exhibit 17.19. Thus we see that the distinction between insertion and selection was 

more a distinction of sequential order of operations rather than one of data flow.
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Exhibit 17.19: Shifting comparators reduces the number of stages.

Any number of  comparators  that  are  aligned vertically require  only  a  single  unit  of  time.  The compressed 

triangular network has O(n2) comparators, but its time complexity is 2 · n – 1  ∈ O(n). There are networks with 

better asymptotic behavior, but they are rather exotic [Knu 73b].

Exercises and programming projects

1. Implement insertion sort, selection sort, merge sort, and quicksort and animate the sorting process for each  

of  these  algorithms:  for  example,  as  shown in  the  snapshots  in  “Algorithm animation”.  Compare  the 

number  of  comparisons  and  exchange  operations  needed  by  the  algorithms  for  different  input 

configurations.

2. What is the smallest possible depth of a leaf in a decision tree for a sorting algorithm?

3. Show that 2 · n – 1 comparisons are necessary in the worst case to merge two sorted arrays containing n  

elements each.

4. The most obvious method of systematically interchanging the out-of-order pairs of elements in an array

var  A: array[1 .. n] of elt;

is to scan adjacent pairs of elements from bottom to top (imagine that the array is drawn vertically, with 

A[1] at the top and A[n] at the bottom) repeatedly, interchanging those found out of order:

for  i := 1  to  n – 1  do
 for  j := n  downto  i + 1  do

if  A[j – 1] > A[j]  then  A[j – 1] :=: A[j];

This technique is known as bubble sort, since smaller elements "bubble up" to the top.

(a) Explain by words,  figures,  and an example how bubble sort works.  Show that this  algorithm sorts 

correctly.

(b) Determine the exact number of comparisons and exchange operations that are performed by bubble 

sort in the best, average, and worst case.

(c) What is the worst-case time complexity of this algorithm?

5. A sorting algorithm is called stable if it preserves the original order of equal elements. Which of the sorting 

algorithms discussed in this chapter is stable?

6. Assume that quicksort chooses the threshold m as the first element of the sequence to be sorted. Show that 

the running time of such a quicksort algorithm is Θ(n2) when the input array is sorted in nonincreasing or 

nondecreasing order.

7. Find a worst-case input configuration for a quicksort algorithm that chooses the threshold m as the median 

of the first, middle, and last elements of the sequence to be sorted.

8. Array A contains m and array B contains n different integers which are not necessarily ordered:

const m = … ;  { length of array A }
n = … ;  { length of array B }

var A: array[1 .. m] of integer;
B: array[1 .. n] of integer;
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A duplicate is an integer that is contained in both A and B. Problem: How many duplicates are there in A 

and B?

(a) Determine the time complexity of the brute-force algorithm that compares each integer contained in 

one array to all integers in the other array.

(b) Write a more efficient

function duplicates: integer;

Your solution may rearrange the integers in the arrays.

(c) What is the worst-case time complexity of your improved algorithm?
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Part V: Data structures
The tools of bookkeeping

When thinking of algorithms we emphasize a dynamic sequence of actions: "Take this and do that, then that,  

then  …  ."  In  human  experience,  "take"  is  usually  a  straightforward  operation,  whereas  "do"  means  work.  In 

programming, on the other hand, there are lots of interesting examples where "do" is nothing more complex than 

incrementing a counter or setting a bit; but "take" triggers a long, sophisticated search. Why do we need fancy data  

structures at all? Why can't we just spread out the data on a desk top? Everyday experience does not prepare us to  

appreciate the importance of data structure—it takes programming experience to see that algorithms are nothing  

without data structures. The algorithms presented so far were carefully chosen to require only the simplest of data 

structures:  static  arrays.  The  geometric  algorithms  of  Part  VI,  on  the  other  hand,  and  lots  of  other  useful  

algorithms, depend on sophisticated data structures for their efficiency.

The key insight in understanding data structures is the recognition that an algorithm in execution is, at all times, 

in some state, chosen from a potentially huge state space. The state records such vital information as what steps 

have already been taken with what results, and what remains to be done. Data structures are the bookkeepers that 

record all this state information in a tidy manner so that any part can be accessed and updated efficiently. The 

remarkable fact is that there are a relatively small number of standard data structures that turn out to be useful in 

the most varied types of algorithms and problems, and constitute essential knowledge for any programmer.

The literature on data structures. Whereas one can present some algorithms without emphasizing data 

structures,  as  we  did  in  Part  III,  it  appears  pointless  to  discuss  data  structures  without  some  of  the  typical  

algorithms that  use  them;  at  the  very  least,  access  and update  algorithms form a  necessary  part  of  any  data 

structure. Accordingly, a new data structure is typically published in the context of a particular new algorithm. Only 

later,  as one notices its general applicability,  it  may find its  way into textbooks.  The data structures that have  

become standard today can be found in many books, such as [AHU 83], [CLR 90], [GB 91], [HS 82], [Knu 73a],  

[Knu 73b], [Meh 84a], [Meh 84c], [RND 77], [Sam 90a], [Sam 90b], [Tar 83], and [Wir 86].
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18. What is a data structure?
Learning objectives:

• data structures for manual use (e.g. edge-notched cards)

• general-purpose data structures

• abstract data types specify functional properties only

• data structures include access and maintenance algorithms and their implementation

• performance criteria and measures

• asymptotics

Data structures old and new

The discipline of data structures, as a systematic body of knowledge, is truly a creation of computer science. The  

question of how best to organize data was a lot simpler to answer in the days before the existence of computers: the 

organization had to be simple, because there was no automatic device that could have processed an elaborate data 

structure, and there is no human being with enough patience to do it. Consider two examples.

1. Manual  files  and catalogs,  as  used  in  business  offices  and libraries,  exhibit  several  distinct  organizing 

principles,  such as  sequential  and hierarchical  order and cross-references. From today's  point  of  view, 

however, manual files are not well-defined data structures. For good reasons, people did not rigorously  

define those aspects that we consider essential when characterizing a data structure: what constraints are 

imposed on  the data,  both  on the structure and its  content;  what  operations the data  structure must  

support;  what  constraints  these  operations  must  satisfy.  As  a  consequence,  searching  and  updating  a 

manual file is not typically a process that can be automated: It requires common sense, and perhaps even 

expert training, as is the case for a library catalog.

2. In manual computing (with pencil and paper or a nonprogrammable calculator) the algorithm is the focus 

of attention, not the data structure. Most frequently, the person computing writes data (input, intermediate 

results, output) in any convenient place within his field of vision, hoping to find them again when he needs 

them. Occasionally, to facilitate highly repetitive computations (such as income tax declarations), someone 

designs a form to prompt the user, one operation at a time, to write each data item into a specific field. Such  

a form specifies both an algorithm and a data structure with considerable  formality.  Compared to the  

general-purpose data structures we study in this chapter, however, such forms are highly special purpose.

Edge-notched cards are perhaps the most sophisticated data structures ever designed for manual use. Let us 

illustrate them with the example of a database of English words organized so as to help in solving crossword  

puzzles. We write one word per card and index it according to which vowels it contains and which ones it does not 

contain. Across the top row of the card we punch 10 holes labeled A, E, I, O, U, ~A, ~E, ~I, ~O, ~U. When a word,  

say ABACA, exhibits a given vowel, such as A, we cut a notch above the hole for A; when it does not, such as E, we  

cut a notch above the hole for ~E (pronounced "not E"). Exhibit 18.1 shows the encoding of the words BEAUTIFUL, 

EXETER, OMAHA, OMEGA. For example, we search for words that contain at least one E, but no U, by sticking  
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two needles through the pack of cards at the holes E and ~U. EXETER and OMEGA will drop out. In principle it is  

easy to make this sample database more powerful by including additional attributes,  such as "A occurs exactly 

once",  "A occurs  exactly twice",  "A occurs as the first  letter  in the word",  and so on. In practice,  a few dozen 

attributes and thousands of cards will stretch this mechanical implementation of a multikey data structure to its  

limits of feasibility.

Exhibit 18.1: Encoding of different words in edge-notched cards.

In contrast to data structures suitable for manual processing, those developed for automatic data processing can 

be complex. Complexity is not a goal in itself, of course, but it may be an unavoidable consequence of the search for  

efficiency. Efficiency, as measured by processing time and memory space required, is the primary concern of the 

discipline of data structures. Other criteria, such as simplicity of the code, play a role, but the first question to be  

asked when evaluating a data structure that supports a specified set of operations is typically: How much time and  

space does it require?

In contrast to the typical situation of manual computing (consideration of the algorithm comes first, data gets  

organized only as needed), programmed computing typically proceeds in the opposite direction: First we define the 

organization of the data rigorously, and from this the structure of the algorithm follows. Thus algorithm design is  

often driven by data structure design.

The range of data structures studied

We present  generally  useful  data  structures  along with the corresponding query,  update,  and maintenance 

algorithms; and we develop concepts and techniques designed to organize a vast body of knowledge into a coherent 

whole. Let us elaborate on both of these goals.

"Generally useful" refers to data structures that occur naturally in many applications. They are relatively simple 

from the point of view of the operations they support—tables and queues of various types are typical examples. 

These basic data structures are the building blocks from which an applications programmer may construct more 

elaborate structures tailored to her particular application. Although our collection of specific  data structures is 

rather small, it covers the great majority of techniques an applications programmer is likely to need.

We develop a unified scheme for understanding many data structures as special cases of general concepts. This  

includes:

181



This book is licensed under a Creative Commons Attribution 3.0 License

• The separation of abstract data types, which specify only functional properties, from data structures, which 

also involve aspects of implementation

• The classification of all data structures into three major types: implicit data structures, lists, and address 

computation

• A rough assessment of the performance of data structures based on the asymptotic analysis of time and  

memory requirements

The simplest and most common assumption about the elements to be stored in a data structure is that they  

belong to a domain on which a total order ≤ is defined. Examples: integers ordered by magnitude, a character set 

with its  alphabetic  order,  character strings  of  bounded length ordered lexicographically.  We assume that  each 

element in a domain requires as much storage as any other element in that domain; in other words, that a data  

structure manages memory fragments of fixed size. Data objects of greatly variable size or length, such as fragments 

of text, are typically not considered to be "elements"; instead, they are broken into constituent pieces of fixed size,  

each of which becomes an element of the data structure.

The elements stored in a data structure are often processed according to the order ≤ defined on their domain.  

The topic of  sorting,  which we surveyed in “Sorting and its complexity”,  is closely related to the study of data  

structures: Indeed, several sorting algorithms appear "for free" in “List structures”, because every structure that 

implements the abstract data type  dictionary leads to a sorting algorithm by successive insertion of elements, 

followed by a traversal.

Performance criteria and measures

The design of data structures is dominated by considerations of efficiency, specifically with respect to time and 

memory. But efficiency is a multifaceted quality not easily defined and measured. As a scientific discipline, the 

study of  data  structures  is  not  directly  concerned with the number  of  microseconds,  machine  cycles,  or  bytes 

required by a specific program processing a given set of data on a particular system. It is concerned with general  

statements from which an expert practitioner can predict concrete outcomes for a specific processing task. Thus, 

measuring run times and memory usage is not the typical way to evaluate data structures. We need concepts and  

notations  for  expressing  the  performance  of  an  algorithm  independently  of  machine  speed,  memory  size,  

programming language, and operating system, and a host of other details that vary from run to run.

The solution to this problem emerged over the past two decades as the discipline of computational complexity 

was developed. In this theory, algorithms are "executed" on some "mathematical machine", carefully designed to be 

as simple as possible to reflect the bare essentials of a problem. The machine makes available certain  primitive 

operations, and we measure "time" by counting how many of those are executed. For a given algorithm and all the  

data sets it accepts as input, we analyze the number of primitive operations executed as a function of the size of the 

data. We are often interested in the worst case, that is, a data set of given size that causes the algorithm to run as 

long as possible, and the average case, the run time averaged over all data sets of a given size.

Among the many different mathematical machines that have been defined in the theory of computation, data 

structures are evaluated almost exclusively with respect to a theoretical random access machine (RAM). A RAM is 

essentially a memory with as many locations as needed, each of which can hold a data element, such as an integer,  

or a real number; and a processing unit that can read from any one or two locations, operate on their content, and  

write the result back into a third location, all  in one time unit.  This model is rather close to actual sequential  
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computers, except that it incorporates no bounds on the memory size—either in terms of the number of locations or  

the size of the content of this location. It implies, for example, that a multiplication of two very large numbers  

requires no more time than 2 · 3 does. This assumption is unrealistic for certain problems, but is an excellent one 

for most program runs that fit in central memory and do not require variable-precision arithmetic or variable-

length data elements. The point is that the programmer has to understand the model and its assumptions, and 

bears responsibility for applying it judiciously.

In this model, time and memory requirements are expressed as functions of input data size, and thus comparing  

the performance of two data structures is reduced to comparing functions. Asymptotics has proven to be just the 

right tool for this comparison: sharp enough to distinguish different growth rates, blunt enough to ignore constant 

factors that differ from machine to machine.

As an example of the concise descriptions made possible by asymptotic operation counts, the following table 

evaluates several implementations for the abstract data type 'dictionary'. The four operations 'find', 'insert', 'delete',  

and  'next'  (with  respect  to  the  order  ≤)  exhibit  different  asymptotic  time  requirements  for  the  different 

implementations. The student should be able to explain and derive this table after studying this part of the book.

Ordered array Linear list Balanced tree Hash table

find O(log n) O(n) O(log n) O(1)a 

next O(1) O(1) O(log n) O(n) 

insert O(n) O(n) O(log n) O(1)a 

delete O(n) O(n) O(log n) O(1)b 

a On the average, but not necessarily in the worst case
b Deletions are possible but may degrade performance

Exercise

1. Describe the manual data structures that have been developed to organize libraries (e.g. catalogs that allow 

users to get access to the literature in their field of interest, or circulation records, which keep track of who 

has borrowed what book). Give examples of queries that can be answered by these data structures.
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19. Abstract data types
Learning objectives:

• data abstraction

• abstract data types as a tool to describe the functional behavior of data structures

• examples of abstract data types: stack, fifo queue, priority queue, dictionary, string

Concepts: What and why?

A data structure organizes the data to be processed in such a way that the relations among the data elements are 

reflected and the operations to be performed on the data are supported. How these goals can be achieved efficiently 

is the central issue in data structures and a major concern of this book. In this chapter, however, we ask not how 

but what? In particular, we ask: what is the exact functional behavior a data structure must exhibit to be called a  

stack, a queue, or a dictionary or table?

There are several reasons for seeking a formal functional specification for common data structures. The primary 

motivation  is  increased  generality  through  abstraction;  specifically,  to  separate  input/output  behavior  from 

implementation, so that the implementation can be changed without affecting any program that uses a particular 

data type. This goal led to the earlier introduction of the concept of type in programming languages: the type real is 

implemented differently on different machines, but usually a program using reals does not require modification 

when run on another machine. A secondary motivation is  the ability to prove general theorems about all  data 

structures that exhibit certain properties, thus avoiding the need to verify the theorem in each instance. This goal is  

akin to the one that sparked the development of algebra: from the axioms that define a field, we prove theorems 

that hold equally true for real or complex numbers as well as quaternions.

The primary motivation can be further explained by calling on an analogy between data and programs. All  

programming languages support the concept of procedural abstraction: operations or algorithms are isolated in 

procedures, thus making it easy to replace or change them without affecting other parts of the program. Other  

program parts do not know how a certain operation is realized; they know only how to call the corresponding 

procedure and what effect the procedure call will have. Modern programming languages increasingly support the  

analogous concept of data abstraction or data encapsulation: the organization of data is encapsulated (e.g. in a 

module  or  a  package)  so that  it  is  possible  to change  the data  structure without  having to change  the whole 

program.

The secondary motivation for formal specification of data types remains an unrealized goal: although abstract  

data types are an active topic for theoretical research, it is difficult today to make the case that any theorem of use  

to programmers has been proved.

An abstract data type consists of a domain from which the data elements are drawn, and a set of operations.  

The specification of an abstract data type must identify the domain and define each of the operations. Identifying  

and describing the domain is generally straightforward. The definition of each operation consists of a syntactic and 

a semantic part. The syntactic part, which corresponds to a procedure heading, specifies the operation's name and 
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the type of each operand. We present the syntax of operations in mathematical function notation, specifying its  

domain and range. The semantic part attaches a meaning to each operation: what values it produces or what effect  

it has on its environment. We specify the semantics of abstract data types algebraically by axioms from which other  

properties may be deduced. This formal approach has the advantage that the operations are defined rigorously for 

any domain with the required properties. A formal description, however, does not always appeal to intuition, and 

often forces us to specify details that we might prefer to ignore. When every detail matters, on the other hand, a  

formal  specification  is  superior  to  a  precise  specification  in  natural  language;  the  latter  tends  to  become 

cumbersome and difficult to understand, as it often takes many words to avoid ambiguity.

In this chapter we consider the abstract data types: stack, first-in-first-out queue, priority queue, and dictionary.  

For each of these data types, there is an ideal, unbounded version, and several versions that reflect the realities of 

finite machines. From a theoretical point of view we only need the ideal data types, but from a practical point of  

view,  that  doesn't  tell  the  whole  story:  in  order  to  capture  the  different  properties  a  programmer  intuitively  

associates with the vague concept "stack", for example, we are forced into specifying different types of stacks. In  

addition to the ideal  unbounded stack,  we specify a  fixed-length stack which mirrors the behavior of an array 

implementation,  and  a  variable-length  stack which  mirrors  the  behavior  of  a  list  implementation.  Similar 

distinctions apply to the other data types, but we only specify their unbounded versions.

Let X denote the domain from which the data elements are drawn. Stacks and fifo queues make no assumptions 

about X; priority queues and dictionaries require that a total order ≤ be defined on X. Let X∗denote the set of all 

finite sequences over X.

Stack

A stack is also called a last-in-first-out queue, or lifo queue. A brief informal description of the abstract data type 

stack (more specifically, unbounded stack, in contrast to the versions introduced later) might merely state that the 

following operations are defined on it:

- create Create a new, empty stack.
- empty Return true if the stack is empty.
- push Insert a new element.
- top Return the element most recently inserted, if the stack is not 
empty.
- pop Remove the element most recently inserted, if the stack is not 
empty.

Exhibit 19.1 helps to clarify the meaning of these words.

Exhibit 19.1: Elements are inserted at and removed from the top of the stack.

A definition that uses conventional mathematical notation to capture the intention of the description above 

might define the operations by explicitly showing their effect on the contents of a stack.  Let S = X∗ be the set of 
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possible states of a stack, let s = x1 x2 … xk ∈ S be an arbitrary stack state with k elements, and let λ denote the empty 

state of the stack, corresponding to the null string ∈ X*. Let 'cat' denote string concatenation. Define the functions

create: → S
empty: S → {true, false}
push: S × X → S
top: S – {λ} → X
pop: S – {λ} → S

as follows:

     ∀s ∈ S,∀∀x, y ∈ X:
create = λ
empty(λ) = true
s ≠ λ ⇒ empty(s) = false
push(s, y) = s cat y = x1 x2 … xk y
s ≠ λ top(s) = xk
s ≠ pop(s) = x1 x2 … xk–1

This definition refers explicitly to the contents of the stack. If we prefer to hide the contents and refer only to 

operations and their results, we are led to another style of formal definition of abstract data types that expresses the  

semantics of the operations by relating them to each other rather than to the explicitly listed contents of a data 

structure. This is the commonly used approach to define abstract data types, and we follow it for the rest of this  

chapter.

Let S be a set and s0 ∈ S a distinguished state. s0 denotes the empty stack, and S is the set of stack states that can 

be obtained from the empty stack by performing finite sequences of  'push' and 'pop' operations. The following 

functions represent stack operations:

create: → S
empty: S → {true, false}
push: S  X → S
top: S – {s0} → X
pop: S – {s0} → S

The semantics of the stack operations is specified by the following 
axioms:
  ∀s ∈ S, ∀x ∈ X:
(1) create = s0
(2) empty(s0) = true
(3) empty(push(s, x)) = false
(4) top(push(s, x)) = x
(5) pop(push(s, x)) = s

These axioms can be described in natural language as follows:
(1) 'create' produces a stack in the distinguished state.
(2) The distinguished state is empty.
(3) A stack is not empty after an element has been inserted.
(4) The element most recently inserted is on top of the stack.
(5) 'pop' is the inverse of 'push'.

Notice that 'create' plays a different role from the other stack operations: it is merely a mechanism for causing a 

stack to come into existence, and could have been omitted by postulating the existence of a stack in st ate s0. In any 

implementation, however, there is always some code that corresponds to 'create'. Technical note: we could identify 
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'create' with s0, but we choose to make a distinction between the act of creating a new empty stack and the empty 

state that results from this creation; the latter may recur during normal operation of the stack.

Reduced sequences

Any s ∈ S is obtained from the empty stack s0 by performing a finite sequence of 'push' and 'pop' operations. By 

axiom (5) this sequence can be reduced to a sequence that transforms s0 into  s and consists of 'push' operations 

only.

Example
s = pop(push(pop(push(push(s0, x), y)), z))

= pop(push(push(s0, x), z))
= push(s0, x)

An implementation of a stack may provide the following procedures:

procedure create(var s: stack);
function empty(s: stack): boolean;
procedure push(var s: stack; x: elt);
function top(s: stack): elt;
procedure pop(var s: stack);

Any program that uses this data type is restricted to calling these five procedures for creating and  

operating on stacks; it is not allowed to use information about the underlying implementation. The  

procedures may only be called within the constraints of the specification; for example, 'top' and 

'pop' may be called only if the stack is not empty:

if  not empty(s)  then  pop(s);

The specification above assumes that a stack can grow without a bound; it defines an abstract data type called 

unbounded stack. However, any implementation imposes some bound on the size (depth) of a stack: the size of the 

underlying array in an array imple→d reflect  such→ limitations.  The following  fixed-length stack describes an 

implementation as an array of fixed size m, which limits the maximal stack depth.

Fixed-length stack
create:→ S
empty: S → {true, false}
full: S → {true, false}
push: {s ∈ S: not full(s)} × X → S
top: S – {s0} → X
pop: S – {s0} → S

To specify the behavior of the function 'full' we need an internal function

depth: S → {0, 1, 2, … , m}

that measures the stack depth, that is, the number of elements currently in the stack. The function 'depth' interacts 

with the other functions in the following axioms, which specify the stack semantics:

∀s ∈ S, ∀x ∈ X:
create = s0
empty(s) = true
not full(s) ⇒ empty(push(s, x)) = false
depth(s0) = 0
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not empty(s) ⇒ depth(pop(s)) = depth(s) – 1
not full(s) ⇒ depth(push(s, x)) = depth(s) + 1
full(s) = (depth(s) = m)
not full(s) ⇒

top(push(s, x)) = x
pop(push(s, x)) = s

Variable-length stack

A stack implemented as a list may overflow at unpredictable moments depending on the contents of the entire 

memory, not just of the stack. We specify this behavior by postulating a function 'space-available'. It has no domain 

and thus acts as an oracle that chooses its value independently of the state of the stack (if we gave 'space-available' a  

domain, this would have to be the set of states of the entire memory).

create: → S
empty: S → {true, false}
space-available: → {true, false}
push: S × X → S
top: S – {s0} → X
pop: S – {s0} → S

∀s ∈ S, ∀x ∈ X:
create = s0
empty(s0) = true
space-available ⇒

empty(push(s, x)) = false
top(push(s, x)) = x
pop(push(s, x)) = s

Implementation

We have seen that abstract data types cannot capture our intuitive, vague concept of a stack in one single model. 

The rigor enforced by the formal definition makes us aware that there are different types of stacks with different  

behavior (quite apart from the issue of the domain type X, which specifies what type of elements are to be stored).  

This  clarity  is  an  advantage  whenever  we  attempt  to  process  abstract  data  types  automatically;  it  may  be  a 

disadvantage for human communication, because a rigorous definition may force us to (over)specify details.

The different types of stacks that we have introduced are directly related to different styles of implementation. 

The fixed-length stack, for example, describes the following implementation:

const  m = … ;  { maximum length of a stack }
type elt = … ;

stack =record
a: array[1 .. m] of elt;
d: 0 .. m;  { current depth of stack }

end;

procedure create(var s: stack);
begin  s.d := 0  end;

function empty(s: stack): boolean;
begin  return(s.d = 0)  end;

function full(s: stack): boolean;
begin  return(s.d = m)  end;

procedure push(var s: stack; x: elt);  { not to be called if the stack 
is full }

begin  s.d := s.d + 1;  s.a[s.d] := x  end;
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function top(s: stack): elt;  { not to be called if the stack is 
empty }

begin  return(s.a[s.d])  end;

procedure pop(var s: stack);  { not to be called if the stack is 
empty }

begin  s.d := s.d – 1  end;

Since the function 'depth' is not exported (i.e. not made available to the user of this data type), it need not be 

provided as a procedure. Instead, we have implemented it as a variable d which also serves as a stack pointer.

Our implementation assumes that the user checks that the stack is not full before calling 'push', and that it is not 

empty before calling 'top' or 'pop'. We could, of course, write the procedures 'push', 'top', and 'pop' so as to "protect  

themselves" against illegal calls on a full or an empty stack simply by returning an error message to the calling  

program. This requires adding a further argument to each of these three procedures and leads to yet other types of 

stacks which are formally different abstract data types from the ones we have discussed.

First-in-first-out queue

The  following  operations  (Exhibit  19.2)  are  defined  for  the  abstract  data  type  fifo  queue (first-in-first-out 

queue):

empty Return true if the queue is empty.
enqueue Insert a new element at the tail end of the queue.
front Return the front element of the queue.
dequeue Remove the front element.

Exhibit 19.2: Elements are inserted at the tail and removed from the head of the fifo queue. 

Let F be the set of queue states that can be obtained from the empty queue by performing finite sequences of  

'enqueue' and 'dequeue' operations. f0 ∈ F denotes the empty queue. The following functions represent fifo queue 

operations:

create: → F
empty: F → {true, false}
enqueue: F × X → F
front: F – {f0} → X
dequeue: F – {f0} → F

The semantics of the fifo queue operations is specified by the 
following axioms:

∀f ∈ F,∀x ∈ X:
(1) create = f0
(2) empty(f0) = true
(3) empty(enqueue(f, x)) = false
(4) front(enqueue(f0, x)) = x
(5) not empty(f) ⇒ front(enqueue(f, x)) = front(f)
(6) dequeue(enqueue(f0, x)) = f0
(7) not empty(f) ⇒ dequeue(enqueue(f, x)) = enqueue(dequeue(f), x)
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Any f ∈ F is obtained from the empty fifo queue f0 by performing a finite sequence of 'enqueue' and 'dequeue' 

operations. By axioms (6) and (7) this sequence can be reduced to a sequence consisting of 'enqueue' operations 

only which also transforms f0 into f.

Example
f = dequeue(enqueue(dequeue(enqueue(enqueue(f0, x), y)), z))

= dequeue(enqueue(enqueue(dequeue(enqueue(f0, x)), y), z))
= dequeue(enqueue(enqueue(f0, y), z))
= enqueue(dequeue(enqueue(f0, y)), z)
= enqueue(f0, z)

An implementation of a fifo queue may provide the following procedures:

procedure create(var f: fifoqueue);
function empty(f: fifoqueue): boolean;
procedure enqueue(var f: fifoqueue; x: elt);
function front(f: fifoqueue): elt;
procedure dequeue(var f: fifoqueue);

Priority queue

A priority queue orders the elements according to their value rather than their arrival time. Thus we assume that 

a total order ≤ is defined on the domain X. In the following examples, X is the set of integers; a small integer means  

high priority. The following operations (Exhibit 19.3) are defined for the abstract data type priority queue:

- empty Return true if the queue is empty.
- insert Insert a new element into the queue.
- min Return the element of highest priority contained in the queue.
- delete Remove the element of highest priority from the queue.

Exhibit 19.3: An element's priority determines its position in a priority queue. 

Let  P be the set  of  priority queue  states  that  can be obtained from the empty queue  by performing finite  

sequences of 'insert' and 'delete' operations. The empty priority queue is denoted by p0 ∈ P. The following functions 

represent priority queue operations:

create: → P
empty: P → {true, false}
insert: P × X → P
min: P – {p0} → X
delete: P – {p0} → P

The semantics of the priority queue operations is specified by the following axioms. For x, y ∈ X, the function 

MIN(x, y) returns the smaller of the two values.
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∀p ∈ P,∀x ∈ X:
(1) create = p0
(2) empty(p0) = true
(3) empty(insert(p, x)) = false
(4) min(insert(p0, x)) = x
(5) not empty(p) ⇒ min(insert(p, x)) = MIN(x, min(p))
(6) delete(insert(p0, x)) = p0

(7) not empty(p)⇒

delete (insert(p,x))={ pifxminp
insertdeletep,xelse

Any p ∈ P is obtained from the empty queue p0 by a finite sequence of 'insert' and 'delete' operations. By axioms 

(6) and (7) any such sequence can be reduced to a shorter one that also transforms p 0 into p and consists of 'insert' 

operations only.

Example
Assume that x < z, y < z.

p = delete(insert(delete(insert(insert(p0, x), z)), y))
= delete(insert(insert(delete(insert(p0, x)), z), y))
= delete(insert(insert(p0, z), y))
= insert(p0, z)

An implementation of a priority queue may provide the following procedures:

procedure create(var p: priorityqueue);
function empty(p: priorityqueue): boolean;
procedure insert(var p: priorityqueue; x: elt);
function min(p: priorityqueue): elt;
procedure delete(var p: priorityqueue);

Dictionary

Whereas stacks and fifo queues  are designed to retrieve and process elements  depending on their  order of 

arrival, a dictionary (or table) is designed to process elements exclusively by their value (name). A priority queue is  

a hybrid: insertion is done according to value, as in a dictionary, and deletion according to position, as in a fifo 

queue.

The simplest type of dictionary supports the following operations:
- member Return true if a given element is contained in the 
dictionary.
- insert Insert a new element into the dictionary.
- delete Remove a given element from the dictionary.

Let  D be the  set  of  dictionary  states  that  can be  obtained from the empty dictionary  by performing finite  

sequences of  'insert'  and 'delete'  operations. d0 ∈ D denotes  the empty dictionary. Then the operations can be 

represented by functions as follows:

create: → D
insert: D × X → D
member: D × X → {true, false}
delete: D × X → D

The semantics of the dictionary operations is specified by the 
following axioms:
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∀d ∈ D,∀x, y ∈ X:
(1) create = d0
(2) member(d0, x) = false
(3) member(insert(d, x), x) = true
(4) x ≠ y ⇒ member(insert(d, y), x) = member(d, x)
(5) delete(d0, x) = d0
(6) delete(insert(d, x), x) = delete(d, x)
(7) x ≠ y ⇒ delete(insert(d, x), y) = insert(delete(d, y), x)

Any d  ∈ D is obtained from the empty dictionary d0 by a finite sequence of 'insert'  and 'delete'  operations. By 

axioms (6) and (7) any such sequence can be reduced to a shorter one that also transforms d0 into d and consists of 

'insert' operations only.

Example
d = delete(insert(insert(insert(d0, x), y), z), y)

= insert(delete(insert(insert(d0, x), y), y), z)

= insert(delete(insert(d0, x), y), z)

= insert(insert(delete(d0, y), x), z)

= insert(insert(d0, x), z)

This  specification  allows  duplicates  to  be  inserted.  However,  axiom  (6)  guarantees  that  all  duplicates  are 

removed if a delete operation is performed. To prevent duplicates, the following axiom is added to the specification 

above:

(8) member(d, x) ⇒ insert(d, x) = d
In this case axiom (6) can be weakened to
(6') not member(d, x) ⇒ delete(insert(d, x), x) = d

An implementation of a dictionary may provide the following procedures:

procedure create(var d: dictionary);
function member(d: dictionary; x: elt): boolean;
procedure insert(var d: dictionary; x: elt);
procedure delete(var d: dictionary; x: elt);

In actual programming practice, a dictionary usually supports the additional operations 'find', 'predecessor', and 

'successor'. 'find' is similar to 'member' but in addition to a true/false answer, provides a pointer to the element  

found. Both 'predecessor' and 'successor' take a pointer to an element e as an argument, and return a pointer to the  

element  in  the  dictionary  that  immediately  precedes  or  follows  e,  according  to  the  order  ≤.  Repeated  call  of  

'successor' thus processes the dictionary in sequential order.

Exercise: extending the abstract data type 'dictionary'

We have defined a dictionary as supporting the three operations 'member', 'insert' and 'delete'. But a dictionary,  

or table, usually supports additional operations based on a total ordering ≤ defined on its domain X. Let us add two 

operations that take an argument x ∈ X and deliver its two neighboring elements in the table:

succ(x)Return the successor of x in the table.
pred(x)Return the predecessor of x in the table.
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The successor of x is defined as the smallest of all the elements in the table which are larger than x, or as +∞ if  

none exists. The predecessor is defined symmetrically: the largest of all the elements in the table that are smaller  

than x, or –∞. Present a formal specification to describe the behavior of the table.

Solution

Let T be the set of states of the table, and t0 a special state that denotes the empty table. The functions and 

axioms are as follows:

member: T × X → {true,false}
insert: T × X → T
delete: T × X → T
succ: T × X → X ∪ {+∞}
pred: T × X → X ∪ {–∞}

∀t ∈ T,∀x, y ∈ X:
 member(t0, x) = false
 member(insert(t, x), x) = true
 x ≠ y ⇒ member(insert(t, y), x) = member(t, x)
 delete(t0, x) = t0
 delete(insert(t, x), x) = delete(t, x)

 x ≠ y ⇒ delete(insert(t, x), y) = insert(delete(t, y), x)

–∞ < x < +∞
pred(t, x) < x < succ(t, x)
succ(t, x) ≠ +∞ ⇒ member(t, succ(t, x)) = true
pred(t, x) ≠ –∞ ⇒ member(t, pred(t, x)) = true
x < y, member(t, y), y ≠ succ(t, x) ⇒ succ(t, x) < y
x > y, member(t, y), y ≠ pred(t, x) ⇒ y < pred(t, x)

Exercise: the abstract data type 'string'

We define the following operations for the abstract data type string:

- empty Return true if the string is empty.
- append Append a new element to the tail of the string.
- head Return the head element of the string.
- tail Remove the head element of the given string.
- length Return the length of the string.
- find Return the index of the first occurrence of a value within the 
string.

Let X = {a, b, … , z}, and S be the set of string states that can be obtained from the empty string by performing a  

finite number of 'append' and 'tail' operations. s0 ∈ S denotes the empty string. The operations can be represented 

by functions as follows:

empty: S → {true, false}
append: S × X → S
head: S – {s0} → X

tail: S – {s0} → S

length: S → {0, 1, 2, … }
find: S × X → {0, 1, 2, … }

Examples:
empty('abc') = false;  append('abc', 'd') = 'abcd';  head('abcd') = 
'a';
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tail('abcd') = 'bcd';  length('abcd') = 4;  find('abcd', 'b') = 2.

(a) Give the axioms that specify the semantics of the abstract data type 'string'.

(b) The function hchop: S × X → S returns the substring of a string s beginning with the first occurrence of a 

given value. Similarly, tchop: S × X → S returns the substring of s beginning with head(s) and ending with 

the  last  occurrence  of  a  given  value.  Specify  the  behavior  of  these  operations  by  additional  axioms. 

Examples:

hchop('abcdabc','c')='cdabc'
tchop('abcdabc', 'b') = 'abcdab'

(c) The function cat: S  × S → S returns the concatenation of two sequences. Specify the behavior of 'cat' by 

additional axioms. Example:

cat('abcd', 'efg') = 'abcdefg'

(d) The function reverse: S → S returns the given sequence in reverse order. Specify the behavior of reverse by 

additional axioms. Example:

reverse('abcd') = 'dcba'

Solution

(a) Axioms for the six 'string' operations:

∀s ∈ S, ∀ x, y ∈ X:
empty(s0) = true
empty(append(s, x)) = false
head(append(s0, x)) = x
not empty(s) ⇒ head(s) = head(append(s, x))
tail(append(s0, x)) = s0
not empty(s) ⇒ tail(append(s, x)) = append(tail(s), x)
length(s0) = 0
length(append(s, x)) = length(s) + 1
find(s0, x) = 0
x ≠ y, find(s, x) = 0 ⇒ find(append(s, y), x) = 0
find(s, x) = 0 ⇒ find(append(s, x), x) = length(s) + 1
find(s, x) = d > 0 ⇒ find(append(s, y), x) = d

(b) Axioms for 'hchop' and 'tchop':

∀s ∈ S, ∀x, y ∈ X:
hchop(s0, x) = s0
not empty(s), head(s) = x ⇒ hchop(s, x) = s
not empty(s), head(s) ≠ x ⇒ hchop(s, x) = hchop(tail(s), x)
tchop(s0, x) = s0
tchop(append(s, x), x) = append(s, x)
x ≠ y ⇒ tchop(append(s, y), x) = tchop(s, x)

(c) Axioms for 'cat':

∀s, s' ∈ S:
cat(s, s0) = s
not empty(s') ⇒ cat(s, s') = cat(append(s, head(s')), tail(s'))

(d) Axioms for 'reverse':

 ∀s ∈ S:
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reverse(s0) = s0

s ≠ s0 ⇒ reverse(s) = append(reverse(tail(s)), head(s))

Exercises

1. Implement two stacks iν onε array a[1 ..  m] in  such a  way that neither stack overflows unless the total 

number of elements in both stacks together is m. The operations 'push', 'top', and 'pop' should run in O(1) 

time.

2. A double-ended queue (deque) can grow and shrink at both ends, left  and right,  using the procedures 

'enqueue-left',  'dequeue-left',  'enqueue-right',  and  'dequeue-right'.  Present  a  formal  specification  to 

describe the behavior of the abstract data type deque.

3. Extend the abstract data type priority queue by the operation next(x), which returns the element in the 

priority queue having the next lower priority than x.
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20. Implicit data structures
Learning objectives:

• implicit data structures describe relationships among data elements implicitly by formulas and declarations

• array storage

• band matrices

• sparse matrices

• Buffers eliminate temporary speed differences among interacting producer and consumer processes.

• fifo queue implemented as a circular buffer

• priority queue implemented as a heap

• heapsort

What is an implicit data structure?

An  important  aspect  of  the  art  of  data  structure  design  is  the  efficient  representation  of  the  structural  

relationships among the data elements to be stored. Data is usually modeled as a graph, with nodes corresponding 

to data elements and links (directed arcs,  or bidirectional edges)  corresponding to relationships.  Relationships 

often serve a double purpose. Primarily, they define the semantics of the data and thus allow programs to interpret 

the data correctly.  This aspect  of  relationships is  highlighted in the database field:  for  example,  in the entity-

relationship model. Secondarily, relationships provide a means of accessing data, by starting at some element and  

following  an  access  path that  leads  to  other  elements  of  interest.  In  studying  data  structures  we  are  mainly 

concerned with the use of relationships for access to data.

When the structure of the data is irregular, or when the structure is highly dynamic (extensively modified at run  

time),  there  is  no  practical  alternative  to  representing  the  relationships  explicitly.  This  is  the  domain  of  list  

structures, presented in the chapter on “List structures”. When the structure of the data is static and obeys a regular 

pattern, on the other hand, there are alternatives that compress the structural information. We can often replace  

many explicit links by a few formulas that tell us where to find the "neighboring" elements. When this approach 

works, it saves memory space and often leads to faster programs.

We use the term implicit to denote data structures in which the relationships among data elements are given 

implicitly by formulas and declarations in the program; no additional space is needed for these relationships in the  

data  storage.  The best known example is  the array.  If  one looks at  the area in which an array is  stored,  it  is  

impossible to derive, from its contents, any relationships among the elements without the information that the  

elements belong to an array of a given type.

Data structures always go hand in hand with the corresponding procedures for accessing and operating on the 

data. This is particularly true for implicit data structures: They simply do not exist independent of their accessing  

procedures. Separated from its code, an implicit data structure represents at best an unordered set of data. With the  

right code, it exhibits a rich structure, as is beautifully illustrated by the heap at the end of this chapter.
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Array storage

A two-dimensional array declared as

var  A: array[1 .. m, 1 .. n] of elt;

is usually written in a rectangular shape:

A[1, 1] A[1, 2] … A[1, n]

A[2, 1] A[2, 2] … A[2, n]

… … … …

A[m, 1] A[m, 2] … A[m, n]

But it is stored in a linearly addressed memory, typically row by row (as shown below) or column by column (as  

in Fortran) in consecutive storage cells, starting at base address b. If an element fits into one cell, we have

address

A[1, 1] b

A[1, 2] b + 1

… …

A[1, n] b + n – 1

A[2, 1] b + n

A[2, 2] b + n + 1

… …

A[2, n] b + 2 · n – 1

… …

A[m, n] b + m · n – 1

If an element of type 'elt' occupies c storage cells, the address α(i, j) of A[i, j] is

This linear formula generalizes to k-dimensional arrays declared as

var  A: array[1 .. m1, 1 .. m2, … , 1 .. mk] of elt;

The address α(i1, i2, … , ik) of element A[i1, i2, … , ik] is
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The point is that access to an element A[i, j, …] invokes evaluation of a (linear) formula α(i, j, …) that tells us 

where to find this element. A high-level programming language hides most of the details of address computation, 

except when we wish to take advantage of any special structure our matrices may have. The following types of 

sparse matrices occur frequently in numerical linear algebra.

Band matrices. An n × n matrix M is called a band matrix of width 2 · b + 1 (b = 0, 1, …) if Mi,j = 0 for all i and 

j with |i – j| > b. In other words, all nonzero elements are located on the main diagonal and in b adjacent minor  

diagonals on both sides of the main diagonal. If n is large and b is small, much space is saved by storing M in a two-

dimensional array A with n · (2 · b + 1) cells rather than in an array with n2 cells:

type  bandm = array[1 .. n, –b .. b] of elt;
var  A: bandm;

Each row A[i, ·] stores the nonzero elements of the corresponding row of M, namely the diagonal element M i,i, 

the b elements to the left of the diagonal

Mi,i–b, Mi,i–b+1, … , Mi,i–1

and the b elements to the right of the diagonal

Mi,i+1, Mi,i+2, … , Mi,i+b.

The first and the last b rows of A contain empty cells corresponding to the triangles that stick out from M in  

Exhibit 20.1. The elements of M are stored in array A such that A[i, j] contains Mi,i+j (1 ≤ i ≤ n, –b ≤ j ≤ b). A total of 

b · (b + 1) cells in the upper left and lower right of A remain unused. It is not worth saving an additional b · (b + 1)  

cells  by packing the band matrix  M into an array of minimal size,  as  the mapping becomes irregular and the 

formula for calculating the indices of Mi,j becomes much more complicated.

Exhibit 20.1: Extending the diagonals with dummy elements gives the 

band matrix the shape of a rectangular array.
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Exercise: band matrices

(a) Write a procedure add(p, q: bandm; var r: bandm); 

which adds two band matrices stored in p and q and stores the result in r.

(b) Write a procedure bmv(p: bandm; v: … ; var w: … );

which multiplies a band matrix stored in p with a vector v of length n and stores the result in w.

Solution
(a) procedure add(p, q: bandm; var r: bandm);

var  i: 1 .. n;  j: –b .. b;
begin

for  i := 1  to  n  do
for  j := –b  to  b  do

r[i, j] := p[i, j] + q[i, j]
end;

(b)  type  vector = array[1 .. n] of real;

procedure bmv(p: bandm; v: vector; var w: vector);
var  i: 1 .. n;  j: –b .. b;
begin

for  i := 1  to  n  do  begin
w[i] := 0.0;
for  j := –b  to  b  do

if  (i + j ≥ 1) and (i + j ≤ n)  then  w[i] := w[i] + p[i, j] · 
v[i + j]

end
end;

Sparse matrices. A matrix is called sparse if it consists mostly of zeros. We have seen that sparse matrices of  

regular shape can be compressed efficiently using address computation. Irregularly shaped sparse matrices, on the  

other hand, do not yield gracefully to compression into a smaller array in such a way that access can be based on 

address computation. Instead, the nonzero elements may be stored in an unstructured set of records, where each 

record contains the pair ((i, j), A[i, j]) consisting of an index tuple (i, j) and the value A[i, j]. Any element that is  

absent from this set is assumed to be zero. As the position of a data element is stored explicitly as an index pair (i,  

j),  this  representation  is  not  an implicit  data  structure.  As  a  consequence,  access  to a  random element  of  an  

irregularly shaped sparse matrix typically requires searching for it, and thus is likely to be slower than the direct  

access to an element of a matrix of regular shape stored in an implicit data structure.  

Exercise: triangular matrices

Let A and B be lower-triangular n × n-matrices; that is, all elements above the diagonal are zero: A i,j = Bi,j = 0 for 

i < j.

(a) Prove that the inverse (if it exists) and the matrix product of lower-triangular matrices are again  

lower-triangular.

(b) Devise a scheme for storing two lower-triangular matrices A and B in one array C of minimal size. 

Write a Pascal declaration for C and draw a picture of its contents.

(c) Write two functions

function A(i, j: 1 .. n): real;
 function B(i, j: 1 .. n): real;
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(d) that access C and return the corresponding matrix elements.

(e) Write a procedure that computes A := A · B in place: The entries of A in C are replaced by the entries 

of the product A · B. You may use a (small) constant number of additional variables, independent of 

the size of A and B.

(f) Same as (d), but using A := A–1 · B.

Solution

(a) The inverse of  an n × n-matrix exists iff the determinant of the matrix is non zero. Let A be a lower-

triangular matrix for which the inverse matrix B exists, that is, 

and

Let 1 ≤ j ≤ n. Then

and therefore B is a lower-triangular matrix.

Let A and B be lower-triangular, C := A · B:

If i < j, this sum is empty and therefore Ci,j = 0 (i. e. C is lower-triangular).

(b) A and B can be stored in an array C of size n · (n + 1) as follows (Exhibit 20.2):

const  n = … ;

var  C: array [0 .. n, 1 .. n] of real;
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Exhibit 20.2: A staircase separates two triangular matrices

(c) stored in a rectangular array. (graphic does not match)

function A(i, j: 1 .. n): real

begin  if  i < j  then  return(0.0)  else  return(C[i, j])  end;

function B(i, j: 1 .. n): real;

begin  if  i < j  then  return(0.0)  else  return(C[n – i, n + 1 – 
j])  end;

(d) Because the new elements of the result matrix C overwrite the old elements of A, it is important to compute 

them in the right order. Specifically, within every row i of C, elements Ci,j must be computed from left to 

right, that is, in increasing order of j.

procedure mult;

var  i, j, k: integer;  x: real;

begin

for  i := 1  to  n  do

for  j := 1  to  i  do  begin

x := 0.0;

for  k := j  to  i  do  x := x + A(i, k) · B(k, j);

C[i, j] := x

end
end;

(e) procedure invertA;

var  i, j, k: integer;  x: real;

begin
for  i := 1  to  n  do  begin

for  j := 1  to  i – 1  do  begin

x := 0.0;

for  k := j  to i – 1  do  x := x – C[i, k] · C[k, j];
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C[i, j] := x / C[i, i]

end;
C[i, i] := 1.0 / C[i, i]

end
end;

procedure AinvertedmultB;

begin  invertA;  mult  end; 

Implementation of the fixed-length fifo queue as a circular buffer

A fifo queue is needed in situations where two processes interact in the following way. A process called producer 

generates data for a process called consumer. The processes typically work in bursts: The producer may generate a 

lot of data while the consumer is busy with something else; thus the data has to be saved temporarily in a buffer, 

from which the consumer takes it as needed. A keyboard driver and an editor are an example of this producer-

consumer interaction. The keyboard driver transfers characters generated by key presses into the buffer, and the 

editor reads them from the buffer and interprets them (e.g. as control characters or as text to be inserted). It is  

worth remembering, though, that a buffer helps only if two processes work at about the same speed over the long 

run. If the producer is always faster, any buffer will overflow; if the consumer is always faster, no buffer is needed. A 

buffer can equalize only temporary differences in speeds.

With some knowledge about the statistical behavior of producer and consumer one can usually compute a buffer 

size that is sufficient to absorb producer bursts with high probability, and allocate the buffer statically in an array of 

fixed size. Among statically allocated buffers, a circular buffer is the natural implementation of a fifo queue.

A circular buffer is an array B, considered as a ring in which the first cell B [0] is the successor of the last cell B[m 

– 1], as shown in Exhibit 20.3. The elements are stored in the buffer in consecutive cells between the two pointers 

'in' and 'out': 'in' points to the empty cell into which the next element is to be inserted; 'out'  points to the cell 

containing the next element to be removed. A new element is inserted by storing it in B[in] and advancing 'in' to the  

next cell. The element in B[out] is removed by advancing 'out' to the next cell.
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Exhibit 20.3: Insertions move the pointer 'in', deletions the pointer 'out' counterclockwise around the array.

Notice that the pointers 'in' and 'out' meet both when the buffer gets full and when it gets empty. Clearly, we 

must be able to distinguish a full buffer from an empty one, so as to avoid insertion into the former and removal  

from the latter.  At first  sight it  appears that the pointers 'in'  and 'out'  are insufficient to determine whether a  

circular buffer is full or empty. Thus the following implementation uses an additional variable n, which counts how 

many elements are in the buffer.

const  m = … ;  { length of buffer }
type  addr = 0 .. m – 1;  { index range }
var B: array[addr] of elt;  {storage}

in, out: addr;  { access to buffer }
n: 0 .. m;  { number of elements currently in buffer }

procedure create;
begin  in := 0;  out := 0;  n := 0  end;

function empty(): boolean;
begin  return(n = 0)  end;

function full(): boolean;
begin  return(n = m)  end;

procedure enqueue(x: elt);
{ not to be called if the queue is full }
begin  B[in] := x;  in := (in + 1) mod m;  n := n + 1  end;

function front(): elt;
{ not to be called if the queue is empty }
begin  return(B[out])  end;

procedure dequeue;
{ not to be called if the queue is empty }
begin  out := (out + 1) mod m;  n := n – 1  end;
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The producer uses only 'enqueue' and 'full', as it deletes no elements from the circular buffer. The consumer uses  

only 'front', 'dequeue', and 'empty', as it inserts no elements.

The state of the circular buffer is described by its contents and the values of 'in', 'out', and n. Since 'in' is changed  

only within 'enqueue', only the producer needs write-access to 'in'. Since 'out' is changed only by 'dequeue', only the  

consumer needs write-access to 'out'. The variable n, however, is changed by both processes and thus is a shared 

variable to which both processes have write-access (Exhibit 20.4 (a)).

Exhibit 20.4:

(a) Producer and consumer both have write-access to shared variable n.

(b) The producer has read/write-access to 'in' and read-only-access to 'out',

the consumer has read/write-access to 'out' and read-only-access to 'in'.

In a concurrent programming environment where several processes execute independently, access to shared 

variables  must  be  synchronized.  Synchronization  is  overhead to be  avoided if  possible.  The shared  variable  n 

becomes superfluous (Exhibit 20.4 (b)) if we use the time-honored trick of leaving at least one cell free as a sentinel. 

This ensures that 'empty' and 'full', when expressed in terms of 'in' and 'out', can be distinguished. Specifically, we 

define  'empty'  as  in  =  out,  and  'full'  as  (in  +  1)  mod  m = out.  This  leads  to  an  elegant  and  more  efficient  

implementation of the fixed-length fifo queue by a circular buffer:

const  m = … ;  { length of buffer }
type addr = 0 .. m – 1;  { index range }

fifoqueue = record
B: array[addr] of elt;  { storage }
in, out: addr  { access to buffer }

end;

procedure create(var f: fifoqueue);
begin  f.in := 0;  f.out := 0  end;

function empty(f: fifoqueue): boolean;
begin  return(f.in = f.out)  end;

function full(f: fifoqueue): boolean;
begin  return((f.in + 1) mod m = f.out)  end;

procedure enqueue(var f: fifoqueue; x: elt);
{ not to be called if the queue is full }
begin  f.B[f.in] := x;  f.in := ( f.in + 1) mod m  end;
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function front(f: fifoqueue): elt;
{ not to be called if the queue is empty }
begin  return(f.B[f.out])  end;

procedure dequeue(f: fifoqueue);
{ not to be called if the queue is empty }
begin  f.out := (f.out + 1) mod m  end;

Implementation of the fixed-length priority queue as a heap

A fixed-length priority queue can be realized by a circular buffer, with elements stored in the cells between 'in'  

and 'out', and ordered according to their priority such that 'out' points to the element with highest priority (Exhibit 

20.5). In this implementation, the operations 'min' and 'delete' have time complexity O(1), since 'out' points directly  

to the element with the highest priority. But insertion requires finding the correct cell corresponding to the priority 

of the element to be inserted, and shifting other elements in the buffer to make space. Binary search could achieve  

the former task in time O(log n), but the latter requires time O(n).

Exhibit 20.5: Implementing a fixed-length priority queue by a circular buffer.

Shifting elements to make space for a new element costs O(n) time.

Implementing a priority queue as a linear list, with elements ordered according to their priority, does not speed 

up insertion: Finding the correct position of insertion still requires time O(n) (Exhibit 20.6).

Exhibit 20.6: Implementing a fixed-length priority queue by a linear list. Finding the correct 

position for a new element costs O(n) time.

The heap is an elegant and efficient data structure for implementing a priority queue. It allows the operation 

'min' to be performed in time O(1) and allows both 'insert' and 'delete' to be performed in worst-case time O(log n).  

A heap is a binary tree that:

• obeys a structural property

• obeys an order property

• is embedded in an array in a certain way

Structure:  The binary tree is as balanced as possible; all leaves are at two adjacent levels, and the nodes at the  

bottom level are located as far to the left as possible (Exhibit 20.7).
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Exhibit 20.7: A heap has the structure of an almost complete binary tree.  

Order:  The element assigned to any node is ≤ the elements assigned to any children this node may have 

(Exhibit 20.8).

Exhibit 20.8: The order property implies that the smallest element is stored at the root.

The order property implies that the smallest element (the one with top priority) is stored in the root. The 'min' 

operation returns its value in time O(1), but the most obvious way to delete this element leaves a hole, which takes  

time to fill. How can the tree be reorganized so as to retain the structural and the order property? The structural  

condition requires the removal  of  the rightmost node on the lowest  level.  The element stored there–13 in our 

example–is used (temporarily) to fill the vacuum in the root. The root may now violate the order condition, but the  

latter can be restored by sifting 13 down the tree according to its weight (Exhibit 20.9). If the order condition is 

violated at any node, the element in this node is exchanged with the smaller of the elements stored in its children;  

in our example, 13 is exchanged with 2. This sift-down process continues until the element finds its proper level, at 

the latest when it lands in a leaf.
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Exhibit 20.9: Rebuilding the order property of the tree in Exhibit 20.8 after 1 has been 

removed and 13 has been moved to the root.

Insertion is handled analogously. The structural condition requires that a new node is created on the bottom 

level at the leftmost empty slot. The new element - 0 in our example - is temporarily stored in this node (Exhibit 

20.10). If the parent node now violates the order condition, we restore it by floating the new element upward  

according to its weight. If the new element is smaller than the one stored in its parent node, these two elements - in  

our example 0 and 6 - are exchanged. This sift-up process continues until the element finds its proper level, at the 

latest when it surfaces at the root.

Exhibit 20.10: Rebuilding the order property of the tree in Exhibit 20.8 after 0 has 

been inserted in a new rightmost node on the lowest level.

The number of steps executed during the sift-up process and the sift-down process is at most equal to the height  

of the tree. The structural condition implies that this height is [log2 n]. Thus both 'insert' and 'delete' in a heap work 

in time O(log n).
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A binary tree can be implemented in many different ways, but the special class of trees that meets the structural  

condition stated above has a particularly efficient array implementation. A heap is a binary tree that satisfies the 

structural and the order condition and is embedded in a linear array in such a way that the children of a node with  

index i have indices 2 ·  i and 2 ·  i + 1 (Exhibit 20.11). Thus the parent of a node with index j has index j div 2. Any  

subtree of a heap is also a heap, although it may not be stored contiguously. The order property for the heap implies 

that the elements stored at indices 2 ·  i and 2 ·  i + 1 are ≥ the element stored at index i. This order is called the heap 

order.

Exhibit 20.11: Embedding the tree of Exhibit 20.8 in a linear array.

The procedure 'restore' is a useful tool for managing a heap. It creates a heap out of a binary tree embedded in a  

linear array h that satisfies the structural condition, provided that the two subtrees of the root node are already 

heaps. Procedure 'restore' is applied to subtrees of the entire heap whose nodes are stored between the indices L 

and R and whose tree structure is defined by the formulas 2 · i and 2 · i + 1.

const  m = … ;  { length of heap }
type  addr = 1 .. m;
var  h: array[addr] of elt;

procedure restore(L, R: addr);
var  i, j: addr;
begin

i := L;
while  i ≤ (R div 2)  do  begin

if  (2 · i < R) cand (h[2 · i + 1] < h[2 · i])  then  j := 2 · i + 
1  else  j := 2 · i;

if  h[j] < h[i]  then  { h[i] :=: h[j];  i := j }  else  i := R
end

end;

Since 'restore' operates along a single path from the root to a leaf in a tree with at most R – L nodes, it works in  

time O(log (R – L)).

Creating a heap

An array h can be turned into a heap as follows: for  i := n div 2  down to  1  do  restore(i, n);
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This is more efficient than repeated insertion of a single element into an existing heap. Since the for loop is 

executed n div 2 times, and n – i ≤ n, the time complexity for creating a heap with n elements is O(n · log n). A more  

careful analysis shows that the time complexity for creating a heap is O(n).

Heap implementation of the fixed-length priority queue
const  m = … ;  { maximum length of heap }
type addr = 1 .. m;

priorityqueue = record
h: array[addr] of elt;  { heap storage }
n: 0 .. m  { current number of elements }

end;

procedure restore(var h: array[addr] of elt; L, R: addr);
begin  …  end;

procedure create(var p: priorityqueue);
begin  p.n := 0  end;

function empty(p: priorityqueue): boolean;
begin  return(p.n = 0)  end;

function full(p: priorityqueue): boolean;
begin  return(p.n = m)  end;

procedure insert(var p: priorityqueue; x: elt);
{ not to be called if the queue is full }
var  i: 1 .. m;
begin

p.n := p.n + 1;  p.h[p.n] := x;  i := p.n;
while  (i > 1) cand (p.h[i] < p.h[i div 2])  do

{ p.h[i] :=: p.h[i div 2];  i := i div 2 }
end;

function min(p: priorityqueue): elt;
{ not to be called if the queue is empty }
begin  return(p.h[1])  end;

procedure delete(var p: priorityqueue);
{ not to be called if the queue is empty }
begin  p.h[1] := p.h[p.n];  p.n := p.n – 1;  restore(p.h, 1, p.n) 

end;

Heapsort 

The heap is the core of an elegant O(n · log n) sorting algorithm. The following procedure 'heapsort' sorts n 

elements stored in the array h into decreasing order.

procedure heapsort(n: addr);  { sort elements stored in h[1 .. n] }
var  i: addr;
begin  { heap creation phase: the heap is built up }

for  i := n div 2  downto  1  do  restore(i, n);
{ shift-up phase: elements are extracted from heap in increasing 

order }
for  i := n  downto  2  do  { h[i] :=: h[1];  restore(1, i – 1) }

end;

Each of the for loops is executed less than n times, and the time complexity of restore is O(log n). Thus heapsort  

always works in time O(n · log n).
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Exercises and programming projects

 1. Block-diagonal matrices  are composed of smaller  matrices that line up along the diagonal and have 0  

elements everywhere else, as shown in Exhibit 20.12. Show how to store an arbitrary block-diagonal matrix 

in a minimal storage area, and write down the corresponding address computation formulas.

Exhibit 20.12: Structure of a block-diagonal matrix. 

 2. Let A be an antisymmetric n × n-matrix (i. e., all elements of the matrix satisfy Aij = –Aji).

(a) What values do the diagonal elements Aii of the matrix have?

(b) How can A be stored in a linear array c of minimal size? What is the size of c?

(c) Write a

function A(i, j: 1 .. n): real;

which returns the value of the corresponding matrix element.

 3. Show that the product of two n × n matrices of width 2 · b + 1 (b = 0, 1, …) is again a band matrix. What is 

the width of the product matrix? Write a procedure that computes the product of two band matrices both 

having the same width and stores the result as a band matrix of minimal width.

 4. Implement a double-ended queue (deque) by a circular buffer.

 5. What are the minimum and maximum numbers of elements in a heap of height h?

 6. Determine the time complexities of the following operations performed on a heap storing n elements.  (a) 

Searching any element. (b) Searching the largest element (i.e. the element with lowest priority).

 7. Implement heapsort and animate the sorting process, for example as shown in the snapshots in “Algorithm 

animation”. Compare the number of comparisons and exchange operations needed by heapsort and other 

sorting algorithms (e.g. quicksort) for different input configurations.

 8. What is the running time of heapsort on an array h[1 .. n] that is already sorted in increasing order? What  

about decreasing order?

 9. In a k-ary heap, nodes have k children instead of 2 children.

(a) How would you represent a k-ary heap in an array?

(b) What is the height of a k-ary heap in terms of the number of elements n and k?

(c) Implement a priority queue by a k-ary heap. What are the time complexities of the operations 'insert'  

and 'delete' in terms of n and k?
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21. List structures
Learning objectives:

• static vs dynamic data structures

• linear, circular and two-way lists

• fifo queue implemented as a linear list

• breadth-first and depth-first tree traversal

• traversing a binary tree without any auxiliary memory: triple tree traversal algorithm

• dictionary implemented as a binary search tree

• Balanced trees guarantee that dictionary operations can be performed in logarithmic time

• height-balanced trees

• multiway trees

Lists, memory management, pointer variables 

The spectrum of data structures ranges from static objects, such as a table of constants, to dynamic structures,  

such as lists. A list is designed so that not only the data values stored in it, but its size and shape can change at run 

time, due to insertions, deletions, or rearrangement of data elements. Most of the data structures discussed so far 

can change their size and shape to a limited extent. A circular buffer, for example, supports insertion at one end and  

deletion at  the other,  and can  grow to a  predeclared  maximal  size.  A  heap supports  deletion at  one end and 

insertion anywhere into an array. In a list, any local change can be done with an effort that is independent of the  

size of the list - provided that we know the memory locations of the data elements involved. The key to meeting this  

requirement is the idea of abandoning memory allocation in large contiguous chunks, and instead allocating it 

dynamically in the smallest chunk that will hold a given object.  Because data elements are stored randomly in  

memory, not contiguously, an insertion or deletion into a list does not propagate a ripple effect that shifts other 

elements around. An element inserted is allocated anywhere in memory where there is space and tied to other 

elements by  pointers (i.e. addresses of the memory locations where these elements happen to be stored at the 

moment). An element deleted does not leave a gap that needs to be filled as it would in an array. Instead, it leaves  

some free space that can be reclaimed later by a memory management process. The element deleted is likely to  

break some chains that tie other elements together; if so, the broken chains are relinked according to rules specific  

to the type of list used.

Pointers  are  the  language  feature  used  in  modern  programming  languages  to  capture  the  equivalent  of  a 

memory address. A pointer value is essentially an address, and a pointer variable ranges over addresses. A pointer,  

however, may contain more information than merely an address. In Pascal and other strongly typed languages, for 

example, a pointer also references the type definition of the objects it can point to - a feature that enhances the 

compiler's ability to check for consistent use of pointer variables.

Let us illustrate these concepts with a simple example: a  one-way linear list is a sequence of cells each of 

which (except the last) points to its successor. The first cell is the head of the list, the last cell is the tail. Since the  
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tail has no successor, its pointer is assigned a predefined value 'nil', which differs from the address of any cell.  

Access to the list is provided by an external pointer 'head'. If the list is empty, 'head' has the value 'nil'. A cell stores  

an element xi and a pointer to the successor cell (Exhibit 21.1):

type cptr = ^cell;
cell = record  e: elt;  next: cptr  end;

Exhibit 21.1: A one-way linear list.

Local operations, such as insertion or deletion at a position given by a pointer p, are efficient. For example, the  

following statements insert a new cell containing an element y as successor of a cell being pointed at by p ( Exhibit

21.2):

new(q);  q^.e := y;  q^.next := p^.next;  p^.next := q;

Exhibit 21.2: Insertion as a local operation.

The successor of the cell pointed at by p is deleted by a single assignment statement (Exhibit 21.3):

p^.next := p^.next^.next;

Exhibit 21.3: Deletion as a local operation.

An insertion or deletion at the head or tail of this list is a special case to be handled separately. To support  

insertion at the tail, an additional pointer variable 'tail' may be set to point to the tail element, if it exists.

A one-way linear list sometimes is handier if the tail points back to the head, making it a  circular list. In a 

circular list, the head and tail cells are replaced by a single entry cell, and any cell can be reached from any other 

without having to start at the external pointer 'entry' (Exhibit 21.4).

Exhibit 21.4: A circular list combines head and tail into a single entry point
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In a  two-way (or  doubly linked)  list each cell  contains two pointers,  one to its  successor,  the other  to its 

predecessor. The list can be traversed in both directions. Exhibit 21.5 shows a circular two-way list.

Exhibit 21.5: A circular two-way or doubly-linked list

Exercise: traversal of a singly linked list in both directions

Write a recursive

procedure traverse(p: cptr);

to traverse a singly linked list from the head to the tail and back again. At each visit of a node, call the

procedure visit(p: cptr);

Solve  the same problem iteratively  without  using any additional  storage beyond a  few local  pointers.  Your  

traversal procedure may modify the structure of the list temporarily.

Solution
(a) procedure traverse(p: cptr);

begin  if  p ≠ nil  then  { visit(p);  traverse(p^.next); 
visit(p) }  end;

The initial call of this procedure is
traverse(head);

(b) procedure traverse(p: cptr);
var  o, q: cptr;  i: integer;
begin

for  i := 1  to  2  do  { forward and back again }  begin
o := nil;
while  p ≠ nil  do  begin

visit(p);  q := p^.next;  p^.next := o;
o := p;  p := q  { the fork advances }

end;
p := o

end
end;

Traversal becomes simpler if we let the 'next' pointer of the tail 
cell point to this cell itself:

procedure traverse(p: cptr);
var o, q: cptr;
begin

o := nil;
while  p ≠ nil  do  begin

visit(p);  q := p^.next;  p^.next := o;
o := p;  p := q  { the fork advances }

end
end;
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The fifo queue implemented as a one-way list 

It is natural to implement a fifo queue as a one-way linear list, where each element points to the next one "in  

line". The operation 'dequeue' occurs at the pointer 'head', and 'enqueue' is made fast by having an external pointer  

'tail' point to the last element in the queue. A crafty implementation of this data structure involves an empty cell,  

called a  sentinel, at the tail of the list. Its purpose is to make the list-handling procedures simpler and faster by 

making the empty queue look more like all other states of the queue. More precisely, when the queue is empty, the  

external pointers 'head' and 'tail' both point to the sentinel rather than having the value 'nil'. The sentinel allows 

insertion into the empty queue, and deletion that results in an empty queue, to be handled by the same code that 

handles the general case of 'enqueue' and 'dequeue'. The reader should verify our claim that a sentinel simplifies the  

code by programming the plausible, but less efficient, procedures which assume that an empty queue is represented 

by head = tail = nil.

The queue is empty if and only if 'head' and 'tail' both point to the sentinel (i.e. if head = tail). An 'enqueue' 

operation is performed by inserting the new element into the sentinel cell and then creating a new sentinel.

type cptr = ^cell;
cell = record  e: elt;  next: cptr  end;
fifoqueue = record  head, tail: cptr  end;

procedure create(var f: fifoqueue);
begin  new(f.head);  f.tail := f.head  end;

function empty(f: fifoqueue): boolean;
begin  return(f.head = f.tail)  end;

procedure enqueue(var f: fifoqueue; x: elt);
begin  f.tail^.e := x;  new(f.tail^.next);  f.tail := f.tail^.next 

end;

function front(f: fifoqueue): elt;
{ not to be called if the queue is empty }
begin  return(f.head^.e)  end;

procedure dequeue(var f: fifoqueue);
{ not to be called if the queue is empty }
begin  f.head := f.head^.next  end;

Tree traversal

When  we  speak  of  trees  in  computer  science,  we  usually  mean  rooted,  ordered  trees: they  have  a 

distinguished node called the root, and the subtrees of any node are ordered. Rooted, ordered trees are best defined  

recursively: a tree T is either empty, or it is a tuple (N, T1, … , Tk), where N is the root of the tree, and T1, … , Tk is a 

sequence of trees. Binary trees are the special case k = 2.

Trees are typically used to organize data or activities in a hierarchy: a top-level data set or activity is composed of  

a next level of data or activities, and so on. When one wishes to gather or survey all of the data or activities, it is  

necessary to traverse the tree, visiting (i.e. processing) the nodes in some systematic order. The visit at each node  

might be as simple as printing its contents or as complicated as computing a function that depends on all nodes in 

the tree. There are two major ways to traverse trees: breadth first and depth first.

Breadth-first  traversal visits  the  nodes  level  by  level.  This  is  useful  in  heuristic  search,  where  a  node  

represents  a  partial  solution  to  a  problem,  with  deeper  levels  representing  more  complete  solutions.  Before 

pursuing any one solution to a great depth, it may be advantageous to assess all the partial solutions at the present  
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level, in order to pursue the most promising one. We do not discuss breadth-first traversal  further,  we merely 

suggest the following:

Exercise: breadth-first traversal

Decide  on  a  representation  for  trees  where  each  node  may  have  a  variable  number  of  children.  Write  a  

procedure for breadth-first traversal of such a tree. Hint: use a fifo queue to organize the traversal. The node to be 

visited is removed from the head of the queue, and its children are enqueued, in order, at the tail end.

Depth-first traversal always moves to the first unvisited node at the next deeper level, if there is one. It turns 

out that depth-first better fits the recursive definition of trees than breadth-first does and orders nodes in ways that  

are more often useful. We discuss depth-first for binary trees and leave the generalization to other trees to the  

reader.  Depth-first  can  generate  three  basic  orders  for  traversing  a  binary  tree:  preorder,  inorder,  and 

postorder, defined recursively as:

preorder Visit root, traverse left subtree, traverse right subtree.
Inorder Traverse left subtree, visit root, traverse right subtree.
postorder Traverse left subtree, traverse right subtree, visit root.

For the tree in Exhibit 21.6we obtain the orders shown.

Exhibit 21.6: Standard orders defined on a binary tree

An arithmetic expression can be represented as a binary tree by assigning the operands to the leaves and the  

operators  to  the  internal  nodes.  The  basic  traversal  orders  correspond to  different  notations  for  representing 

arithmetic  expressions.  By traversing the expression tree  (Exhibit  21.7)  in  preorder,  inorder,  or  postorder,  we 

obtain the prefix, infix, or suffix notation, respectively.

Exhibit 21.7: Standard traversal orders correspond to different notations for arithmetic expressions

A binary tree can be implemented as a list structure in many ways. The most common way uses an external 

pointer 'root' to access the root of the tree and represents each node by a cell that contains a field for an element to 

be stored, a pointer to the root of the left subtree, and a pointer to the root of the right subtree (Exhibit 21.8). An 

empty left or right subtree may be represented by the pointer value 'nil', or by pointing at a sentinel, or, as we shall  

see, by a pointer that points to the node itself.

type nptr = ^node;
node = record  e: elt;  L, R: nptr  end;

var root: nptr;

Algorithms and Data Structures 215  A Global Text

http://creativecommons.org/licenses/by/3.0/


21. List structures

Exhibit 21.8: Straightforward implementation of a binary tree 

The following procedure 'traverse' implements any or all of the three orders preorder, inorder, and postorder,  

depending on how the procedures 'visit1', 'visit2', and 'visit3' process the data in the node referenced by the pointer p. 

The root of the subtree to be traversed is passed through the formal parameter p. In the simplest case, a visit does  

nothing or simply prints the contents of the node.

procedure traverse(p: nptr);
begin

if  p ≠ nil  then  begin
visit1(p);  { preorder }
traverse(p^.L);
visit2(p);  { inorder }
traverse(p^.R);
visit3(p)  { postorder }

end
end; 

Traversing a tree involves both advancing from the root toward the leaves, and backing up from the leaves 

toward the root. Recursive invocations of the procedure 'traverse' build up a stack whose entries contain references 

to the nodes for which 'traverse' has been called. These entries provide a means of returning to a node after the  

traversal of one of its subtrees has been finished. The bookkeeping done by a stack or equivalent auxiliary structure  

can be avoided if the tree to be traversed may be modified temporarily.

The following triple-tree traversal algorithm provides an elegant and efficient way of traversing a binary tree 

without using any auxiliary memory (i.e. no stack is used and it is not assumed that a node contains a pointer to its  

parent node). The data structure is modified temporarily to retain the information needed to find the way back up  

the  tree  and to  restore  each  subtree  to  its  initial  condition  after  traversal.  The  triple-tree  traversal  algorithm 

assumes that an empty subtree is encoded not by a 'nil' pointer, but rather by an L (left) or R (right) pointer that 

points to the node itself, as shown in Exhibit 21.9.
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Exhibit 21.9: Coding of a leaf used in procedure TTT

procedure TTT;
var  o, p, q: nptr;
begin

o := nil;  p:= root;
while  p ≠ nil  do  begin

visit(p);
q := p^.L;
p^.L := p^.R;  { rotate left pointer }
p^.R := o;  { rotate right pointer }
o := p;
p := q

end
end;

In  this  procedure  the  pointers  p  ("present")  and  o  ("old")  serve  as  a  two-pronged fork.  The  tree  is  being  

traversed by the pointer p and the companion pointer o, which always lags one step behind p. The two pointers 

form a two-pronged fork that runs around the tree, starting in the initial condition with p pointing to the root of the 

tree, and o = nil. An auxiliary pointer q is needed temporarily to advance the fork. The while loop in 'TTT' is  

executed as long as p points to a node in the tree and is terminated when p assumes the value 'nil'. The initial value 

of the o pointer gets saved as a temporary value. First it is assigned to the R pointer of the root, later to the L  

pointer.  Finally,  it  gets assigned to p,  the fork exits from the root of  the tree,  and the traversal  of  the tree  is  

complete. The correctness of this algorithm is proved by induction on the number of nodes in the tree.

Induction hypothesis H: if at the beginning of an iteration of the while loop, the fork pointer p points to the root  

of a subtree with n > 0 nodes, and o has a value x that is different from any pointer value inside this subtree, then  

after 3 · n iterations the subtree will have been traversed in triple order (visiting each node exactly three times), all  

tree pointers in the subtree will have been restored to their original value, and the fork pointers will have been  

reversed (i.e. p has the value x and o points to the root of the subtree).

Base of induction: H is true for n = 1.

Proof: The smallest tree we consider has exactly one node, the root alone. Before the while loop is executed for  

this subtree, the fork and the tree are in the initial state shown inExhibit 21.10. Exhibit 21.11 shows the state of the 

fork and the tree after each iteration of the while loop. The node is visited in each iteration.

Exhibit 21.10 : Initial configuration for traversing a tree consisting of a single node
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Exhibit 21.11: Tracing procedure TTT while traversing the smallest tree

Induction step: If H is true for all n, 0 < n ≤ k, H is also true for k + 1.

Proof: Consider a tree T with k + 1 nodes. T consists of a root and k nodes shared among the left and right 

subtrees of the root. Each of these subtrees has ≤ k nodes, so we apply the induction hypothesis to each of them. 

The  following is  a  highly  compressed account  of  the proof  of  the induction step,  illustrated  by  Exhibit  21.12. 

Consider the tree with k + 1 nodes shown in state 1. The root is a node with three fields; the left and right subtrees  

are shown as triangles.  The figure shows the typical case when both subtrees are nonempty. If one of the two 

subtrees is empty, the corresponding pointer points back to the root; these two cases can be handled similarly to the  

case n = 1. The fork starts out with p pointing at the root and o pointing at anything outside the subtree being  

traversed. We want to show that the initial state 1 is transformed in 3 · (k + 1) iterations into the final state 6. In the 

final state the subtrees are shaded to indicate that they have been correctly traversed; the fork has exited from the 

root, with p and o having exchanged values. To show that the algorithm correctly transforms state 1 into state 6, we  

consider the intermediate states 2 to 5, and what happens in each transition.

1 → 2 One iteration through the while loop advances the fork into the left subtree and rotates the pointers of the 

root.

2 → 3 H applied to the left subtree of the root says that this subtree will be correctly traversed, and the fork will 

exit from the subtree with pointers reversed.

3 → 4 This is the second iteration through the while loop that visits the root. The fork advances into the right 

subtree, and the pointers of the root rotate a second time.

4 → 5 H applied to the right subtree of the root says that this subtree will be correctly traversed, and the fork will 

exit from the subtree with pointers reversed.

5→ 6 This is the third iteration through the while loop that visits the root. The fork moves out of the tree being 

traversed; the pointers of the root rotate a third time and thereby assume their original values.
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Exhibit 21.12: Trace of procedure TTT, invoking the induction hypothesis

Exercise: binary trees

Consider a binary tree declared as follows:

type nptr = ^node;
node = record  L, R: nptr  end;

var root: nptr;

(a) If a node has no left or right subtree, the corresponding pointer has the value 'nil'. Prove that a binary tree  

with n nodes, n > 0, has n + 1 'nil' pointers.
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(b) Write a function nodes(…): integer; that returns the number of nodes, and a function depth(…): integer; 

that returns the depth of a binary tree. The depth of the root is defined to be 0; the depth of any other node 

is the depth of its parent increased by 1. The depth of the tree is the maximum depth of its nodes.

Solution

(a) Each node contains two pointers, for a total of 2 · n pointers in the tree. There is exactly one pointer that 

points to each of n – 1 nodes, none points to the root. Thus 2 · n – (n – 1) = n + 1 pointers are 'nil'. This can 

also be proved by induction on the number of nodes in the tree.

(b) function nodes(p: nptr): integer;
begin

if  p = nil  then
return(0)

else
return(nodes(p^.L) + nodes(p^.R) + 1)

end;

function depth(p: nptr): integer;
begin

if  p = nil then return (–1)
else return(1 + max(depth(p^.L), depth(p^.R)))

end;

where 'max' is

function max(a, b: integer): integer;
begin  if  a > b  then  return(a)  else  return(b)  end;

Exercise: list copying

Effective  memory  management  sometimes  makes  it  desirable  or  necessary  to  copy  a  list.  For  example,  

performance may improve drastically if a list spread over several pages can be compressed into a single page. List 

copying involves a traversal of the original concurrently with a traversal of the copy, as the latter is being built up.

(a) Consider binary trees built from nodes of type 'node' and pointers of type 'nptr'. A tree is accessed through 

a pointer to the root, which is 'nil' for an empty tree

type nptr = ^ node;
node = record  e: elt;  L, R: nptr  end;

Write a recursive

function cptree(p: nptr): nptr;

to copy a tree given by a pointer p to its root, and return a pointer to the root of the copy.

(b) Consider arbitrary graphs built from nodes of a type similar to the nodes in (a), but they have an additional 

pointer field cn, intended to point to the copy of a node:

type  node = record  e: elt;  L, R: nptr;  cn: nptr  end;

A graph is accessed through a pointer to a node called the origin, and we are only concerned with nodes that can 

be reached from the origin; this access pointer is 'nil' for an empty graph. Write a recursive

function cpgraph(p: nptr): nptr;
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to copy a graph given by a pointer p to its origin, and return a pointer to the origin of the copy. Use the field cn,  

assuming that its initial value is 'nil' in every node of the original graph; set it to 'nil' in every node of the copy.

Solution
(a) function cptree(p: nptr): nptr;

var  cp: nptr;
begin

if  p = nil  then
return(nil)

else  begin
new(cp);
cp^.e := p^.e;  cp^.L := cptree(p^.L);  cp^.R := cptree(p^.R);
return(cp)

end
end;

(b) function cpgraph(p: nptr): nptr;
var  cp: nptr;
begin

if  p = nil  then
return(nil)

elsif  p^.cn ≠ nil  then  { node has already been copied }
return(p^.cn)

else  begin
new(cp);  p^.cn := cp;  cp^.cn := nil;
cp^.e := p^.e;  cp^.L := cpgraph(p^.L);  cp^.R := cpgraph(p^.R);
return(cp)

end
end;

Exercise: list copying with constant auxiliary memory

Consider binary trees as in part (a) of the preceding exercise. Memory for the stack implied by the recursion can  

be saved by writing an iterative tree copying procedure that uses only a constant amount of auxiliary memory. This 

requires a trick, as any depth-first traversal must be able to back up from the leaves toward the root. In the triple-

tree traversal procedure, the return path is temporarily encoded in the tree being traversed. This idea can again be 

used here, but there is a simpler solution: The return path is temporarily encoded in the R-fields of the copy; the L-

fields of certain nodes of the copy point back to the corresponding node in the original. Work out the details of a 

tree-copying procedure that works with O(1) auxiliary memory.

Exercise: traversing a directed acyclic graph 

A directed graph consists of nodes and directed arcs, where each arc leads from one node to another. A directed 

graph is acyclic if the arcs form no cycles. One way to ensure that a graph is acyclic is to label nodes with distinct  

integers and to draw each arc from a lower number to a higher number. Consider a binary directed acyclic graph,  

where each node has two pointer fields, L and R, to represent at most two arcs that lead out of that node. An 

example is shown in Exhibit 21.13.

Exhibit 21.13: A rooted acyclic graph.
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(a) Write a program to visit every node in a directed acyclic graph reachable from a pointer called 'root'. You  

are free to execute procedure 'visit' for each node as often as you like.

(b) Write a program similar to (a) where you are required to execute procedure 'visit' exactly once per node. 

Hint: Nodes may need to have additional fields.

Exercise: counting nodes on a square grid

Consider a network superimposed on a square grid: each node is connected to at most four neighbors in the 

directions east, north, west, south (Exhibit 21.14):

type nptr = ^node;
node = record  E, N, W, S: nptr;  status: boolean  end;

var origin: nptr;

Exhibit 21.14: A graph embedded in a square grid.

A 'nil' pointer indicates the absence of a neighbor. Neighboring nodes are doubly linked: if a pointer in node p  

points to node q, the reverse pointer of q points to p; (e.g., p^.W = q and q^.E = p). The pointer 'origin' is 'nil' or  

points to a node. Consider the problem of counting the number of nodes that can be reached from 'origin'. Assume  

that the status field of all nodes is initially set to false. How do you use this field? Write a function nn(p: nptr):  

integer; to count the number of nodes.

Solution
function nn(p: nptr): integer;
begin

if  p = nil cor p^.status  then
return(0)

else  begin 
p^.status:= true;
return(1 + nn(p^.E) + nn(p^.N) + nn(p^.W) + nn(p^.S))

end
end;

Exercise: counting nodes in an arbitrary network

We generalize the problem above to arbitrary directed graphs, such as that of  Exhibit 21.15, where each node 

may have any number of neighbors. This graph is represented by a data structure defined by Exhibit 21.16 and the 

type definitions below. Each node is linked to an arbitrary number of other nodes.

Exhibit 21.15: An arbitrary (cyclic) directed graph.
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Exhibit 21.16: A possible implementation as a list structure.

type nptr = ^node;  cptr = ^cell;
node = record  status: boolean;  np: nptr;  cp: cptr  end; 
cell = record  np: nptr;  cp: cptr  end;

var origin: nptr;

The pointer 'origin' has the value 'nil' or points to a node. Consider the problem of counting the number n of  

nodes that can be reached from 'origin'. The status field of all nodes is initially set to false. How do you use it? Write  

a function nn(p: nptr): integer; that returns n.

Binary search trees

A binary search tree is a binary tree T where each node N stores a data element e(N) from a domain X on  

which a total order ≤ is defined, subject to the following order condition: For every node N in T, all elements in the 

left subtree L(N) of N are < e(N), and all elements in the right subtree R(N) of N are > e(N). Let x1,  2, … , xn be n 

elements drawn from the domain X.

Definition:  A binary search tree for x1, x2, … , xn is a binary tree T with n nodes and a one-to-one mapping 

between the n given elements and the n nodes, such that

 ∀ N in T  ∀ N' ∈ L(N)  ∀ N" ∈ R(N):  e(N') < e(N) < e(N")

Exercise

Show that the following statement is equivalent to this order condition: The inorder traversal of the nodes of T 

coincides with the natural order < of the elements assigned to the nodes.

Remark:  The order condition can be relaxed to e(N') ≤ e(N) < e(N") to accommodate multiple occurrences of 

the same value, with only minor modifications to the statements and algorithms presented in this section. For 

simplicity's sake we assume that all values in a tree are distinct.

The order condition permits binary search and thus guarantees a worst-case search time O(h) for a tree of height  

h.  Trees  that  are  well  balanced  (in  an  intuitive  sense;  see  the  next  section  for  a  definition),  that  have  not 

degenerated into linear lists, have a height h = O(log n) and thus support search in logarithmic time.
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Basic operations on binary search trees are most easily implemented as recursive procedures. Consider a tree  

represented as in the preceding section, with empty subtrees denoted by 'nil'. The following function 'find' searches

for an element x in a subtree pointed to by p. It returns a pointer to a node containing x if the search is successful,  

and 'nil' if it is not.

function find(x: elt; p: nptr): nptr;
begin

if  p = nil  then  return(nil)
elsif  x < p^.e  then  return(find(x, p^.L))
elsif  x > p^.e  then  return(find(x, p^.R))
else  { x = p^.e }  return(p)

end;

The following procedure 'insert' leaves the tree alone if the element x to be inserted is already stored in the tree. 

The parameter p initially points to the root of the subtree into which x is to be inserted.

procedure insert(x: elt; var p: nptr);
begin

if  p = nil  then  { new(p);  p^.e := x;  p^.L := nil;  p^.R := 
nil }

elsif  x < p^.e  then  insert(x, p^.L)
elsif  x > p^.e  then  insert(x, p^.R)

end;

Initial call:
insert(x, root);

To delete an element x, we first have to find the node N that stores x. If this node is a leaf or semileaf (a node  

with only one subtree), it is easily deleted; but if it has two subtrees, it is more efficient to leave this node in place 

and to replace its element x by an element found in a leaf or semileaf node, and delete the latter (Exhibit 21.17). 

Thus we distinguish three cases:

1. If N has no child, remove N.

2. If N has exactly one child, replace N by this child node.

3. If N has two children, replace x by the largest element y in the left subtree, or by the smallest element z in  

the right subtree of N. Either of these elements is stored in a node with at most one child, which is removed  

as in case (1) or (2).
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Exhibit 21.17: Element x is deleted while preserving its node N. Node N is 

filled with a new value y, whose old node is easier to delete. 

A sentinel is again the key to an elegant iterative implementation of binary search trees. In a node with no left or  

right child, the corresponding pointer points to the sentinel. This sentinel is a node that contains no element; its left 

pointer points to the root and its right pointer points to itself. The root, if it exists, can only be accessed through the  

left pointer of the sentinel. The empty tree is represented by the sentinel alone (Exhibit 21.18). A typical tree is 

shown in Exhibit 21.19.

Exhibit 21.18: The empty binary tree is represented by the sentinel which points to itself.

Exhibit 21.19: A binary tree implemented as a list structure with 

sentinel.

The following implementation of a dictionary as a binary search tree uses a sentinel accessed via the variable d:

type nptr = ^node;
node = record  e: elt;  L, R: nptr  end;
dictionary = nptr;

procedure create(var d: dictionary);
begin  {create sentinel }  new(d);  d^.L := d;  d^.R := d  end;
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function member(d: dictionary; x: elt): boolean;
var  p: nptr;
begin

d^.e := x;  { initialize element in sentinel }
p := d^.L;  { point to root, if it exists }
while  x ≠ p^.e  do

if  x < p^.e  then  p := p^.L  else  { x > p^.e }  p := p^.R;
return(p ≠ d)

end;

Procedure 'find' searches for x. If found, p points to the node containing x, and q to its parent. If not found, p  

points to the sentinel and q to the parent-to-be of a new node into which x will be inserted.

procedure find(d: dictionary; x: elt; var p, q: nptr);
begin

d^.e := x;  p := d^.L;  q := d;
while  x ≠ p^.e  do  begin

q := p;
if  x < p^.e  then  p := p^.L  else  { x > p^.e }  p := p^.R

end
end;

procedure insert(var d: dictionary; x: elt);
var  p, q: nptr;
begin

find(d, x, p, q);
if  p = d  then  begin  { x is not yet in the tree }

new(p);  p^.e := x;  p^.L := d;  p^.R := d;
if  x ≤ q^.e  then  q^.L := p  else  { x > q^.e }  q^.R := p

end
end;

procedure delete(var d: dictionary; x: elt);
var  p, q, t: nptr;
begin

find(d, x, p, q);
if  p ≠ d  then  { x has been found }

if  (p^.L ≠ d) and (p^.R ≠ d)  then  begin
{ p has left and right children; find largest element in left 

subtree }
t := p^.L;  q:= p;
while  t^.R ≠ d  do  { q := t;  t := t^.R };
if  t^.e < q^.e  then  q^.L := t^.L  else  { t^.e > q^.e } 

q^.R := t^.L
p^.e := t^.e;

end
else  begin  { p has at most one child }

if p^.L ≠ d  then{ left child only } p := p^.L
elsif p^.R ≠ d  then{ right child only } p := p^.R
else { p has no children }p := d;
if  x ≤ q^.e  then  q^.L := p  else  { x > q^.e }  q^.R := p

end
end;

In the best case of a completely balanced binary search tree for n elements, all leaves are on levels  [log2  n] or 

[log2 n]– 1, and the search tree has the height  [log2 n]. The cost for performing the 'member', 'insert', or 'delete' 

operation is bounded by the longest path from the root to a leaf (i.e. the height of the tree) and is therefore O(log n). 
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Without any further provisions, a binary search tree can degenerate into a linear list in the worst case. Then the cost  

for each of the operations would be O(n).

What  is  the  expected  average  cost  for  the  search  operation  in  a  randomly  generated binary  search  tree? 

"Randomly generated" means that each permutation of the n elements to be stored in the binary search tree has the 

same probability of being chosen as the input sequence. Furthermore, we assume that the tree is generated by 

insertions only. Therefore, each of the n elements is equally likely to be chosen as the root of the tree. Let pn be the 

expected path length of a randomly generated binary search tree storing n elements. Then

As shown in chapter 16 in the section “Recurrence relations”, this recurrence relation has the solution

Since the average search time in randomly generated binary search trees, measured in terms of the number of 

nodes visited, is pn / n and ln 4 ≈ 1.386, it follows that the cost is O(log n) and therefore only about 40 per cent 

higher than in the case of completely balanced binary search trees.

Balanced trees: general definition

If insertions and deletions occurred at random, and the assumption of the preceding section was realistic, we 

could let search trees grow and shrink as they please, incurring a modest increase of 40 per cent in search time over 

completely  balanced  trees.  But  real  data  are  not  random:  they  are  typically  clustered,  and  long  runs  of  

monotonically  increasing  or  decreasing  elements  occur,  often  as  the  result  of  a  previous  processing  step.  

Unfortunately, such deviation from randomness degrades the performance of search trees.

To prevent search trees from degenerating into linear lists, we can monitor their shape and restructure them 

into  a  more  balanced shape whenever they have  become too skewed.  Several  classes  of  balanced search trees  

guarantee that each operation 'member', 'insert', and 'delete' can be performed in time O(log  n) in the worst case. 

Since the work to be done depends directly on the height of the tree, such a class B of search trees must satisfy the 

following two conditions (hT is the height of a tree T, nT is the number of nodes in T):

Balance condition:  ∃c > 0  ∀ T ∀ B:  hT ≤ c · log2 nT

Rebalancing condition:  If an 'insert' or 'delete' operation, performed on a tree T ∈ B, yields a tree T' ∉ B, it 

must be possible to rebalance T' in time O(log n) to yield a tree T" ∈ B.

Example: almost complete trees

The class  of  almost  complete  binary  search  trees  satisfies  the  balance  condition  but  not  the  restructuring 

condition. In the worst case it takes time O(n) to restructure such a binary search tree (Exhibit 21.20), and if 'insert' 

and 'delete' are defined to include any rebalancing that may be necessary, these operations cannot be guaranteed to  

run in time O(log n).
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Exhibit 21.20: Restructuring: worst case

In the next two sections we present several classes of balanced trees that meet both conditions: the height-

balanced or AVL-trees (G. Adel'son-Vel'skii and E. Landis, 1962) [AL 62] and various multiway trees, such as B-

trees [BM 72, Com 79] and their generalization, (a,b)-trees [Meh 84a].

AVL-trees, with their small nodes that hold a single data element, are used primarily for storing data in main  

memory. Multiway trees, with potentially large nodes that hold many elements, are also useful for organizing data  

on secondary storage devices, such as disks, that allow direct access to sizable physical data blocks. In this case, a  

node is typically chosen to fill a physical data block, which is read or written in one access operation.

Height-balanced trees

Definition:  A binary tree is height-balanced if, for each node, the heights of its two subtrees differ by at most 

one. Height-balanced search trees are also called AVL-trees. Exhibit 21.21 to Exhibit 21.23 show various AVL-trees, 

and one that is not.

Exhibit 21.21: Examples of height-balanced trees

Exhibit 21.22: Example of a tree not height-balanced;the marked node violates the balance condition.

A "most-skewed" AVL-tree Th is an AVL-tree of height h with a minimal number of nodes. Starting with T 0 and 

T1 shown in Exhibit 21.23, Th is obtained by attaching Th–1 and Th–2 as subtrees to a new root.
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Exhibit 21.23: Most skewed AVL trees of heights h = 0 through h = 4

The number of nodes in a most-skewed AVL-tree of height h is given by the recurrence relation

nh = nh–1 + nh–2 + 1,  n0 = 1,  n1 = 2.

In the section on recurrence relations in the chapter entitled “The mathematics of algorithm analysis”, it has 

been shown that the recurrence relation

mh = mh–1 + mh–2,  m0 = 0,  m1 = 1

has the solution

Since nh = mh+3 – 1 we obtain

Since 

it follows that 

and therefore nh behaves asymptotically as
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Applying the logarithm results in

Therefore, the height of a worst-case AVL-tree with n nodes is about 1.44 · log2 n. Thus the class of AVL-trees 

satisfies the balance condition, and the 'member' operation can always be performed in time O(log  n).

We now show that  the class  of  AVL-trees  also  satisfies  the rebalancing condition.  Thus AVL-trees  support 

insertion and deletion in time O(log n). Each node N of an AVL-tree has one of the balance properties / (left-

leaning), \ (right-leaning), or – (horizontal), depending on the relative height of its two subtrees.

Two local tree operations, rotation and double rotation, allow the restructuring of height-balanced trees that 

have been disturbed by an insertion or deletion. They split a tree into subtrees and rebuild it in a different way. 

Exhibit  21.24 shows a  node,  marked black,  that  got  out  of  balance,  and how a local  transformation builds  an 

equivalent tree (for the same elements, arranged in order) that is balanced. Each of these transformations has a 

mirror image that is not shown. The algorithms for insertion and deletion use these rebalancing operations as 

described below.

Exhibit 21.24: Two local rebalancing operations

Insertion

A new element is inserted as in the case of a binary search tree. The balance condition of the new node becomes  

– (horizontal). Starting at the new node, we walk toward the root of the tree, passing along the message that the  

height of the subtree rooted at the current node has increased by one. At each node encountered along this path, an  

operation determined by the following rules is performed. These rules depend on the balance condition of the node 

before the new element was inserted, and on the direction from which the node was entered (i.e. from its left or  

right child).
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Rule I1:  If the current node has balance condition –, change it to / or \ depending on whether we entered from 

the node's left or from its right child. If the current node is the root, terminate; if not, continue to follow the path 

upward.

Rule I2:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

shorter, change the balance condition to—and terminate (the height of the subtree rooted at the current node has 

not changed).

Rule I3:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

taller, the balance condition of the current node is violated and gets restored as follows:

(a) If the last two steps were in the same direction (both from left children, or both from right children), an  

appropriate rotation restores all balances and the procedure terminates.

(b) If the last two steps were in opposite directions (one from a left child, the other from a right child), an 

appropriate double rotation restores all balances and the procedure terminates.

The initial insertion travels along a path from the root to  a leaf, and the rebalancing process travels back up 

along the same path. Thus the cost of an insertion in an AVL-tree is O(h), or O(log n) in the worst case. Notice that 

an insertion calls for at most one rotation or double rotation, as shown in the example in Exhibit 21.25.

Example

Insert 1, 2, 5, 3, 4, 6, 7 into an initially empty AVL-tree (Exhibit 21.25). The balance condition of a node is shown 

below it. Boldfaced nodes violate the balance condition.
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Exhibit 21.25: Trace of consecutive insertions and the rebalancings they trigger

Deletion

An element is deleted as in the case of a binary search tree. Starting at the parent of the deleted node, walk 

towards the root, passing along the message that the height of the subtree rooted at the current node has decreased  

by one. At each node encountered, perform an operation according to the following rules. These rules depend on  

the balance condition of the node before the deletion and on the direction from which the current node and its child 

were entered.

Rule D1:  If the current node has balance condition –, change it to \ or / depending on whether we entered from  

the node's left or from its right child, and terminate (the height of the subtree rooted at the current node has not  

changed).

Rule D2:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

taller, change the balance condition to – and continue upward, passing along the message that the subtree rooted at  

the current node has been shortened.

Rule D3:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

shorter,  the balance condition is  violated at  the current  node.  We distinguish three subcases  according to the 
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balance  condition  of  the  other  child  of  the  current  node  (consider  also  the  mirror  images  of  the  following 

illustrations):

(a)

X Y
Z

a
b

X
Y

Z

b
a

rotation

An appropriate rotation restores the balance of the current node without changing the height of the subtree 

rooted at this node. Terminate.

(b)

X
Y Z

b
a

X Y Z

a
b

rotation

A rotation restores the balance of the current node. Continue upward, passing along the message that the  

subtree rooted at the current node has been shortened.

(c)

double rotation

W

a
b

c
a

b
c

X Y
Z W X Y Z

A double rotation restores the balance of the current node. Continue upward, passing along the message that  

the subtree rooted at the current node has been shortened. Similar transformations apply if either X or Y, but not  

both, are one level shorter than shown in this figure. If so, the balance conditions of some nodes differ from those  

shown, but this has no influence on the total height of the subtree. In contrast to insertion, deletion may require 

more than one rotation or double rotation to restore all balances. Since the cost of a rotation or double rotation is  

constant, the worst-case cost for rebalancing the tree depends only on the height of the tree, and thus the cost of a  

deletion in an AVL-tree is O(log n) in the worst case.

Multiway trees

Nodes in a multiway tree may have a variable number of children. As we are interested in balanced trees, we add  

two restrictions. First, we insist that all leaves (the nodes without children) occur at the same depth. Second, we 

constrain the number of children of all internal nodes by a lower bound a and an upper bound b. Many varieties of  

multiway trees are known; they differ in details, but all are based on similar ideas. For example, (2,3)-trees are 

defined by the requirement that all internal nodes have either two or three children. We generalize this concept and 

discuss (a,b)-trees.

Definition:  Consider a domain X on which a total order ≤ is defined. Let a and b be integers with 2 ≤ a and 2 · 

a – 1 ≤ b. Let c(N) denote the number of children of node N. An (a,b)-tree is an ordered tree with the following 

properties:
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• All leaves are at the same level

• 2 ≤ c(root) ≤ b

• For all internal nodes N except the root, a ≤ c(N) ≤ b

A node with k children contains k – 1 elements x1 < x2 < … < xk–1 drawn from X; the subtrees corresponding to 

the k children are denoted by T1, T2, … , Tk. An (a,b)-tree supports "c(N) search" in the same way that a binary tree 

supports binary search, thanks to the following order condition:

• y ≤ xi for all elements y stored in subtrees T1, … , Ti

• xi < z for all elements z stored in subtrees Ti+1, … , Tk

Definition:  (a,b)-trees with b = 2 · a – 1 are known as B-trees [BM 72, Com 79].

The algorithms we discuss operate on internal nodes, shown in white in  Exhibit 21.26, and ignore the leaves, 

shown in black. For the purpose of understanding search and update algorithms, leaves can be considered fictitious 

entities used only for counting. In practice, however, things are different. The internal nodes merely constitute a  

directory to a file that is stored in the leaves. A leaf is typically a physical storage unit, such as a disk block, that 

holds all the records whose key values lie between two (adjacent) elements stored in internal nodes.

Exhibit 21.26: Example of a (3,5)-tree

The number n of elements stored in the internal nodes of an (a,b)-tree of height h is bounded by 

and thus 

this shows that the class of (a,b)-trees satisfies the balance condition h = O(log n). We show that this class also 

meets the rebalancing condition, namely, that (a,b)-trees support insertion and deletion in time O(log n).

Insertion

Insertion of a new element x begins with a search for x that terminates unsuccessfully at a leaf. Let N be the 

parent  node  of  this  leaf. If  N contained fewer  than  b  –  1  elements  before  the  insertion,  insert  x  into  N  and 

terminate. If N was full, we imagine b elements temporarily squeezed into the overflowing node N. Let m be the 

median of these b elements, and use m to split N into two: a left node NL populated by the (b – 1)  / 2 elements 

smaller than m, and a right node NR populated by the (b – 1) / 2 elements larger than m. The condition 2 · a – 1 ≤ b 

ensures that  (b – 1) / 2  ≥ a – 1, in other words, that each of the two new nodes contains at least a – 1 elements.

The median element m is pushed upward into the parent node, where it serves as a separator between the two  

new nodes NL and NR that now take the place formerly inhabited by N. Thus the problem of insertion into a node at 

a given level is replaced by the same problem one level higher in the tree. The new separator element may be  

absorbed in a nonfull parent, but if the parent overflows, the splitting process described is repeated recursively. At  
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worst,  the splitting process propagates to the root of the tree, where a new root that contains only the median 

element is created. (a,b)-trees grow at the root, and this is the reason for allowing the root to have as few as two 

children.

Deletion

Deletion of an element x begins by searching for it. As in the case of binary search trees, deletion is easiest at the 

bottom of the tree, at a node of maximal depth whose children are leaves. If x is found at a higher level of the tree,  

in a node that has internal nodes as children, x is the separator between two subtrees T L and TR. We replace x by 

another element z, either the largest element in TL or the smallest element in TR, both of which are stored in a node 

at the bottom of the tree. After this exchange, the problem is reduced to deleting an element z from a node N at the  

deepest level.

If deletion (of x or z) leaves N with at least a – 1 elements, we are done. If not, we try to restore N's occupancy  

condition by stealing  an element from an adjacent sibling node M. If  there is  no sibling M that can spare an 

element, that is, if M is minimally occupied, M and N are merged into a single node L. L contains the a – 2 elements  

of N, the a – 1 elements of M, and the separator between M and N which was stored in their parent node, for a total  

of 2 · (a – 1) ≤ b – 1 elements. Since the parent (of the old nodes M and N, and of the new node L) lost an element in 

this merger, the parent may underflow. As in the case of insertion, this underflow can propagate to the root and 

may cause its deletion. Thus (a,b)-trees grow and shrink at the root.

Both insertion and deletion work along a single path from the root down to a leaf and (possibly) back up. Thus 

their time is bounded by O(h), or equivalently, by O(log n): (a,b)-trees can be rebalanced in logarithmic time.

Amortized cost. The performance of (a,b)-trees is better than the worst-case analysis above suggests. It can be 

shown that the total cost of any sequence of s insertions and deletions into an initially empty (a,b)-tree is linear in 

the length s of the sequence: whereas the worst-case cost of a single operation is O(log n), the amortized cost per 

operation is O(1) [Meh 84a]. Amortized cost is a complexity measure that involves both an average and a worst-case  

consideration. The average is taken over all operations in a sequence; the worst case is taken over all sequences.  

Although any one operation may take time O(log n), we are guaranteed that the total of all s operations in any  

sequence of length s can be done in time O(s), as if each single operation were done in time O(1).

Exhibit 21.27: A slightly skewed (3,5)-tree.

Exercise: insertion and deletion in a (3,5)-tree

Starting with the (3,5)-tree shown in  Exhibit 21.27, perform the sequence of operations: insert 38, delete 10, 

delete 12, delete 50. Draw the tree after each operation.

Solution

Inserting 38 causes a leaf and its parent to split (Exhibit 21.28). Deleting 10 causes underflow, remedied by 

borrowing an element from the left  sibling (Exhibit  21.29). Deleting 12 causes underflow in both a leaf and its 

parent, remedied by merging (Exhibit 21.30). Deleting 50 causes merging at the leaf level and borrowing at the 

parent level (Exhibit 21.31).
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Exhibit 21.28: Node splits propagate towards the root

Exhibit 21.29: A deletion is absorbed by borrowing

Exhibit 21.30: Another deletion propagates node merges towards the root

Exhibit 21.31: Node merges and borrowing combined

(2,3)-trees are the special case a = 2, b = 3: each node has two or three children. Exhibit 21.32 omits the leaves. 

Starting with the tree in state 1 we insert the value 9: the rightmost node at the bottom level overflows and splits,  

the median 8 moves up into the parent. The parent also overflows, and the median 6 generates a new root (state 2).  

The deletion of 1 is absorbed without any rebalancing (state 3). The deletion of 2 causes a node to underflow,  

remedied by stealing an element from a sibling: 2 is replaced by 3 and 3 is replaced by 4 (state 4). The deletion of 3 
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triggers the merger of  the nodes assigned to 3 and 5;  this  causes an underflow in their  parent,  which in turn 

propagates to the root and results in a tree of reduced height (state 5).

Exhibit 21.32: Tracing insertions and deletions in a (2,3)-tree

As  mentioned earlier,  multiway  trees  are  particularly  useful  for  managing  data  on  a  disk.  If  each  node  is  

allocated to its own disk block, searching for a record triggers as many disk accesses as there are levels in the tree.  

The depth of the tree is minimized if the maximal fan-out b is maximized. We can pack more elements into a node  

by shrinking their size. As the records to be stored are normally much larger than their identifying keys, we store 

keys only in the internal nodes and store entire records in the leaves (which we had considered to be empty until  

now). Thus the internal nodes serve as an index that assigns to a key value the path to the corresponding leaf.

Exercises and programming projects

 1. Design and implement a list structure for storing a sparse matrix. Your implementation should provide 

procedures for inserting, deleting, changing, and reading matrix elements.

 2. Implement a fifo queue by a circular list using only one external pointer f and a sentinel. f always points to 

the sentinel and provides access to the head and tail of the queue.

 3. Implement a double-ended queue (deque) by a doubly linked list.

 4. Binary search trees and sorting A binary search tree given by the following declarations is used to manage 

a set of integers:

type nptr = ^node 

node = record  L, R: nptr;  x: integer  end; 

var root: nptr;

The empty tree is represented as root = nil.

(a) Draw the result of inserting the sequence 6, 15, 4, 2, 7, 12, 5, 18 into the empty tree.
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(b) Write a procedure smallest(var x: integer); which returns the smallest number stored in the tree, and a 

procedure  remove  smallest;  which  deletes  it.  If  the  tree  is  empty  both  procedures  should  call  a 

procedure message('tree is empty');

(c) Write a procedure sort; that sorts the numbers stored in var a: array[1 .. n] of integer; by inserting the  

numbers into a binary search tree, then writing them back to the array in sorted order as it traverses  

the tree.

(d) Analyze the asymptotic time complexity of 'sort' in a typical and in the worst case.

(e) Does this approach lead to a sorting algorithm of time complexity Θ (ν •  λογ ν) 

 5. Extend the implementation of a dictionary as a binary search tree in the “Binary search trees” section to  

support the operations 'succ' and 'pred' as defined in chapter 19 in the section “Dictionary”.

 6. Insertion and deletion in AVL-trees: Starting with an empty AVL-tree, insert 1, 2, 5, 6, 7, 8, 9, 3, 4, in this 

order. Draw the AVL-tree after each insertion. Now delete all elements in the opposite order of insertion 

(i.e. in last-in-first-out order). Does the AVL-tree go through the same states as during insertion but in  

reverse order?

 7. Implement an AVL-tree supporting the dictionary operations 'insert', 'delete', 'member', 'pred', and 'succ'.

 8. Explain  how to find the smallest  element in  an (a,b)-tree and how to find  the predecessor of  a  given  

element in an (a,b)-tree.

 9. Implement a dictionary as a B-tree. 
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22. Address computation 
Learning objectives:

• hashing

• perfect hashing

• collision resolution methods: separate chaining, coalesced chaining, open addressing (linear probing and  

double hashing)

• deletions degrade performance of a hash table

• Performance does not depend on the number of data elements stored but on the load factor of the hash table.

• randomization: transform unknown distribution into a uniform distribution

• Extendible hashing uses a radix tree to adapt the address range dynamically to the contents to be stored;  

deletions do not degrade performance.

• order-preserving extendible hashing

Concepts and terminology

The term address computation (also hashing, hash coding, scatter storage, or key-to-address transformations) 

refers to many search techniques that aim to assign an address of a storage cell to any key value x by means of a 

formula that depends on x only. Assigning an address to x independently of the presence or absence of other key  

values leads to faster access than is possible with the comparative search techniques discussed in earlier chapters.  

Although this goal  cannot always be achieved, address computation does provide the fastest access possible in 

many practical situations.

We use the following concepts and terminology (Exhibit 22.1). The home address a of x is obtained by means of 

a hash function h that maps the key domain X into the address space A [i.e. a = h(x)]. The address range is A = {0, 

1, … , m – 1}, where m is the number of storage cells available. The storage cells are represented by an array T[0 .. m 

– 1], the hash table; T[a] is the cell addressed by a  ∈ A. T[h(x)] is the cell where an element with key value x is 

preferentially stored, but alas, not necessarily.

Exhibit 22.1: The hash function h maps a (typically large) key domain X into a (much smaller) 

address space A.
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Each cell has a capacity of b > 0 elements; b stands for bucket capacity. The number n of elements to be stored 

is therefore bounded by m · b. Two cases are usefully distinguished, depending on whether the hash table resides on  

disk or in central memory:

1. Disk or other secondary storage device: Considerations of efficiency suggest that a bucket be identified with 

a physical unit of transfer, typically a disk block. Such a unit is usually large compared to the size of an  

element, and thus b > 1.

2. Main memory: Cell size is less important, but the code is simplest if a cell can hold exactly one element (i.e.  

b = 1).

For simplicity of exposition we assume that b = 1 unless otherwise stated; the generalization to arbitrary b is  

straightforward.

The key domain X is normally much larger than the number n of elements to be stored and the number m of  

available cells T[a]. For example, a table used for storing a few thousand identifiers might have as its key domain  

the set of strings of length at most 10 over the alphabet {'a', 'b', … , 'z', '0', … , '9'}; its cardinality is close to 36 10. 

Thus in general the function h is many-to-one: Different key values map to the same address.

The content to be stored is a sample from the key domain: It is not under the programmer's control and is 

usually not even known when the hash function and table size are chosen. Thus we must expect collisions, that is, 

events where more than b elements to be stored are assigned the same address.  Collision resolution methods are 

designed to handle this case by storing some of the colliding elements elsewhere. The more collisions that occur, the  

longer the search time. Since the number of collisions is a random event, the search time is a random variable. 

Hash tables are known for excellent  average performance and for terrible worst-case performance,  which, one 

hopes, will never occur.

Address computation techniques support the operations 'find' and 'insert' (and to a lesser extent also 'delete') in 

expected time O(1). This is a remarkable difference from all other data structures that we have discussed so far, in 

that the average time complexity does not depend on the number n of elements stored, but on the load factor λ = 

n / (m · b), or, for the special case b = 1: λ = n / m. Note that 0 ≤ λ ≤ 1.

Before we consider the typical case of a hash table,  we illustrate these concepts in two special cases where 

everything is simple; these represent ideals rarely attainable.

The special case of small key domains 

If the number of possible key values is less than or equal to the number of available storage cells, h can map X  

one-to-one into or onto A. Everything is simple and efficient because collisions never occur. Consider the following 

example:

X = {'a', 'b', … , 'z'},  A = {0, … , 25}

h(x) = ord(x) – ord('a');  that is,

h('a') = 0,  h('b') = 1,  h('c') = 2,  …  ,  h('z') = 25.

Since h is one-to-one, each key value x is implied by its address h(x). Thus we need not store the key values 

explicitly, as a single bit (present / absent) suffices:

var  T: array[0 .. 25] of boolean;

function member(x): boolean;
begin  return(T[h(x)])  end;
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procedure insert(x);
begin  T[h(x)] := true  end;

procedure delete(x);
begin  T[h(x)] := false  end;

The idea of collision-free address computation can be extended to large key domains through a combination of 

address computation and list processing techniques, as we will see in the chapter "Metric data structures".

The special case of perfect hashing: table contents known a priori 

Certain common applications require storing a set of elements that never changes. The set of reserved words of a  

programming language is an example; when the lexical analyzer of a compiler extracts an identifier, the first issue 

to be determined is whether this is a reserved word such as 'begin' or 'while', or whether it is programmer defined. 

The special case where the table contents are known a priori, and no insertions or deletions occur, is handled more 

efficiently by special-purpose data structures than by a general dictionary.

If the elements x1, x2, … , xn to be stored are known before the hash table is designed, the underlying key domain 

is not as important as the set of actually occurring key values. We can usually find a table size m, not much larger  

than the number n of elements to be stored, and an easily evaluated hash function h that assigns to each xi a unique 

address from the address space {0, … , m – 1}. It takes some trial and error to find such a perfect hash function h 

for a given set of elements, but the benefit of avoiding collisions is well worth the effort—the code that implements a 

collision-free hash table is simple and fast. A perfect hash function works for a static table only—a single insertion, 

after h has been chosen, is likely to cause a collision and destroy the simplicity of the concept and efficiency of the  

implementation. Perfect hash functions should be generated automatically by a program.

The following unrealistically small example illustrates typical approaches to designing a perfect hash table. The  

task gets harder as the number m of available storage cells is reduced toward the minimum possible, that is, the  

number n of elements to be stored.

Example

In designing a perfect hash table for the elements 17, 20, 24, 38, and 51, we look for arithmetic patterns. These 

are most easily detected by considering the binary representations of the numbers to be stored:

    5     4     3     2     1     0  bit position
17 0 1 0 0 0 1
20 0 1 0 1 0 0
24 0 1 1 0 0 0
38 1 0 0 1 1 0
51 1 1 0 0 1 1

We observe that the least significant three bits identify each element uniquely. Therefore, the hash function h(x) 

= x mod 8 maps these five elements collision-free into the address space A = {0, … , 6}, with m = 7 and two empty 

cells. An attempt to further economize space leads us to observe that the bits in positions 1, 2, and 3, with weights 2, 

4, and 8 in the binary number representation, also identify each element uniquely, while ranging over the address 

space of minimal size A = {0, … , 4}. The function h(x) = (x div 2) mod 8 extracts these three bits and assigns the  

following addresses:

X: 17 20 24 38 51

A: 0 2 4 3 1
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A perfect hash table has to store each element explicitly, not just a bit (present/absent). In the example above, 

the elements 0, 1, 16, 17, 32, 33, … all map into address 0, but only 17 is present in the table. The access function  

'member(x)' is implemented as a single statement:

return ((h(x) ≤ 4) cand (T[h(x)] = x));

The boolean operator 'cand' used here is understood to be the  conditional and: Evaluation of the expression 

proceeds from left to right and stops as soon as its value is determined. In our example, h(x) > 4 suffices to assign  

'false' to the expression (h(x) ≤ 4) and (T[h(x)] = x). Thus the 'cand' operator guarantees that the table declared as:

var  T: array[0 .. 4] of element;

is accessed within its index bounds.

For table contents of realistic size it is impractical to construct a perfect hash function manually—we need a 

program to search exhaustively through the large space of functions. The more slack m – n we allow, the denser is  

the population of perfect functions and the quicker we will find one. [Meh 84a] presents analytical results on the  

complexity of finding perfect hash functions.

Exercise: perfect hash tables

Design several perfect hash tables for the content {3, 13, 57, 71, 82, 93}.

Solution

Designing a perfect hash table is like answering a question of the type: What is the next element in the sequence 

1, 4, 9, … ? There are infinitely many answers, but some are more elegant than others. Consider:

h                                                       3  13 57  71 82 93 Address range

(x div 3) mod 7                                1 4 5 2 6 3 [1 .. 6]

x mod 13                                            3 0 5 6   4    2   [0 .. 6]

(x div 4) mod 8                                0 3  6 1 4 7 [0 .. 7]

if  x = 71  then  4  else  x mod 7   3 6 1 4 5 2 [1 .. 6]

Conventional hash tables: collision resolution 

In contrast to the special cases discussed, most applications of address computation present the data structure  

designer with greater uncertainties and less favorable conditions. Typically, the underlying key domain is much 

larger than the available address range, and not much is known about the elements to be stored. We may have an 

upper bound on n, and we may know the probability distribution that governs the random sample of elements to be 

stored. In setting up a customer list for a local business, for example, the number of customers may be bounded by  

the population of the town, and the distribution of last names can be obtained from the telephone directory—many 

names will start with H and S, hardly any with Q and Y. On the basis of such information, but in ignorance of the 

actual table contents to be stored, we must choose the size m of the hash table and design the hash function h that 

maps the key domain X into the address space A= {0, … , m – 1}. We will then have to live with the consequences of  

these decisions, at least until we decide to rehash: that is, resize the table, redesign the hash function, and reinsert 

all the elements that we have stored so far.

Later sections present some pragmatic advice on the choice of h; for now, let us assume that an appropriate hash  

function is available. Regardless of how smart a hash function we have designed, collisions (more than b elements  

share the same home address of a bucket of capacity b) are inevitable in practice. Thus hashing requires techniques 
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for  handling  collisions.  We present  the  three  major collision  resolution techniques  in  use:  separate  chaining, 

coalesced chaining, and open addressing. The two techniques called chaining call upon list processing techniques to 

organize overflowing elements. Separate chaining is used when these lists live in an overflow area distinct from the 

hash table  proper;  coalesced chaining when the lists  live in  unused parts  of  the table.  Open addressing uses 

address  computation  to  organize  overflowing  elements.  Each  of  these  three  techniques  comes  in  different  

variations; we illustrate one typical choice.

Separate chaining 

The memory allocated to the table is split into a primary and an overflow area. Any overflowing cell or bucket in 

the primary area is the head of a list, called the  overflow chain, that holds all elements that overflow from that 

bucket. Exhibit 22.2 shows six elements inserted in the order x1, x2, … . The first arrival resides at its home address; 

later ones get appended to the overflow chain.

Exhibit 22.2: Separate chaining handles collisions in a separate overflow 

area.

Separate chaining is easy to understand: insert, delete, and search operations are simple. In contrast to other  

collision  handling  techniques,  this  hybrid  between  address  computation  and  list  processing  has  two  major 

advantages: (1) deletions do not degrade the performance of the hash table, and (2) regardless of the number m of 

home addresses, the hash table will not overflow until the entire memory is exhausted. The size m of the table has a 

critical influence on the performance. If m « n, overflow chains are long and we have essentially a list processing  

technique that does not support direct access. If m » n, overflow chains are short but we waste space in the table. 

Even for the practical choice m ≈ n, separate chaining has some disadvantages:

• Two different accessing techniques are required.

• Pointers take up space; this may be a significant overhead for small elements.
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• Memory is partitioned into two separate areas that do not share space: If the overflow area is full, the entire 

table is  full,  even if there is still space in the array of home cells. This consideration leads to the next  

technique.

Coalesced chaining 

The chains that emanate from overflowing buckets are stored in the empty space in the hash table rather than in  

a separate overflow area (Exhibit 22.3). This has the advantage that all available space is utilized fully (except for 

the overhead of the pointers). However, managing the space shared between the two accessing techniques gets  

complicated.

Exhibit 22.3: Coalesced chaining handles collisions by building lists that share memory with the hash  

table.

The next technique has similar advantages (in addition, it incurs no overhead for pointers) and disadvantages;  

all things considered, it is probably the best collision resolution technique.

Open addressing 

Assign to each element x ∈ X a probe sequence a0 = h(x), a1, a2, … of addresses that fills the entire address range 

A. The intention is to store x preferentially at a0, but if T[a0] is occupied then at a1, and so on, until the first empty 

cell is encountered along the probe sequence. The occupied cells along the probe sequence are called the collision 

path of x—note that the collision path is a prefix of the probe sequence. If we enforce the invariant:

If x is in the table at T[a] and if i precedes a in the probe sequence for x, then T[i] is occupied. The following fast 

and simple loop that travels along the collision path can be used to search for x:

a := h(x);
while  T[a] ≠ x  and  T[a] ≠ empty  do

a := (next address in probe sequence);

Let us work out the details so that this loop terminates correctly and the code is as concise and fast as we can 

make it.

The probe sequence is defined by formulas in the program (an example of an implicit data structure) rather than 

by pointers in the data as is the case in coalesced chaining.

Example: linear probing

ai+1 = (ai + 1) mod m is the simplest possible formula. Its only disadvantage is a phenomenon called  clustering. 

Clustering arises when the collision paths of many elements in the table overlap to a large extent, as is likely to  

happen in linear probing.  Once elements have collided, linear probing will  store them in consecutive cells.  All 

elements  that  hash  into  this  block  of  contiguous  occupied  cells  travel  along  the  same  collision  path,  thus 
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lengthening this block; this in turn increases the probability that future elements will hash into this block. Once this 

positive feedback loop gets started, the cluster keeps growing.

Double hashing  is a special type of open addressing designed to alleviate the clustering problem by letting 

different elements travel with steps of different size. The probe sequence is defined by the formulas

a0 = h(x),  δ = g(x) > 0,  ai+1 = (ai + δ ) mod m,   m prime

g is a second hash function that maps the key space X into [1 .. m – 1].

Two important important details must be solved:

• The probe sequence of each element must span the entire address range A. This is achieved if m is relatively  

prime to every step size δ, and the easiest way to guarantee this condition is to choose m prime.

• The termination condition of the search loop above is: T[a] = x or T[a] = empty. An unsuccessful search (x  

not in the table) can terminate only if an address a is generated with T[a] = empty. We have already insisted  

that  each probe sequence  generates  all  addresses  in  A.  In  addition,  we must  guarantee  that  the table  

contains at least one empty cell at all times—this serves as a sentinel to terminate the search loop.

The  following  declarations  and  procedures  implement  double  hashing.  We  assume  that  the  comparison 

operators = and ≠ are defined on X, and that X contains a special value 'empty', which differs from all values to be  

stored in the table. For example, a string of blanks might denote 'empty' in a table of identifiers. We choose to  

identify an unsuccessful search by simply returning the address of an empty cell.

const m = … ;  { size of hash table - must be prime! }
empty = … ;

type key = … ;  addr = 0 .. m – 1;  step = 1 .. m – 1;
var T: array[addr] of key;

n: integer;  { number of elements currently stored in T }

function h(x: key): addr;  { hash function for home address }

function g(x: key): step;  { hash function for step }

procedure init; 
var  a: addr;
begin

n := 0;
for a := 0 to m – 1 do  T[a] := empty

end;

function find(x: key): addr; 
var  a: addr;  d: step;
begin

a := h(x);  d := g(x);
while  (T[a] ≠ x) and (T[a] ≠ empty)  do  a := (a + d) mod m;
return(a)

end;

function insert(x: key): addr; 
var  a: addr;  d: step;
begin

a := h(x);  d := g(x);
while  T[a] ≠ empty  do  begin

if  T[a] = x  then  return(a);
a := (a + d) mod m

end;
if  n < m – 1  then  { n := n + 1;  T[a] := x }  else  err-

msg('table is full');
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return(a)
end;

Deletion of elements creates problems, as is the case in many types of hash tables. An element to be deleted  

cannot simply be replaced by 'empty', or else it might break the collision paths of other elements still in the table—  

recall the basic invariant on which the correctness of open addressing is based. The idea of rearranging elements in 

the table so as to refill a cell that was emptied but needs to remain full is quickly abandoned as too complicated—if 

deletions are numerous, the programmer ought to choose a data structure that fully supports deletions, such as 

balanced trees implemented as list structures. A limited number of deletions can be accommodated in an open  

address hash table by using the following technique.

At any time, a cell is in one of three states:

• empty (was never occupied, the initial state of all cells)

• occupied (currently)

• deleted (used to be occupied but is currently free)

A cell in state 'empty' terminates the find loop; a cell in state 'empty' or in state 'deleted' terminates the insert  

loop. The state diagram shown in Exhibit 22.4 describes the transitions possible in the lifetime of a cell. Deletions 

degrade the performance of a hash table, because a cell, once occupied, never returns to the virgin state 'empty'  

which alone terminates an unsuccessful find. Even if an equal number of insertions and deletions keeps a hash table  

at a low load factor λ, unsuccessful finds will ultimately scan the entire table, as all cells drift into one of the states 

'occupied' or 'deleted'. Before this occurs, the table ought to be rehashed; that is, the contents are inserted into a  

new, initially empty table.

Exhibit 22.4: This state diagram describes possible life cycles of a cell: Once occupied, a cell  

will never again be as useful as an empty cell.

Exercise: hash table with deletions

Modify the program above to implement double hashing with deletions.

Choice of hash function: randomization

In conventional terminology, hashing is based on the concept of randomization. The purpose of randomizing 

is  to  transform an  unknown distribution over  the key domain  X into  a  uniform distribution,  and to turn 

consecutive samples that may be dependent into independent samples. This task appears to call for magic, and 

indeed,  there  is  little  or  no  mathematics  that  applies  to  the  construction  of  hash  functions;  but  there  are  

commonsense  observations  worth  remembering.  These  observations  are  primarily  "don'ts".  They  stem  from 

properties that sets of elements we wish to store frequently possess, and thus are based on  some knowledge about 

the populations to be stored. If we assumed strictly nothing about these populations, there would be little to say  

about  hash functions:  an  order-preserving  proportional  mapping  of  X  into  A  would  be  as  good  as  any  other 

function. But in practice it is not, as the following examples show.
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1. A Fortran compiler might use a hash table to store the set of identifiers it encounters in a program being 

compiled. The rules of the language and human habits conspire to make this set a highly biased sample 

from the set  of  legal  Fortran  identifiers.  Example: Integer  variables  begin with I,  J,  K,  L,  M,  N;  this 

convention  is  likely  to generate  a  cluster  of  identifiers  that  begin with  one  of  these  letters.  Example: 

Successive identifiers encountered cannot be considered independent samples: If X and Y have occurred, 

there  is  a  higher chance for  Z  to follow than for WRKHG.  Example: Frequently,  we see sequences of 

identifiers or statement numbers whose character codes form arithmetic progressions, such as A1, A2, A3, 

… or 10, 20, 30, … .

2. All file systems require or encourage the use of naming conventions, so that most file names begin or end  

with one of just a few prefixes or suffixes, such as ···.SYS, ···.BAK, ···.OBJ. An individual user, or a user 

community, is likely to generate additional conventions, so that most file names might begin, for example, 

with  the  initials  of  the  names  of  the  people  involved.  The  files  that  store  this  text,  for  example,  are  

structured according to 'part' and 'chapter', so we are currently in file P5 C22. In some directories, file  

names might be sorted alphabetically, so if they are inserted into a table in order, we process a monotonic 

sequence.

The purpose of a hash function is to break up all regularities that might be present in the set of elements to 

be stored. This is most reliably achieved by "hashing" the elements, a word for which the dictionary offers  

the following explanations: (1) from the French  hache,  "battle-ax"; (2) to chop into small pieces; (3) to 

confuse,  to muddle.  Thus,  to approximate the elusive goal  of  randomization,  a hash function destroys  

patterns, including, unfortunately, the order < defined on X. Hashing typically proceeds in two steps.

1. Convert the element x into a number #(x). In most cases #(x) is an integer, occasionally, it is a real  

number 0 ≤ #(x) < 1. Whenever possible, this conversion of x into #(x) involves no action at all: The  

representation of x, whatever type x may be, is reinterpreted as the representation of the number #(x). 

When x is a variable-length item, for example a string, the representation of x is partitioned into pieces 

of suitable length that are "folded" on top of each other. For example, the four-letter word x = 'hash' is  

encoded one letter per byte using the 7-bit ASCII code and a leading 0 as 01101000 01100001 01110011 

01101000. It may be folded to form a 16-bit integer by exclusive-or of the leading pair of bytes with the  

trailing pair of bytes:

   0110100001100001

xor  01110011011010000

  0001101100001001 which represents #(x) = 27 · 28 + 9 = 6921.

Such folding, by itself, is not hashing. Patterns in the representation of elements easily survive folding.  

For example, the leading 0 we have used to pad the 7-bit ASCII code to an 8-bit byte remains a zero 

regardless of x. If we had padded with a trailing zero, all #(x) would be even. Because #(x) often has the  

same representation as x, or a closely related one, we drop #() and use x slightly ambiguously to denote  

both the original element and its interpretation as a number.

2. Scramble x [more precisely, #(x)] to obtain h(x). Any scrambling technique is a sensible try, as long as 

it avoids fairly obvious pitfalls. Rules of thumb:
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▪ Each bit of an address h(x) should depend on all bits of the key value x. In particular, don't ignore 

any part of x in computing h(x). Thus h(x) = x mod 213 is suspect, as only the least significant 13 bits 

of x affect h(x).

▪ Make sure that arithmetic progressions such as Ch1, Ch2, Ch3, … get broken up rather than being 

mapped into arithmetic progressions. Thus h(x) = x mod k, where k is significantly smaller than the  

table size m, is suspect.

▪ Avoid any function that cannot  produce a uniform distribution of addresses.  Thus h(x)  = x2 is 

suspect; if x is uniformly distributed in [0, 1], the distribution of x2 is highly skewed.

A hash function must be fast and simple. All of the desiderata above are obtained by a hash function of the type:

h(x) = x mod m

where m is the table size and a prime number, and x is the key value interpreted as an integer.

No hash function is guaranteed to avoid the worst case of hashing, namely, that all elements to be stored collide 

on one address (this happens here if we store only multiples of the prime m). Thus a hash function must be judged 

in relation to the data it is being asked to store, and usually this is possible only after one has begun using it.  

Hashing provides a perfect example for the injunction that the programmer must think about the data, analyze its  

statistical properties, and adapt the program to the data if necessary.

Performance analysis 

We analyze open addressing without deletions assuming that each address  αi is chosen independently of all 

other addresses from a uniform distribution over A. This assumption is reasonable for double hashing and leads to 

the conclusion that the average cost for a search operation in a hash table is O(1) if we consider the load factor λ to 

be  constant.  We analyze the average number of  probes  executed as a function of  λ in two cases:  U(λ)  for  an 

unsuccessful search, and S(λ) for a successful search.

Let pi denote the probability of using exactly i probes in an unsuccessful search. This event occurs if the first I – 

1 probes hit occupied cells, and the i-th probe hits an empty cell: pi = λi–1 · (1 – λ). Let qi denote the probability that 

at least i probes are used in an unsuccessful search; this occurs if the first i – 1 inspected cells are occupied: q i = λi–1. 

qi can also be expressed as the sum of the probabilities that we probe exactly j cells, for j running from i to m. Thus 

we obtain 

The number of probes executed in a successful search for an element x equals the number of probes in an 

unsuccessful search for the same element x before it is inserted into the hash table. [Note: This holds only when  

elements are never relocated or deleted]. Thus the average number of probes needed to search for the i-th element  

inserted into the hash table is U((i – 1) / m), and S(λ) can be computed as the average of U(µ), for µ increasing in 

discrete steps from 0 to λ. It is a reasonable approximation to let µ vary continuously in the range from 0 to λ:
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Exhibit 22.5 suggests that a reasonable operating range for a hash table keeps the load factor λ between 0.25 and 

0.75.  If  λ is  much smaller,  we waste  space,  if  it  is  larger  than  75  per  cent,  we get  into  a  domain  where the  

performance degrades rapidly. Note: If all searches are successful, a hash table performs well even if loaded up to  

95 per cent—unsuccessful searching is the killer!

Table 22.1: The average number of probes per search grows rapidly as the load factor approaches 1.

λ 0.25 0.5 0.75 0.9 0.95 0.99

U(λ) 1.3 2.0 4.0 10.0 20.0 100.0

S(λ) 1.2 1.4 1.8 2.6 3.2 4.7

Exhibit 22.5: The average number of probes per search grows rapidly as the load factor approaches 1.

Thus the hash table designer should be able to estimate n within a factor of 2—not an easy task. An incorrect 

guess may waste memory or cause poor performance, even table overflow followed by a crash. If the programmer 

becomes aware that the load factor lies outside this range, she may rehash—change the size of the table, change the 

hash function, and reinsert all elements previously stored. 

Extendible hashing 

In contrast  to  standard  hashing  methods,  extendible  forms of  hashing allow for  the  dynamic  extension or 

shrinkage of the address range into which the hash function maps the keys. This has two major advantages: (1)  

Memory is allocated only as needed (it is unnecessary to determine the size of the address range a priori), and (2)  

deletion of elements does not degrade performance. As the address range changes, the hash function is changed in  

such a way that only a few elements are assigned a new address and need to be stored in a new bucket. The idea that  

makes this possible is to map the keys into a very large address space, of which only a portion is active at any given 

time.

Various extendible  hashing methods differ  in the way they represent  and manage a smaller  active address 

range of variable size that is a subrange of a larger virtual address range. In the following we describe the method 

of extendible hashing that is especially well suited for storing data on secondary storage devices; in this case an 

address points to a physical block of secondary storage that can contain more than one element. An address is a bit  

string of maximum length k; however, at any time only a prefix of d bits is used. If all bit strings of length k are  

represented by a so-called radix tree  of height k, the active part of all bit strings is obtained by using only the upper 

d levels of the tree (i.e. by cutting the tree at level d). Exhibit 22.6 shows an example for d = 3.
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Exhibit 22.6: Address space organized as a binary radix tree.

The radix tree shown in  Exhibit 22.6 (without the nodes that have been clipped) describes an active address 

range with addresses {00, 010, 011, 1} that are considered as bit strings or binary numbers. To each active node 

with address s there corresponds a bucket B that can store b records. If a new element has to be inserted into a full  

bucket B, then B is split: Instead of B we find two twin buckets B0 and B1 which have a one bit longer address than B, 

and the elements stored in B are distributed among B0 and B1 according to this bit. The new radix tree now has to 

point to the two data buckets B0 and B1 instead of B; that is, the active address range must be extended locally (by 

moving the broken line in Exhibit 22.6). If the block with address 00 overflows, two new twin blocks with addresses 

000 and 001 will be created which are represented by the corresponding nodes in the tree. If the overflowing bucket  

B has depth d, then d is incremented by 1 and the radix tree grows by one level.

In extendible hashing the clipped radix tree is represented by a directory that is implemented by an array. Let d  

be the maximum number of bits that are used in one of the bit strings for forming an address; in the example above,  

d = 3. Then the directory consists of 2d entries. Each entry in this directory corresponds to an address and points to 

a physical data bucket which contains all elements that have been assigned this address by the hash function h. The 

directory for the radix tree in Exhibit 22.6 looks as shown in Exhibit 22.7.

Exhibit 22.7: The active address range of the tree in Exhibit 22.6 implemented as an array.

The bucket with address 010 corresponds to a node on level 3 of the radix tree, and there is only one entry in the  

directory corresponding to this bucket. If this bucket overflows, the directory and data buckets are reorganized as 

shown in Exhibit 22.8. Two twin buckets that jointly contain fewer than b elements are merged into a single bucket. 

This keeps the average bucket occupancy at a high 70 per cent even in the presence of deletions, as probabilistic  

analysis predicts and simulation results confirm. Bucket merging may lead to halving the directory. A formerly 

large file that shrinks to a much smaller size will have its directory shrink in proportion. Thus extendible hashing,  

unlike conventional hashing, suffers no permanent performance degradation under deletions.
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Exhibit 22.8: An overflowing bucket may trigger doubling of the directory.

A virtual radix tree: order-preserving extendible hashing

Hashing,  in  the usual sense of the word,  destroys  structure and thus buys uniformity at  the cost of  order.  

Extendible hashing, on the other hand, is practical without randomization and thus needs not accept its inevitable 

consequence,  the  destruction  of  order.  A  uniform  distribution  of  elements  is  not  nearly  as  important: 

Nonuniformity causes the directory to be deeper and thus larger than it would be for a uniform distribution, but it  

affects neither access time nor bucket occupancy. And the directory is only a small space overhead on top of the  

space required to store the data: It typically contains only one or a few pointers, say a dozen bytes, per data bucket 

of,  say 1k bytes; it adds perhaps a few percent to the total space requirement of the table,  so its growth is not 

critical. Thus extendible hashing remains feasible when the identity is used as the address computation function h,  

in which case data is accessible and can be processed sequentially in the order ≤ defined on the domain X.

When h preserves order, the word hashing seems out of place. If the directory resides in central memory and the 

data  buckets on disk,  what  we are implementing is  a virtual  memory organized in the form of a radix  tree of 

unbounded size.  In contrast to conventional virtual memory, whose address space grows only at  one end, this  

address space can grow anywhere: It is a virtual radix tree.

As an example, consider the domain X of character strings up to length 32, say, and assume that elements to be 

stored are sampled according to the distribution of the first letter in English words. We obtain an approximate  

distribution by counting pages in a dictionary (Exhibit 22.9). Encode the blank as 00000, 'a' as 00001, up to 'z' as 

11011, so that 'aah', for example, has the code 00001 00001 01000 00000 … (29 quintuples of zeros pad 'aah'  

to32letters). This address computation function h is almost an identity: It maps {' ', 'a', … , 'z'} 32 one-to-one into {0, 

1}160.  Such  an  order-preserving  address  computation  function  supports  many  useful  types  of  operations:  for 

example, range queries such as "list in alphabetic order all the words stored from 'unix' to 'xinu' ".

Algorithms and Data Structures 251  A Global Text

http://creativecommons.org/licenses/by/3.0/


22. Address computation 

Exhibit 22.9: Relative frequency of words beginning with a given letter in Webster's dictionary.

If there is one page of words starting with X for 160 pages of words starting with S, this suggests that if our  

active address space is partitioned into equally sized intervals, some intervals may be populated 160 times more 

densely than others. This translates into a directory that may be 160 times larger than necessary for a uniform 

distribution, or, since directories grow as powers of 2, may be 128 or 256 times larger. This sounds like a lot but  

may well be bearable, as the following estimates show.

Assume that we store 105 records on disk, with an average occupancy of 100 records per bucket, requiring about 

1000 buckets. A uniform distribution generates a directory with one entry per bucket, for a total of 1k entries, say  

2k  or  4k  bytes.  The  nonuniform  distribution  above  requires  the  same  number  of  buckets,  about  1,000,  but 

generates a directory of 256k entries. If a pointer requires 2 to 4 bytes, this amounts to 0.5 to 1 Mbyte. This is less of  

a memory requirement than many applications require on today's personal computers. If the application warrants 

it (e.g. for an on-line reservation system) 1 Mbyte of memory is a small price to pay.

Thus we see that for large data sets, extendible hashing approximates the ideal characteristics of the special case 

we discussed in this chapter's section on “the special case of small key domains”. All it takes is a disk and a central 

memory of a size that is standard today but was practically infeasible a decade ago, impossible two decades ago, and  

unthought of three decades ago.

Exercises and programming projects

1. Design a perfect hash table for the elements 1, 10, 14, 20, 25, and 26.

2. The six names AL, FL, GA, NC, SC and VA must be distinguished from all other ordered pairs of uppercase 

letters. To solve this problem, these names are stored in the array T such that they can easily be found by 

means of a hash function h.

type addr = 0 .. 7;

pair = record c1, c2: 'A' .. 'Z' end;

var T: array [addr] of pair;

(a) Write a 

function h (name: pair): adr; 

which maps the six names onto different addresses in the range 'adr'.
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(b) Write a 

procedure initTable; 

which initializes the entries of the hash table T.

(c) Write a

 function member (name: pair): boolean; 

which returns for any pair of uppercase letters whether it is stored in T.

3. Consider the hash function h(x) = x mod 9 for a table having nine entries. Collisions in this hash table are 

resolved by coalesced chaining. Demonstrate the insertion of the elements 14, 19, 10, 6, 11, 42, 21, 8, and 1.

4. Consider inserting the keys 14, 1, 19, 10, 6, 11, 42, 21, 8, and 17 into a hash table of length m = 13 using open  

addressing with the hash function h(x) = x mod m. Show the result of inserting these elements using

(a) Linear probing.

(b) Double hashing with the second hash function g(x) = 1 + x mod (m+1).

5. Implement a  dictionary  supporting  the operations 'insert',  'delete',  and 'member'  as  a  hash table  with 

double hashing.

6. Implement a dictionary supporting the operations 'insert', 'delete', 'member', 'succ', and 'pred' by order-

preserving extendible hashing.
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23. Metric data structures
Learning objectives:

• organizing the embedding space versus organizing its contents

• quadtrees and octtrees. grid file. two-disk-access principle

• simple geometric objects and their parameter spaces

• region queries of arbitrary shape

• approximation of complex objects by enclosing them in simple containers

Organizing the embedding space versus organizing its contents

Most of the data structures discussed so far organize the set of elements to be stored depending primarily, or  

even exclusively, on the relative values of these elements to each other and perhaps on their order of insertion into 

the data structure. Often, the only assumption made about these elements is that they are drawn from an ordered 

domain, and thus these structures support only comparative search techniques: the search argument is compared 

against stored elements. The shape of data structures based on comparative search varies dynamically with the set 

of elements currently stored; it does not depend on the static domain from which these elements are samples. These  

techniques organize the particular contents to be stored rather than the embedding space.

The data structures discussed in this  chapter mirror and organize the domain from which the elements are  

drawn—much of their structure is determined before the first element is ever inserted. This is typically done on the  

basis of fixed points of reference which are independent of the current contents, as inch marks on a measuring scale 

are independent of what is being measured. For this reason we call data structures that organize the embedding  

space metric data structures. They are of increasing importance, in particular for spatial data, such as needed in 

computer-aided design or geographic data processing. Typically,  these domains exhibit a much richer structure 

than a mere order: In two- or three-dimensional Euclidean space, for example, not only is order defined along any 

line (not just  the coordinate axes),  but also  distance between any two points.  Most queries about  spatial  data 

involve the absolute position of elements in space, not just their relative position among each other. A typical query 

in graphics, for example, asks for the first object intercepted by a given ray of light. Computing the answer involves 

absolute position (the location of the ray) and relative order (nearest along the ray). A data structure that supports  

direct access to objects according to their position in space can clearly be more efficient than one based merely on  

the relative position of elements.

The  terms  "organizing  the  embedding  space"  and  "organizing  its  contents"  suggest  two  extremes  along  a 

spectrum of possibilities. As we have seen in previous chapters, however, many data structures are hybrids that  

combine features from distinct types. This is particularly true of metric data structures: They always have aspects of 

address computation needed to locate elements in space, and they often use list processing techniques for efficient  

memory utilization.

Algorithms and Data Structures 254  A Global Text

http://creativecommons.org/licenses/by/3.0/


23. Metric data structures

Radix trees, tries 

We have encountered binary radix trees, and a possible implementation, in chapter 22 in the section “Extendible  

hashing”.  Radix  trees  with a  branching  factor,  or  fan-out,  greater  than  2  are  ubiquitous.  The  Dewey  decimal 

classification used in libraries is a radix tree with a fan-out of 10. The hierarchical structure of many textbooks, 

including this one, can be seen as a radix tree with a fan-out determined by how many subsections at depth d + 1  

are packed into a section at depth d.

As another example, consider tries, a type of radix tree that permits the retrieval of variable-length data. As we 

traverse the tree, we check whether or not the node we are visiting has any successors. Thus the trie can be very 

long along certain paths. As an example, consider a trie containing words in the English language. In Exhibit 23.1 

below, the four words 'a', 'at', 'ate', and 'be' are shown explicitly. The letter 'a' is a word and is the first letter of other  

words. The field corresponding to 'a' contains the value 1, signaling that we have spelled a valid word, and there is a  

pointer to longer words beginning with 'a'. The letter 'b' is not a word, thus is marked by a 0, but it is the beginning 

of many words, all found by following its pointer. The string 'aa' is neither a word nor the beginning of a word, so its  

field contains 0 and its pointer is 'nil'.

Exhibit 23.1: A radix tree over the alphabet of letters stores (prefixes of) words.

Only a few words begin with 'ate', but among these there are some long ones, such as 'atelectasis'. It would be  

wasteful to introduce eight additional nodes, one for each of the characters in 'lectasis', just to record this word,  

without making significant use of the fan-out of 26 provided at each node. Thus tries typically use an "overflow 

technique" to handle long entries:  The pointer field of the prefix 'ate'  might point to a text field that contains  

'(ate-)lectasis' and '(ate-)lier'.

Quadtrees and octtrees 

Consider a square recursively partitioned into quadrants. Exhibit 23.2 23.2 shows such a square partitioned to 

the depth of 4. There are 4 quadrants at depth 1, separated by the thickest lines; 4 · 4 (sub-)quadrants separated by 

slightly thinner lines; 43 (sub-sub-)quadrants separated by yet thinner lines; and finally, 44 = 256 leaf quadrants 

separated by the thinnest lines. The partitioning structure described is a quadtree, a particular type of radix tree of 

fan-out 4. The root corresponds to the entire square, its 4 children to the 4 quadrants at depth 1, and so on, as  

shown in the Exhibit 23.2.
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Exhibit 23.2: A quarter circle digitized on a 16 · 16 grid, and its representation as a 4-level quadtree.

A quadtree is  the obvious two-dimensional  analog  of  the one-dimensional  binary  radix  tree  we have seen.  

Accordingly, quadtrees are frequently used to represent, store, and process spatial data, such as images. The figure 

shows a quarter circle, digitized on a 16 · 16 grid of pixels. This image is most easily represented by a 16 · 16 array of  

bits. The quadtree provides an alternative representation that is advantageous for images digitized to a high level of  

resolution.  Most  graphic  images  in  practice  are  digitized  on rectangular  grids  of  anywhere  from hundreds  to 

thousands of pixels on a side: for example, 512 · 512. In a quadtree, only the largest quadrants of constant color  

(black or white, in our example) are represented explicitly; their subquadrants are implicit.

The quadtree in Exhibit 23.2 is interpreted as follows. Of the four children of the root, the northwest quadrant,  

labeled 1, is simple: entirely white. This fact is recorded in the root. The other three children, labeled 0, 2, and 3,  

contain both black and white pixels. As their description is not simple, it is contained in three quadtrees, one for  

each quadrant. Pointers to these subquadtrees emanate from the corresponding fields of the root.

The southwestern quadrant labeled 2 in turn has four quadrants at depth 2. Three of these, labeled 2.0, 2.1, and 

2.2, are entirely white; no pointers emanate from the corresponding fields in this node. Subquadrant 2.3 contains  

both black and white pixels; thus the corresponding field contains a pointer to a sub-subquadtree.

In this discussion we have introduced a notation to identify every quadrant at any depth of the quadtree. The  

root is identified by the null string; a quadrant at depth d is uniquely identified by a string of d radix-4 digits. This 

string  can be  interpreted in  various ways  as  a  number  expressed  in  base  4.  Thus accessing and processing a 

quadtree is readily reduced to arithmetic.

Breadth-first addressing

Label the root 0, its children 1, 2, 3, 4, its grand children 5 through 20, and so on, one generation after the other.
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   0
1  2     3  4

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Notice that the children of any node i are 4 · i + 1, 4 · i + 2, 4 · i + 3, 4 · i + 4. The parent of node i is (i – 1) div 4. 

This is similar to the address computation used in the heap of “Implicit data structures”, a binary tree where each  

node i has children 2 · i  and 2 · i + 1; and the parent of node i is obtained as i div 2.

Exercise

The string of radix 4 digits along a path from the root to any node is called the  path address of this node. 

Interpret the path address as an integer, most significant digit first. These integers label the nodes at depth d > 0  

consecutively from 0 to 4d – 1. Devise a formula that transforms the path address into the breadth-first address.  

This formula can be used to store a quadtree as a one-dimensional array.

Data compression

The representation of an image as a quadtree is sometimes much more compact than its representation as a bit  

map. Two conditions must hold for this to be true:

1. The image must be fairly large, typically hundreds of pixels on a side.

2. The image must have large areas of constant value (color).

The quadtree for the quarter circle above, for example, has only 14 nodes. A bit map of the same image requires  

256 bits. Which representation requires more storage? Certainly the quadtree. If we store it as a list, each node  

must be able to hold four pointers, say 4 or 8 bytes. If a pointer has value 'nil', indicating that its quadrant needs no 

refinement, we need a bit to indicate the color of this quadrant (white or black), or a total of 4 bits. If we store the  

quadtree breadth-first, no pointers are needed as the node relationships are expressed by address computation;  

thus a node is reduced to four three-valued fields ('white', 'black', or 'refine'), conveniently stored in 8 bits, or 1 byte.  

This  implicit  data  structure  will  leave  many  unused  holes  in  memory.  Thus  quadtrees  do  not  achieve  data  

compression for small images.

Octtrees

Exactly  the  same idea  for  three-dimensional  space  as  quadtrees  are  for  two-dimensional  space:  A  cube  is  

recursively partitioned into eight octants, using three orthogonal planes.

Spatial data structures: objectives and constraints

Metric data structures are used primarily for storing spatial data, such as points and simple geometric objects 

embedded in a multidimensional space. The most important objectives a spatial data structure must meet include:

1. Efficient handling of large, dynamically varying data sets in interactive applications

2. Fast access to objects identified in a fully specified query

3. Efficient processing of proximity queries and region queries of arbitrary shape

4. A uniformly high memory utilization

Achieving these objectives is subject to many constraints, and results in trade-offs.

Managing disks. By "large data set" we mean one that must be stored on disk; only a small fraction of the data  

can be kept in central memory at any one time. Many data structures can be used in central memory, but the choice  

is  much  more  restricted  when  it  comes  to  managing  disks  because  of  the  well-known  "memory  speed  gap" 
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phenomenon.  Central  memory  is  organized  in  small  physical  units  (a  byte,  a  word)  with  access  times  of 

approximately 1 microsecond, 10–6 second. Disks are organizein large physical blocks (512 bytes to 5kilobytes) with 

access times ranging from 10 to 100 milliseconds (10–2 to 10–1 second). Compared to central memory, a disk delivers 

data blocks typically 103 times larger with a delay 104 times greater. In terms of the data rate delivered to the 

central processing unit:

the disk is a storage device whose effectiveness is within an order of magnitude of that of central memory. The large 

size of a physical disk block is a potential source of inefficiency that can easily reduce the useful data rate of a disk a 

hundredfold or a thousandfold. Accessing a couple of bytes on disk, say a pointer needed to traverse a list, takes  

about as long as accessing the entire disk block. Thus the game of managing disks is about minimizing the number 

of disk accesses.

Dynamically varying data.  The majority of computer applications today are interactive. That means that 

insertions, deletions, and modifications of data are at least as frequent as operations that merely process fixed data. 

Data structures that entail a systematic degradation of performance with continued use (such as ever-lengthening  

overflow  chains,  or  an  ever-increasing  number  of  cells  marked  "deleted"  in  a  conventional  hash  table)  are 

unsuitable.  Only  structures  that  automatically  adapt  their  shape  to  accommodate  ever-changing  contents  can 

provide uniform response times.

Instantaneous response.  Interactive use of computers sets another major challenge for data management: 

the  goal  of  providing  "instantaneous  response"  to  a  fully  specified  query.  "Fully"  specified  means  that  every 

attribute relevant for the search has been provided, and that at most one element satisfies the query. Imagine the 

user clicking an icon on the screen, and the object represented by the icon appears instantaneously.  In human 

terms, "instantaneous" is a well-defined physiological quantity, namely, about of a second, the limit of human time 

resolution. Ideally, an interactive system retrieves any single element fully specified in a query within 0.1 second.

Two-disk-access principle. We have already stated that in today's technology, a disk access typically takes 

from tens of milliseconds. Thus the goal of retrieving any single element in 0.1 second translates into "retrieve any  

element in at most a few disk accesses". Fortunately, it turns out that useful data structure can be designed that 

access data in a two-step process: (1) access the correct portion of a directory, and (2) access the correct data  

bucket. Under the assumption that both data and directory are so large that they are stored on disk, we call this the  

two-disk-access principle.

Proximity queries and region queries of arbitrary shape. The simplest example of a proximity query is 

the operation 'next', which we have often encountered in one-dimensional data structure traversals: Given a pointer  

to an element,  get the next  element (the successor or  the predecessor)  according to the order defined on the 

domain.  Another  simple  example  is  an  interval  or  range  query  such  as  "get  all  x  between  13  and  17".  This 

generalizes directly to k-dimensional orthogonal range queries  such as the two-dimensional query "get all (x1, x2) 

with 13 ≤ x1 < 17 and 3 ≤ x2 < 4". In geometric computation, for example, many other instances of proximity queries 

are important,  such as the "nearest neighbor" (in any direction),  or intersection queriesamong objects.  Region 

queries of arbitrary shape (not just rectangular) are able to express a variety of geometric conditions.
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Uniformly high memory utilization. Any data structure that adapts its  shape to dynamically changing 

contents  is  likely  to  leave  "unused  holes"  in  storage  space:  space  that  is  currently  unused,  and  that  cannot 

conveniently  be  used  for  other  purposes  because it  is  fragmented.  We have encountered this  phenomenon in 

multiway trees such as B-trees and in hash tables. It is practically unavoidable that dynamic data structures use 

their allocated space to less than 100%, and an average space utilization of 50% is often tolerable. The danger to  

avoid is a built-in bias that drives space utilization toward 0 when the file shrinks—elements get deleted but their  

space is not relinquished. The grid file, to be discussed next, achieves an average memory utilization of about 70%  

regardless of the mix of insertions or deletions.

The grid file

The  grid  file  is  a  metric  data  structure  designed  to  store  points  and  simple  geometric  objects  in  

multidimensional space so as to achieve the objectives stated above. This section describes its architecture, access 

and update algorithms, and properties. More details can be found in [NHS 84]  and [Hin 85].

Scales, directory, buckets

Consider as  an example a two-dimensional domain: the Cartesian product  X1  × X2, where X1 = 0 .. 1999 is a 

subrange of the integers, and X2 = a .. z is the ordered set of the 26 characters of the English alphabet. Pairs of the  

form (x1, x2), such as (1988, w), are elements from this domain.

The bit map is a natural data structure for storing a set S of elements from X1  × X2. It may be declared as

var  T: array[X1, X2] of boolean;

with the convention that

T[x1, x2] = true  ⇔  (x1, x2) ∈ S.

Basic set operations are performed by direct access to the array element corresponding to an element: find(x 1, 

x2)  is  simply  the  boolean  expression  T[x1,  x2];  insert(x1,  x2)  is  equivalent  to  T[x1,  x2]:=  'true',  delete(x1,  x2)  is 

equivalent to T[x1, x2] := 'false'. The bit map for our small domain requires an affordable 52k bits. Bit maps for  

realistic examples are rarely affordable, as the following reasoning shows. First, consider that x and y are just keys 

of records that hold additional data. If space is reserved in the array for this additional data, an array  element is not  

a bit but as many bytes as are needed, and all the absent records, for elements (x1, x2) ∉ S, waste a lot of storage. 

Second,  most  domains  are  much  larger  than  the  example  above:  the  three-dimensional  Euclidean  space,  for 

example, with  elements (x, y, z) taken as triples of 32-bit integers, or 64-bit floating-point numbers, requires bit 

maps of about 1030 and 1060 bits, respectively. For comparison's sake: a large disk has about 10 10 bits.

Since large bit maps are extremely sparsely populated, they are amenable to data compression. The grid file is 

best understood as a practical data compression technique that stores huge, sparsely populated bit maps so as to  

support direct access. Returning to our example, imagine a historical database indexed by the year of birth and the  

first letter of the name of scientists: thus we find 'John von Neumann' under (1903, v). Our database is pictured as a 

cloud of points in the domain shown in Exhibit 23.3; because we have more scientists (or at least, more records) in 

recent years, the density increases toward the right. Storing this database implies packing the records into buckets 

of fixed capacity to hold c (e.g. c = 3) records. The figure shows the domain partitioned by orthogonal hyperplanes  

into box-shaped grid cells, none of which contains more than c points.
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Exhibit 23.3: Cells of a grid partition adapt their size so that no cell is populated by more than c points.

A grid file for this database contains the following components:

• Linear scales show how the domain is currently partitioned.

• The directory is an array whose elements are in one-to-one correspondence with the grid cells; each entry 

points to a data bucket that holds all the records of the corresponding grid cell.

Access to the record (1903, v) proceeds through three steps:

1. Scales transform key values to array indices: (1903, v) becomes (5, 4). Scales contain small amounts of  

data, which is kept in central memory; thus this step requires no disk access.

2. The index tuple (5, 4) provides direct access to the correct element of the directory. The directory may be 

large and occupy many pages on disk, but we can compute the address of the correct directory page and in 

one disk access retrieve the correct directory element.

3. The directory element contains a pointer (disk address) of the correct data bucket for (1903, v), and the 

second disk access retrieves the correct record: [(1903, v), John von Neumann …].

Disk utilization

The grid file does not allocate a separate bucket to each grid cell—that would lead to an unacceptably low disk 

utilization. Exhibit 23.4 suggests, for example, that the two grid cells at the top right of the directory share the same 

bucket. How this bucket sharing comes about, and how it is maintained through splitting of overflowing buckets, 

and merging sparsely populated buckets, is shown in the following.
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Exhibit 23.4: The search for a record with key values (1903, v) starts with the scales and 

proceeds via the directory to the correct data bucket on disk.

The dynamics of splitting and merging

The dynamic behavior of the grid file is best explained by tracing an example: we show the effect of repeated  

insertions in  a  two-dimensional  file.  Instead of  showing the grid directory,  whose elements  are  in  one-to-one 

correspondence with the grid blocks, we draw the bucket pointers as originating directly from the grid blocks.

Initially, a single bucket A, of capacity c = 3 in our example, is assigned to the entire domain (Exhibit 23.5). 

When bucket A overflows, the domain is split, a new bucket B is made available, and those records that lie in one 

half of the space are moved from the old bucket to the new one (Exhibit 23.6). If bucket A overflows again, its grid 

block (i.e. the left half of the space) is split according to some splitting policy: We assume the simplest splitting  

policy of alternating directions. Those records of A that lie in the lower-left grid block of Exhibit 23.7 are moved to a 

new bucket C. Notice that as bucket B did not overflow, it is left alone: Its region now consists of two grid blocks.  

For  effective  memory  utilization  it  is  essential  that  in  the  process  of  refining  the  grid  partition  we  need  not  

necessarily split a bucket when its region is split.

Exhibit 23.5: A growing grid file starts with a single bucket allocated to the entire key space.
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Exhibit 23.6: An overflowing bucket triggers a refinement of the space partition.

Exhibit 23.7: Bucket A has been split into A and C, but the contents of B remain unchanged.

Assuming that records keep arriving in the lower-left corner of the space, bucket C will overflow. This will trigger 

a further refinement of the grid partition as shown in Exhibit 23.8, and a splitting of bucket C into C and D. The 

history of repeated splitting can be represented in the form of a binary tree, which imposes on the set of buckets  

currently in use (and hence on the set of regions of these buckets) a twin system (also called a buddy system): Each 

bucket and its region have a unique twin from which it split off. In Exhibit 23.8, C and D are twins, the pair (C, D) is 

A's twin, and the pair (A, (C, D)) is B's twin.

Exhibit 23.8: Bucket regions that span several cells ensure high disk utilization.

Deletions trigger merging operations. In contrast to one-dimensional storage, where it is sufficient to merge 

buckets that split  earlier,  merging policies for multidimensional grid files need to be more general in order to  

maintain a high occupancy.
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Simple geometric objects and their parameter spaces

Consider a class of simple spatial objects, such as aligned rectangles in the plane (i.e. with sides parallel to the  

axes). Within its class, each object is defined by a small number of parameters. For example, an aligned rectangle is  

determined by its center (cx, cy) and the half-length of each side, dx and dy.

An object defined within its class by k parameters can be considered to be a point in a k-dimensional parameter 

space.  For example, an aligned rectangle becomes a point  in four-dimensional space.  All of the geometric and 

topological properties of an object can be deduced from the class it belongs to and from the coordinates of its  

corresponding point in parameter space.

Different  choices  of  the  parameter  space  for  the  same  class  of  objects  are  appropriate,  depending  on 

characteristics of the data to be processed. Some considerations that may determine the choice of parameters are:

1. Distinction between location parameters and extension parameters. For some classes of simple objects it 

is reasonable to distinguish location parameters, such as the center (cx, cy) of an aligned rectangle, from 

extension parameters, such as the half-sides dx and dy. This distinction is always possible for objects that 

can be described as Cartesian products of spheres of various dimensions. For example, a rectangle is the 

product  of  two  one-dimensional  spheres,  a  cylinder  the  product  of  a  one-dimensional  and  a  two-

dimensional  sphere.  Whenever this  distinction can be made,  cone-shaped search regions generated by 

proximity queries as described in the next section have a simple intuitive interpretation: The subspace of 

the location parameters acts as a "mirror" that reflects a query.

2. Independence of parameters, uniform distribution. As an example, consider the class of all intervals on a 

straight line. If intervals are represented by their left and right endpoints, lx and rx, the constraint lx ≤ rx  

restricts all representations of these intervals by points (lx, rx) to the triangle above the diagonal. Any data 

structure that organizes the embedding space of the data points, as opposed to the particular set of points  

that must be stored, will pay some overhead for representing the unpopulated half of the embedding space. 

A coordinate transformation that distributes data all over the embedding space leads to more efficient 

storage. The phenomenon of nonuniform data distribution can be worse than this. In most applications, the  

building blocks from which complex objects are built are much smaller than the space in which they are 

embedded, as the size of a brick is small compared to the size of a house. If so, parameters such as lx and rx  

that locate boundaries of an object are highly dependent on each other. Exhibit 23.9 shows short intervals 

on a long line clustering along the diagonal, leaving large regions of a large embedding space unpopulated; 

whereas the same set of intervals represented by a location parameter cx and an extension parameter dx 

fills a smaller embedding space in a much more uniform way. With the assumption of bounded dx, this data  

distribution is easier to handle.
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Exhibit 23.9: A set of intervals represented in two different parameter spaces.

Region queries of arbitrary shape

Intersection is a basic component of other proximity queries, and thus deserves special attention. CAD design 

rules, for example, often require different objects to be separated by some minimal distance. This is equivalent to  

requiring that objects surrounded by a rim do not intersect. Given a subset Γ of a class of simple spatial objects with 

parameter space H, we consider two types of queries:

• point query Given a query point q, find all objects A ∈ Γ for which q ∈ A.

• point set query Given a query set Q of points, find all objects A ∈ Γ that intersect Q.

Point query. For a query point q compute the region in H that contains all points representing objects in Γ that 

overlap q.

1. Consider the class of intervals on a straight line. An interval given by its center cx and its half length dx  

overlaps a point q with coordinate qx if and only if cx – dx ≤ qx ≤ cx + dx.

2. The class of aligned rectangles in the plane (with parameters cx, cy, dx, dy) can be treated as the Cartesian  

product of two classes of  intervals,  one along the x-axis,  the other along the y-axis (Exhibit  23.10). All 

rectangles that contain a given point q are represented by points in four-dimensional space that lie in the 

Cartesian product of two point-in-interval query regions. The region is shown by its projections onto the cx-

dx plane and the cy-dy plane.
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Exhibit 23.10: A set of aligned rectangles represented as a set of points in a four-dimensional  

parameter space. A point query is transformed into a cone-shaped region query.

3. Consider the class of circles in the plane. We represent a circle as a point in three-dimensional space by the 

coordinates  of  its  center  (cx,  cy) and its  radius r  as  parameters.  All  circles  that  overlap a point  q are  

represented in the corresponding three-dimensional  space by points that  lie  in  the cone with vertex q 

shown in  Exhibit  23.11. The axis of the cone is parallel to the r-axis (the extension parameter), and its 

vertex q is considered a point in the cx-cy plane (the subspace of the location parameters).

Exhibit 23.11: Search cone for a point query for circles in the plane.

Point set query.  Given a query set Q of points, the region in H that contains all points representing objects A  

∈ Γ that intersect Q is the union of the regions in H that results from the point queries for each point q ∈ Q. The 

union of cones is a particularly simple region in H if the query set Q is a simple spatial object.
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1. Consider the class of intervals on a straight line. An interval i = (cx, dx) intersects a query interval Q = (cq, 

dq) if and only if its representing point lies in the shaded region shown in Exhibit 23.12; this region is given 

by the inequalities cx – dx ≤ cq + dq and cx + dx ≥ cq – dq.

Exhibit 23.12: An interval query, as a union of point queries, again gets transformed into a search cone.

2. The class of  aligned rectangles in the plane is again treated as the Cartesian product  of  two classes of  

intervals, one along the x-axis, the other along the y-axis. If Q is also an aligned rectangle, all rectangles  

that intersect Q are represented by points in four-dimensional space lying in the Cartesian product of two 

interval intersection query regions.

3. Consider the class of circles in the plane. All circles that intersect a line segment L are represented by points  

lying in the cone-shaped solid shown in Exhibit 23.13. This solid is obtained by embedding L in the cx-cy 

plane, the subspace of the location parameters, and moving the cone with vertex at q along L.
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Exhibit 23.13: Search region as a union of cones.

Evaluating region queries with a grid file

We have seen that proximity queries on spatial objects lead to search regions significantly more complex than  

orthogonal range queries. The grid file allows the evaluation of irregularly shaped search regions in such a way that  

the complexity of the region affects CPU time but not disk accesses. The latter limits the performance of a data base 

implementation. A query region Q is matched against the scales and converted into a set I of index tuples that refer 

to entries in the directory. Only after  this preprocessing do we access disk to retrieve the correct pages of  the 

directory and the correct data buckets whose regions intersect Q (Exhibit 23.14).

Exhibit 23.14: The cells of a grid partition that overlap an arbitrary query region Q are determined by 

merely looking up the scales. 

Interaction between query processing and data access

The point of  the two preceding sections was to show that in a metric data structure, intricate computations 

triggered by proximity queries can be preprocessed to a remarkable extent before the objects involved are retrieved. 
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Query preprocessing may involve a significant amount of computation based on small amounts of auxiliary data—

the scales and the query—that are kept in central memory. The final access of data from disk is highly selective—

data retrieved has a high chance of being part of the answer.

Contrast this to an approach where an object can be accessed only by its name (e.g. the part number) because  

the geometric information about its location in space is only included in the record for this object but is not part of 

the accessing mechanism. In such a database, all objects might have to be retrieved in order to determine which 

ones answer the query. Given that disk access is the bottleneck in most database applications, it pays to preprocess  

queries as much as possible in order to save disk accesses.

The integration of query processing and accessing mechanism developed in the preceding sections was made 

possible by the assumption of simple objects, where each instance is described by a small number of parameters.  

What can we do when faced with a large number of irregularly shaped objects?

Complex, irregularly shaped spatial objects can be represented or approximated by simpler ones in a variety of  

ways,  for  example:  decomposition,  as  in  a  quad  tree  tessellation  of  a  figure  into  disjoint  raster  squares; 

representation as a  cover of overlapping simple shapes; and enclosing each object in a  container chosen from a 

class of simple shapes. The container technique allows efficient processing of proximity queries because it preserves 

the most important properties for proximity-based access to spatial objects, in particular: It does not break up the 

object into components that must be processed separately, and it eliminates many potential tests as unnecessary (if  

two containers don't intersect, the objects within won't either). As an example, consider finding all polygons that  

intersect a given query polygon, given that each of them is enclosed in a simple container such as a circle or an  

aligned  rectangle.  Testing  two  polygons  for  intersection  is  an  expensive  operation  compared  to  testing  their  

containers for intersection. The cheap container test excludes most of the polygons from an expensive, detailed 

intersection check.

Any approximation technique limits the primitive shapes that must be stored to one or a few types: for example, 

aligned rectangles or boxes. An instance of such a type is determined by a few parameters, such as coordinates of its  

center and its extension, and can be considered to be a point in a (higher-dimensional) parameter space.  This  

transformation reduces object storage to point storage, increasing the dimensionality of the problem without loss of  

information. Combined with an efficient multi-dimensional data structure for  point storage it is the basis for an 

effective implementation of databases for spatial objects.

Exercises

1. Draw three quadtrees, one for each of the 4 · 8 pixel rectangles A, B and C outlined in Exhibit 23.15.
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Exhibit 23.15: The location of congruent objects greatly affects the complexity of a quadtree 

representation.

2. Consider a grid file that stores points lying in a two-dimensional domain: the Cartesian product X1 × X2, 

where X1 = 0 .. 15 and X2 = 0 .. 15 are subranges of the integers. Buckets have a capacity of two points.

(a) Insert the points (2, 3), (13, 14), (3, 5), (6, 9), (10, 13), (11, 5), (14, 9), (7, 3), (15, 11), (9, 9), and (11, 10)  

into the initially empty grid file and show the state of the scales, the directory, and the buckets after  

each insert operation. Buckets are split such that their shapes remain as quadratic as possible.

(b) Delete the points (10, 13), (9, 9), (11, 10), and (14, 9) from the grid file obtained in a) and show the state  

of the scales, the directory, and the buckets after each delete operation. Assume that after deleting a  

point in a bucket this bucket may be merged with a neighbor bucket if their joint occupancy does not  

exceed two points. Further, a boundary should be removed from its scale if there is no longer a bucket  

that is split with respect to this boundary.

(c) Without  imposing  further  restrictions  a  deadlock  situation  may  occur  after  a  sequence  of  delete 

operations: No bucket can merge with any of its neighbors, since the resulting bucket region would no 

longer  be  rectangular.  In  the  example  shown in  Exhibit  23.16 the  shaded  ovals  represent  bucket 

regions. Devise a merging policy that prevents such deadlocks from occurring in a two-dimensional 

grid file.
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Exhibit 23.16: This example shows bucket regions that cannot be merged pairwise.

3. Consider the class of circles in the plane represented as points in three-dimensional parameter space as 

proposed in chapter 23 in the section “Region queries of arbitrary shape”. Describe the search regions in  

the parameter space (a) for all the circles intersecting a given circle C, (b) for all the circles contained in C, 

and (c) for all the circles enclosing .
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Part VI: Interaction between 
algorithms and data 
structures: case studies in 
geometric computation

Organizing and processing Euclidean space

In Part III we presented a varied sample of algorithms that use simple, mostly static, data structures. Part V was 

dedicated to dynamic data structures, and we presented the corresponding access and update algorithms. In this  

final part we illustrate the use of these dynamic data structures by presenting algorithms whose efficiency depends 

crucially  on  them,  in  particular  on  priority  queues  and  dictionaries.  We  choose  these  algorithms  from 

computational  geometry,  a  recently  developed  discipline  of  great  practical  importance  with  applications  in  

computer graphics, computer-aided design, and geographic databases.

If data structures are tools for organizing sets of data and their relationships, geometric data processing poses 

one of the most challenging tests. The ability to organize data embedded in the Euclidean space in such a way as to  

reflect the rich relationships due to location (e.g.  touching or intersecting,  contained in,  distance) is of  utmost 

importance for the efficiency of algorithms for processing spatial data. Data structures developed for traditional  

commercial data processing were often based on the concept of one primary key and several subordinate secondary 

keys. This asymmetry fails to support the equal role played by the Cartesian coordinate axes x, y, z, … of Euclidean  

space. If one spatial axis, say x, is identified as the primary key, there is a danger that queries involving the other 

axes, say y and z, become inordinately cumbersome to process, and therefore slow. For the sake of simplicity we  

concentrate on two-dimensional geometric problems, and in particular on the highly successful class of  plane-

sweep algorithms.  Sweep algorithms do a remarkably good job at processing two-dimensional  space efficiently 

using two distinct one-dimensional data structures, one for organizing the x-axis, the other for the y-axis.
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24. Sample problems and 
algorithms

Learning objectives:

• The nature of geometric computation: three problems and algorithms chosen to illustrate the variety of 

issues encountered:

• Convex hull yields to simple and efficient algorithms, straightforward to implement and analyze.

• Objects with special properties, such as convexity, are often much simpler to process than are general  

objects.

• Visibility problems are surprisingly complex; even if this complexity does not show in the design of an  

algorithm, it sneaks into its analysis.

Geometry and geometric computation

Classical geometry, shaped by the ancient Greeks, is more axiomatic than constructive: It emphasizes axioms, 

theorems, and proofs, rather than algorithms. The typical statement of Euclidean geometry is an assertion about all 

geometric configurations with certain properties (e.g. the theorem of Pythagoras: "In a right-angled triangle, the 

square on the hypotenuse c is equal to the sum of the squares on the two catheti a and b: c 2 = a2 + b2") or an 

assertion of existence (e.g. the parallel axiom: "Given a line L and a point P ∉ L, there is exactly one line parallel to 

L passing through P"). Constructive solutions to problems do occur, but the theorems about the impossibility of 

constructive solutions steal the glory: "You cannot trisect an arbitrary angle using ruler and compass only," and the 

proverbial "It is impossible to square the circle."

Computational geometry, on the other hand, starts out with problems of construction so simple that, until the 

1970s, they were dismissed as trivial: "Given n line segments in the plane, are they free of intersections? If not,  

compute (construct) all intersections." This problem is only trivial with respect to the existence of a constructive 

solution. As we will soon see, the question is far from trivial if interpreted as: How efficiently can we obtain the 

answer?

Computational geometry has some appealing features that make it ideal for learning about algorithms and data 

structures: (a) The problem statements are easily understood, intuitively meaningful, and mathematically rigorous; 

right away the student can try his own hand at solving them, without having to worry about hidden subtleties or a 

lot of required background knowledge. (b) Problem statement, solution, and every step of the construction have  

natural visual representations that support abstract thinking and help in detecting errors of reasoning. (c) These 

algorithms are practical; it is easy to come up with examples where they can be applied.

Appealing as geometric computation is, writing geometric programs is a demanding task. Two traps lie hiding  

behind the obvious combinatorial intricacies that must be mastered, and they are particularly dangerous when they  

occur together: (a) degenerate configurations, and (b) the pitfalls of numerical computation due to discretization 

and rounding errors.  Degenerate  configurations,  such as  those we discussed in  “Straight  lines  and circles”  on  
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intersecting line segments, are special cases that often require special code. It is not always easy to envision all the  

kinds  of  degeneracies  that  may  occur  in  a  given  problem.  A  configuration  may  be  degenerate  for  a  specific  

algorithm, whereas it may be nondegenerate for a different algorithm solving the same problem. Rounding errors 

tend to cause more obviously disastrous consequences in geometric computation than, say, in linear algebra or  

differential equations. Whereas the traditional analysis of rounding errors focuses on bounding their cumulative 

value,  geometry  is  concerned  primarily  with  a  stringent  all-or-nothing  question:  Have  errors  impaired  the  

topological consistency of the data? (Remember the pathology of the braided straight lines.)

In this Part VI we aim to introduce the reader to some of the central ideas and techniques of computational  

geometry. For simplicity's sake we limit coverage to two-dimensional Euclidean geometry - most problems become 

a lot more complicated when we go from two- to three-dimensional configurations. We focus on a type of algorithm 

that is remarkably well suited for solving two-dimensional problems efficiently: sweep algorithms. To illustrate 

their generality and effectiveness, we use plane-sweep to solve several rather distinct problems. We will see that 

sweep  algorithms  for  different  problems  can  be  assembled  from  the  same  building  blocks:  a  skeleton  sweep 

program that sweeps a line across the plane based on a queue of events to be processed, and transition procedures 

that update the data structures (a dictionary or table, and perhaps other structures) at each event and maintain a  

geometric invariant.  Sweeps show convincingly how the dynamic data structures of Part V are essential for the  

efficiency.

The problems and algorithms we discuss deal with very simple objects: points and line segments. Applications of  

geometric  computation such as CAD, on the other hand,  typically  deal  with very  complex objects made up of  

thousands of polygons. The simplicity of these algorithms does not deter from their utility. Complex objects get  

processed by being broken into their primitive parts, such as points, line segments, and triangles. The algorithms  

we present are some of the most basic subroutines of geometric computation, which play a role analogous to that of  

a square root routine for numerical computation: As they are called untold times, they must be correct and efficient.

Convex hull: a multitude of algorithms

The problem of computing the convex hull H(S) of a set S consisting of n points in the plane serves  as an 

example to demonstrate how the techniques of computational geometry yield the concise and elegant solution that 

we presented in “Algorithm animation”. The convex hull of a set S of points in the plane is the smallest convex  

polygon that contains the points of S in its interior or on its boundary. Imagine a nail sticking out above each point 

and a tight rubber band surrounding the set of nails.

Many different algorithms solve this simple problem. Before we present in detail the algorithm that forms the 

basis  of  the program 'ConvexHull'  of  chapter 3,  we briefly illustrate the main ideas behind three others.  Most 

convex hull algorithms have an initialization step that uses the fact that we can easily identify two points of S that  

lie  on the convex  hull  H(S):  for  example,  two  points  Pmin and Pmax with  minimal  and  maximal  x-coordinate, 

respectively.  Algorithms that grow convex hulls  over increasing subsets can use the segment as a (degenerate) 

convex hull to start with. Other algorithms use the segment to partition S into an upper and a lower subset, and  

compute the upper and the lower part of the hull H(S) separately.

1.  Jarvis's march [Jar 73] starts at a point on H(S), say Pmin, and 'walks around' by computing, at each point 

P, the next tangent to S, characterized by the property that all points of S lie on the same side of PQ

273



This book is licensed under a Creative Commons Attribution 3.0 License

Exhibit 24.1: The "gift-wrapping" approach to building the convex hull.

2.  Divide-and-conquer comes to mind: Sort the points of S according to their x-coordinate, use the median x-

coordinate to partition S into a left half SL and a right half SR, apply this convex hull algorithm recursively to 

each half, and merge the two solutions H(SL) and H(SR) by computing the two common exterior tangents to 

H(SL) and H(SR) (Exhibit 24.2). Terminate the recursion when a set has at most three points.

Exhibit 24.2: Divide-and-conquer applies to many problems on spatial data.

3.  Quickhull [Byk 78], [Edd 77], [GS 79] uses divide-and-conquer in a different way. We start with two points  

on the convex hull H(S), say Pmin and Pmax. In general, if we know ≥ 2 points on H(S), say P, Q, R in Exhibit

24.3, these define a convex polygon contained in H(S). (Draw the appropriate picture for just two points 

Pmin and Pmax on the convex hull.) There can be no points of S in the shaded sectors that extend outward 

from the vertices of the current polygon, PQR in the example. Any other points of S must lie either in the  

polygon PQR or in the regions extending outward from the sides.

Exhibit 24.3: Three points known to lie on the convex hull identify regions devoid of points.

For each side, such as PQ in Exhibit 24.4, let T be a point farthest from PQ among all those in the region 

extending outward from PQ, if there are any. T must lie on the convex hull, as is easily seen by considering 
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the parallel to PQ that passes through T. Having processed the side PQ, we extend the convex polygon to 

include T, and we now must process 2 additional sides,PT and TQ. The reader will observe a formal analogy 

between quicksort (“Sorting and its complexity”) and quickhull, which has given the latter its name.

Exhibit  24.4:  The  point  T  farthest  from   identifies  a  new  region  of  exclusion 

(shaded).

4.  In an  incremental scan or  sweep we sort the points of S according to their x-coordinates, and use the 

segment  PminPmax to partition S into an upper subset  and a lower subset,  as shown in  Exhibit  24.5. For 

simplicity of  presentation, we reduce the problem of computing H(S) to the two separate problems of  

computing the upper hull U(S) [i.e. the upper part of H(S)], shown in bold, and the lower hull L(S), drawn  

as a thin line. Our notation and pictures are chosen to describe U(S).

Exhibit 24.5: Separate computations for the upper hull and the lower hull.

Let P1, … , Pn be the points of S sorted by x-coordinate, and let U i = U(P1, … , Pi) be the upper hull of the first i 

points. U1 = P1 may serve as an initialization. For i = 2 to n we compute Ui from Ui–1, as Exhibit 24.6 shows. Starting 

with the tentative tangent PiPi–1 shown as a thin dashed line, we retrace the upper hull U i–1 until we reach the actual 

tangent: in our example, the bold dashed line PiP2. The tangent is characterized by the fact that for j = 1, … , i–1, it  

minimizes the angle Ai,j between PiPj and the vertical.
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Exhibit 24.6: Extending the partial upper hull U(P1, … , Pi–1) to the next point Pi

The program 'ConvexHull' presented in “Algorithm animation” as an example for algorithm animation is written 

as an on-line algorithm: Rather than reading all the data before starting the computation, it accepts one point at a  

time, which must lie to the right of all previous ones, and immediately extends the hull U i–1 to obtain Ui. Thanks to 

the input restriction that the points are entered in sorted order, 'ConvexHull' becomes simpler and runs in linear  

time. This explains the two-line main body:

PointZero;  { sets first point and initializes all necessary 
variables }

while NextRight do  ComputeTangent;

There remain a few programming details that are best explained by relating Fig. 24.6 to the declarations:

var x, y, dx, dy: array[0 .. nmax] of integer;
b: array[0 .. nmax] of integer;  { backpointer }
n: integer;  { number of points entered so far }
px, py: integer;  { new point }

The coordinates of the points Pi are stored in the arrays x and y. Rather than storing angles such as Ai,j, we store 

quantities proportional to cos(Ai,j) and sin(Ai,j) in the arrays dx and dy. The array b holds back pointers for retracing 

the upper hull back toward the left: b[i] = j implies that P j is the predecessor of Pi in Ui. This explains the key 

procedure of the program:

procedure ComputeTangent;  { from Pn = (px, py) to Un–1 }
var i: integer;
begin

i := b[n];
while  dy[n] · dx[i] > dy[i] · dx[n]  do  begin  { dy[n]/dx[n] > 

dy[i]/dx[i] }
i := b[i];
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dx[n] := x[n] – x[i];  dy[n] := y[n] – y[i];
MoveTo(px, py);  Line(–dx[n], –dy[n]);
b[n] := i

end;
MoveTo(px, py);  PenSize(2, 2);  Line(–dx[n], –dy[n]);  PenNormal

end;  { ComputeTangent }

The algorithm implemented by 'ConvexHull' is based on Graham's scan [Gra 72], where the points are ordered 

according to the angle as seen from a fixed internal point, and on [And 79].

The uses of convexity: basic operations on polygons

The convex hull of a set of points or objects (i.e. the smallest convex set that contains all objects) is a model  

problem in geometric computation, with many algorithms and applications. Why? As we stated in the introductory  

section, applications of geometric computation tend to deal with complex objects that often consist of thousands of  

primitive  parts,  such  as  points,  line  segments,  and  triangles.  It  is  often  effective  to  approximate  a  complex  

configuration by a simpler one, in particular, to package it in a container of simple shape. Many proximity queries 

can be answered by processing the container only. One of the most frequent queries in computer graphics, for 

example, asks what object, if any, is first struck by a given ray. If we find that the ray misses a container, we infer  

that it misses all objects in it without looking at them; only if the ray hits the container do we start the costly 

analysis of all the objects in it.

The convex hull is often a very effective container. Although not as simple as a rectangular box, say, convexity is  

such a strong geometric property that many algorithms that take time O(n) on an arbitrary polygon of n vertices 

require only time O(log n) on convex polygons. Let us list several such examples. We assume that a polygon G is  

given as a (cyclic) sequence of n vertices and/or n edges that trace a closed path in the plane. Polygons may be self-

intersecting, whereas simple polygons may not. A simple polygon partitions the plane into two regions: the interior,  

which is simply connected, and the exterior, which has a hole.

Point-in-polygon test

Given a simple polygon G and a query point  P (not  on G), determine whether P lies  inside or outside the  

polygon.

Two closely related algorithms that walk around the polygon solve this problem in time O(n). The first one 

computes the winding number of G around P. Imagine an observer at P looking at a vertex, say V, where the walk  

starts, and turning on her heels to keep watching the walker (Exhibit 24.7). The observer will make a first (positive) 

turn α, followed by a (negative) turn β, followed by … , until the walker returns to the starting vertex V. The sum α + 

β + … of all turning angles during one complete tour of G is: 2·π if P is inside G, and 0 if P is outside G.
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Exhibit 24.7: Point-in polygon test by adding up all turning angles.

The second algorithm computes the crossing number of G with respect to P. Draw a semi-infinite ray R from P 

in any direction (Exhibit 24.8). During the walk around the polygon G from an arbitrary starting vertex V back to V,  

keep track of whether the current oriented edge intersects R, and if so, whether the edge crosses R from below (+1)  

or from above (–1). The sum of all these numbers is +1 if P is inside G, and 0 if P is outside G.

Exhibit 24.8: Point-in polygon test by adding up crossing numbers.

Point-in-convex-polygon test

For a convex polygon Q we use binary search to perform a point-in-polygon test in time O(log n). Consider the 

hierarchical  decomposition  of  Q  illustrated  by  the  convex  12-gon  shown  in  Exhibit  24.9.  We  choose  three 

(approximately) equidistant vertices as the vertices of an innermost core triangle, painted black. "Equidistant" here 

refers not to any Euclidean distance, but rather to the number of vertices to be traversed by traveling along the  

perimeter of Q. For a query point P we first ask, in time O(1), which of the seven regions defined by the extended  

edges of this triangular core contains P. These seven regions shown in Exhibit 24.10 are all "triangles" (albeit six of 

them extend to infinity), in the sense that each one is defined as the intersection of three half-spaces. Four of these 

regions provide a definite answer to the query "Is P inside Q, or outside Q?" One region (shown hatched in Exhibit

24.10) provides the answer 'In',  three the answer  'Out'.  The remaining three regions,  labeled 'Uncertain',  lead 

recursively to a new point-in-convex-polygon test, for the same query point P, but a new convex polygon Q' which is  
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the intersection of Q with one of the uncertain regions. As Q' has only about n  / 3 vertices, the depth of recursion is 

O(log n). Actually, after the first comparison against the innermost triangular core of Q, we have no longer a general  

point-in-convex-polygon problem, but one with additional information that makes all but the first test steps of a  

binary search.

Exhibit 24.9: Hierarchical approximation of a convex 12-gon as a 3-level tree of triangles. The root is in  

black, its children are in dark grey, grandchildren in light grey.

Exhibit 24.10: The plane partitioned into four regions of certainty and three of uncertainty. 

The latter are processed recursively.

Visibility in the plane: a simple algorithm whose analysis is not

Many computer graphics programs are dominated by visibility problems: Given a configuration of objects in 

three-dimensional space, and given a point of view, what is visible? Dozens of algorithms for hidden-line or hidden-

surface elimination have been developed to solve this  everyday problem that our visual system performs "at  a  

glance".  In contrast  to the problems discussed above,  visibility  is  surprisingly  complex.  We give a  hint of  this 

complexity by describing some of the details buried below the smooth surface of a "simple" version: computing the 

visibility of line segments in the plane.

Problem: Given n line segments in the plane, compute the sequence of (sub)segments seen by an observer at 

infinity (say, at y = –∞).
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The complexity of this problem was unexpected until discovered in 1986 [WS 88]. Fortunately, this complexity 

is revealed not by requiring complicated algorithms, but in the analysis of the inherent complexity of the geometric 

problem. The example shown in Exhibit 24.11 illustrates the input data. The endpoints (P1, P10), (P2, P8), (P5, P12) of 

the three line segments labeled 1, 2, 3 are given; other points are computed by the algorithm. The required result is  

a list of visible segments, each segment described by its endpoints and by the identifier of the line of which it is a  

part:

(P1, P3, 1), (P3, P4, 2), (P5, P6, 3), (P6, P8, 2), (P7, P9, 3), (P9, P10, 1), (P11, P12, 3)

Exhibit 24.11: Example: Three line segments seen from below generate seven visible subsegments.

In search of algorithms, the reader is encouraged to work out the details of the first idea that might come to  

mind: For each of the n2 ordered pairs (Li, Lj) of line segments, remove from Li the subsegment occluded by Lj. 

Because Li can get cut into as many as n pieces, it must be managed as a sequence of subsegments. Finding the  

endpoints of Lj in this sequence will take time O(log n), leading to an overall algorithm of time complexity O(n2 · log 

n).

After the reader has mastered the sweep algorithm for line intersection presented in “Plane-sweep: a general-

purpose algorithm for two-dimensional problems illustrated using line segment intersection”, he will see that its  

straightforward application to the line visibility problem requires time O((n + k) · log n), where k  ∈ O(n2) is the 

number  of  intersections.  Thus  plane-sweep appears  to  do  all  the  work the  brute-force  algorithm above  does,  

organized in a systematic left-to-right fashion. It keeps track of all intersections, most of which may be invisible. It  

has the potential to work in time O(n · log n) for many realistic data configurations characterized by k ∈ O(n), but 

not in the worst case.

Divide-and-conquer yields a simple two-dimensional visibility algorithm with a better worst-case performance. 

If n = 0 or 1, the problem is trivial. If n > 1, partition the set of n line segments into two (approximate) halves, solve  

both subproblems, and merge the results. There is no constraint on how the set is halved, so the divide step is easy.  

The conquer step is taken care of by recursion. Merging amounts to computing the minimum of two piecewise (not 

necessarily continuous) linear functions, in time linear in the number of pieces. The example with n = 4 shown in  

Exhibit 24.12 illustrates the algorithm. f12 is the visible front of segments 1 and 2, f34 of segments 3 and 4, min(f12, 

f34) of all four segments (Exhibit 24.13).
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Exhibit 24.12: The four line segments will be partitioned into subsets {1, 2} and {3, 

4}.

Exhibit 24.13: The min operation merges the solutions of this divide-and-conquer 

algorithm.

The time complexity of this divide-and-conquer algorithm is obtained as follows. Given that at each level of 

recursion the relevant sets of line segments can be partitioned into (approximate) halves, the depth of recursion is  

O(log n). A merge step that processes v visible subsegments takes linear time O(v). Together, all the merge steps at 
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a given depth process at most V subsegments, where V is the total number of visible subsegments. Thus the total 

time is bounded by O(V · log n). How large can V be?

Surprising theoretical results

Let V(n) be the number of visible subsegments in a given configuration of n lines, i.e. the size of the output of the  

visibility computation. For tiny n, the worst cases [V(2) = 4, V(3) = 8] are shown in Exhibit 24.14. An attempt to 

find worst-case configurations for general n leads to examples such as that shown in Figure 24.15, with V(n) = 5·n – 

8.

Exhibit 24.14: Configurations with the largest number of visible subsegments.

Figure 24.15: A family of configurations with 5·n – 8 visible subsegments.

You will find it difficult to come up with a class of configurations for which V(n) grows faster. It is tempting to  

conjecture that V(n) ∈ O(n), but this conjecture is very hard to prove - for the good reason that it is false, as was  

discovered in [WS 88]. It turns out that V(n) ∈ Θ(n · α(n)), where α(n), the inverse of Ackermann's function (see 

“Computability and complexity”, Exercise 2), is a monotonically increasing function that grows so slowly that for 

practical purposes it can be treated as a constant, call it α.

Let us present some of the steps of how this surprising result was arrived at. Occasionally, simple geometric 

problems can be tied to deep results in other branches of mathematics. We transform the two-dimensional visibility 

problem into a combinatorial string problem. By numbering the given line segments, walking along the x-axis from 
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left to right, and writing down the number of the line segment that is currently visible, we obtain a sequence of  

numbers (Exhibit 24.16).

Exhibit 24.16: The Davenport-Schinzel sequence associated with a configuration of 

segments.

A geometric configuration gives rise to a sequence u1, u2, … , um with the following properties:

1. 1  ≤ ui  ≤ n for 1 ≤ i ≤ m (numbers identify line segments).

2. ui ≠ ui+1 for 1 ≤ i ≤ m – 1 (no two consecutive numbers are equal).

3. There are no five indices 1 ≤ a < b < c < d < e ≤ m such that ua = uc = ue = r and ub = ud = s, r ≠ s. This 

condition captures  the geometric  properties  of  two intersecting  straight  lines:  If  we ever  see  r,  s,  r,  s 

(possibly separated), we will never see r again, as this would imply that r and s intersect more than once 

(Exhibit 24.17).

Exhibit 24.17: The subsequence r, s, r, s excludes further occurrences of r.

Example

The sequence for the example above that shows m ≥ 5 n – 8 is

1, 2, 1, 3, 1, … , 1, n–1, 1, n–1, n–2, n–3, … , 3, 2, n, 2, n, 3, n, … , n, n–2, n, n–1, n.
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Sequences with the properties 1 to 3, called Davenport-Schinzel sequences, have been studied in the context of 

linear differential equations. The maximal length of a Davenport-Schinzel sequence is k · n ·  α(n), where k is a 

constant and α(n) is the inverse of Ackermann's function (see “Computability and complexity”, Exercise 2) [HS 86].  

With increasing n, α(n) approaches infinity, albeit very slowly. This dampens the hope for a linear upper bound for 

the visibility problem, but does not yet disprove the conjecture. For the latter, we need an inverse: For any given  

Davenport-Schinzel sequence there exists a corresponding geometric configuration which yields this sequence. An 

explicit construction is given in [WS 88]. This establishes an isomorphism between the two-dimensional visibility 

problem and the Davenport-Schinzel  sequences, and shows that  the size of  the output of  the two-dimensional 

visibility problem can be superlinear - a result that challenges our geometric intuition.

Exercises

1. Given a set of points S, prove that the pair of points farthest from each other must be vertices of the convex  

hull H(S).

2. Assume a model  of  computation in  which the operations addition,  multiplication,  and comparison are 

available at unit cost. Prove that in such a model Ω(n · log n) is a lower bound for computing, in order, the 

vertices of the convex hull H(S) of a set S of n points. Hint: Show that every algorithm which computes the 

convex hull of n given points can be used to sort n numbers.

3. Complete the second algorithm for the point-in-polygon test in chapter 24 in the section “The uses of 

convexity: basic operations on polygons” which computes the crossing number of the polygon G around 

point P by addressing the special cases that arise when the semi-infinite ray R emanating from P intersects  

a vertex of G or overlaps an edge of G.

4. Consider an arbitrary (not necessarily simple) polygon G (Exhibit 24.18). Provide an interpretation for the 

winding number w(G, P) of G around an arbitrary point P not on G, and prove that w(G, P)  / 2·π of P is 

always equal to the crossing number of P with respect to any ray R emanating from P.

Exhibit 24.18: Winding number and crossing number of a polygon G with respect to P.

5. Design an algorithm that computes the area of an n-vertex simple, but not necessarily convex polygon in 

Θ(n) time.

6. We consider the problem of computing the intersection of two convex polygons which are given by their  

lists of vertices in cyclic order.

(a) Show that the intersection is again a convex polygon.

(b) Design an algorithm that computes the intersection. What is the time complexity of your algorithm?
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7. Intersection test for line L and [convex] polygon Q  If an (infinitely extended) line L intersects a polygon Q, 

it  must intersect one of Q's edges. Thus a test  for intersection of a given line L with a polygon can be 

reduced to repeated test of L for intersection with [some of] Q's edges.

(a) Prove that, in general, a test for line-polygon intersection must check at least n – 2 of Q's edges. Hint: 

Use an adversary argument. If two edges remain unchecked, they could be moved so as to invalidate 

the answer.

(b) Design a test that works in time O(log n) for decoding whether a line L intersects a convex polygon Q.

8. Divide-and-conquer algorithms may divide the space in which the data is embedded, rather than the set of 

data (the set of lines). Describe an algorithm for computing the sequence of visible segments that partitions  

the space recursively into vertical stripes, until each stripe is "simple enough"; describe how you choose the  

boundaries of the stripes; state advantages and disadvantages of this algorithm as compared to the one 

described in chapter 24 in the section “Visibility in the plane: a simple algorithm whose analysis is not”. 

Analyze the asymptotic time complexity of this algorithm.
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25. Plane-sweep: a general-
purpose algorithm for two-
dimensional problems 
illustrated using line segment 
intersection

Learning objectives:

• line segment intersection test

• turning space dimensions into time dimensions

• updating a y table and detecting intersections

• sweeping across and intersection

Plane-sweep is an algorithm schema for two-dimensional geometry of great generality and effectiveness, and 

algorithm designers are well advised to try it first. It works for a surprisingly large set of problems, and when it  

works, tends to be very efficient.  Plane-sweep is easiest to understand under the assumption of nondegenerate  

configurations. After explaining plane-sweep under this assumption, we remark on how degenerate cases can be 

handled with plane-sweep.

The line segment intersection test

We present a plane-sweep algorithm [SH 76] for the line segment intersection test:

Given n line segments in the plane, determine whether any two 
intersect;

and if so, compute a witness (i.e. a pair of segments that 
intersect).

Bounds on the complexity of this problem are easily obtained. The literature on computational geometry (e.g. 

[PS 85]) proves a lower bound Ω(n · log n). The obvious brute force approach of testing all n · (n – 1) / 2 pairs of 

line segments requires Θ(n2) time. This wide gap between n · log n and n2 is a challenge to the algorithm designer, 

who strives for an optimal algorithm whose asymptotic running time O(n · log n) matches the lower bound.

Divide-and-conquer is often the first attempt to design an algorithm, and it comes in two variants illustrated in 

Fig. 25.1: (1) Divide the data, in this case the set of line segments, into two subsets of approximately equal size (i.e.  

n / 2 line segments), or (2) divide the embedding space, which is easily cut in exact halves.
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Exhibit 25.1: Two ways of applying divide-and-conquer to a set of objects embedded in the plane.

In the first case, we hope for a separation into subsets S1 and S2 that permits an efficient test whether any line 

segment in S1 intersects some line segment in S2. Exhibit 25.1 shows the ideal case where S1 and S2 do not interact, 

but of course this cannot always be achieved in a nontrivial way; and even if S can be separated as the figure  

suggests,  finding  such  a  separating  line  looks  like  a  more  formidable  problem  than  the  original  intersection  

problem. Thus, in general, we have to test each line segment in S1 against every line segment in S2, a test that may 

take Θ(n2) time.

The second approach of dividing the embedding space has the unfortunate consequence of effectively increasing 

our data set.  Every segment that straddles the dividing line gets "cut" (i.e.  processed twice,  once for each half 

space). The two resulting subproblems will be of size n' and n", respectively, with n' + n" > n, in the worst case n' +  

n" = 2 · n. At recursion depth d we may have 2d · n subsegments to process. No optimal algorithm is known that 

uses this technique.

The key idea in designing an optimal algorithm is the observation that those line segments that intersect a 

vertical line L at abscissa x are totally ordered: A segment s lies below segment t, written s <L t, if both intersect L at 

the current position x and the intersection of s with L lies below the intersection of t with L. With respect to this  

order a line segment may have an upper and a lower neighbor, and Exhibit 25.2 shows that s and t are neighbors at 

x.

Exhibit 25.2: The sweep line L totally orders the segments that intersect L.

We describe the intersection test algorithm under the assumption that the configuration is nondegenerate (i.e.  

no three segments intersect in the same point). For simplicity's sake we also assume that no segment is vertical, so 

every segment has a left endpoint and a right endpoint. The latter assumption entails no loss of generality: For a 

vertical  segment,  we  can  arbitrarily  define  the  lower  endpoint  to  be  the  "left  endpoint",  thus  imposing  a 

lexicographic  (x,  y)-order  to  refine  the  x-order.  With  the  important  assumption  of  non-degeneracy,  two  line 

segments s and t can intersect at x0 only if there exists an abscissa x < x0 where s and t are neighbors. Thus it 
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suffices to test all segment pairs that become neighbors at some time during a left-to-right sweep of L - a number 

that is usually significantly smaller than n · (n – 1) / 2.

As the sweep line L moves from left to right across the configuration, the order <L among the line segments 

intersecting L changes only at endpoints of a segment or at intersections of segments. As we intend to stop the  

sweep as soon as we discover an intersection, we need to perform the intersection test only at the left and right  

endpoints of segments. A segment t is tested at its left endpoint for intersection with its lower and upper neighbors. 

At the right endpoint of t we test its lower and upper neighbor for intersection (Exhibit 25.3).

The algorithm terminates as soon as we discover an intersecting pair of segments. Given n segments, each of

Exhibit 25.3: Three pairwise intersection tests charged to segment t.

which may generate three intersection tests as shown in Exhibit 25.3 (two at its left, one at its right endpoint), we 

perform the O(1) pairwise segment intersection test at most 3 · n times. This linear bound on the number of pairs 

tested for intersection might raise the hope of finding a linear-time algorithm, but so far we have counted only the 

geometric primitive: "Does a pair of segments intersect - yes or no?" Hiding in the background we find bookkeeping 

operations such as "Find the upper and lower neighbor of a given segment", and these turn out to be costlier than 

the geometric ones. We will find neighbors efficiently by maintaining the order <L in a data structure called a y-

table during the entire sweep.

The skeleton: Turning a space dimension into a time dimension

The name plane-sweep is derived from the image of sweeping the plane from left to right with a vertical line  

(front, or cross section), stopping at every transition point (event) of a geometric configuration to update the cross  

section. All processing is done at this moving front, without any backtracking, with a look-ahead of only one point.  

The events are stored in the x-queue, and the current cross section is maintained by the y-table. The skeleton of a  

plane-sweep algorithm is as follows:

initX;  initY;
while  not emptyX  do  { e := nextX;  transition(e) }

The procedures 'initX' and 'initY' initialize the x-queue and the y-table. 'nextX' returns the next event in the x-

queue, 'emptyX' tells us whether the x-queue is empty. The procedure 'transition', the advancing mechanism of the 

sweep, embodies all the work to be done when a new event is encountered; it moves the front from the slice to the 

left of an event e to the slice immediately to the right of e.

Data structures

For the line segment intersection test, the x-queue stores the left and right endpoints of the given line segments,  

ordered by their x-coordinate, as events to be processed when updating the vertical cross section. Each endpoint 

stores a reference to the corresponding line segment. We compare points by their x-coordinates when building the 
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x-queue. For simplicity of presentation we assume that no two endpoints of  line segments have equal x- or y-

coordinates. The only operation to be performed on the x-queue is 'nextX': it returns the next event (i.e. the next left  

or right endpoint of a line segment to be processed). The cost for initializing the x-queue is O(n · log n), the cost for  

performing the 'nextX' operation is O(1).

The y-table contains those line segments that are currently intersected by the sweep line, ordered according to  

<L. In the slice between two events, this order does not change, and the y-table needs no updating (Exhibit 25.4). 

The y-table is a dictionary that supports the operations 'insertY', 'deleteY', 'succY', and 'predY'. When entering the  

left  endpoint of  a line segment s  we find the place where s  is  to be inserted in the ordering of the y-table by  

comparing s to other line segments t already stored in the y-table. We can determine whether s <L t or t <L s by 

determining on which side of t the left endpoint of s lies. As we have seen in chapter 14 in the section “Intersection”, 

this tends to be more efficient than computing and comparing the intersection points of s and t with the sweep line.  

If we implement the dictionary as a balanced tree (e.g.  an AVL tree),  the operations 'insertY'  and 'deleteY' are  

performed in O(log n) time, and 'succY' and 'predY' are performed in O(1) time if additional pointers in each node 

of the tree point to the successor and predecessor of the line segment stored in this node. Since there are 2 · n  

events in the x-queue and at most n line segments in the y-table the space complexity of this plane-sweep algorithm 

is O(n).

Exhibit 25.4: The y-table records the varying state of the sweep line L.

Updating the y-table and detecting an intersection

The procedure 'transition' maintains the order <L of the line segments intersecting the sweep line and performs 

intersection tests. At a left endpoint of a segment t, t is inserted into the y-table and tested for intersection with its 

lower and upper neighbors. At the right endpoint of t, t is deleted from the y-table and its two former neighbors are  

tested.  The algorithm terminates  when an intersection has been found or all  events  in the x-queue have been 

processed without finding an intersection:

procedure transition(e: event);
begin

s := segment(e);
if  leftPoint(e)  then  begin

insertY(s);
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if  intersect(predY(s), s) or intersect (s, succY(s))  then
terminate('intersection found')

end
else  { e is right endpoint of s }  begin

if  intersect(predY(s), succY(s))  then
terminate('intersection found');

deleteY(s)
end

end;

With at most 2 · n events, and a call of 'transition' costing time O(log n), this plane-sweep algorithm needs O(n ·  

log n) time to perform the line segment intersection test.

Sweeping across intersections 

The plane-sweep algorithm for the line segment intersection test is easily adapted to the following more general  

problem [BO 79]:

Given n line segments, report all intersections.

In  addition to  the  left  and  right  endpoints,  the  x-queue  now  stores  intersection  points  as  events—any 

intersection detected is inserted into the x-queue as an event to be processed. When the sweep line reaches an  

intersection event the two participating line segments are swapped in the y-table (Exhibit 25.5). The major increase 

in complexity as compared to the segment intersection test is that now we must process not only 2 · n events, but 2 · 

n + k events, where k is the number of intersections discovered as we sweep the plane. A configuration with n / 2 

segments vertical and n  / 2 horizontal shows that, in the worst case, k  ∈ Θ(n2), which leads to an O(n2 · log n) 

algorithm, certainly no improvement over the brute-force comparison of all pairs. In most realistic configurations, 

say  engineering drawings,  the  number  of  intersections  is  much less  than O(n2),  and  thus it  is  informative  to 

introduce the parameter k in order to get an output-sensitive bound on the complexity of this algorithm (i.e. a 

bound that adapts to the amount of data needed to report the result of the computation).

Exhibit 25.5: Sweeping across an intersection.

Other changes are comparatively minor.  The x-queue must be a priority queue that supports the operation 

'insertX'; it  can be implemented as a heap. The cost for initializing the x-queue remains O(n · log n). Without 

further analysis one might presume that the storage requirement of the x-queue is O(n + k), which implies that the 

cost for calling 'insertX' and 'nextX' remains O(log n), since k ∈ O(n2). A more detailed analysis [PS 91], however, 

shows that the size of the x-queue never exceeds O(n · (log n)2). With a slight modification of the algorithm [Bro 81] 
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it can even be guaranteed that the size of the x-queue never exceeds O(n). The cost for exchanging two intersecting 

line segments in the y-table is O(log n), the costs for the other operations on the y-table remain the same. Since  

there are 2 · n left and right endpoints and k intersection events, the total cost for this algorithm is O((n + k) · log  

n). As most realistic applications are characterized by k ∈ O(n), reporting all intersections often remains an O(n · 

log n) algorithm in practice. A time-optimal algorithm that finds all intersecting pairs of line segments in O(n · log n 

+ k) time using O(n + k) storage space is described in [CE 92].

Degenerate configurations, numerical errors, robustness

The discussion above is based on several assumptions of nondegeneracy, some of minor and some of major  

importance. Let us examine one of each type.

Whenever we access the x-queue ('nextX'), we used an implicit assumption that no two events (endpoints or 

intersections)  have  equal  x-coordinates.  The  order  of  processing  events  of  equal  x-coordinate  is  irrelevant. 

Assuming that no two events coincide at the same point in the plane, lexicographic (x, y)-ordering is a convenient 

systematic way to define 'nextX'.

More serious forms of degeneracy arise when events coincide in the plane, such as more than two segments  

intersecting  in  the  same  point.  This  type  of  degeneracy  is  particularly  difficult  to  handle  in  the  presence  of 

numerical errors, such as rounding errors. In the configuration shown in Exhibit 25.6 an endpoint of u lies exactly 

or nearly on segment s. We may not care whether the intersection routine answers 'yes' or 'no' to the question "Do s 

and u intersect?" but we certainly expect a 'yes' when asking "Do t and u intersect?" This example shows that the  

slightest numerical inaccuracy can cause a serious error: The algorithm may fail to report the intersection of t and  

u, which it would clearly see if it  bothered to look - but the algorithm looks the other way and never asks the 

question "Do t and u intersect?"

Exhibit 25.6: A degenerate configuration may lead to inconsistent 

results.

The trace of the plane-sweep for reporting intersections may look as follows:

1. s is inserted into the y-table

2. t is inserted above s into the y-table, and s and t are tested for intersection: No intersection is found

3. u is inserted below s in the y-table (since the evaluation of the function s(x) may conclude that the left 

endpoint of u lies below s); s and u are tested for intersection, but the intersection routine may conclude  

that s and u do not intersect: u remains below s
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4. Delete u from the y-table

5. Delete s from the y-table

6. Delete t from the y-table

Notice  the  calamity  that  struck  at  the  critical  step  3.  The  evaluation  of  a  linear  expression  s(x)  and  the  

intersection routine for two segments both arrived at a result that, in isolation, is reasonable within the tolerance of  

the underlying arithmetic. The two results together are inconsistent! If the evaluation of s(x) concludes that the left  

endpoint of u lies below s, the intersection routine  must conclude that s and u intersect! If these two geometric 

primitives fail to coordinate their answers, catastrophe may strike. In our example, u and t never become neighbors 

in the y-table, so their intersection gets lost.

Exercises

1. Show that there may be Θ(n2) intersections in a set of n line segments.

2. Design a plane-sweep algorithm that determines in O(n · log n) time whether two simple polygons with a 

total of n vertices intersect.

3. Design a plane-sweep algorithm that determines in O(n · log n) time whether any two disks in a set of n  

disks intersect.

4. Design a plane-sweep algorithm that solves the line visibility problem discussed in chapter 24 in the section 

“Visibility in the plane: a simple algorithm whose analysis is not” in time O((n + k) · log n), where k ∈ O(n2) 

is the number of intersections of the line segments.

5. Give a configuration with the smallest possible number of line segments for which the first intersection  

point reported by the plane-sweep algorithm in chapter 25 in the section “Sweeping across intersections” is  

not the leftmost intersection point.

6. Adapt the plane-sweep algorithm presented in chapter 25 in the section “Sweeping across intersections” to 

detect all intersections among a given set of n horizontal or vertical line segments. You may assume that the 

line segments do not overlap. What is the time complexity of this algorithm if the horizontal and vertical  

line segments intersect in k points?

7. Design a plane-sweep algorithm that finds all intersections among a given set of n rectangles all of whose 

sides are parallel to the coordinate axes. What is the time complexity of your algorithm?
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Learning objectives:

• Applying, implementing and analyzing plane sweep

• Using plane sweep on three or more dimensions

Sweep algorithms solve many kinds of proximity problems efficiently. We present a simple sweep that solves the  

two-dimensional  closest  pair  problem  elegantly  in  asymptotically  optimal  time.  We  explain  why  sweeping 

generalizes easily, but not efficiently, to multidimensional closest pair problems.

The problem

We consider the two-dimensional  closest pair problem: Given a set S of n points in the plane find a pair of 

points whose distance δ is smallest (Exhibit 26.1). We measure distance using the metric dk, for any k ≥ 1, or d∞, 

defined as:

Exhibit 26.1: Identify a closest pair among n points in the plane.

Special  cases  of  interest  include the "Manhattan metric"  d1,  the "Euclidean  metric"  d2,  and the "maximum 

metric" d∞. Exhibit 26.2 shows the "circles" of radius 1 centered at a point p for some of these metrics.

Exhibit 26.2: The results of this chapter remain valid when distances are measured in various metrics.
 

The closest pair problem has a lower bound Ω(n · log n) in the algebraic decision tree model of computation [PS 

85]. Its solution can be obtained in asymptotically optimal time O(n · log n) as a special case of more general 

problems, such as 'all-nearest-neighbors' [HNS 92] (for each point, find a nearest neighbor), or constructing the 

Voronoi diagram [SH 75]. These general approaches call on powerful techniques that make the resulting algorithms 

harder to understand than one would expect for a simply stated problem such as "find a closest pair". The divide-

and-conquer algorithm presented in [BS 76] solves the closest pair problem directly in optimal worst-case time 

complexity  Θ(n  ·  log  n)  using  the  Euclidean  metric  d2.  Whereas  the  recursive  divide-and-conquer  algorithm 
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involves an intricate argument for combining the solutions of two equally sized subsets, the iterative plane-sweep 

algorithm [HNS 88] uses a simple incremental update: Starting with the empty set of points, keep adding a single 

point until the final solution for the entire set is obtained. A similar plane-sweep algorithm solves the closest pair 

problem for a set of convex objects [BH 92].

Plane-sweep applied to the closest pair problem

The skeleton of the general sweep algorithm presented in chapter 25 in the section “The skeleton: turning a 

space dimension into a time dimension”, with the data structures x-queue and y-table, is adapted to the closest pair  

problem as shown in  Exhibit 26.3. The  x-queue stores the points of the set S, ordered by their x-coordinate, as 

events to be processed when updating the vertical cross section. Two pointers into the x-queue, 'tail' and 'current', 

partition S into four disjoint subsets:

1. The discarded points to the left of 'tail' are not accessed any longer

2. The active points between 'tail' (inclusive) and 'current' (exclusive) are being queried

3. The current transition point, p, is being processed

4. The future points have not yet been looked at

The y-table stores the active points only, ordered by their y-coordinate.

Exhibit 26.3: Updating the invariant as the next point p is processed.

We need to compare points by their x-coordinates when building the x-queue, and by their y-coordinates while 

sweeping. For simplicity of presentation we assume that no two points have equal x- or y-coordinates. Points with 

equal x- or y-coordinates are handled by imposing an arbitrary, but consistent, total order on the set of points. We 

achieve this by defining two lexicographic orders: <x to be used for the x-queue, <y for the y-table:
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The program of the following section initializes the x-queue and y-table with the two leftmost points being 

active, with δ equal to their distance, and starts the sweep with the third point.

The distinction between discarded and active points is motivated by the following argument. When a new point  

p is encountered we wish to answer the question whether this point forms a closest pair with one of the points to its 

left. We keep a pair of closest points seen so far, along with the corresponding minimal distance δ.  Therefore, all 

candidates that may form a new closest pair with the point p on the sweep line lie in a half circle centered at p, with  

radius δ.

The key question to be answered in striving for efficiency is how to retrieve quickly all the points seen so far that  

lie inside this half circle to the left of p, in order to compare their distance to p against the minimal distance δ seen 

so far. We may use any helpful data structure that organizes the points seen so far, as long as we can update this  

data structure efficiently across a transition. A circle (or half-circle) query is complex, at least when embedded in a 

plane-sweep algorithm that organizes data according to an orthogonal coordinate system. A rectangle query can be 

answered more efficiently. Thus we replace the half-circle query with a bounding rectangle query, accepting the fact  

that we might include some extraneous points, such as q.

The rectangle query in  Exhibit 26.3 is implemented in two steps. First, we cut off all the points to the left at  

distance ≥ δ from the sweep line. These points lie between 'tail' and 'current' in the x-queue and can be discarded 

easily by advancing 'tail' and removing them from the y-table. Second, we consider only those points q in the δ-slice 

whose vertical distance from p is less than δ: |qy – py| < δ. These points can be found in the y-table by looking at 

successors and predecessors starting at the y-coordinate of p. In other words, we maintain the following invariant  

across a transition:

1. δ is the minimal distance between a pair of points seen so far (discarded or active).

2. The active points (found in the x-queue between 'tail' and 'current', and stored in the y-table ordered by y-

coordinates) are exactly those that lie in the interior of a δ-slice to the left of the sweep line.

3. Therefore, processing the transition point p involves three steps:

4. Delete all points q with qx ≤ px – δfrom the y-table. They are found by advancing 'tail' to the right.

5. Insert p into the y-table.

6. Find all points q in the y-table with |qy – py| < δ by looking at the successors and predecessors of p. If such 

a point q is found and its distance from p is smaller than δ, update δ and the closest pair found so far.

Implementation

In the following implementation the x-queue is realized by an array that contains all the points sorted by their x-

coordinate. 'closestLeft' and 'closestRight' describe the pair of closest points found so far, n is the number of points  

under consideration, and t and c determine the positions of 'tail' and 'current':

xQueue: array[1 .. maxN] of point;
closestLeft, closestRight: point;
t, c, n: 1 .. maxN;
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The x-queue is initialized by
procedure initX;

'initX' stores all the points into the x-queue, ordered by their x-
coordinates.

The empty y-table is created by
procedure initY;

A new point is inserted into the y-table by
procedure insertY(p: point);

A point is deleted from the y-table by
procedure deleteY(p: point);

The successor of a point in the y-table is returned by
function succY(p: point): point;

The predecessor of a point in the y-table is returned by
function predY(p: point): point;

The initialization part of the plane-sweep is as follows:

initX;  initY;
closestLeft := xQueue[1];  closestRight := xQueue[2];
delta := distance(closestLeft, closestRight);
insertY(closestLeft);  insertY(closestRight);
c := 3;

The events are processed by the loop:

while c ≤ n do  begin  transition;  c := c + 1;  { next event } 
end;

The procedure 'transition' encompasses all the work to be done for a new point:

procedure transition;
begin

{ step 1: remove points outside the δ-slice from the y-table }
current := xQueue[c];
while  current.x – xQueue[t].x ≥ delta  do  begin 

deleteY(xQueue[t]);  t := t + 1
end;

{ step 2: insert the new point into the y-table }
insertY(current);

{ step 3a: check the successors of the new point in the y-table }
check := current;
repeat

check := succY(check);
newDelta := distance(current, check);
if  newDelta < delta  then  begin

delta := newDelta;
closestLeft := check;  closestRight := current;

end;
until  check.y – current.y > delta;

{ step 3b: check the predecessors of the new point in the y-
table }

check := current;
repeat

check := predY(check);
newDelta := distance(current, check);
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if  newDelta < delta  then  begin
delta := newDelta;
closestLeft := check;  closestRight := current;

end;
until  current.y – check.y > delta;

end;  { transition }

Analysis

We show that the algorithm described can be implemented so as to run in worst-case time O(n · log n) and space 

O(n).

If the y-table is implemented by a balanced binary tree (e.g. an AVL-tree or a 2-3-tree) the operations 'insertY', 

'deleteY', 'succY', and 'predY' can be performed in time O(log n). The space required is O(n).

'initX' builds the sorted x-queue in time O(n · log n) using space O(n). The procedure 'deleteY' is called at most  

once for each point and thus accumulates to O(n · log n). Every point is inserted once into the y-table, thus the calls  

of 'insertY' accumulate to O(n · log n).

There remains the problem of analyzing step 3. The loop in step 3a calls 'succY' once more than the number of  

points in the upper half of the bounding box. Similarly, the loop in step 3b calls 'predY' once more than the number  

of points in the lower half of the bounding box. A standard counting technique shows that the bounding box is  

sparsely populated: For any metric dk, the box contains no more than a small, constant number ck of points, and for 

any k, ck ≤ 8. Thus 'succY' and 'predY' are called no more than 10 times, and step 3 costs time O(log n).

The key to this counting is the fact that no two points in the y-table can be closer than δ, and thus not many of 

them can be packed into the bounding box with sides  δ and 2 ·  δ. We partition this box into the eight pairwise 

disjoint, mutually exhaustive regions shown in  Exhibit  26.4. These regions are half circles of diameter  δ in the 

Manhattan metric d1, and we first argue our case only when distances are measured in this metric. None of these 

half-circles can contain more than one point. If a half-circle contained two points at distance δ, they would have to 

be at opposite ends of the unique diameter of this half-circle. These endpoints lie on the left or the right boundary 

of the bounding box, and these two boundary lines cannot contain any points, for the following reasons:

• No active point can be located on the left boundary of the bounding box; such a point would have been 

thrown out when the δ-slice was last updated.

• No active point can exist on the right boundary, as that x-coordinate is preempted by the transition point p  

being processed (remember our assumption of unequal x-coordinates).
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Exhibit 26.4: Only few points at pairwise distance ≥ δ can populate a box of size 2 · δ by δ.

We have shown that the bounding box can hold no more than eight points at pairwise distance ≥ δ when using 

the Manhattan metric d1. It is well known that for any points p, q, and for any k > 1: d1(p,q) > dk(p,q) > d∞(p,q). Thus 

the bounding box can hold no more than eight points at pairwise distance ≥ δ when using any distance dk or d∞.

Therefore,  the calculation of  the predecessors and successors of  a transition point  costs  time O(log n) and 

accumulates to a total of O(n · log n) for all transitions. Summing up all costs results in O(n · log n) time and O(n)  

space complexity for this algorithm. Since Ω(n · log n) is a lower bound for the closest pair problem, we know that 

this algorithm is optimal.

Sweeping in three or more dimensions

To  gain  insight  into  the  power  and  limitation  of  sweep  algorithms,  let  us  explore  whether  the  algorithm 

presented generalizes to higher-dimensional spaces. We illustrate our reasoning for three-dimensional space, but 

the same conclusion holds for any number of dimensions > 2. All of the following steps generalize easily.

Sort  all  the  points  according  to their  x-coordinate  into the x-queue.  Sweep space with a  y-z plane,  and in  

processing the current transition point p, assume that we know the closest pair among all the points to the left of p,  

and their distance  δ. Then to determine whether p forms a new closest pair, look at all the points inside a half-

sphere of radius δ centered at p, extending to the left of p. In the hope of implementing this sphere query efficiently, 

we enclose this  half sphere in a bounding box of side length 2 ·  δ in the y- and z-dimension,  and  δ in the x-

dimension. Inside this box there can be at most a small, constant number ck of points at pairwise distance ≥ δ when 

using any distance dk or d∞.

We implement this box query in two steps: (1) by cutting off all the points farther to the left of p than δ, which is 

done by advancing 'tail' in the x-queue, and (2) by performing a square query among the points currently in the y-z-

table (which all lie in the δ-slice to the left of the sweep plane), as shown in Exhibit 26.5. Now we have reached the 

only  place  where  the  three-dimensional  algorithm  differs  substantially.  In  the  two-dimensional  case,  the 

corresponding  one-dimensional  interval  query  can  be  implemented  efficiently  in  time  O(log  n)  using  find,  

predecessor, and successor operations on a balanced tree, and using the knowledge that the size of the answer set is  
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bounded by a constant. In the three-dimensional case, the corresponding two-dimensional orthogonal range query 

cannot in general be answered in time O(log n)  (per retrieved point) using any of  the known data  structures. 

Straightforward search requires time O(n), resulting in an overall time O(n2) for the space sweep. This is not an 

interesting result for a problem that admits the trivial O(n2) algorithm of comparing every pair.

Exhibit 26.5: Sweeping a plane across three-dimensional space. Ideas generalize, but efficiency does not.

Sweeping reduces the dimensionality of a geometric problem by one, by replacing one space dimension by a  

"time  dimension".  Reducing  a  two-dimensional  problem  to  a  sequence  of  one-dimensional  problems  is  often  

efficient because the total order defined in one dimension allows logarithmic search times. In contrast, reducing a  

three-dimensional problem to a sequence of two-dimensional problems rarely results in a gain in efficiency.

Exercises

1. Consider the following modification of the plane-sweep algorithm for solving the closest pair problem [BH 

92]. When encountering a transition point p do not process all points q in the y-table with |q y – py| < δ, but 

test only whether the distance of p to its successor or predecessor in the y-table is smaller than δ. When 

deleting a point q with qx ≤ px – δ from the y-table test whether the successor and predecessor of q in the y-

table are closer than δ. If a pair of points with a smaller distance than the current δ is found update δ and 

the closest pair found so far.  Prove that this modified algorithm finds a closest pair  What is the time  

complexity of this algorithm?

2. Design a divide-and-conquer algorithm which solves the closest pair problem. What is the time complexity 

of your algorithm? Hint: Partition the set of n points by a vertical line into two subsets of approximately n / 

2 points. Solve the closest pair problem recursively for both subsets. In the conquer step you should use the  

fact that δ is the smallest distance between any pair of points both belonging to the same subset. A point  

from the left subset can only have a distance smaller than δ to a point in the right subset if both points lie in 

a 2 ·  δ-slice to the left and to the right of the partitioning line. Therefore, you only have to match points  

lying in the left δ-slice against points lying in the right δ-slice.
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